USRE43115E1 - Process for the manufacture of fused piperazin-2-one derivatives - Google Patents
Process for the manufacture of fused piperazin-2-one derivatives Download PDFInfo
- Publication number
- USRE43115E1 USRE43115E1 US12/850,993 US85099310A USRE43115E US RE43115 E1 USRE43115 E1 US RE43115E1 US 85099310 A US85099310 A US 85099310A US RE43115 E USRE43115 E US RE43115E
- Authority
- US
- United States
- Prior art keywords
- alkyl
- process according
- group
- compound
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 [1*]C1=CC([2*])=C2CC(=O)C([4*])([5*])N([3*])C2=C1 Chemical compound [1*]C1=CC([2*])=C2CC(=O)C([4*])([5*])N([3*])C2=C1 0.000 description 14
- QWGMRQLMGVICJS-XPNWLKPYSA-N CCOC(=O)[C@@H](CC)N(C1=NC(Cl)=NC=C1[N+](=O)[O-])C(C)C.CC[C@@H]1C(=O)N(O)C2=CN=C(Cl)N=C2N1C(C)C Chemical compound CCOC(=O)[C@@H](CC)N(C1=NC(Cl)=NC=C1[N+](=O)[O-])C(C)C.CC[C@@H]1C(=O)N(O)C2=CN=C(Cl)N=C2N1C(C)C QWGMRQLMGVICJS-XPNWLKPYSA-N 0.000 description 1
- UJWGPVUGQMRPST-DBCUKVBUSA-N CCOC(=O)[C@@H](CC)N(C1=NC(Cl)=NC=C1[N+](=O)[O-])C1CCCC1.CC[C@@H]1C(=O)N(O)C2=CN=C(Cl)N=C2N1C1CCCC1 Chemical compound CCOC(=O)[C@@H](CC)N(C1=NC(Cl)=NC=C1[N+](=O)[O-])C1CCCC1.CC[C@@H]1C(=O)N(O)C2=CN=C(Cl)N=C2N1C1CCCC1 UJWGPVUGQMRPST-DBCUKVBUSA-N 0.000 description 1
- RYQXWTBQRUOQMZ-DBCUKVBUSA-N CC[C@@H]1C(=O)CC2=CN=C(Cl)N=C2N1C1CCCC1.CC[C@@H]1C(=O)N(O)C2=CN=C(Cl)N=C2N1C1CCCC1 Chemical compound CC[C@@H]1C(=O)CC2=CN=C(Cl)N=C2N1C1CCCC1.CC[C@@H]1C(=O)N(O)C2=CN=C(Cl)N=C2N1C1CCCC1 RYQXWTBQRUOQMZ-DBCUKVBUSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D475/00—Heterocyclic compounds containing pteridine ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/26—Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
- C07D473/28—Oxygen atom
Definitions
- the invention relates to a process for preparing fused piperazin-2-one derivatives of general formula (I)
- Pteridinone derivatives are known from the prior art as active substances with an antiproliferative activity.
- WO 03/020722 describes the use of dihydropteridinone derivatives for the treatment of tumoral diseases and processes for preparing them.
- 7,8-Dihydro-5H-pteridin-6-one derivatives of formula (I) are important intermediate products in the synthesis of these active substances. Up till now they have been prepared using methods involving reduction of nitro compounds of formula (II) below, which led to strongly coloured product mixtures and required laborious working up and purification processes.
- WO 96/36597 describes the catalytic hydrogenation of nitro compounds using noble metal catalysts with the addition of a vanadium compound, while disclosing as end products free amines, but no lactams.
- the aim of the present invention is to provide an improved process for preparing compounds of formula (I), particularly 7,8-dihydro-5H-pteridin-6-one derivatives.
- the present invention solves the problem outlined above by the method of synthesising compounds of formula (I) described hereinafter.
- the invention thus relates to a process for preparing compounds of general formula I
- a 1 and A 2 which may be identical or different represent —CH ⁇ or —N ⁇ , preferably —N ⁇ , in which a compound of formula II
- the hydrogenation of the compound of formula II is carried out directly in the presence of the hydrogenation catalyst and the copper, iron or vanadium compound to form the compound of formula I.
- first of all the intermediate product of formula III is obtained, which may optionally be isolated,
- the hydrogenation catalyst is selected from the group consisting of rhodium, ruthenium, iridium, platinum, palladium and nickel, preferably platinum, palladium and Raney nickel. Platinum is particularly preferred. Platinum may be used in metallic form or oxidised form as platinum oxide on carriers such as e.g. activated charcoal, silicon dioxide, aluminium oxide, calcium carbonate, calcium phosphate, calcium sulphate, barium sulphate, titanium dioxide, magnesium oxide, iron oxide, lead oxide, lead sulphate or lead carbonate and optionally additionally doped with sulphur or lead.
- the preferred carrier material is activated charcoal, silicon dioxide or aluminium oxide.
- Preferred copper compounds are compounds in which copper assumes oxidation states I or II, for example the halides of copper such as e.g. CuCl, CuCl 2 , CuBr, CuBr 2 , CuI or CuSO 4 .
- Preferred iron compounds are compounds wherein iron assumes oxidation states II or III, for example the halides of iron such as e.g. FeCl 2 , FeCl 3 , FeBr 2 , FeBr 3 , FeF 2 or other iron compounds such as e.g. FeSO 4 , FePO 4 or Fe(acac) 2 .
- Preferred vanadium compounds are compounds wherein vanadium assumes the oxidation states 0, II, III, IV or V, for example inorganic or organic compounds or complexes such as e.g. V 2 O 3 , V 2 O 5 , V 2 O 4 , Na 4 VO 4 , NaVO 3 , NH 4 VO 3 , VOCl 2 , VOCl 3 , VOSO 4 , VCl 2 , VCl 3 , vanadium oxobis(1-phenyl-1,3-butanedionate), vanadium oxotriisopropoxide, vanadium(III)acetylacetonate [V(acac) 3 ] or vanadium(IV)oxyacetylacetonate [VO(acac) 2 ]. Vanadium(IV)oxyacetylacetonate [VO(acac) 2 ] is particularly preferred.
- the copper, iron or vanadium compound may be used either directly at the start of the hydrogenation or after the formation of the intermediate of formula (III), as preferred.
- the amount of added hydrogenation catalyst is between 0.1 and 10 wt.-% based on the compound of formula (II) used.
- a process wherein the reaction is carried out in a solvent selected from the group consisting of dipolar, aprotic solvents, for example dimethylformamide, dimethylacetamide, N-methylpyrrolidinone, dimethylsulphoxide or sulpholane; alcohols, for example methanol, ethanol, 1-propanol, 2-propanol, the various isomeric alcohols of butane and pentane; ethers, for example diethyl ether, methyl-tert.-butylether, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane or dimethoxyethane; esters, for example ethyl acetate, 2-propylacetate or 1-butylacetate; ketones, for example acetone, methylethylketone or methylisobutylketone; carboxylic acids, for example acetic acid; apolar solvents, for example toluene, xylene, cyclol
- reaction temperature is between 0° C. and 150° C., preferably between 20° C. and 100° C.
- the invention further relates to a compound of formula (III)
- R 1 to R 5 may have the stated meaning.
- Preferred compounds of formula (III) are those wherein A 1 and A 2 are identical and denote —N ⁇ .
- the reactions are worked up by conventional methods e.g. by extractive purification steps or precipitation and crystallisation methods.
- the compounds according to the invention may be present in the form of the individual optical isomers, mixtures of the individual enantiomers, diastereomers or racemates, in the form of the tautomers as well as in the form of the free bases or the corresponding acid addition salts with acids—such as for example acid addition salts with hydrohalic acids, for example hydrochloric or hydrobromic acid, or organic acids, such as for example oxalic, fumaric, diglycolic or methanesulphonic acid.
- acids such as for example acid addition salts with hydrohalic acids, for example hydrochloric or hydrobromic acid, or organic acids, such as for example oxalic, fumaric, diglycolic or methanesulphonic acid.
- alkyl groups including those which are part of other groups, are branched and unbranched alkyl groups with 1 to 12 carbon atoms, preferably 1-6, particularly preferably 1-4 carbon atoms, such as for example: methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and dodecyl.
- propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and dodecyl include all the possible isomeric forms.
- propyl includes the two isomeric groups n-propyl and iso-propyl
- butyl includes n-butyl, isobutyl, sec. butyl and tert.-butyl
- pentyl includes isopentyl, neopentyl etc.
- one or more hydrogen atoms may optionally be replaced by other groups.
- these alkyl groups may be substituted by fluorine. It is also possible for all the hydrogen atoms of the alkyl group to be replaced.
- alkyl bridges are branched and unbranched alkyl groups with 2 to 5 carbon atoms, for example ethylene, propylene, isopropylene, n-butylene, iso-butyl, sec. butyl and tert.-butyl etc. bridges. Particularly preferred are ethylene, propylene and butylene bridges.
- alkyl bridges 1 to 2 C atoms may optionally be replaced by one or more heteroatoms selected from among oxygen, nitrogen or sulp r.
- alkenyl groups are branched and unbranched alkylene groups with 2 to 12 carbon atoms, preferably 2-6 carbon atoms, particularly preferably 2-3 carbon atoms, provided that they have at least one double bond.
