USRE43312E1 - Refrigeration cycle apparatus - Google Patents
Refrigeration cycle apparatus Download PDFInfo
- Publication number
- USRE43312E1 USRE43312E1 US11/785,569 US78556907A USRE43312E US RE43312 E1 USRE43312 E1 US RE43312E1 US 78556907 A US78556907 A US 78556907A US RE43312 E USRE43312 E US RE43312E
- Authority
- US
- United States
- Prior art keywords
- refrigerant
- expander
- heat exchanger
- compressor
- way valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 49
- 239000003507 refrigerant Substances 0.000 claims abstract description 672
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 102
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 97
- 238000002347 injection Methods 0.000 claims abstract description 97
- 239000007924 injection Substances 0.000 claims abstract description 97
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 5
- 230000000694 effects Effects 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 description 107
- 238000010438 heat treatment Methods 0.000 description 107
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 238000001704 evaporation Methods 0.000 description 25
- 230000008020 evaporation Effects 0.000 description 25
- 239000012530 fluid Substances 0.000 description 25
- 230000005855 radiation Effects 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 230000005611 electricity Effects 0.000 description 9
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/06—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
Definitions
- the present invention relates to a refrigeration cycle apparatus using carbon dioxide as refrigerant and having a compressor, an outdoor heat exchanger, an expander and an indoor heat exchanger.
- a flow rate of refrigerant which circulates through a refrigeration cycle apparatus is all the same in any points in a refrigeration cycle. If a suction density of refrigerant passing through a compressor is defined as DC and a suction density of refrigerant passing through an expander is defined as DE, the DE/DC (density ratio) is always constant.
- CO 2 refrigerant carbon dioxide (CO 2 , hereinafter) in which ozone destroy coefficient is zero and global warming coefficient is extremely smaller than Freon.
- the CO 2 refrigerant has a low critical temperature as low as 31.06° C.
- a high pressure side (outlet of the compressor—gas cooler—inlet of pressure reducing device) of the refrigeration cycle apparatus is brought into a supercritical state in which CO 2 refrigerant is not condensed, and there is a feature that operation efficiency of the refrigeration cycle apparatus is deteriorated as compared with a conventional refrigerant. Therefore, it is important for the refrigeration cycle apparatus using CO 2 refrigerant to maintain optimal COP, and if an operating condition is changed, it is necessary to obtain an operating state (pressure and temperature of the refrigerant) which is optimal to this operating condition.
- the number of rotation of the expander and the number of rotation of the compressor must be the same, and in the expander which is designed optimally with a predetermined density ratio, it is difficult to maintain the optimal COP when the operation condition is changed.
- the power recover by the expander is used as a driving force for an auxiliary compressor which is different from the compressor, it is possible to eliminate the constraint that the number of rotation of the expander and the number of rotation of the compressor must be the same. However, even if the auxiliary compressor is driven by the expander, the constraint that the density ratio is constant is still remained, and it is still necessary to control the amount of refrigerant which flows into the expander.
- a first aspect of the present invention provides a refrigeration cycle apparatus using carbon dioxide as refrigerant and having a compressor, an outdoor heat exchanger evaporator, an expander and an indoor heat exchanger a radiator, wherein an injection circuit for introducing high pressure refrigerant is provided in a halfway of an expansion process of said expander.
- the apparatus further comprises an adjusting valve for adjusting an amount of refrigerant from the injection circuit.
- an adjusting valve for adjusting an amount of refrigerant from the injection circuit.
- the expander is provided at its refrigerant-inflow side with a pre-expansion valve.
- a pre-expansion valve When it is necessary to reduce the amount of refrigerant without changing the number of rotation of the expander, it is possible to reduce the flow rate of refrigerant per one expansion process by reducing the opening of the pre-expansion valve.
- the expander is provided at its refrigerant-inflow side with a sub-expander.
- a sub-expander By pre-expansion is carried out by the sub-expander, it is possible to adjust a state of refrigerant in the inlet of the expander, and to optimally adjust the amount of refrigerant flowing through the expander. Therefore, it is possible to efficiently recover power in the expander, and to recover the expansion power also in the sub-expander which carries out the pre-expansion.
- the expander is provided at its refrigerant-outflow side with a sub-expander. It is possible to additionally expand by the sub-expander, and to optimally control the pressure in the outlet of the expander. Therefore, it is possible to efficiently recover power in the expander, and to recover the expansion power also in the sub-expander which carries out the additional expansion.
- an electric generator is connected to the sub-expander.
- power recover by the expander can be used for driving the compressor.
- the compressor is provided at its suction side or discharge side with an auxiliary compressor, and power recover by the expander can be used as power for driving the auxiliary compressor.
- the apparatus further comprises a first four-way valve to which a discharge side pipe and a suction side pipe of the compressor are connected, and a second four-way valve to which a discharge side pipe and a suction side pipe of the expander are connected, and refrigerant discharged from the compressor is selectively allowed to flow into the indoor heat exchanger or the outdoor heat exchanger by the first four-way valve, a direction of refrigerant flowing through the expander is always set in the same direction by the second four-way valve.
- the first to fifth aspects can be utilized as a cooling and heating air conditioner.
- the apparatus further comprises a first four-way valve to which discharge side pipes and suction side pipes of the compressor and the auxiliary compressor are connected, and a second four-way valve to which a discharge side pipe and a suction side pipe of the expander are connected, and refrigerant discharged from the compressor and the auxiliary compressor is selectively allowed to flow into the indoor heat exchanger or the outdoor heat exchanger by the first four-way valve, a direction of refrigerant flowing through the expander and the sub-expander is always set in the same direction by the second four-way valve. Therefore, the eighth aspect can be utilized as a cooling and heating air conditioner.
- FIG. 1 shows a structure of a heat pump type cooling and heating air conditioner according to an embodiment of the present invention.
- FIG. 2 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 3 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 4 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 5 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 6 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 7 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 8 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 9 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 10 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 11 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 12 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 13 shows a structure of a heat pump type cooling and heating air conditioner according to another embodiment of the invention.
- FIG. 1 shows a structure of the heat pump type air conditioner of the present embodiment.
- the heat pump type air conditioner of this embodiment uses CO 2 refrigerant as refrigerant, and has refrigerant circuit.
- the refrigerant circuit comprises a compressor 1 having a motor 12 , an outdoor heat exchanger 3 , an expander 6 and an indoor heat exchanger 8 which are all connected to one another through pipes.
- the expander 6 is provided at its inflow side with a pre-expansion valve 5 .
- the refrigerant circuit is provided with an injection circuit 20 .
- the injection circuit 20 introduces high pressure refrigerant on the side of an outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the compressor 1 are connected to each other, and the compressor 1 utilizes power recover by the expander 6 for driving.
- Refrigerant is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 .
- the refrigerant is discharged and introduced into the outdoor heat exchanger 3 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the pre-expansion valve 5 and the expander 6 , and is expanded by the pre-expansion valve 5 and the expander 6 . Power recover by the expander 6 at the time of expansion is used for driving the compressor 1 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is drawn into the compressor 1 .
- the flow rate of refrigerant in one expansion process by controlling the amount of refrigerant from the injection circuit 20 . If the flow rate of refrigerant flowing into the expander 6 is greater than a designed flow rate, the opening of the pre-expansion valve 5 is reduced to reduce the density and it is possible to reduce the flow rate of refrigerant flowing into the expander 6 . Therefore, it is possible to efficiently recover power in the expander 6 and to more efficiently recover power from the refrigeration cycle.
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 2 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an outdoor heat exchanger 3 , an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
- the expander 6 is provided at its inflow side with a pre-expansion valve 5 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the compressor 1 are connected to each other, and the compressor 1 utilizes power recover by the expander 6 for driving.
- the refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, and a second four-way valve 4 to which a suction side pipe of the pre-expansion valve 5 , a discharge side pipe of the expander 6 and the injection circuit 20 are connected.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the pre-expansion valve 5 and the expander 6 and is expanded by the pre-expansion valve 5 and the expander 6 . Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is drawn into the compressor 1 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO 2 refrigerant is introduced into the pre-expansion valve 5 and the expander 6 , and is expanded by the pre-expansion valve 5 and the expander 6 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- the apparatus can efficiently be recovered in the expander 6 , and more power can be recovered from the refrigeration cycle, and since the apparatus includes the first four-way valve 2 and the second four-way valve 4 , the apparatus can be utilized as a cooling and heating air conditioner.
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 3 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an outdoor heat exchanger 3 , an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
- the expander 6 is provided at its inflow side with a sub-expander 23 , and an electric generator 24 is connected to a drive shaft of the sub-expander 23 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the compressor 1 are connected to each other, and the compressor 1 utilizes power recover by the expander 6 for driving.