- alkenyl groups include those which are part of other groups
- alkenyl groups are branched and unbranched alkylene groups with 2 to 12 carbon atoms, preferably 2-6 carbon atoms, particularly preferably 2-3 carbon atoms, provided that they have at least one double bond.
- alkenyl groups are branched and unbranched alkylene groups with 2 to 12 carbon atoms, preferably 2-6 carbon atoms, particularly preferably 2-3 carbon atoms, provided that they have at least one double bond.
- the above-mentioned designations propenyl, butenyl etc. include all the possible isomeric forms.
- butenyl includes 1-butenyl, 2-butenyl, 3-butenyl, 1 -methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-1-propenyl, 2-methyl-2-propenyl and 1-ethyl-1-ethenyl.
- one or more hydrogen atoms may optionally be replaced by other groups.
- these alkyl groups may be substituted by the halogen atom fluorine. It is also possible for all the hydrogen atoms of the alkenyl group to be replaced.
- alkynyl groups are branched and unbranched alkynyl groups with 2 to 12 carbon atoms, provided that they have at least one triple bond, for example ethynyl, propargyl, butynyl, pentynyl, hexynyl etc., preferably ethynyl or propynyl.
- one or more hydrogen atoms may optionally be replaced by other groups.
- these alkyl groups may be fluorosubstituted. It is also possible for all the hydrogen atoms of the alkynyl group to be replaced.
- aryl denotes an aromatic ring system with 6 to 14 carbon atoms, preferably 6 or 10 carbon atoms, preferably phenyl, which, unless otherwise described, may for example carry one or more of the following substituents: OH, NO 2 , CN, OMe, —OCHF 2 , —OCF 3 , halogen, preferably fluorine or chlorine, C 1 -C 10 -alkyl, preferably C 1 -C 5 -alkyl, preferably C 1 -C 3 -alkyl, particularly preferably methyl or ethyl, —O—C 1 -C 3 -alkyl, preferably —O-methyl or —O-ethyl, —COOH, —COO—C 1 -C 4 -alkyl, preferably —O-methyl or —O-ethyl, —CONH 2 .
- cycloalkyl groups are cycloalkyl groups with 3-12 carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, preferably cyclopropyl, cyclopentyl or cyclohexyl, while each of the above-mentioned cycloalkyl groups may optionally also carry one or more substituents, for example: OH, NO 2 , CN, OMe, —OCHF 2 , —OCF 3 or halogen, preferably fluorine or chlorine, C 1 -C 10 -alkyl, preferably C 1 -C 5 -alkyl, preferably C 1 -C 3 -alkyl, particularly preferably methyl or ethyl, —O—C 1 -C 3 -alkyl, preferably —O-methyl or —O-ethyl, —
- cycloalkenyl groups are cycloalkyl groups with 3-12 carbon atoms, which have at least one double bond, for example cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl or cycloheptenyl, preferably cyclopropenyl, cyclopentenyl or cyclohexenyl, while each of the above-mentioned cycloalkenyl groups may optionally also carry one or more substituents.
- ⁇ O denotes an oxygen atom linked by a double bond.
- heterocycloalkyl groups are, unless otherwise described in the definitions, 3- to 12-membered, preferably 5-, 6- or 7-membered, saturated or unsaturated heterocycles, which may contain nitrogen, oxygen or sulphur as heteroatoms, for example tetrahydrofuran, tetrahydrofuranone, ⁇ -butyrolactone, ⁇ -pyran, ⁇ -pyran, dioxolane, tetrahydropyran, dioxane, dihydrothiophene, thiolane, dithiolane, pyrroline, pyrrolidine, pyrazoline, pyrazolidine, imidazoline, imidazolidine, tetrazole, piperidine, pyridazine, pyrimidine, pyrazine, piperazine, triazine, tetrazine, morpholine, thiomorpholine, diazepan, oxazine, tetrahydro-o
- polycycloalkyl groups are optionally substituted, bi-, tri-, tetra- or pentacyclic cycloalkyl groups, for example pinane, 2,2,2-octane, 2,2,1-heptane or adamantane.
- polycycloalkenyl groups are optionally bridged and/or substituted, 8- membered bi-, tri-, tetra- or pentacyclic cycloalkenyl groups, preferably bicycloalkenyl or tricycloalkenyl groups, if they contain at least one double bond, for example norbornene.
- spiroalkyl groups are optionally substituted spirocyclic C 5 -C 12 alkyl groups.
- Halogen generally denotes fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, particularly preferably chlorine.
- the substituent R 1 may represent a group selected from the group consisting of chlorine, fluorine, bromine, methanesulphonyl, ethanesulphonyl, trifluoromethanesulphonyl and para-toluenesulphonyl, preferably chlorine.
- the substituent R 2 may represent hydrogen or C 1 -C 3 -alkyl, preferably hydrogen.
- the substituent R 3 may represent hydrogen
- the substituents R 4 , R 5 may be identical or different and may represent hydrogen
- a 1 and A 2 which may be identical or different represent —CH ⁇ or —N ⁇ , preferably —N ⁇ .
- R 6 may represent a C 1 -C 4 -alkyl, preferably methyl or ethyl.
- the compound of formula (II) may be prepared according to methods known from the literature, for example analogously to the syntheses described in WO 03/020722.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Oncology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Description
wherein the groups R1 to R5 have the meanings given in the claims and specification, particularly a process for preparing 7,8-dihydro-5H-pteridin-6-one derivatives.
- wherein
- R1 denotes a group selected from the group consisting of chlorine, fluorine, bromine, methanesulphonyl, ethanesulphonyl, trifluoromethanesulphonyl, paratoluenesulphonyl, CH3S(═O)— and phenylS(═O)—
- R2 denotes hydrogen or C1-C3-alkyl,
- R3 denotes hydrogen or a group selected from the group consisting of optionally substituted C1-C12-alkyl, C2-C12-alkenyl, C2-C12-alkynyl and C6-C14-aryl, or a group selected from the group consisting of optionally substituted and/or bridged C3-C12-Cycloalkyl, C3-C12-cycloalkenyl, C7-C12-polycycloalkyl, C7-C12-polycycloalkenyl, C5-C12-spirocycloalkyl and saturated or unsaturated C3-C12-heterocycloalkyl, which contains 1 to 2 heteroatoms,
- R4, R5 which may be identical or different denote hydrogen or optionally substituted C1-C6-alkyl, or
- R4 and R5 together denote a 2- to 5-membered alkyl bridge which may contain 1 to 2 heteroatoms, or
- R4 and R3 or R5 and R3 together denote a saturated or unsaturated C3-C4-alkyl bridge, which may optionally contain 1 heteroatom,
and
- R1-R5 and A1, A2 have the stated meaning and
- R6 denotes C1-C4-alkyl,
- a) is hydrogenated with hydrogen in the presence of a hydrogenation catalyst and
- b) a copper, iron or vanadium compound is added,
in which steps a) and b) may take place simultaneously or successively.
and is then further reduced in the presence of a hydrogenation catalyst and a copper, iron or vanadium compound to form a compound of formula I
-
- or a group selected from the group consisting of optionally substituted C1-C12-alkyl, C2-C12-alkenyl, C2-C12-alkynyl, and C6-C14-aryl, preferably phenyl,
- or a group selected from the group consisting of optionally substituted and/or bridged C3-C12-Cycloalkyl, preferably cyclopentyl, C3-C12-cycloalkenyl, C7-C12-polycycloalkyl, C7-C12-polycycloalkenyl, C5-C12-spirocycloalkyl and saturated or unsaturated C3-C12-heterocycloalkyl, which contains 1 to 2 heteroatoms.
-
- or optionally substituted C1-C6-alkyl,
- or R4 and R5 together represent a 2- to 5-membered alkyl bridge which may contain 1 to 2 heteroatoms,
- or R4 and R3 or R5 and R3 together represent a saturated or unsaturated C3-C4-alkyl bridge, which may optionally contain 1 heteroatom.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/850,993 USRE43115E1 (en) | 2004-12-02 | 2010-08-05 | Process for the manufacture of fused piperazin-2-one derivatives |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004058337A DE102004058337A1 (en) | 2004-12-02 | 2004-12-02 | Process for the preparation of fused piperazin-2-one derivatives |
DE102004058337 | 2004-12-02 | ||
US11/284,836 US7238807B2 (en) | 2004-12-02 | 2005-11-22 | Process for the manufacture of fused piperazin-2-one derivatives |
US12/850,993 USRE43115E1 (en) | 2004-12-02 | 2010-08-05 | Process for the manufacture of fused piperazin-2-one derivatives |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/284,836 Reissue US7238807B2 (en) | 2004-12-02 | 2005-11-22 | Process for the manufacture of fused piperazin-2-one derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE43115E1 true USRE43115E1 (en) | 2012-01-17 |
Family
ID=35923724
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/284,836 Ceased US7238807B2 (en) | 2004-12-02 | 2005-11-22 | Process for the manufacture of fused piperazin-2-one derivatives |
US11/749,208 Abandoned US20070219369A1 (en) | 2004-12-02 | 2007-05-16 | Process for the Manufacture of fused piperazin-2-one derivatives |
US11/749,206 Active 2027-02-14 US7626019B2 (en) | 2004-12-02 | 2007-05-16 | Intermediate compounds for the manufacture of fused piperazin-2-one derivatives |
US11/749,212 Abandoned US20070213530A1 (en) | 2004-12-02 | 2007-05-16 | Intermediate Compounds for the Manufacture of fused piperazin-2-one derivatives |
US11/749,203 Abandoned US20070213528A1 (en) | 2004-12-02 | 2007-05-16 | Process for the Manufacture of Fused piperazin-2-one derivatives |
US11/749,207 Abandoned US20070213534A1 (en) | 2004-12-02 | 2007-05-16 | Process for the Manufacture of fused piperazin-2-one derivatives |
US11/749,210 Abandoned US20070213531A1 (en) | 2004-12-02 | 2007-05-16 | Process for the Manufacture of fused piperazin-2-one derivatives |
US11/749,205 Abandoned US20070213529A1 (en) | 2004-12-02 | 2007-05-16 | Process for the Manufacture of fused piperazin-2-one derivatives |
US12/850,993 Active USRE43115E1 (en) | 2004-12-02 | 2010-08-05 | Process for the manufacture of fused piperazin-2-one derivatives |
Family Applications Before (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/284,836 Ceased US7238807B2 (en) | 2004-12-02 | 2005-11-22 | Process for the manufacture of fused piperazin-2-one derivatives |
US11/749,208 Abandoned US20070219369A1 (en) | 2004-12-02 | 2007-05-16 | Process for the Manufacture of fused piperazin-2-one derivatives |
US11/749,206 Active 2027-02-14 US7626019B2 (en) | 2004-12-02 | 2007-05-16 | Intermediate compounds for the manufacture of fused piperazin-2-one derivatives |
US11/749,212 Abandoned US20070213530A1 (en) | 2004-12-02 | 2007-05-16 | Intermediate Compounds for the Manufacture of fused piperazin-2-one derivatives |
US11/749,203 Abandoned US20070213528A1 (en) | 2004-12-02 | 2007-05-16 | Process for the Manufacture of Fused piperazin-2-one derivatives |
US11/749,207 Abandoned US20070213534A1 (en) | 2004-12-02 | 2007-05-16 | Process for the Manufacture of fused piperazin-2-one derivatives |
US11/749,210 Abandoned US20070213531A1 (en) | 2004-12-02 | 2007-05-16 | Process for the Manufacture of fused piperazin-2-one derivatives |
US11/749,205 Abandoned US20070213529A1 (en) | 2004-12-02 | 2007-05-16 | Process for the Manufacture of fused piperazin-2-one derivatives |
Country Status (35)
Country | Link |
---|---|
US (9) | US7238807B2 (en) |
EP (2) | EP2436685B1 (en) |
JP (1) | JP5164574B2 (en) |
KR (2) | KR101395591B1 (en) |
CN (3) | CN101065381B (en) |
AR (1) | AR053100A1 (en) |
AU (1) | AU2005311308B2 (en) |
BR (1) | BRPI0518601A2 (en) |
CA (1) | CA2588857C (en) |
CL (1) | CL2013002895A1 (en) |
CY (1) | CY1113625T1 (en) |
DE (1) | DE102004058337A1 (en) |
DK (2) | DK2436685T3 (en) |
EA (1) | EA012624B1 (en) |
ES (2) | ES2395829T3 (en) |
HK (3) | HK1113489A1 (en) |
HR (1) | HRP20120980T1 (en) |
HU (1) | HUE027689T2 (en) |
IL (1) | IL183568A (en) |
ME (1) | ME01470B (en) |
MX (1) | MX2007006549A (en) |
MY (1) | MY147459A (en) |
NO (1) | NO20072283L (en) |
NZ (1) | NZ556182A (en) |
PE (2) | PE20090488A1 (en) |
PL (2) | PL1819706T3 (en) |
PT (1) | PT1819706E (en) |
RS (1) | RS52533B (en) |
SG (2) | SG141461A1 (en) |
SI (1) | SI1819706T1 (en) |
TW (1) | TWI362391B (en) |
UA (1) | UA89390C2 (en) |
UY (1) | UY29233A1 (en) |
WO (1) | WO2006058876A1 (en) |
ZA (1) | ZA200703368B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6861422B2 (en) * | 2003-02-26 | 2005-03-01 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
DE102004029784A1 (en) * | 2004-06-21 | 2006-01-05 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel 2-Benzylaminodihydropteridinones, process for their preparation and their use as medicaments |
DE102004033670A1 (en) | 2004-07-09 | 2006-02-02 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New pyridodihydropyrazinone, process for its preparation and its use as a medicament |
US20060035903A1 (en) * | 2004-08-14 | 2006-02-16 | Boehringer Ingelheim International Gmbh | Storage stable perfusion solution for dihydropteridinones |
US7759485B2 (en) * | 2004-08-14 | 2010-07-20 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US7728134B2 (en) * | 2004-08-14 | 2010-06-01 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
US20060074088A1 (en) * | 2004-08-14 | 2006-04-06 | Boehringer Ingelheim International Gmbh | Dihydropteridinones for the treatment of cancer diseases |
US20060058311A1 (en) * | 2004-08-14 | 2006-03-16 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation |
EP1630163A1 (en) * | 2004-08-25 | 2006-03-01 | Boehringer Ingelheim Pharma GmbH & Co.KG | Dihydropteridinones, methods for their preparation and their use as drugs |
EP1632493A1 (en) * | 2004-08-25 | 2006-03-08 | Boehringer Ingelheim Pharma GmbH & Co.KG | Dihydropteridine derivatives, methods for their preparation and their use as drugs |
DE102004058337A1 (en) | 2004-12-02 | 2006-06-14 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Process for the preparation of fused piperazin-2-one derivatives |
US7439358B2 (en) * | 2006-02-08 | 2008-10-21 | Boehringer Ingelheim International Gmbh | Specific salt, anhydrous and crystalline form of a dihydropteridione derivative |
NZ570530A (en) | 2006-02-14 | 2011-09-30 | Vertex Pharma | Pharmaceutical compositions comprising 6-oxo-6,7,8,9-tetrahydro-5H-pyrimido[4,5-b][1,4)diazepine derivatives |
JP4958461B2 (en) * | 2006-03-30 | 2012-06-20 | 富士フイルム株式会社 | Near-infrared absorbing dye-containing curable composition |
AU2008211729A1 (en) | 2007-02-01 | 2008-08-07 | Astrazeneca Ab | 5,6,7,8-tetrahydropteridine derivatives as HSP90 inhibitors |
EP2185559A1 (en) * | 2007-08-03 | 2010-05-19 | Boehringer Ingelheim International GmbH | Crystalline form of a dihydropteridione derivative |
EP2100894A1 (en) | 2008-03-12 | 2009-09-16 | 4Sc Ag | Pyridopyrimidines used as Plk1 (polo-like kinase) inhibitors |
CN102020643A (en) | 2009-09-22 | 2011-04-20 | 上海恒瑞医药有限公司 | dihydropteridine ketone derivative, and preparation method and medicinal application thereof |
MX2012003484A (en) * | 2009-09-25 | 2012-04-20 | Vertex Pharma | Methods for preparing pyrimidine derivatives useful as protein kinase inhibitors. |
CA2773827A1 (en) | 2009-09-25 | 2011-03-31 | Vertex Pharmaceuticals Incorporated | Methods for preparing pyrimidine derivatives useful as protein kinase inhibitors |
US8546566B2 (en) | 2010-10-12 | 2013-10-01 | Boehringer Ingelheim International Gmbh | Process for manufacturing dihydropteridinones and intermediates thereof |
US9358233B2 (en) | 2010-11-29 | 2016-06-07 | Boehringer Ingelheim International Gmbh | Method for treating acute myeloid leukemia |
WO2012148548A1 (en) | 2011-02-25 | 2012-11-01 | Takeda Pharmaceutical Company Limited | N-substituted oxazinopteridines and oxazinopteridinones |