- the refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, and a second four-way valve 4 to which a suction side pipe of the sub-expander 23 and a discharge side pipe of the expander 6 are connected.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander 6 . Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expansion device 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is drawn into the compressor 1 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO 2 refrigerant is introduced into the sub-expander 23 and the expander 6 , and is expanded by the sub-expander 23 and the expander 6 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger, 8 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 4 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an outdoor heat exchanger 3 , an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
- the expander 6 is provided at its discharge side with a sub-expander 23 , and an electric generator 24 is connected to a drive shaft of the sub-expander 23 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the compressor 1 are connected to each other, and the compressor 1 utilizes power recover by the expander 6 for driving.
- the refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, and a second four-way valve 4 to which a discharge side pipe of the sub-expander 23 , an inflow side pipe of the expander 6 and the injection circuit 20 are connected.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23 . Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . In this case, torque of the electric generator 24 (load of the electric generator) is minimized.
- the adjusting valve 7 is closed, and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is drawn into the compressor 1 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO 2 refrigerant is introduced into the expander 6 and the sub-expander 23 , and is expanded by the expander 6 and the sub-expander 23 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 .
- torque of the electric generator 24 (load of the electric generator) is minimized. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 5 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an outdoor heat exchanger 3 , an expander 6 , an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
- the expander 6 is provided at its inflow side with a pre-expansion valve 5 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6 .
- the refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe of the compressor 1 and a suction side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a suction side pipe of the pre-expansion valve 5 , a discharge side pipe of the expander 6 and the injection circuit 20 are connected.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the pre-expansion valve 5 and the expander 6 and is expanded by the pre-expansion valve 5 and the expander 6 . Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the into the ejection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10 , and drawn into the compressor 1 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought in to two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO 2 refrigerant is introduced into the pre-expansion valve 5 and the expander 6 , and is expanded by the pre-expansion valve 5 and the expander 6 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10 , and drawn into the compressor 1 .
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 6 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an outdoor heat exchanger 3 , an expander 6 , an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
- the expander 6 is provided at its inflow side with a sub-expander 23 , and an electric generator 24 is connected to a drive shaft of the sub-expander 23 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6 .
- the refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe of the compressor 1 and a suction side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a suction side pipe of the sub-expander 23 , a discharge side pipe of the expander 6 and the injection circuit 20 are connected.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander 6 . Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10 , and drawn into the compressor 1 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO 2 refrigerant is introduced into the sub-expander 23 and the expander 6 , and is expanded by the sub-expander 23 and the expander 6 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10 , and drawn into the compressor 1 .
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 7 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an outdoor heat exchanger 3 , an expander 6 , an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
- the expander 6 is provided at its discharge side with a sub-expander 23 , and an electric generator 24 is connected to a drive shaft of the sub-expander 23 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6 .
- the refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe of the compressor 1 and a suction side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a discharge side pipe of the sub-expander 23 , an inflow side pipe of the expander 6 and the injection circuit 20 are connected.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23 . Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . In this case, torque of the electric generator 24 (load of the electric generator) is minimized.
- the adjusting valve 7 is closed and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10 , and drawn into the compressor 1 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation.
- the CO 2 refrigerant is introduced into the expander 6 and the sub-expander 23 , and is expanded by the expander 6 at the time of expanding operation recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like.
- the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10 , and drawn into the compressor 1 .
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 8 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an auxiliary compressor 10 , an outdoor heat exchanger 3 , an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
- the expander 6 is provided at its inflow side with a pre-expansion valve 5 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6 .
- the refrigerant circuit includes a first four-way valve 2 to which a suction side pipe of the compressor 1 and a discharge side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a suction side pipe of the pre-expansion valve 5 , a discharge side pipe of the expander 6 and the injection circuit 20 are connected.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water.
- the CO 2 refrigerant is introduced into the pre-expansion valve 5 , the expander 6 and the sub-expander 21 and is expanded by the pre-expansion valve 5 , the expander 6 and the sub-expander 21 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like.
- the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the indoor heat exchanger 8 through the first four-way valve 2 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation.
- the CO 2 refrigerant is introduced into the pre-expansion valve 5 , the expander 6 and the sub-expander 21 and is expanded by the pre-expansion valve 5 , the expander 6 and the sub-expander 21 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like.
- the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 9 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an auxiliary compressor 10 , an outdoor heat exchanger 3 , an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
- the expander 6 is provided at its inflow side with a sub-expander 23 , and an electric generator 24 is connected to a drive shaft of the sub-expander 23 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6 .
- the refrigerant circuit includes a first four-way valve 2 to which a suction side pipe of the compressor 1 and a discharge side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a suction side pipe of the sub-expander 23 , a discharge side pipe of the expander 6 and the injection circuit 20 are connected.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander 6 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the indoor heat exchanger 8 through the first four-way valve 2 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation.
- the CO 2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander A.
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like.
- the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20 , and it is possible to control the amount of refrigerant flowing into the expander 6 by changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 and by adjusting a pressure of the inlet of the expander 6 . Therefore, it is possible to efficiently recover power in the expander 6 , and to recover more power from the refrigeration cycle by utilizing the power recover by the sub-expander 23 for generating electricity in the electric generator 24 .
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 10 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an auxiliary compressor 10 , an outdoor heat exchanger 3 , an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
- the expander 6 is provided at its discharge side with a sub-expander 23 , and an electric generator 24 is connected to a drive shaft of the sub-expander 23 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6 .
- the refrigerant circuit includes a first four-way valve 2 to which a suction side pipe of the compressor 1 and a discharge side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a discharge side pipe of the sub-expander 23 , an inflow side pipe of the expander 6 and the injection circuit 20 are connected.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the indoor heat exchanger 8 through the first four-way valve 2 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation.
- the CO 2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like.
- the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . In this case, torque of the electric generator 24 (load of the electric generator) is minimized. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed, and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20 , and it is possible to control the amount of refrigerant flowing into the expander 6 by closing the adjusting valve 7 and by changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 and by adjusting a pressure of the outlet of the expander 6 . Therefore, it is possible to efficiently recover power in the expander 6 , and to recover more power from the refrigeration cycle by utilizing the power recover by the sub-expander 23 for generating electricity in the electric generator 24 .
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 11 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an outdoor heat exchanger 3 , an expander 6 , an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
- the expander 6 is provided at its inflow side with a pre-expansion valve 5 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6 .
- the refrigerant circuit comprises a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, a second four-way valve 4 to which a discharge side pipe and a suction side pipe of the expander 6 and the injection circuit 20 are connected, and a third four-way valve 9 to which a discharge side pipe and a suction side pipe of the auxiliary compressor 10 are connected.
- the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the auxiliary compressor 10 becomes the suction side of the compressor 1 .
- the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the compressor 1 becomes the suction side of the auxiliary compressor 10 .
- the second four-way valve 4 By switching the second four-way valve 4 , a direction of the refrigerant flowing through the expander 6 becomes always the same direction.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the pre-expansion valve 5 , the expander 6 and the sub-expander 21 and is expanded by the pre-expansion valve 5 , the expander 6 and the sub-expander 21 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the third four-way valve 9 and supercharged by the auxiliary compressor 10 , and drawn into the compressor 1 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the auxiliary compressor 10 through the first four-way valve 2 and the third four-way valve 9 and further super-pressurized by the auxiliary compressor 10 .
- the refrigerant whose pressure was increased by the auxiliary compressor 10 is introduced into the indoor heat exchanger 8 through the third four-way valve 9 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation.
- the CO 2 refrigerant is introduced into the pre-expansion valve 5 , the expander 6 and the sub-expander 21 and is expanded by the pre-expansion valve 5 , the expander 6 and the sub-expander 21 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like.
- the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- the compressor 1 which compresses refrigerant and the expander 6 and the auxiliary compressor 10 which recover the power are separated from each other.
- the refrigeration cycle is switched such that the refrigerant is supercharged by the auxiliary compressor 10 at the time of the cooling operation mode, and the refrigerant is super-pressurized at the time of the heating operation mode.
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 12 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an outdoor heat exchanger 3 , an expander 6 , an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
- the expander 6 is provided at its inflow side with a sub-expander 23 , and an electric generator 24 is connected to a drive shaft of the sub-expander 23 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6 .
- the refrigerant circuit comprises a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, a second four-way valve 4 to which a discharge side pipe and a suction side pipe of the expander 6 and the injection circuit 20 are connected, and a third four-way valve 9 to which a discharge side pipe and a suction side pipe of the auxiliary compressor 10 are connected.