US9370535B2 (en) | 2011-05-17 | 2016-06-21 | Boehringer Ingelheim International Gmbh | Method for treatment of advanced solid tumors |
TW201414734A (en) | 2012-07-10 | 2014-04-16 | Takeda Pharmaceutical | Azaindole derivatives |
EP3024464A1 (en) | 2013-07-26 | 2016-06-01 | Boehringer Ingelheim International GmbH | Treatment of myelodysplastic syndrome |
WO2015106012A1 (en) | 2014-01-09 | 2015-07-16 | Takeda Pharmaceutical Company Limited | Azaindole derivatives |
US9867831B2 (en) | 2014-10-01 | 2018-01-16 | Boehringer Ingelheim International Gmbh | Combination treatment of acute myeloid leukemia and myelodysplastic syndrome |
Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0143478A1 (en) | 1983-10-24 | 1985-06-05 | Pharmachemie B.V. | Stable, aqueous, acidic solution of cis-platinum, suitable for injection |
EP0347146A2 (en) | 1988-06-16 | 1989-12-20 | Smith Kline & French Laboratories Limited | Fused pyrimidine derivatives, process and intermediates for their preparation and pharmaceutical compositions containing them |
US4957922A (en) | 1985-10-24 | 1990-09-18 | Bayer Aktiengesellschaft | Infusion solutions of 1-cyclopropyl-6-fluoro-1,4-di-hydro-4-oxo-7-(1-piperazinyl)-quinoline-3-carboxylic acid |
EP0399856A1 (en) | 1989-03-30 | 1990-11-28 | Lipha, Lyonnaise Industrielle Pharmaceutique | Pteridin-4 (3H)-ones, processes for their preparation and medicaments containing them |
EP0429149A1 (en) | 1989-11-17 | 1991-05-29 | Berlex Laboratories, Inc. | Tricyclic pteridinones and a process for their preparation |
US5043270A (en) | 1989-03-31 | 1991-08-27 | The Board Of Trustees Of The Leland Stanford Junior University | Intronic overexpression vectors |
US5198547A (en) | 1992-03-16 | 1993-03-30 | South Alabama Medical Science Foundation, Usa | Process for N5-formylating tetrahydropteridines |
US5424311A (en) | 1992-09-26 | 1995-06-13 | Hoeschst Aktiengesellschaft | Azaquinoxalines and their use |
WO1996009045A1 (en) | 1994-09-19 | 1996-03-28 | Eli Lilly And Company | Antiestrogenic benzothiophenyl compounds |
WO1996034867A1 (en) | 1995-05-03 | 1996-11-07 | Warner-Lambert Company | PYRIDO[2,3-d]PYRIMIDINES FOR INHIBITING PROTEIN TYROSINE KINASE MEDIATED CELLULAR PROLIFERATION |
WO1996036597A1 (en) | 1995-05-19 | 1996-11-21 | Novartis Ag | Process for the catalytic hydrogenation of aromatic nitro compounds |
US5698556A (en) | 1995-06-07 | 1997-12-16 | Chan; Carcy L. | Methotrexate analogs and methods of using same |
WO1998011893A1 (en) | 1996-09-23 | 1998-03-26 | Eli Lilly And Company | Olanzapine dihydrate d |
US6156766A (en) | 1994-04-18 | 2000-12-05 | Yoshitomi Pharmaceutical Industries, Ltd. | Benzamide compounds and pharmaceutical use thereof |
US6174895B1 (en) | 1998-08-11 | 2001-01-16 | Pfizer Inc. | 1-aryl-3-arylmethyl-1,8-naphthyridin-4(1H)-ones |
WO2001019825A1 (en) | 1999-09-15 | 2001-03-22 | Warner-Lambert Company | Pteridinones as kinase inhibitors |
WO2001070741A1 (en) | 2000-03-06 | 2001-09-27 | Warner-Lambert Company | 5-alkylpyrido[2,3-d]pyrimidines tyrosine kinase inhibitors |
WO2001078732A1 (en) | 2000-04-15 | 2001-10-25 | Fresenius Kabi Deutschland Gmbh | Ciprofloxacin infusion solutions having a good storage stability |
WO2002057261A2 (en) | 2001-01-22 | 2002-07-25 | F. Hoffmann-La Roche Ag | Diaminothiazoles and their use as inhibitors of cyclin-dependent kinase |
WO2002076985A1 (en) | 2001-03-23 | 2002-10-03 | Smithkline Beecham Corporation | Compounds useful as kinase inhibitors for the treatment of hyperproliferative diseases |
WO2002076954A1 (en) | 2001-03-23 | 2002-10-03 | Smithkline Beecham Corporation | Compounds useful as kinase inhibitors for the treatment of hyperproliferative diseases |
US20020183292A1 (en) | 2000-10-31 | 2002-12-05 | Michel Pairet | Pharmaceutical compositions based on anticholinergics and corticosteroids |
US20020183293A1 (en) | 2001-04-17 | 2002-12-05 | Banerjee Partha S. | Formoterol/steroid bronchodilating compositions and methods of use thereof |
WO2003020722A1 (en) | 2001-09-04 | 2003-03-13 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel dihydropteridinones, method for producing the same and the use thereof as medicaments |
US6605255B2 (en) | 2000-11-22 | 2003-08-12 | Bayer Aktiengesellschaft | Repinotan kit |
WO2003093249A1 (en) | 2002-05-03 | 2003-11-13 | Schering Aktiengesellschaft | Thiazolidinones and the use thereof as polo-like kinase inhibitors |
RU2002125451A (en) | 2000-02-23 | 2004-01-10 | Астразенека Аб (Se) | Pteridine Compounds for the Treatment of Psoriasis |
US20040029885A1 (en) | 2001-09-04 | 2004-02-12 | Boehringer Ingelheim Pharma Kg | New dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
WO2004014899A1 (en) | 2002-08-08 | 2004-02-19 | Smithkline Beecham Corporation | Thiophene compounds |
US20040176380A1 (en) | 2003-02-26 | 2004-09-09 | Boehringer Ingelheim Pharma Gmbh Co. Kg | New dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
CA2517020A1 (en) | 2003-02-26 | 2004-09-10 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Dihydropteridinones, method for the production and use thereof in the form of drugs |
CA2517010A1 (en) | 2003-03-26 | 2004-11-04 | Wyeth | Plasmid dna in combination with recombinant vsv for use in prime-boost immunization regimens |
WO2004093848A2 (en) | 2003-04-14 | 2004-11-04 | Vectura Ltd | Dry power inhaler devices and dry power formulations for enhancing dosing efficiency |
US20050148501A1 (en) | 2001-12-14 | 2005-07-07 | Stephen Palmer | Methods of inducing ovulation using a non-polypeptide camp level modulator |
US20050159414A1 (en) | 2004-01-17 | 2005-07-21 | Boehringer Ingelheim International Gmbh | Use of substituted pyrimido[5,4-D]pyrimidines for the treatment of respiratory diseases |
US20050165010A1 (en) | 2004-01-17 | 2005-07-28 | Boehringer Ingelheim International Gmbh | Use of substituted pteridines for the treatment of respiratory diseases |
US20060004014A1 (en) | 2004-06-21 | 2006-01-05 | Boehringer Ingelheim International Gmbh | 2-Benzylaminodihydropteridinones, process for their manufacture and use thereof as medicaments |
US20060009457A1 (en) | 2004-07-09 | 2006-01-12 | Boehringer Ingelheim International Gmbh | New pyridodihydropyrazinones, process for their manufacture and use thereof as medicaments |
US20060035902A1 (en) | 2004-08-14 | 2006-02-16 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4-[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
US20060035903A1 (en) | 2004-08-14 | 2006-02-16 | Boehringer Ingelheim International Gmbh | Storage stable perfusion solution for dihydropteridinones |
WO2006018220A2 (en) | 2004-08-14 | 2006-02-23 | Boehringer Ingelheim International Gmbh | Method for the production of dihydropteridinones |
WO2006018182A1 (en) | 2004-08-14 | 2006-02-23 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation |
WO2006018185A2 (en) | 2004-08-14 | 2006-02-23 | Boehringer Ingelheim International Gmbh | Dihydropteridinones for the treatment of cancer diseases |
WO2006021378A1 (en) | 2004-08-25 | 2006-03-02 | Boehringer Ingelheim International Gmbh | Dihydropteridinone derivatives, methods for the production thereof and their use as medicaments |
US20060046989A1 (en) | 2004-08-25 | 2006-03-02 | Boehringer Ingelheim International Gmbh | New dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20060047118A1 (en) | 2004-08-26 | 2006-03-02 | Boehringer Ingelheim International Gmbh | New pteridinones as PLK inhibitors |
WO2007014838A1 (en) | 2005-08-03 | 2007-02-08 | Boehringer Ingelheim International Gmbh | Dihydropteridinones in the treatment of respiratory diseases |
US7238807B2 (en) | 2004-12-02 | 2007-07-03 | Boehringer Ingelheim International Gmbh | Process for the manufacture of fused piperazin-2-one derivatives |
US7241889B2 (en) | 2004-07-16 | 2007-07-10 | Boehringer Ingelheim International Gmbh | 6-formyl-tetrahydropteridines, process for their manufacture and use thereof as medicaments |
WO2007090844A1 (en) | 2006-02-08 | 2007-08-16 | Boehringer Ingelheim International Gmbh | Trihydrochloride forms of a dihydropteridinone derivative and processes for preparation |
US7371753B2 (en) | 2004-08-27 | 2008-05-13 | Boehringer Ingelheim International Gmbh | Dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
US20090023733A1 (en) | 2006-03-07 | 2009-01-22 | Peter Cage | Piperidine Derivatives, Their Process for Preparation, Their Use as Therapeutic Agents and Pharmaceutical Compositions Containing Them |
WO2009019205A1 (en) | 2007-08-03 | 2009-02-12 | Boehringer Ingelheim International Gmbh | Crystalline form of a dihydropteridione derivative |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4182872A (en) * | 1976-03-22 | 1980-01-08 | American Home Products Corporation | 4-(Lower)alkyl-1-(o-nitrophenyl)piperazine-2-carboxylic acid chemical intermediates |
US4032639A (en) * | 1976-03-22 | 1977-06-28 | American Home Products Corporation | 2,3,4,4A-Tetrahydro-1H-pyrazino[1,2-a,]quinoxalin-5(6H)-ones and derivatives thereof for relieving hypertension |
US6862422B2 (en) * | 2003-02-12 | 2005-03-01 | Kabushiki Kaisha Toshiba | Image forming apparatus and image forming method having pressing members for pressing a belt-like member |
US20040180898A1 (en) * | 2003-03-03 | 2004-09-16 | Bang-Chi Chen | Processes for preparing imidazoquinoxalinones, heterocyclic-substituted imidazopyrazinones, imidazoquinoxalines and heterocyclic-substituted imidazopyrazines |
-
2004
- 2004-12-02 DE DE102004058337A patent/DE102004058337A1/en not_active Withdrawn
-
2005
- 2005-11-22 US US11/284,836 patent/US7238807B2/en not_active Ceased
- 2005-11-29 CN CN2005800406546A patent/CN101065381B/en not_active Expired - Fee Related
- 2005-11-29 ES ES05823799T patent/ES2395829T3/en active Active
- 2005-11-29 WO PCT/EP2005/056291 patent/WO2006058876A1/en active Application Filing
- 2005-11-29 JP JP2007543838A patent/JP5164574B2/en active Active
- 2005-11-29 CN CN201010593286.0A patent/CN102093361B/en not_active Expired - Fee Related
- 2005-11-29 SG SG200802431-7A patent/SG141461A1/en unknown
- 2005-11-29 ES ES11189691.6T patent/ES2548680T3/en active Active
- 2005-11-29 BR BRPI0518601-3A patent/BRPI0518601A2/en not_active IP Right Cessation
- 2005-11-29 DK DK11189691.6T patent/DK2436685T3/en active
- 2005-11-29 MX MX2007006549A patent/MX2007006549A/en active IP Right Grant
- 2005-11-29 PT PT58237991T patent/PT1819706E/en unknown
- 2005-11-29 CN CN2010105934512A patent/CN102070637B/en not_active Expired - Fee Related
- 2005-11-29 EP EP11189691.6A patent/EP2436685B1/en active Active
- 2005-11-29 AU AU2005311308A patent/AU2005311308B2/en not_active Ceased
- 2005-11-29 HU HUE11189691A patent/HUE027689T2/en unknown
- 2005-11-29 DK DK05823799.1T patent/DK1819706T3/en active
- 2005-11-29 PL PL05823799T patent/PL1819706T3/en unknown
- 2005-11-29 NZ NZ556182A patent/NZ556182A/en not_active IP Right Cessation
- 2005-11-29 PL PL11189691T patent/PL2436685T3/en unknown
- 2005-11-29 CA CA2588857A patent/CA2588857C/en not_active Expired - Fee Related
- 2005-11-29 KR KR1020127028659A patent/KR101395591B1/en not_active IP Right Cessation
- 2005-11-29 UA UAA200706986A patent/UA89390C2/en unknown
- 2005-11-29 EA EA200701164A patent/EA012624B1/en not_active IP Right Cessation
- 2005-11-29 SG SG201000003-2A patent/SG158848A1/en unknown
- 2005-11-29 SI SI200531631T patent/SI1819706T1/en unknown
- 2005-11-29 UY UY29233A patent/UY29233A1/en not_active Application Discontinuation
- 2005-11-29 ME MEP-2012-124A patent/ME01470B/en unknown
- 2005-11-29 EP EP05823799A patent/EP1819706B1/en active Active
- 2005-11-29 KR KR1020077015136A patent/KR101362131B1/en not_active IP Right Cessation
- 2005-11-29 RS RS20120519A patent/RS52533B/en unknown
- 2005-11-30 PE PE2009000418A patent/PE20090488A1/en not_active Application Discontinuation
- 2005-11-30 PE PE2005001388A patent/PE20061061A1/en not_active Application Discontinuation
- 2005-11-30 MY MYPI20055607A patent/MY147459A/en unknown
- 2005-12-01 TW TW094142312A patent/TWI362391B/en not_active IP Right Cessation
- 2005-12-02 AR ARP050105040A patent/AR053100A1/en unknown
-
2007
- 2007-04-25 ZA ZA200703368A patent/ZA200703368B/en unknown
- 2007-05-03 NO NO20072283A patent/NO20072283L/en not_active Application Discontinuation
- 2007-05-16 US US11/749,208 patent/US20070219369A1/en not_active Abandoned
- 2007-05-16 US US11/749,206 patent/US7626019B2/en active Active
- 2007-05-16 US US11/749,212 patent/US20070213530A1/en not_active Abandoned
- 2007-05-16 US US11/749,203 patent/US20070213528A1/en not_active Abandoned
- 2007-05-16 US US11/749,207 patent/US20070213534A1/en not_active Abandoned
- 2007-05-16 US US11/749,210 patent/US20070213531A1/en not_active Abandoned
- 2007-05-16 US US11/749,205 patent/US20070213529A1/en not_active Abandoned
- 2007-05-31 IL IL183568A patent/IL183568A/en not_active IP Right Cessation
-
2008
- 2008-04-02 HK HK08103652.5A patent/HK1113489A1/en not_active IP Right Cessation
-
2010
- 2010-08-05 US US12/850,993 patent/USRE43115E1/en active Active
-
2011
- 2011-11-23 HK HK11112664.7A patent/HK1158199A1/en not_active IP Right Cessation
- 2011-11-23 HK HK11112665.6A patent/HK1158200A1/en not_active IP Right Cessation
-
2012
- 2012-11-30 HR HRP20120980TT patent/HRP20120980T1/en unknown
- 2012-12-12 CY CY20121101215T patent/CY1113625T1/en unknown
-
2013
- 2013-10-09 CL CL2013002895A patent/CL2013002895A1/en unknown
Patent Citations (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0143478A1 (en) | 1983-10-24 | 1985-06-05 | Pharmachemie B.V. | Stable, aqueous, acidic solution of cis-platinum, suitable for injection |
US4957922A (en) | 1985-10-24 | 1990-09-18 | Bayer Aktiengesellschaft | Infusion solutions of 1-cyclopropyl-6-fluoro-1,4-di-hydro-4-oxo-7-(1-piperazinyl)-quinoline-3-carboxylic acid |
EP0347146A2 (en) | 1988-06-16 | 1989-12-20 | Smith Kline & French Laboratories Limited | Fused pyrimidine derivatives, process and intermediates for their preparation and pharmaceutical compositions containing them |
EP0399856A1 (en) | 1989-03-30 | 1990-11-28 | Lipha, Lyonnaise Industrielle Pharmaceutique | Pteridin-4 (3H)-ones, processes for their preparation and medicaments containing them |
US5167949A (en) | 1989-03-30 | 1992-12-01 | Lipha, Lyonnaise Industrielle Pharmaceutique | 4(3h)-pteridinones, preparation processes and drugs containing them |
US5043270A (en) | 1989-03-31 | 1991-08-27 | The Board Of Trustees Of The Leland Stanford Junior University | Intronic overexpression vectors |
EP0429149A1 (en) | 1989-11-17 | 1991-05-29 | Berlex Laboratories, Inc. | Tricyclic pteridinones and a process for their preparation |
US5198547A (en) | 1992-03-16 | 1993-03-30 | South Alabama Medical Science Foundation, Usa | Process for N5-formylating tetrahydropteridines |
US5424311A (en) | 1992-09-26 | 1995-06-13 | Hoeschst Aktiengesellschaft | Azaquinoxalines and their use |
US6156766A (en) | 1994-04-18 | 2000-12-05 | Yoshitomi Pharmaceutical Industries, Ltd. | Benzamide compounds and pharmaceutical use thereof |
WO1996009045A1 (en) | 1994-09-19 | 1996-03-28 | Eli Lilly And Company | Antiestrogenic benzothiophenyl compounds |
WO1996034867A1 (en) | 1995-05-03 | 1996-11-07 | Warner-Lambert Company | PYRIDO[2,3-d]PYRIMIDINES FOR INHIBITING PROTEIN TYROSINE KINASE MEDIATED CELLULAR PROLIFERATION |
US6096924A (en) | 1995-05-19 | 2000-08-01 | Novartis Ag | Process for the catalytic hydrogeneration of aromatic nitro compounds |
WO1996036597A1 (en) | 1995-05-19 | 1996-11-21 | Novartis Ag | Process for the catalytic hydrogenation of aromatic nitro compounds |
US5698556A (en) | 1995-06-07 | 1997-12-16 | Chan; Carcy L. | Methotrexate analogs and methods of using same |
WO1998011893A1 (en) | 1996-09-23 | 1998-03-26 | Eli Lilly And Company | Olanzapine dihydrate d |
US6174895B1 (en) | 1998-08-11 | 2001-01-16 | Pfizer Inc. | 1-aryl-3-arylmethyl-1,8-naphthyridin-4(1H)-ones |
WO2001019825A1 (en) | 1999-09-15 | 2001-03-22 | Warner-Lambert Company | Pteridinones as kinase inhibitors |
US20030130286A1 (en) | 1999-09-15 | 2003-07-10 | Denny William Alexander | Pteridinones as kinase inhibitors |
RU2002125451A (en) | 2000-02-23 | 2004-01-10 | Астразенека Аб (Se) | Pteridine Compounds for the Treatment of Psoriasis |
US6875868B2 (en) | 2000-02-23 | 2005-04-05 | Astrazeneca Ab | Pteridine compounds for the treatment of psoriasis |
WO2001070741A1 (en) | 2000-03-06 | 2001-09-27 | Warner-Lambert Company | 5-alkylpyrido[2,3-d]pyrimidines tyrosine kinase inhibitors |
WO2001078732A1 (en) | 2000-04-15 | 2001-10-25 | Fresenius Kabi Deutschland Gmbh | Ciprofloxacin infusion solutions having a good storage stability |