- the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the auxiliary compressor 10 becomes the suction side of the compressor 1 .
- the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the compressor 1 becomes the suction side of the auxiliary compressor 10 .
- the second four-way valve 4 By switching the second four-way valve 4 , a direction of the refrigerant flowing through the expander 6 becomes always the same direction.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander 6 . Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the third four-way valve 9 and super-charged by the auxiliary compressor 10 , and drawn into the compressor 1 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the auxiliary compressor 10 through the first four-way valve 2 and the third four-way valve 9 and further super-pressurized by the auxiliary compressor 10 .
- the refrigerant whose pressure was increased by the auxiliary compressor 10 is introduced into the indoor heat exchanger 8 through the third four-way valve 9 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation.
- the CO 2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander 6 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like.
- the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20 , and it is possible to control the amount of refrigerant flowing into the expander 6 by changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 to adjust a pressure of the inlet of the expander 6 . Therefore, it is possible to efficiently recover power in the expander 6 , and to recover more power from the refrigeration cycle by utilizing the power recover by the sub-expander 23 for generating electricity in the electric generator 24 .
- the compressor 1 which compresses refrigerant and the expander 6 and the auxiliary compressor 10 which recover the power are separated from each other.
- the refrigeration cycle is switched such that the refrigerant is supercharged by the auxiliary compressor 10 at the time of the cooling operation mode, and the refrigerant is super-pressurized at the time of the heating operation mode.
- a refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
- FIG. 13 shows a structure of the heat pump type cooling and heating air conditioner of this embodiment.
- the heat pump type cooling and heating air conditioner of this embodiment uses a CO 2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12 , an outdoor heat exchanger 3 , an expander 6 , an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
- the expander 6 is provided at its discharge side with a sub-expander 23 , and an electric generator 24 is connected to a drive shaft of the sub-expander 23 .
- the refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6 .
- the injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20 .
- a drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6 .
- the refrigerant circuit comprises a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, a second four-way valve 4 to which a discharge side pipe and a suction side pipe of the expander 6 and the injection circuit 20 are connected, and a third four-way valve 9 to which a discharge side pipe and a suction side pipe of the auxiliary compressor 10 are connected.
- the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the auxiliary compressor 10 becomes the suction side of the compressor 1 .
- the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the compressor 1 becomes the suction side of the auxiliary compressor 10 .
- the second four-way valve 4 By switching the second four-way valve 4 , a direction of the refrigerant flowing through the expander 6 becomes always the same direction.
- Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2 .
- the outdoor heat exchanger 3 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO 2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23 . Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3 , the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . In this case, the torque of the electric generator 24 (load of the electric generator) is minimized.
- the adjusting valve 7 is closed and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8 .
- a room is cooled by this endotherm.
- the refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the third four-way valve 9 and super-charged by the auxiliary compressor 10 , and drawn into the compressor 1 .
- Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged.
- the refrigerant is introduced into the auxiliary compressor 10 through the first four-way valve 2 and the third four-way valve 9 and further super-pressurized by the auxiliary compressor 10 .
- the refrigerant whose pressure was increased by the auxiliary compressor 10 is introduced into the indoor heat exchanger 8 through the third four-way valve 9 .
- the indoor heat exchanger 8 since CO 2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation.
- the CO 2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23 .
- Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10 .
- an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8 , the number of rotation of the compressor 1 and the like.
- the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20 , thereby increasing the amount of refrigerant per one expansion process of the expander 6 . In this case, the torque of the electric generator 24 (load of the electric generator) is minimized. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6 .
- the CO 2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3 .
- the refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2 .
- the flow rate of refrigerant of the inlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20 , and it is possible to control the amount of refrigerant flowing into the expander 6 by closing the adjusting valve 7 and by changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 to adjust a pressure of the outlet of the expander 6 . Therefore, it is possible to efficiently recover power in the expander 6 , and to recover more power from the refrigeration cycle by utilizing the power recover by the sub-expander 21 or 23 for generating electricity in the electric generator 24 .
- the compressor 1 which compresses refrigerant and the expander 6 and the auxiliary compressor 10 which recover the power are separated from each other.
- the refrigeration cycle is switched such that the refrigerant is supercharged by the auxiliary compressor 10 at the time of the cooling operation mode, and the refrigerant is super-pressurized at the time of the heating operation mode.
- the present invention can also be applied to other refrigeration cycle apparatuses in which the outdoor heat exchanger 3 is used as a first heat exchanger, the indoor heat exchanger 8 is used as a second heat exchanger, and the first and second heat exchangers are utilized for hot and cool water devices or thermal storages.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air-Conditioning For Vehicles (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Polarising Elements (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
It is an object of the present invention to reduce the constraint that the density ratio is constant as small as possible, and to obtain high power recovering effect in a wide operation range. A refrigeration cycle apparatus uses carbon dioxide as refrigerant and has a compressor, an outdoor heat exchanger evaporator, an expander and an indoor heat exchanger a radiator. An injection circuit for introducing high pressure refrigerant is provided in a halfway of an expansion process of said expander.
Description
The present invention relates to a refrigeration cycle apparatus using carbon dioxide as refrigerant and having a compressor, an outdoor heat exchanger, an expander and an indoor heat exchanger.
A flow rate of refrigerant which circulates through a refrigeration cycle apparatus is all the same in any points in a refrigeration cycle. If a suction density of refrigerant passing through a compressor is defined as DC and a suction density of refrigerant passing through an expander is defined as DE, the DE/DC (density ratio) is always constant.
In recent years, attention is focused on a refrigeration cycle apparatus using, as refrigerant, carbon dioxide (CO2, hereinafter) in which ozone destroy coefficient is zero and global warming coefficient is extremely smaller than Freon. The CO2 refrigerant has a low critical temperature as low as 31.06° C. When a temperature higher than this temperature is utilized, a high pressure side (outlet of the compressor—gas cooler—inlet of pressure reducing device) of the refrigeration cycle apparatus is brought into a supercritical state in which CO2 refrigerant is not condensed, and there is a feature that operation efficiency of the refrigeration cycle apparatus is deteriorated as compared with a conventional refrigerant. Therefore, it is important for the refrigeration cycle apparatus using CO2 refrigerant to maintain optimal COP, and if an operating condition is changed, it is necessary to obtain an operating state (pressure and temperature of the refrigerant) which is optimal to this operating condition.
However, when the refrigeration cycle apparatus is provided with the expander and power recover by the expander is used as a portion of a driving force of the compressor, the number of rotation of the expander and the number of rotation of the compressor must be the same, and in the expander which is designed optimally with a predetermined density ratio, it is difficult to maintain the optimal COP when the operation condition is changed.
Hence, there is proposed a structure in which a bypass pipe which bypasses the expander is provided, the refrigerant amount flowing into the expander is controlled, and the optimal COP is maintained (see patent documents 1 and 2 for example)
[Patent Document 1]
Japanese Patent Application Laid-open No. 2000-234814 (paragraphs (0024) and (0025) and FIG. 1 )
[Patent Document 2]
Japanese Patent Application Laid-open No. 2001-116371 (paragraph (0023) and FIG. 1 )
However, there is a problem that as a difference between an amount of refrigerant which flows into the expander and an optimal flow rate in terms of design is increased, an amount of refrigerant flowing through the bypass pipe is increased and as a result, power which could have been recovered can not sufficiently recover.
If the power recover by the expander is used as a driving force for an auxiliary compressor which is different from the compressor, it is possible to eliminate the constraint that the number of rotation of the expander and the number of rotation of the compressor must be the same. However, even if the auxiliary compressor is driven by the expander, the constraint that the density ratio is constant is still remained, and it is still necessary to control the amount of refrigerant which flows into the expander.
Thereupon, it is an object of the present invention to reduce the constraint that the density ratio is constant as small as possible, and to obtain high power recovering effect in a wide operation range.
It is another object of the invention to introduce high pressure refrigerant in a halfway of the expansion process to increase the flow rate of refrigerant per one expansion process, thereby recovering power efficiently.
A first aspect of the present invention provides a refrigeration cycle apparatus using carbon dioxide as refrigerant and having a compressor, an outdoor heat exchanger evaporator, an expander and an indoor heat exchanger a radiator, wherein an injection circuit for introducing high pressure refrigerant is provided in a halfway of an expansion process of said expander.
According to this aspect, when it is necessary to increase the flow rate of refrigerant without changing the number of rotation of the expander, it is possible to increase the flow rate of refrigerant per one expansion process by introducing refrigerant from the injection circuit, and it is possible to recover power efficiently.