US20020183292A1 (en) | 2000-10-31 | 2002-12-05 | Michel Pairet | Pharmaceutical compositions based on anticholinergics and corticosteroids |
US6605255B2 (en) | 2000-11-22 | 2003-08-12 | Bayer Aktiengesellschaft | Repinotan kit |
WO2002057261A2 (en) | 2001-01-22 | 2002-07-25 | F. Hoffmann-La Roche Ag | Diaminothiazoles and their use as inhibitors of cyclin-dependent kinase |
WO2002076985A1 (en) | 2001-03-23 | 2002-10-03 | Smithkline Beecham Corporation | Compounds useful as kinase inhibitors for the treatment of hyperproliferative diseases |
WO2002076954A1 (en) | 2001-03-23 | 2002-10-03 | Smithkline Beecham Corporation | Compounds useful as kinase inhibitors for the treatment of hyperproliferative diseases |
US20020183293A1 (en) | 2001-04-17 | 2002-12-05 | Banerjee Partha S. | Formoterol/steroid bronchodilating compositions and methods of use thereof |
US20040029885A1 (en) | 2001-09-04 | 2004-02-12 | Boehringer Ingelheim Pharma Kg | New dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
US20040147524A1 (en) | 2001-09-04 | 2004-07-29 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Methods of using dihydropteridinones |
WO2003020722A1 (en) | 2001-09-04 | 2003-03-13 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel dihydropteridinones, method for producing the same and the use thereof as medicaments |
CA2458699A1 (en) | 2001-09-04 | 2003-03-13 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel dihydropteridinones, method for producing the same and the use thereof as medicaments |
US6806272B2 (en) | 2001-09-04 | 2004-10-19 | Boehringer Ingelheim Pharma Kg | Dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
US20050148501A1 (en) | 2001-12-14 | 2005-07-07 | Stephen Palmer | Methods of inducing ovulation using a non-polypeptide camp level modulator |
WO2003093249A1 (en) | 2002-05-03 | 2003-11-13 | Schering Aktiengesellschaft | Thiazolidinones and the use thereof as polo-like kinase inhibitors |
US20060079503A1 (en) | 2002-05-03 | 2006-04-13 | Schering Aktiengesellschaft | Thiazolidinones and the use therof as polo-like kinase inhibitors |
WO2004014899A1 (en) | 2002-08-08 | 2004-02-19 | Smithkline Beecham Corporation | Thiophene compounds |
US20050014760A1 (en) | 2003-02-26 | 2005-01-20 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Methods of treating diseases or conditions using dihydropteridinone compounds |
ES2287583T3 (en) | 2003-02-26 | 2007-12-16 | BOEHRINGER INGELHEIM PHARMA GMBH & CO.KG | DIHYDROPTERIDINONES, PROCEDURE FOR THEIR PREPARATION AND ITS USE AS MEDICATIONS. |
US20100324288A1 (en) | 2003-02-26 | 2010-12-23 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Dihydropteridinone Compounds |
US20050014761A1 (en) | 2003-02-26 | 2005-01-20 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Intermediate compounds for making dihydropteridinones useful as pharmaceutical compositions |
US6861422B2 (en) | 2003-02-26 | 2005-03-01 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
WO2004076454A1 (en) | 2003-02-26 | 2004-09-10 | Boehringer Ingelheim Pharma Gmbh & Co Kg | Dihydropteridinones, method for the production and use thereof in the form of drugs |
CA2517020A1 (en) | 2003-02-26 | 2004-09-10 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Dihydropteridinones, method for the production and use thereof in the form of drugs |
US20080171747A1 (en) | 2003-02-26 | 2008-07-17 | Matthias Hoffman | Intermediate Compounds for making Dihydropteridinones Useful as Pharmaceutical Compositions |
US20040176380A1 (en) | 2003-02-26 | 2004-09-09 | Boehringer Ingelheim Pharma Gmbh Co. Kg | New dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
US20080293944A1 (en) | 2003-02-26 | 2008-11-27 | Matthias Hoffmann | Piperazinyl Compounds |
US7750152B2 (en) | 2003-02-26 | 2010-07-06 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Intermediate compounds for making dihydropteridinones useful as pharmaceutical compositions and processes of making the same |
US7816530B2 (en) | 2003-02-26 | 2010-10-19 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Piperazinyl compounds |
US20060025411A1 (en) | 2003-02-26 | 2006-02-02 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Methods for treating diseases or conditions using dihydropteridinone compounds |
CA2517010A1 (en) | 2003-03-26 | 2004-11-04 | Wyeth | Plasmid dna in combination with recombinant vsv for use in prime-boost immunization regimens |
WO2004093848A2 (en) | 2003-04-14 | 2004-11-04 | Vectura Ltd | Dry power inhaler devices and dry power formulations for enhancing dosing efficiency |
WO2005067935A1 (en) | 2004-01-17 | 2005-07-28 | Boehringer Ingelheim International Gmbh | Use of substituted pteridines for the treatment of diseases of the respiratory tract |
US20050165010A1 (en) | 2004-01-17 | 2005-07-28 | Boehringer Ingelheim International Gmbh | Use of substituted pteridines for the treatment of respiratory diseases |
US20050159414A1 (en) | 2004-01-17 | 2005-07-21 | Boehringer Ingelheim International Gmbh | Use of substituted pyrimido[5,4-D]pyrimidines for the treatment of respiratory diseases |
US7759347B2 (en) | 2004-06-21 | 2010-07-20 | Boehringer Ingelheim International Gmbh | 2-benzylaminodihydropteridinones, process for their manufacture and use thereof as medicaments |
US20060004014A1 (en) | 2004-06-21 | 2006-01-05 | Boehringer Ingelheim International Gmbh | 2-Benzylaminodihydropteridinones, process for their manufacture and use thereof as medicaments |
US20090124628A1 (en) | 2004-06-21 | 2009-05-14 | Boehringer Ingelheim International Gmbh | 2-benzylaminodihydropteridinones, process for their manufacture and use thereof as medicaments |
US20060009457A1 (en) | 2004-07-09 | 2006-01-12 | Boehringer Ingelheim International Gmbh | New pyridodihydropyrazinones, process for their manufacture and use thereof as medicaments |
US20100029642A1 (en) | 2004-07-09 | 2010-02-04 | Boehringer Ingelheim International Gmbh | Methods of Using Pyridodihydropyrazinones |
US7625899B2 (en) | 2004-07-09 | 2009-12-01 | Boehringer Ingelheim International Gmbh | Pyridodihydropyraziones, process for their manufacture and use thereof as medicaments |
US7241889B2 (en) | 2004-07-16 | 2007-07-10 | Boehringer Ingelheim International Gmbh | 6-formyl-tetrahydropteridines, process for their manufacture and use thereof as medicaments |
US20080221099A1 (en) | 2004-08-14 | 2008-09-11 | Gerd Munzert | Dihydropteridinones for the treatment of cancer diseases |
US20080177066A1 (en) | 2004-08-14 | 2008-07-24 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US20060035902A1 (en) | 2004-08-14 | 2006-02-16 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4-[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
US20060035903A1 (en) | 2004-08-14 | 2006-02-16 | Boehringer Ingelheim International Gmbh | Storage stable perfusion solution for dihydropteridinones |
US20100249458A1 (en) | 2004-08-14 | 2010-09-30 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US20060058311A1 (en) | 2004-08-14 | 2006-03-16 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation |
US20100249412A1 (en) | 2004-08-14 | 2010-09-30 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US7759485B2 (en) | 2004-08-14 | 2010-07-20 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
WO2006018220A2 (en) | 2004-08-14 | 2006-02-23 | Boehringer Ingelheim International Gmbh | Method for the production of dihydropteridinones |
WO2006018221A1 (en) | 2004-08-14 | 2006-02-23 | Boehringer Ingelheim International Gmbh | Dihydropteridinone infusion solution having a long shelf life |
US7728134B2 (en) | 2004-08-14 | 2010-06-01 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
WO2006018182A1 (en) | 2004-08-14 | 2006-02-23 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation |
US20090298840A1 (en) | 2004-08-14 | 2009-12-03 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4-[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
WO2006018185A2 (en) | 2004-08-14 | 2006-02-23 | Boehringer Ingelheim International Gmbh | Dihydropteridinones for the treatment of cancer diseases |
US20090238828A1 (en) | 2004-08-14 | 2009-09-24 | Boehringer Ingelheim International Gmbh | Combinations for the Treatment of Diseases involving Cell Proliferation |
US20060074088A1 (en) | 2004-08-14 | 2006-04-06 | Boehringer Ingelheim International Gmbh | Dihydropteridinones for the treatment of cancer diseases |
US20090143379A1 (en) | 2004-08-14 | 2009-06-04 | Boehringer Ingelheim International Gmbh | Storage stable perfusion solution for dihydropteridinones |
CA2576290A1 (en) | 2004-08-14 | 2006-02-23 | Boehringer Ingelheim International Gmbh | Method for the production of dihydropteridinones |
US7332491B2 (en) | 2004-08-25 | 2008-02-19 | Boehringer Ingelheim International, Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20060052383A1 (en) | 2004-08-25 | 2006-03-09 | Boehringer Ingelheim International Gmbh | New dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20080113992A1 (en) | 2004-08-25 | 2008-05-15 | Matthias Grauert | Dihydropteridione Intermediate Compounds |
US20080194818A1 (en) | 2004-08-25 | 2008-08-14 | Matthias Grauert | Dihydropteridione Intermediate Compounds |
US7414053B2 (en) | 2004-08-25 | 2008-08-19 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20060046989A1 (en) | 2004-08-25 | 2006-03-02 | Boehringer Ingelheim International Gmbh | New dihydropteridione derivatives, process for their manufacture and their use as medicament |
US7807831B2 (en) | 2004-08-25 | 2010-10-05 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
WO2006021378A1 (en) | 2004-08-25 | 2006-03-02 | Boehringer Ingelheim International Gmbh | Dihydropteridinone derivatives, methods for the production thereof and their use as medicaments |
US20080319193A1 (en) | 2004-08-25 | 2008-12-25 | Boehringer Ingelheim International Gmbh | New dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20080319190A1 (en) | 2004-08-25 | 2008-12-25 | Boehringer Ingelheim International Gmbh | New dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20080319192A1 (en) | 2004-08-25 | 2008-12-25 | Boehringer Ingelheim International Gmbh | New dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20090018333A1 (en) | 2004-08-25 | 2009-01-15 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US7723517B2 (en) | 2004-08-25 | 2010-05-25 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US7700769B2 (en) | 2004-08-25 | 2010-04-20 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US7629460B2 (en) | 2004-08-25 | 2009-12-08 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US7547780B2 (en) | 2004-08-25 | 2009-06-16 | Boehringer Ingelheim International Gmbh | Dihydropteridione intermediate compounds |
US20080108812A1 (en) | 2004-08-25 | 2008-05-08 | Matthias Grauert | Dihydropteridione Intermediate Compounds |
US20060047118A1 (en) | 2004-08-26 | 2006-03-02 | Boehringer Ingelheim International Gmbh | New pteridinones as PLK inhibitors |
US7371753B2 (en) | 2004-08-27 | 2008-05-13 | Boehringer Ingelheim International Gmbh | Dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
US20070213534A1 (en) | 2004-12-02 | 2007-09-13 | Adil Duran | Process for the Manufacture of fused piperazin-2-one derivatives |
US20070208027A1 (en) | 2004-12-02 | 2007-09-06 | Adil Duran | Intermediate compounds for the manufacture of fused piperazin-2-one derivatives |
US7626019B2 (en) | 2004-12-02 | 2009-12-01 | Boehringer Ingelheim International Gmbh | Intermediate compounds for the manufacture of fused piperazin-2-one derivatives |
US20070219369A1 (en) | 2004-12-02 | 2007-09-20 | Adil Duran | Process for the Manufacture of fused piperazin-2-one derivatives |
US20070213529A1 (en) | 2004-12-02 | 2007-09-13 | Adil Duran | Process for the Manufacture of fused piperazin-2-one derivatives |
US20070213530A1 (en) | 2004-12-02 | 2007-09-13 | Adil Duran | Intermediate Compounds for the Manufacture of fused piperazin-2-one derivatives |
US20070213528A1 (en) | 2004-12-02 | 2007-09-13 | Adil Duran | Process for the Manufacture of Fused piperazin-2-one derivatives |
US20070213531A1 (en) | 2004-12-02 | 2007-09-13 | Adil Duran | Process for the Manufacture of fused piperazin-2-one derivatives |
US7238807B2 (en) | 2004-12-02 | 2007-07-03 | Boehringer Ingelheim International Gmbh | Process for the manufacture of fused piperazin-2-one derivatives |
US20090280115A1 (en) | 2005-08-03 | 2009-11-12 | Boehringer Ingelheim International Gmbh | Dihydropteridinones in the Treatment of Respiratory Diseases |
US20090029990A1 (en) | 2005-08-03 | 2009-01-29 | Udo Maier | Dihydropteridinones in the treatment of respiratory diseases |
US20070043055A1 (en) | 2005-08-03 | 2007-02-22 | Udo Maier | Dihydropteridinones in the treatment of respiratory diseases |
WO2007014838A1 (en) | 2005-08-03 | 2007-02-08 | Boehringer Ingelheim International Gmbh | Dihydropteridinones in the treatment of respiratory diseases |
WO2007090844A1 (en) | 2006-02-08 | 2007-08-16 | Boehringer Ingelheim International Gmbh | Trihydrochloride forms of a dihydropteridinone derivative and processes for preparation |
US7439358B2 (en) | 2006-02-08 | 2008-10-21 | Boehringer Ingelheim International Gmbh | Specific salt, anhydrous and crystalline form of a dihydropteridione derivative |
US20090030004A1 (en) | 2006-02-08 | 2009-01-29 | Guenter Linz | Specific salt, anhydrous and crystalline form of a dihydropteridione derivative |
US20090023733A1 (en) | 2006-03-07 | 2009-01-22 | Peter Cage | Piperidine Derivatives, Their Process for Preparation, Their Use as Therapeutic Agents and Pharmaceutical Compositions Containing Them |
US20100280037A1 (en) | 2007-08-03 | 2010-11-04 | Boehringer Ingelheim International Gmbh | Crystalline form of a dihydropteridione derivative |
WO2009019205A1 (en) | 2007-08-03 | 2009-02-12 | Boehringer Ingelheim International Gmbh | Crystalline form of a dihydropteridione derivative |
Non-Patent Citations (72)
Title |
---|
ACPS Meeting, Background Information. "Scientific considerations of plymorphism in pharmaceutical solids: abbreviated new drug applications". Oct. 2002. |
Ahlenius, T. List of cardiovascular disorder/diseases. Ahlenius, Karolinska Institutet. Stockholm, Sweden. Cardiovascular Diseases, p. 1-34, Apr. 2007. |
Ahmad, N. "Polo-like kinase (Plk) 1: a novel target for the treatment of prostate cancer". The FASEB Journal. 2004, 18:5-7. Dept of Dermatology, Univ. Wisconsin, pp. 5-7. |
Arnold, K. "Collaboration to play key role in NCI's future, director says". Journal of the National Cancer Institute, Jun. 5, 2002, pp. 790-792, vol. 94, No. 11. |
BBC News/Health, Killer Breast Cancern Therapy Hope, www.newsvote.bbc/co./uk, Published Jan. 21, 2006. |
Bennett, J.C., et al., "Textbook of Medicine", Part XIV, Oncology, 1997. |
Blain, S. W. et al., "Differential interaction of the cyclin-dependent kinase (Cdk) Inhibitor p27KIP with cyclin A-Cdk2 and cyclin D2-Cdk4". The Journal of Biological Chemistry, vol. 272, No. 41, Issue Oct. 10, 1997, pp. 25862-25872. |
Chen, J.X. et al., "Parallel differentiated recognition of ketones and acetals". Angewandte Chemie Int. Ed, vol. 37, Issue 1/2, p. 91-93, 1998. |
Dipolar aprotic solvent. Exhibit A, IUPAC Compendium of Chemical Terminology, 2nd Edition, 1997. |
Doerwald, F.Z. Book Wiley-VCH Verlag GmbH & Co. KGaA, "Side reactions in organice synthesis: A Guide to Successful Synthesis Design". 2005. |
Dyson, G, et al. "The Chemistry of Synthetic Drugs". Mir 1964, p. 12-19. |
Eurasian Opinion, Appln No. 2007/00389/28, Maly Slatoustinsky per., d.10, kv.15, 101000 Moscow, Russia, "EVROMARKPAT", 2007. |
Ferrand, G., et al., "Synthesis and potential antiallergic activity of new pteridinones and related compounds". Eur. J. Med. Chem, 31, 1996, pp. 273-280. XP--2246920. |
Ghandi, L., et al., "An Open-Label Phase II Trial of the PLK Inhibitor BI 2536 in Patients with Sensitive Relapse Small Cell Lung Cancer". ASCO Meeting 2009. |
Giron, G. "Thernal analysis and calorimetric methods in the characterization of plymorphs and solvates". Thermochimica Acta 248, 1995, pp. 1-59. |
Goodman-Gilman's "The Pharmacological Basis of Therapeutics". Ninth edition, 1996, pp. 1225-1271. |
International Search Report for PCT/EP2005/056291 mailed Mar. 21, 2006. |
Ito, Y., et al., "Polo-like kinase 1 (PLK) expression is associated with cell proliferative activity and cdc2 expression in malignant-lymphoma of the thyroid". Anticancer Research, 2004, vol. 24, No. 1, pp. 259-263. |