According to a second aspect of the invention, in the first aspect, the apparatus further comprises an adjusting valve for adjusting an amount of refrigerant from the injection circuit. By controlling the amount of refrigerant from the injection circuit, it is possible to optimally adjust the amount of refrigerant per one expansion process, and to recover power efficiently.
According to a third aspect of the invention, in the first aspect, the expander is provided at its refrigerant-inflow side with a pre-expansion valve. When it is necessary to reduce the amount of refrigerant without changing the number of rotation of the expander, it is possible to reduce the flow rate of refrigerant per one expansion process by reducing the opening of the pre-expansion valve.
According to a fourth aspect of the invention, in the first aspect, the expander is provided at its refrigerant-inflow side with a sub-expander. By pre-expansion is carried out by the sub-expander, it is possible to adjust a state of refrigerant in the inlet of the expander, and to optimally adjust the amount of refrigerant flowing through the expander. Therefore, it is possible to efficiently recover power in the expander, and to recover the expansion power also in the sub-expander which carries out the pre-expansion.
According to a fifth aspect of the invention, in the first aspect, the expander is provided at its refrigerant-outflow side with a sub-expander. It is possible to additionally expand by the sub-expander, and to optimally control the pressure in the outlet of the expander. Therefore, it is possible to efficiently recover power in the expander, and to recover the expansion power also in the sub-expander which carries out the additional expansion.
According to a sixth aspect of the invention, in the forth or fifth aspect, an electric generator is connected to the sub-expander.
By changing torque of the electric generator of the sub-expander, it is possible to change the amount of refrigerant flowing through the sub-expander, and to adjust the amount of refrigerant flowing through the expander such that the optimal COP can be obtained.
According to a seventh aspect of the invention in any of the first to fifth aspects, power recover by the expander can be used for driving the compressor.
According to an eighth aspect of the invention, in any of the first to fifth aspects, the compressor is provided at its suction side or discharge side with an auxiliary compressor, and power recover by the expander can be used as power for driving the auxiliary compressor.
According to a ninth aspect of the invention, in any of the first to fifth aspects, the apparatus further comprises a first four-way valve to which a discharge side pipe and a suction side pipe of the compressor are connected, and a second four-way valve to which a discharge side pipe and a suction side pipe of the expander are connected, and refrigerant discharged from the compressor is selectively allowed to flow into the indoor heat exchanger or the outdoor heat exchanger by the first four-way valve, a direction of refrigerant flowing through the expander is always set in the same direction by the second four-way valve. According to this aspect, the first to fifth aspects can be utilized as a cooling and heating air conditioner.
According to a tenth aspect of the invention, in the eighth aspect, the apparatus further comprises a first four-way valve to which discharge side pipes and suction side pipes of the compressor and the auxiliary compressor are connected, and a second four-way valve to which a discharge side pipe and a suction side pipe of the expander are connected, and refrigerant discharged from the compressor and the auxiliary compressor is selectively allowed to flow into the indoor heat exchanger or the outdoor heat exchanger by the first four-way valve, a direction of refrigerant flowing through the expander and the sub-expander is always set in the same direction by the second four-way valve. Therefore, the eighth aspect can be utilized as a cooling and heating air conditioner.
A refrigeration cycle apparatus according to an embodiment of the present invention will be explained with reference to the drawings below.
As shown in FIG. 1 , the heat pump type air conditioner of this embodiment uses CO2 refrigerant as refrigerant, and has refrigerant circuit. The refrigerant circuit comprises a compressor 1 having a motor 12, an outdoor heat exchanger 3, an expander 6 and an indoor heat exchanger 8 which are all connected to one another through pipes.
The expander 6 is provided at its inflow side with a pre-expansion valve 5.
The refrigerant circuit is provided with an injection circuit 20. The injection circuit 20 introduces high pressure refrigerant on the side of an outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the compressor 1 are connected to each other, and the compressor 1 utilizes power recover by the expander 6 for driving.
The operation of the heat pump type air conditioner of this embodiment will be explained below.
Refrigerant is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12. The refrigerant is discharged and introduced into the outdoor heat exchanger 3. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the pre-expansion valve 5 and the expander 6, and is expanded by the pre-expansion valve 5 and the expander 6. Power recover by the expander 6 at the time of expansion is used for driving the compressor 1. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is drawn into the compressor 1.
According to this embodiment, it is possible to adjust the flow rate of refrigerant in one expansion process by controlling the amount of refrigerant from the injection circuit 20. If the flow rate of refrigerant flowing into the expander 6 is greater than a designed flow rate, the opening of the pre-expansion valve 5 is reduced to reduce the density and it is possible to reduce the flow rate of refrigerant flowing into the expander 6. Therefore, it is possible to efficiently recover power in the expander 6 and to more efficiently recover power from the refrigeration cycle.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 2 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an outdoor heat exchanger 3, an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
The expander 6 is provided at its inflow side with a pre-expansion valve 5.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the compressor 1 are connected to each other, and the compressor 1 utilizes power recover by the expander 6 for driving.
The refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, and a second four-way valve 4 to which a suction side pipe of the pre-expansion valve 5, a discharge side pipe of the expander 6 and the injection circuit 20 are connected.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the pre-expansion valve 5 and the expander 6 and is expanded by the pre-expansion valve 5 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is drawn into the compressor 1.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the pre-expansion valve 5 and the expander 6, and is expanded by the pre-expansion valve 5 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
As described above, according to this embodiment, like the above embodiment, power can efficiently be recovered in the expander 6, and more power can be recovered from the refrigeration cycle, and since the apparatus includes the first four-way valve 2 and the second four-way valve 4, the apparatus can be utilized as a cooling and heating air conditioner.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 3 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an outdoor heat exchanger 3, an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
The expander 6 is provided at its inflow side with a sub-expander 23, and an electric generator 24 is connected to a drive shaft of the sub-expander 23.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the compressor 1 are connected to each other, and the compressor 1 utilizes power recover by the expander 6 for driving.
The refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, and a second four-way valve 4 to which a suction side pipe of the sub-expander 23 and a discharge side pipe of the expander 6 are connected.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expansion device 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is drawn into the compressor 1.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the sub-expander 23 and the expander 6, and is expanded by the sub-expander 23 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger, 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 to adjust a pressure in the inlet of the expander 6. Therefore, power can efficiently be recover in the expander 6, and more power can be recovered from the refrigeration cycle by utilizing the power recover from the sub-expander 23 for generating electricity in the electric generator 24.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 4 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an outdoor heat exchanger 3, an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
The expander 6 is provided at its discharge side with a sub-expander 23, and an electric generator 24 is connected to a drive shaft of the sub-expander 23.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the compressor 1 are connected to each other, and the compressor 1 utilizes power recover by the expander 6 for driving.
The refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, and a second four-way valve 4 to which a discharge side pipe of the sub-expander 23, an inflow side pipe of the expander 6 and the injection circuit 20 are connected.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23. Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. In this case, torque of the electric generator 24 (load of the electric generator) is minimized. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed, and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is drawn into the compressor 1.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the expander 6 and the sub-expander 23, and is expanded by the expander 6 and the sub-expander 23. Power recover by the expander 6 at the time of expanding operation is used for driving the compressor 1. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. In this case, torque of the electric generator 24 (load of the electric generator) is minimized. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by closing the adjusting valve 7 and changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 to adjust a pressure in the outlet of the expander 6. Therefore, power can efficiently be recovered in the expander 6, and more power can be recovered from the refrigeration cycle by utilizing the power recover from the sub-expander 23 for generating electricity in the electric generator 24.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 5 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an outdoor heat exchanger 3, an expander 6, an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
The expander 6 is provided at its inflow side with a pre-expansion valve 5.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6.
The refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe of the compressor 1 and a suction side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a suction side pipe of the pre-expansion valve 5, a discharge side pipe of the expander 6 and the injection circuit 20 are connected.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the pre-expansion valve 5 and the expander 6 and is expanded by the pre-expansion valve 5 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the into the ejection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10, and drawn into the compressor 1.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought in to two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the pre-expansion valve 5 and the expander 6, and is expanded by the pre-expansion valve 5 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10, and drawn into the compressor 1.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the inlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by changing the opening of the pre-expansion valve 5 to adjust a pressure in the inlet of the expander 6. Therefore, power can efficiently be recovered in the expander 6.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 6 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an outdoor heat exchanger 3, an expander 6, an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
The expander 6 is provided at its inflow side with a sub-expander 23, and an electric generator 24 is connected to a drive shaft of the sub-expander 23.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6.
The refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe of the compressor 1 and a suction side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a suction side pipe of the sub-expander 23, a discharge side pipe of the expander 6 and the injection circuit 20 are connected.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10, and drawn into the compressor 1.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the sub-expander 23 and the expander 6, and is expanded by the sub-expander 23 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10, and drawn into the compressor 1.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 to adjust a pressure in the inlet of the expander 6. Therefore, power can efficiently be recovered in the expander 6, and more power can be recovered from the refrigeration cycle by utilizing the power recover from the sub-expander 23 for generating electricity in the electric generator 24.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 7 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an outdoor heat exchanger 3, an expander 6, an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
The expander 6 is provided at its discharge side with a sub-expander 23, and an electric generator 24 is connected to a drive shaft of the sub-expander 23.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6.
The refrigerant circuit includes a first four-way valve 2 to which a discharge side pipe of the compressor 1 and a suction side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a discharge side pipe of the sub-expander 23, an inflow side pipe of the expander 6 and the injection circuit 20 are connected.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. In this case, torque of the electric generator 24 (load of the electric generator) is minimized. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10, and drawn into the compressor 1.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the expander 6 and the sub-expander 23, and is expanded by the expander 6 at the time of expanding operation recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the first four-way valve 2 and supercharged by the auxiliary compressor 10, and drawn into the compressor 1.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by closing the adjusting valve 7 and changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 to adjust a pressure in the outlet of the expander 6. Therefore, power can efficiently be recovered in the expander 6, and more power can be recovered from the refrigeration cycle by utilizing the power recover from the sub-expander 23 for generating electricity in the electric generator 24.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 8 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an auxiliary compressor 10, an outdoor heat exchanger 3, an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
The expander 6 is provided at its inflow side with a pre-expansion valve 5.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6.
The refrigerant circuit includes a first four-way valve 2 to which a suction side pipe of the compressor 1 and a discharge side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a suction side pipe of the pre-expansion valve 5, a discharge side pipe of the expander 6 and the injection circuit 20 are connected.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the pre-expansion valve 5, the expander 6 and the sub-expander 21 and is expanded by the pre-expansion valve 5, the expander 6 and the sub-expander 21. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the pre-expansion valve 5, the expander 6 and the sub-expander 21 and is expanded by the pre-expansion valve 5, the expander 6 and the sub-expander 21. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by changing the opening of the pre-expansion valve 5 to adjust a pressure in the inlet of the expander 6. Therefore, power can efficiently be recovered in the expander 6.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 9 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an auxiliary compressor 10, an outdoor heat exchanger 3, an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
The expander 6 is provided at its inflow side with a sub-expander 23, and an electric generator 24 is connected to a drive shaft of the sub-expander 23.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6.
The refrigerant circuit includes a first four-way valve 2 to which a suction side pipe of the compressor 1 and a discharge side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a suction side pipe of the sub-expander 23, a discharge side pipe of the expander 6 and the injection circuit 20 are connected.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander A. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 and by adjusting a pressure of the inlet of the expander 6. Therefore, it is possible to efficiently recover power in the expander 6, and to recover more power from the refrigeration cycle by utilizing the power recover by the sub-expander 23 for generating electricity in the electric generator 24.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 10 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an auxiliary compressor 10, an outdoor heat exchanger 3, an expander 6 and an indoor heat exchanger 8 are connected to one another through pipes.
The expander 6 is provided at its discharge side with a sub-expander 23, and an electric generator 24 is connected to a drive shaft of the sub-expander 23.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6.
The refrigerant circuit includes a first four-way valve 2 to which a suction side pipe of the compressor 1 and a discharge side pipe of the auxiliary compressor 10 are connected, and a second four-way valve 4 to which a discharge side pipe of the sub-expander 23, an inflow side pipe of the expander 6 and the injection circuit 20 are connected.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. In this case, torque of the electric generator 24 (load of the electric generator) is minimized. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed and the electric generator 24 is connected to the sub-expander 23 to reduced the low pressure side pressure, thereby reducing the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the auxiliary compressor 10 and further super-pressurized by the auxiliary compressor 10 and then, is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. In this case, torque of the electric generator 24 (load of the electric generator) is minimized. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed, and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by closing the adjusting valve 7 and by changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 and by adjusting a pressure of the outlet of the expander 6. Therefore, it is possible to efficiently recover power in the expander 6, and to recover more power from the refrigeration cycle by utilizing the power recover by the sub-expander 23 for generating electricity in the electric generator 24.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 11 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an outdoor heat exchanger 3, an expander 6, an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
The expander 6 is provided at its inflow side with a pre-expansion valve 5.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6.
The refrigerant circuit comprises a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, a second four-way valve 4 to which a discharge side pipe and a suction side pipe of the expander 6 and the injection circuit 20 are connected, and a third four-way valve 9 to which a discharge side pipe and a suction side pipe of the auxiliary compressor 10 are connected. In the case of refrigerant flow in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator, the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the auxiliary compressor 10 becomes the suction side of the compressor 1. In the case of refrigerant flow in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler, the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the compressor 1 becomes the suction side of the auxiliary compressor 10. By switching the second four-way valve 4, a direction of the refrigerant flowing through the expander 6 becomes always the same direction.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is l shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the pre-expansion valve 5, the expander 6 and the sub-expander 21 and is expanded by the pre-expansion valve 5, the expander 6 and the sub-expander 21. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the third four-way valve 9 and supercharged by the auxiliary compressor 10, and drawn into the compressor 1.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the auxiliary compressor 10 through the first four-way valve 2 and the third four-way valve 9 and further super-pressurized by the auxiliary compressor 10. The refrigerant whose pressure was increased by the auxiliary compressor 10 is introduced into the indoor heat exchanger 8 through the third four-way valve 9. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the pre-expansion valve 5, the expander 6 and the sub-expander 21 and is expanded by the pre-expansion valve 5, the expander 6 and the sub-expander 21. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the opening of the pre-expansion valve 5 is reduced to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the pre-expansion valve 5 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by changing the opening of the pre-expansion valve 5 to adjust a pressure of the inlet of the expander 6. Therefore, it is possible to efficiently recover power in the expander 6, and to recover more power from the refrigeration cycle by utilizing the power recover by the sub-expander 21 for generating electricity in the electric generator 22.
Further, according to this embodiment, the compressor 1 which compresses refrigerant and the expander 6 and the auxiliary compressor 10 which recover the power are separated from each other. The refrigeration cycle is switched such that the refrigerant is supercharged by the auxiliary compressor 10 at the time of the cooling operation mode, and the refrigerant is super-pressurized at the time of the heating operation mode. With this structure, it is possible to allow the expander 6 to operate as a supercharging type expander which is suitable for cooling, and as a super-pressurizing type expander which is suitable for heating.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 12 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an outdoor heat exchanger 3, an expander 6, an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
The expander 6 is provided at its inflow side with a sub-expander 23, and an electric generator 24 is connected to a drive shaft of the sub-expander 23.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6.
The refrigerant circuit comprises a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, a second four-way valve 4 to which a discharge side pipe and a suction side pipe of the expander 6 and the injection circuit 20 are connected, and a third four-way valve 9 to which a discharge side pipe and a suction side pipe of the auxiliary compressor 10 are connected. In the case of refrigerant flow in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator, the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the auxiliary compressor 10 becomes the suction side of the compressor 1. In the case of refrigerant flow in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler, the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the compressor 1 becomes the suction side of the auxiliary compressor 10. By switching the second four-way valve 4, a direction of the refrigerant flowing through the expander 6 becomes always the same direction.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the third four-way valve 9 and super-charged by the auxiliary compressor 10, and drawn into the compressor 1.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the auxiliary compressor 10 through the first four-way valve 2 and the third four-way valve 9 and further super-pressurized by the auxiliary compressor 10. The refrigerant whose pressure was increased by the auxiliary compressor 10 is introduced into the indoor heat exchanger 8 through the third four-way valve 9. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the sub-expander 23 and the expander 6 and is expanded by the sub-expander 23 and the expander 6. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the outlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 to adjust a pressure of the inlet of the expander 6. Therefore, it is possible to efficiently recover power in the expander 6, and to recover more power from the refrigeration cycle by utilizing the power recover by the sub-expander 23 for generating electricity in the electric generator 24.
Further, according to this embodiment, the compressor 1 which compresses refrigerant and the expander 6 and the auxiliary compressor 10 which recover the power are separated from each other. The refrigeration cycle is switched such that the refrigerant is supercharged by the auxiliary compressor 10 at the time of the cooling operation mode, and the refrigerant is super-pressurized at the time of the heating operation mode. With this structure, it is possible to allow the expander 6 to operate as a supercharging type expander which is suitable for cooling, and as a super-pressurizing type expander which is suitable for heating.
A refrigeration cycle apparatus according to another embodiment of the present invention will be explained with reference to the drawing based on a heat pump type cooling and heating air conditioner.
As shown in FIG. 13 , the heat pump type cooling and heating air conditioner of this embodiment uses a CO2 refrigerant as refrigerant, and comprises a refrigerant circuit in which a compressor 1 having a motor 12, an outdoor heat exchanger 3, an expander 6, an indoor heat exchanger 8 and an auxiliary compressor 10 are connected to one another through pipes.
The expander 6 is provided at its discharge side with a sub-expander 23, and an electric generator 24 is connected to a drive shaft of the sub-expander 23.
The refrigerant circuit is provided with an injection circuit 20 which introduces high pressure refrigerant on the side of the outlet of the outdoor heat exchanger 3 in a halfway of the expansion process of the expander 6. The injection circuit 20 is provided with an adjusting valve 7 which adjusts an amount of refrigerant flowing through the injection circuit 20.
A drive shaft of the expander 6 and a drive shaft of the auxiliary compressor 10 are connected to each other, and the auxiliary compressor 10 is driven by power recover by the expander 6.
The refrigerant circuit comprises a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, a second four-way valve 4 to which a discharge side pipe and a suction side pipe of the expander 6 and the injection circuit 20 are connected, and a third four-way valve 9 to which a discharge side pipe and a suction side pipe of the auxiliary compressor 10 are connected. In the case of refrigerant flow in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator, the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the auxiliary compressor 10 becomes the suction side of the compressor 1. In the case of refrigerant flow in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler, the first four-way valve 2 and the third four-way valve 9 are switched over so that the discharge side of the compressor 1 becomes the suction side of the auxiliary compressor 10. By switching the second four-way valve 4, a direction of the refrigerant flowing through the expander 6 becomes always the same direction.
The operation of the heat pump type cooling and heating air conditioner of this embodiment will be explained.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a gas cooler and the indoor heat exchanger 8 is used as an evaporator will be explained. A flow of the refrigerant in the cooling operation mode is shown with solid arrows in the drawing.
Refrigerant at the time of the cooling operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. Then, the CO2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the outdoor heat exchanger 3, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. In this case, the torque of the electric generator 24 (load of the electric generator) is minimized. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the indoor heat exchanger 8 through the second four-way valve 4 and is evaporated and suctions heat in the indoor heat exchanger 8. A room is cooled by this endotherm. The refrigerant which has been evaporated is introduced into the auxiliary compressor 10 through the third four-way valve 9 and super-charged by the auxiliary compressor 10, and drawn into the compressor 1.
Next, a heating operation mode in which the outdoor heat exchanger 3 is used as the evaporator and the indoor heat exchanger 8 is used as the gas cooler will be explained. A flow of a refrigerant in this heating operation mode is shown with dashed arrows in the drawing.
Refrigerant at the time of the heating operation mode is compressed at a high temperature and under a high pressure by the compressor 1 which is driven by the motor 12 and is discharged. The refrigerant is introduced into the auxiliary compressor 10 through the first four-way valve 2 and the third four-way valve 9 and further super-pressurized by the auxiliary compressor 10. The refrigerant whose pressure was increased by the auxiliary compressor 10 is introduced into the indoor heat exchanger 8 through the third four-way valve 9. In the indoor heat exchanger 8, since CO2 refrigerant is in a supercritical state, the refrigerant is not brought into two-phase state, and dissipates heat to outside fluid such as air and water. A room is heated utilizing this radiation. Then, the CO2 refrigerant is introduced into the expander 6 and the sub-expander 23 and is expanded by the expander 6 and the sub-expander 23. Power recover by the expander 6 at the time of expanding operation is used for driving the auxiliary compressor 10. At that time, an optimal amount of refrigerant flowing into the expander 6 is calculated from a high pressure refrigerant temperature, a high pressure refrigerant pressure and a refrigerant evaporation pressure detected on the side of the outlet of the indoor heat exchanger 8, the number of rotation of the compressor 1 and the like. If the flow rate of the refrigerant is smaller than the calculated optimal refrigerant amount, the opening of the adjusting valve 7 is increased to increase the amount of refrigerant which is allowed to flow into the injection circuit 20, thereby increasing the amount of refrigerant per one expansion process of the expander 6. In this case, the torque of the electric generator 24 (load of the electric generator) is minimized. If the flow rate of refrigerant is greater than the calculated optimal refrigerant amount, the adjusting valve 7 is closed and torque of the electric generator 24 (load of the electric generator) is increased to reduce the flow rate of refrigerant flowing into an inlet of the expander 6.
The CO2 refrigerant expanded by the sub-expander 23 and the expander 6 is introduced into the outdoor heat exchanger 3 through the second four-way valve 4 and is evaporated and suctions heat in the outdoor heat exchanger 3. The refrigerant which has been evaporated is drawn into the compressor 1 through the first four-way valve 2.
As described above, according to this embodiment, it is possible to adjust the flow rate of refrigerant of the inlet of the expander 6 by controlling the amount of refrigerant from the injection circuit 20, and it is possible to control the amount of refrigerant flowing into the expander 6 by closing the adjusting valve 7 and by changing the torque of the electric generator 24 (i.e., load of the electric generator) connected to the sub-expander 23 to adjust a pressure of the outlet of the expander 6. Therefore, it is possible to efficiently recover power in the expander 6, and to recover more power from the refrigeration cycle by utilizing the power recover by the sub-expander 21 or 23 for generating electricity in the electric generator 24.
Further, according to this embodiment, the compressor 1 which compresses refrigerant and the expander 6 and the auxiliary compressor 10 which recover the power are separated from each other. The refrigeration cycle is switched such that the refrigerant is supercharged by the auxiliary compressor 10 at the time of the cooling operation mode, and the refrigerant is super-pressurized at the time of the heating operation mode. With this structure, it is possible to allow the expander 6 to operate as a supercharging type expander which is suitable for cooling, and as a super-pressurizing type expander which is suitable for heating.
Although the above embodiments have been described using the heat pump type cooling and heating air conditioner, the present invention can also be applied to other refrigeration cycle apparatuses in which the outdoor heat exchanger 3 is used as a first heat exchanger, the indoor heat exchanger 8 is used as a second heat exchanger, and the first and second heat exchangers are utilized for hot and cool water devices or thermal storages.
As described above, according to the present invention, it is possible to adjust the flow rate of refrigerant of an outlet of the expander by controlling the amount of refrigerant from the injection circuit, and to recover power efficiently.
Claims (10)
1. A refrigeration cycle apparatus using comprising:
carbon dioxide as refrigerant and having;
a refrigerant circuit in which including a compressor, an outdoor heat exchanger a radiator, an expander and an indoor heat exchanger, an evaporator, and an injection circuit which are all connected to one another through pipes,
wherein an injection circuit is provided in said refrigerant circuit, and said injection circuit introduces high pressure refrigerant on the side of from an outlet of said outdoor heat exchanger radiator into a halfway of an expansion process of said expander, and simultaneously high pressure refrigerant is introduced into an inflow of said expander, and
wherein the refrigerant moves from said expander into said evaporator.
2. A refrigeration cycle apparatus according to claim 1 , further comprising wherein an adjusting valve for adjusting an amount of refrigerant from is provided in said injection circuit.
3. A refrigeration cycle apparatus according to claim 1 , wherein said expander a pre-expansion valve is provided at its between a refrigerant-inflow side with a pre-expansion valve of said expander and said outlet of said radiator.
4. A refrigeration cycle apparatus according to claim 1 wherein said expander is provided at its refrigerant-inflow side with a sub-expander is provided between a refrigerant-inflow side of said expander and said outlet of said radiator.
5. A refrigeration cycle apparatus according to claim 1 , wherein said expander is provided at its refrigerant-outflow side with a sub-expander.
6. A refrigeration cycle apparatus according to claim 4 or 5, wherein an electric generator is connected to said sub-expander.
7. A refrigeration cycle apparatus according to any one of claims 1 to 5, wherein power recover by said expander is used for driving said compressor 4, comprising a drive shaft of the expander and a drive shaft of the compressor that are connected to each other.
8. A refrigeration cycle apparatus according to any one of claims 1 to 5, 4, wherein said compressor is provided at its suction side or discharge side with an auxiliary compressor, and power recover by said expander is used as power for driving said auxiliary compressor.