Jamieson, C. et al., "Application of ReactArray Robotics and Design of Experiments Techniques in Optimisation of Supported Reagent Chemistry". Org. Proc. Res. & Dev., 2002, 6, p. 823-825. |
Jaworska, J., et al., "Review of methods for assessing the applicability domains of SARS and QSARS". Sponsor: The European Commission-Joint Research Ctr., Institute for Health and Consumer Protection-ECVAM, Italy, 2004. |
Kashima, M. K. et al., "Expression of polo-like kinase (PLK1) in non-Hodgkin's lymphomas". NCBI, PubMed, 2005. |
Kimball, S. D. et al., "Cell cycle kinases and checkpoint regulation in cancer". Annual Reports in Medicinal Chemistry, 36, Chapter 14, 2001, pp. 139-148. |
Kummer B, et al., "Combination of Radiation and Polo-like Kinase 1 Inhibition with BI6727 in tumour model A431". Vortrag. 20. Symposium .Experimentelle Strahlentherapie und klinische Strahlenbiologie, Exp. Strahlenther. Klin. Strahlenbiol. 20: 93-96 (2011) (Lecture 20, Symposium Experimental Radiation Therapy and Clinical Radiation Biology.). |
Kummer B, et al., "Combination of Radiation and Polo-like Kinase 1 Inhibition with BI6727 in tumour model A431". Vortrag. 20. Symposium •Experimentelle Strahlentherapie und klinische Strahlenbiologie, Exp. Strahlenther. Klin. Strahlenbiol. 20: 93-96 (2011) (Lecture 20, Symposium Experimental Radiation Therapy and Clinical Radiation Biology.). |
Kummer, B. et al., Presentation: "Combination of irradiation and polo-like kinase 1 inhibition with BI 6727 in tumour model A 431". OncoRay-National Centre for Radiation Research in Oncology, Dresden 2011, Experimental Radiotherapy and Clinical Radiobiology. |
Leukemia & Lymphoma Society-Disease Information. www.leukemia-lymphoma.org/all-page?item-id-7026, 2008. |
Leukemia & Lymphoma Society-Disease Information-Lymphoma. www.leukemia-lymphoma.org/all-page?item-id-7030, 2008. |
Marko, D. et al., "Intracellular localization of 7-benzylamino-6-chloro-2-piperazino-4-pyrrolidino-pteridine in membrane structures impeding the inhibition of cytosolic cyclic AMP-specific phosphodiesterase". Biochemical Pharmacology, 63, 2002, pp. 669-676. |
Mashkovkii, M.D., "Medicaments". Moscow, Novaja Volna, 2001, vol. 1, p. 11. |
Mashkovskii, M.D. "Drugs", Handbook for Doctors, 1993, Part I, Ch.1, p. 8. |
Masuda, Y. et al., "B-Hydroxyisovalerylshikonin induces apoptosis in human leukemia cells by inhibiting the activity of a polo-like kinase 1 (PLK)". 2003, Oncogene, 22, pp. 1012-1023. |
Mayer, SF, et al., "Enzyme-initiated domino (cascase) reactions". Chem. Soc. Rev, 2001, p. 332-339. |
MedlinePlus: Bacterial Infections. www.nim.nih.gov/medlineplus/print/bacterialinfections.htm, date last updated Mar. 25, 2009. |
MedlinePlus: Viral Infections. www.nim.nih.gov/medlineplus/print/viralinfections.htm, date last updated Feb. 11, 2009. |
Merck Manual of Medical Information-Home Edition, Section 17. "Parasitic Infections". Chapter 184, 2003. |
Mikhailov, I.B., Principles of Rational Pharmacotherapy. Handbook for clinical pharmacology for students of pediatric and medical faculties of medical high schools, St. Petersburg, Russia, "Foliant", 1999, p. 25. |
Mito, K., et al., "Expression of polo-like kinase (PLK1) in non-Hodgkin's lymphomas". NCBI, PubMed, 2005, Leuk. Lymphoma, 46(2), pp. 251-231. |
Nagao, K. et al., "Effect of MX-68 on airway inflammation and hyperresponsiveness in mice and guinea-pigs". Journal of Pharmacy and Pharmacology, JPP 2004, 56, pp. 187-196. |
National Institute of Neurological Disorders, Index Stroke, 2006. |
Norman, P. "PDE4 inhibitors". Ashley Publications Ltd., Expert Opinions Ther. Patents, 1999, pp. 1101-1118. |
Office Action mailed Apr. 28, 2004 for U.S. Appl. No. 10/374,876, filed Feb. 26, 2003. Inventor: Matthias Hoffmann. |
Office Action mailed Dec. 10, 2003 for U.S. Appl. No. 10/226,710, filed Aug. 23, 2002. Inventor: Eckhart Bauer. |
Ohio Dept of Health, "Brain and Other Central Nervous System Cancer in Ohio, 1997-2001". Sep. 2004, pp. 1-4. |
Organic Chemistry, Grupo Editorial Iberoamerica, Section 13, 3, pp. 301-302, 1983 (best copy available in Spanish). |
Rocha Lima, C.M. et al. "Randomized phase II trial of gemcitabine plus irinotecan or docetaxel uin stage IIIB or stage IV NSCLC" Annals of Oncology, 15(3), p. 410-418, 2004. |
Rylander, P.N. "Hydrgenation Methods". 1985, Chapter 13. |
Rylander, P.N. "Hydrgenation Methods". 1985, Chapter 5, 6, 7. |
Rylander, P.N. "Hydrgenation Methods". 1985, Chapters 3, 4. |
Rylander, P.N. "Hydrgenation Methods". 1985, Chapters 8, 9, 10, 11. |
Rylander, P.N., "Hydrogenation Methods". 1985, Chapters 1, 2. |
Santing, R. E. et al., "Brochodilatory and anti-inflammatory properties of inhaled selective phosphodiesterase inhibitors in a guinea pig model of allergic asthma". European Journal of Pharmacology, 429, 2001, pp. 335-344. |
Savelli, F. et al., "Heterotricyclic system Part II-synthesis of new pyrido[1'2':4,5]pyrazino[3,2-d] pyrimidines". Bollettino Chimico Farmaceutico, 131(8), Sep. 1992, pp. 309-312. |
Savelli, F. et al., "Heterotricyclic system Part II—synthesis of new pyrido[1′2′:4,5]pyrazino[3,2-d] pyrimidines". Bollettino Chimico Farmaceutico, 131(8), Sep. 1992, pp. 309-312. |
Science, vol. 310, Oct. 21, 2005, p. 409, Chemistry: One After Another. |
Snyder, J. S. et al., "Common bacteria whose susceptibility to antimicrobials is no longer predictable". NCBI, PubMed, 2000, Le Journal Medical Libanais (The Lebanse Medical Journal), 48, pp. 208-214. |
Souillac, P. et al., "Characterization of delivery systems, differential scanning calorimetry". (In Encyclopedia of Controlled Drug Delivery), 1999, John Wiley & Sons, pp. 212-227. |
Sugar, A. M. et al., "Comparison of three methods of antifungal susceptibility testing with the proposed NCCLS standard broth macrodilution assay: lack of effect of phenol red". Mycology, Diagn Microbiol. Infect. Dis. 1995, 21-pp. 129-133. |
Takai, N. et al., "Polo-like kinases (PLKs) and cancer". Oncogene , 2005, 24, pp. 287-291. |
Tenbrink, R. E. et al., "Antagonist, Partial Agonist, and Full Agonist Imi8daxo[1,5-a]quinoxaline Amides and Carbamates Acting through the GABA a/Benzodiazepine Receptor", J. Med. Chem, 1994, 37, 758-768. |
Tenbrink, R. E. et al., "Antagonist, partial agonist, and full agonist imidazo[1,5-a]quinoxaline amides and carbamates acting through the BABA/Benzodiazepine receptor". J. Med. Chem. 1994, 37, pp. 758-768. |
Turner, S., "The Design of Organic Syntheses". Elsevier, 1976, pp. 10 and 149. |
Turner, W.W.et al., "Recent advances in the medicinal chemistry of antifungal agents". Current Pharmacutical Design, 1996, 2, pp. 209-224. |
Verschuren, E.W. et al., "The cell cycle and how it is steered by Kaposi's sarcoma-associated herpesvirus cyclin". Journal of General Virology, 2004, 85, pp. 1347-1361. |
Vippagunta, S. R. et al., "Crystalline solids". Advanced Drug Delivery Reviews, 48, 2001, pp. 3-26. |
Visiting Nurse Association of America. www.vnaa.org/gen/Germ-Protection-Center-Cold-and-Flu-Resources,html, 2009. |
Voskoglou-Nomikos, T. et al., "Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models". Clinical Cancer Research vol. 9, 2003, pp. 4227-4239. |
Wagner, B. et al, "7-Benzylamino-6-chloro-2-piperazino-4-pyrrolidino-pteridine, a potent inhibitor of cAMP-specific phosphodiesterase, enhancing nuclear protein binding to the CRE consensus sequence in human tumour cells", Biochemical Pharmacology, Pergamon, Oxford, GB, 2002, pp. 659-668. |
Wagner, G. et al., "Synthesis of new phrido[3',2':4,5] thieno '3,2-d] 1,2,3-triazine derivatives as antianaphylactics". Biosciences Dept of the University of Leipzig, Pharmazie (Pharmacy), 48, vol. 7,1993, pp. 514-518. |
Wagner, G. et al., "Synthesis of new phrido[3′,2′:4,5] thieno ′3,2-d] 1,2,3-triazine derivatives as antianaphylactics". Biosciences Dept of the University of Leipzig, Pharmazie (Pharmacy), 48, vol. 7,1993, pp. 514-518. |
Webster's Comprehensive Dictionary, 1996, pp. 1013-1014. |
Wikipedia. "Melting Point", Jan 17, 2007. http://en.wikipedia.org/wiki/Melting-point. |
Wolf, D. E.et al., "The structure of rhizopterin". Contribution from the Research Labs of Merck and Co. Inc. Nov. 1947, Journal of American Chem. Soc., vol. 69, pp. 2753-2759. XP002352205. |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE43115E1 (en) | Process for the manufacture of fused piperazin-2-one