9. A refrigeration cycle apparatus according to any one of claims 1 to 5, 4, further comprising a first four-way valve to which a discharge side pipe and a suction side pipe of said compressor are connected, and a second four-way valve to which a discharge side pipe and a suction side pipe of said expander are connected, wherein refrigerant discharged from said compressor is selectively allowed to flow into said indoor heat exchanger evaporator or said outdoor heat exchanger radiator by said first four-way valve, a direction of refrigerant flowing through said expander is always set in the same direction by said second four-way valve.
10. A refrigeration cycle apparatus according to claim 8 , further comprising a first four-way valve to which discharge side pipes and suction side pipes of said compressor and said auxiliary compressor are connected, and a second four-way valve to which a discharge side pipe and a suction side pipe of said expander are connected, wherein refrigerant discharged from said compressor and said auxiliary compressor is selectively allowed to flow into said indoor heat exchanger evaporator or said outdoor heat exchanger radiator by said first four-way valve, a direction of refrigerant flowing through said expander and said sub-expander is always set in the same direction by said second four-way valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/785,569 USRE43312E1 (en) | 2002-10-31 | 2007-04-18 | Refrigeration cycle apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002318129A JP3863480B2 (en) | 2002-10-31 | 2002-10-31 | Refrigeration cycle equipment |
JP2002-318129 | 2002-10-31 | ||
US10/657,180 US6880357B2 (en) | 2002-10-31 | 2003-09-09 | Refrigeration cycle apparatus |
US11/785,569 USRE43312E1 (en) | 2002-10-31 | 2007-04-18 | Refrigeration cycle apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/657,180 Reissue US6880357B2 (en) | 2002-10-31 | 2003-09-09 | Refrigeration cycle apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE43312E1 true USRE43312E1 (en) | 2012-04-17 |
Family
ID=32089586
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/657,180 Ceased US6880357B2 (en) | 2002-10-31 | 2003-09-09 | Refrigeration cycle apparatus |
US11/785,569 Expired - Fee Related USRE43312E1 (en) | 2002-10-31 | 2007-04-18 | Refrigeration cycle apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/657,180 Ceased US6880357B2 (en) | 2002-10-31 | 2003-09-09 | Refrigeration cycle apparatus |
Country Status (6)
Country | Link |
---|---|
US (2) | US6880357B2 (en) |
EP (1) | EP1416231B1 (en) |
JP (1) | JP3863480B2 (en) |
AT (1) | ATE395564T1 (en) |
DE (1) | DE60320918D1 (en) |
DK (1) | DK1416231T3 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4389699B2 (en) * | 2004-07-07 | 2009-12-24 | ダイキン工業株式会社 | Refrigeration equipment |
JP4375171B2 (en) * | 2004-08-31 | 2009-12-02 | ダイキン工業株式会社 | Refrigeration equipment |
US20060080988A1 (en) * | 2004-10-20 | 2006-04-20 | Carrier Corporation | Gas cooler configuration integrated into heat pump chassis |
KR100677266B1 (en) * | 2005-02-17 | 2007-02-02 | 엘지전자 주식회사 | Air conditioning simultaneous multi air conditioner |
JP4650049B2 (en) * | 2005-03-25 | 2011-03-16 | ダイキン工業株式会社 | Refrigeration equipment |
JP4552721B2 (en) * | 2005-03-25 | 2010-09-29 | ダイキン工業株式会社 | Refrigeration equipment |
JP2006284086A (en) * | 2005-03-31 | 2006-10-19 | Daikin Ind Ltd | Refrigerating device |
JP4581795B2 (en) * | 2005-03-31 | 2010-11-17 | ダイキン工業株式会社 | Refrigeration equipment |
JP4940632B2 (en) * | 2005-11-08 | 2012-05-30 | ダイキン工業株式会社 | Heat pump water heater |
JP4736727B2 (en) * | 2005-11-11 | 2011-07-27 | ダイキン工業株式会社 | Heat pump water heater |
JP2009052752A (en) * | 2005-12-19 | 2009-03-12 | Panasonic Corp | Refrigeration cycle equipment |
US8172558B2 (en) | 2006-10-11 | 2012-05-08 | Panasonic Corporation | Rotary expander with discharge and introduction passages for working fluid |
WO2008054380A2 (en) * | 2006-10-27 | 2008-05-08 | Carrier Corporation | Economized refrigeration cycle with expander |
JP4991255B2 (en) * | 2006-11-22 | 2012-08-01 | 日立アプライアンス株式会社 | Refrigeration cycle equipment |
JP4946840B2 (en) * | 2006-12-08 | 2012-06-06 | ダイキン工業株式会社 | Refrigeration equipment |
JP4821599B2 (en) * | 2006-12-26 | 2011-11-24 | 株式会社富士通ゼネラル | Refrigerant circuit |
US20100031677A1 (en) * | 2007-03-16 | 2010-02-11 | Alexander Lifson | Refrigerant system with variable capacity expander |
JP5380987B2 (en) * | 2008-02-06 | 2014-01-08 | ダイキン工業株式会社 | Refrigeration equipment |
EP2244036A1 (en) * | 2008-02-15 | 2010-10-27 | Panasonic Corporation | Refrigeration cycle device |
EP2157317B2 (en) * | 2008-08-19 | 2019-07-24 | ABB Research LTD | Thermoelectric energy storage system and method for storing thermoelectric energy |
WO2010137120A1 (en) * | 2009-05-26 | 2010-12-02 | 三菱電機株式会社 | Heat pump type hot water supply device |
WO2010140324A1 (en) * | 2009-06-02 | 2010-12-09 | 三菱電機株式会社 | Refrigerating cycle device |
US8327651B2 (en) * | 2009-07-07 | 2012-12-11 | Hamilton Sundstrand Corporation | Transcritical fluid cooling for aerospace applications |
GB2474259A (en) * | 2009-10-08 | 2011-04-13 | Ebac Ltd | Vapour compression refrigeration circuit |
WO2011117924A1 (en) | 2010-03-25 | 2011-09-29 | 三菱電機株式会社 | Refrigeration cycle apparatus and method for operating same |
GB201012743D0 (en) * | 2010-07-29 | 2010-09-15 | Isentropic Ltd | Valves |
CN106855107A (en) * | 2015-12-09 | 2017-06-16 | 熵零技术逻辑工程院集团股份有限公司 | Gas speed changer |
CN105423613A (en) * | 2015-12-23 | 2016-03-23 | 广西大学 | Mechanical supercharging type solar ejection refrigerating system and method |
EP3670853A1 (en) * | 2018-12-17 | 2020-06-24 | CTB Clean Tech Brokers IVS | Heat pump apparatus and district heating network comprising a heat pump apparatus |
US12196462B2 (en) * | 2021-03-23 | 2025-01-14 | Copeland Lp | Heat-pump system with multiway valve |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2499404A (en) * | 1946-06-08 | 1950-03-07 | Specialties Dev Corp | Liquefied gas storage and supply |
US2515825A (en) * | 1945-03-16 | 1950-07-18 | Carrier Corp | Single stage refrigeration utilizing holdover means |
US3144316A (en) * | 1960-05-31 | 1964-08-11 | Union Carbide Corp | Process and apparatus for liquefying low-boiling gases |
CH386459A (en) * | 1961-10-04 | 1965-01-15 | Sulzer Ag | Device for cooling gaseous media |
US4063417A (en) * | 1976-02-04 | 1977-12-20 | Carrier Corporation | Power generating system employing geothermally heated fluid |
US4321801A (en) * | 1981-01-26 | 1982-03-30 | Collard Jr Thomas H | Jet operated heat pump |
US4326388A (en) * | 1980-05-05 | 1982-04-27 | Mcfee Richard | Dual open cycle heat pump and engine |
US4595344A (en) * | 1982-09-30 | 1986-06-17 | Briley Patrick B | Ejector and method of controlling same |
JPS63231138A (en) * | 1987-03-19 | 1988-09-27 | 株式会社デンソー | Refrigerator |
US5131235A (en) * | 1990-03-31 | 1992-07-21 | Aisin Seiki Kabushiki Kaisha | Cooling system having coolant mass flow control |
US5181376A (en) * | 1990-08-10 | 1993-01-26 | Fluor Corporation | Process and system for producing power |
US5327745A (en) * | 1993-09-28 | 1994-07-12 | The United States Of America As Represented By The Secretary Of The Navy | Malone-Brayton cycle engine/heat pump |
EP0635673A1 (en) * | 1993-07-22 | 1995-01-25 | Ormat Industries, Ltd. | Energy recovery, pressure reducing system and method for using the same |
JP2000234814A (en) * | 1999-02-17 | 2000-08-29 | Aisin Seiki Co Ltd | Vapor compressed refrigerating device |
US6138457A (en) * | 1998-02-27 | 2000-10-31 | Applied Power Technology Incorporated | Combustion powered cooling system |
JP2001116371A (en) * | 1999-10-20 | 2001-04-27 | Daikin Ind Ltd | Air conditioner |
US6301922B1 (en) * | 1997-09-29 | 2001-10-16 | Sharp Kabushiki Kaisha | Air cycling type air-conditioner |
US6312843B1 (en) * | 1998-09-16 | 2001-11-06 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Fuel cell apparatus |
US6321564B1 (en) * | 1999-03-15 | 2001-11-27 | Denso Corporation | Refrigerant cycle system with expansion energy recovery |
JP2002022295A (en) * | 2000-07-06 | 2002-01-23 | Denso Corp | Ejector cycle |
US6343482B1 (en) * | 2000-10-31 | 2002-02-05 | Takeshi Endo | Heat pump type conditioner and exterior unit |
US6381973B1 (en) * | 1999-10-04 | 2002-05-07 | Delphi Technologies, Inc. | Vehicle air cycle air conditioning system |
US6477857B2 (en) * | 2000-03-15 | 2002-11-12 | Denso Corporation | Ejector cycle system with critical refrigerant pressure |
US6550265B2 (en) * | 2001-03-01 | 2003-04-22 | Denso Corporation | Ejector cycle system |
US6606873B2 (en) * | 2001-10-04 | 2003-08-19 | Denso Corporation | Ejector circuit |
US6612117B2 (en) * | 2001-02-20 | 2003-09-02 | Thomas E. Kasmer | Hydristor heat pump |
US6729149B2 (en) * | 2001-10-04 | 2004-05-04 | Denso Corporation | Ejector cycle system |
-
2002
- 2002-10-31 JP JP2002318129A patent/JP3863480B2/en not_active Expired - Fee Related
-
2003
- 2003-08-27 AT AT03019372T patent/ATE395564T1/en not_active IP Right Cessation
- 2003-08-27 EP EP03019372A patent/EP1416231B1/en not_active Expired - Lifetime
- 2003-08-27 DK DK03019372T patent/DK1416231T3/en active
- 2003-08-27 DE DE60320918T patent/DE60320918D1/en not_active Expired - Lifetime
- 2003-09-09 US US10/657,180 patent/US6880357B2/en not_active Ceased
-
2007
- 2007-04-18 US US11/785,569 patent/USRE43312E1/en not_active Expired - Fee Related
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2515825A (en) * | 1945-03-16 | 1950-07-18 | Carrier Corp | Single stage refrigeration utilizing holdover means |
US2499404A (en) * | 1946-06-08 | 1950-03-07 | Specialties Dev Corp | Liquefied gas storage and supply |
US3144316A (en) * | 1960-05-31 | 1964-08-11 | Union Carbide Corp | Process and apparatus for liquefying low-boiling gases |
CH386459A (en) * | 1961-10-04 | 1965-01-15 | Sulzer Ag | Device for cooling gaseous media |
US4063417A (en) * | 1976-02-04 | 1977-12-20 | Carrier Corporation | Power generating system employing geothermally heated fluid |
US4326388A (en) * | 1980-05-05 | 1982-04-27 | Mcfee Richard | Dual open cycle heat pump and engine |
US4321801A (en) * | 1981-01-26 | 1982-03-30 | Collard Jr Thomas H | Jet operated heat pump |
US4595344A (en) * | 1982-09-30 | 1986-06-17 | Briley Patrick B | Ejector and method of controlling same |
JPS63231138A (en) * | 1987-03-19 | 1988-09-27 | 株式会社デンソー | Refrigerator |
US5131235A (en) * | 1990-03-31 | 1992-07-21 | Aisin Seiki Kabushiki Kaisha | Cooling system having coolant mass flow control |
US5181376A (en) * | 1990-08-10 | 1993-01-26 | Fluor Corporation | Process and system for producing power |
EP0635673A1 (en) * | 1993-07-22 | 1995-01-25 | Ormat Industries, Ltd. | Energy recovery, pressure reducing system and method for using the same |
US5327745A (en) * | 1993-09-28 | 1994-07-12 | The United States Of America As Represented By The Secretary Of The Navy | Malone-Brayton cycle engine/heat pump |
US6301922B1 (en) * | 1997-09-29 | 2001-10-16 | Sharp Kabushiki Kaisha | Air cycling type air-conditioner |
US6138457A (en) * | 1998-02-27 | 2000-10-31 | Applied Power Technology Incorporated | Combustion powered cooling system |
US6312843B1 (en) * | 1998-09-16 | 2001-11-06 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Fuel cell apparatus |
JP2000234814A (en) * | 1999-02-17 | 2000-08-29 | Aisin Seiki Co Ltd | Vapor compressed refrigerating device |
US6321564B1 (en) * | 1999-03-15 | 2001-11-27 | Denso Corporation | Refrigerant cycle system with expansion energy recovery |
US6381973B1 (en) * | 1999-10-04 | 2002-05-07 | Delphi Technologies, Inc. | Vehicle air cycle air conditioning system |
JP2001116371A (en) * | 1999-10-20 | 2001-04-27 | Daikin Ind Ltd | Air conditioner |
US6477857B2 (en) * | 2000-03-15 | 2002-11-12 | Denso Corporation | Ejector cycle system with critical refrigerant pressure |
JP2002022295A (en) * | 2000-07-06 | 2002-01-23 | Denso Corp | Ejector cycle |
US6343482B1 (en) * | 2000-10-31 | 2002-02-05 | Takeshi Endo | Heat pump type conditioner and exterior unit |
US6612117B2 (en) * | 2001-02-20 | 2003-09-02 | Thomas E. Kasmer | Hydristor heat pump |
US6550265B2 (en) * | 2001-03-01 | 2003-04-22 | Denso Corporation | Ejector cycle system |
US6606873B2 (en) * | 2001-10-04 | 2003-08-19 | Denso Corporation | Ejector circuit |
US6729149B2 (en) * | 2001-10-04 | 2004-05-04 | Denso Corporation | Ejector cycle system |
Non-Patent Citations (3)
Title |
---|
Abstract of JP 2002-22295 A to Hirata et al. * |
Joo Seok Baek, et al. "transcritical CO2 Cycle Technology" 2002 SAE Automotive Alternate Refrigerant Systems Symposium, Jul. 2002, pp. 1-17. * |
Translation of JP 2002-22295 A to Hirata et al. * |
Also Published As
Publication number | Publication date |
---|---|
EP1416231A1 (en) | 2004-05-06 |
US20040083751A1 (en) | 2004-05-06 |
DK1416231T3 (en) | 2008-09-15 |
JP3863480B2 (en) | 2006-12-27 |
US6880357B2 (en) | 2005-04-19 |
EP1416231B1 (en) | 2008-05-14 |
ATE395564T1 (en) | 2008-05-15 |
DE60320918D1 (en) | 2008-06-26 |
JP2004150748A (en) | 2004-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE43312E1 (en) | Refrigeration cycle apparatus | |
US6854283B2 (en) | Determining method of high pressure of refrigeration cycle apparatus | |
US6945066B2 (en) | Refrigeration cycle apparatus | |
JP4321095B2 (en) | Refrigeration cycle equipment | |
JP3708536B1 (en) | Refrigeration cycle apparatus and control method thereof | |
JP4410980B2 (en) | Refrigeration air conditioner | |
EP2381180B1 (en) | Heat pump type hot water supply apparatus | |
EP1489367B1 (en) | Refrigerating cycle device | |
CN101137873B (en) | freezer | |
JP5018724B2 (en) | Ejector refrigeration cycle | |
CN103597296A (en) | Freezing cycle | |
WO2009098899A1 (en) | Refrigeration system | |
JP4837150B2 (en) | Refrigeration cycle equipment | |
JP3870951B2 (en) | Refrigeration cycle apparatus and control method thereof | |
JP2007212024A (en) | Refrigerating cycle device and its control method | |
JP3863555B2 (en) | Refrigeration cycle equipment | |
JP4901916B2 (en) | Refrigeration air conditioner | |
JP2009275926A (en) | Ejector type refrigerating cycle | |
JP2004150749A (en) | Refrigerating cycle device | |
KR100248719B1 (en) | Cooling cycle and heating cycle | |
JP2005207649A (en) | Heat pump type water heater | |
KR100436606B1 (en) | Control method for geothermal heat pump system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees |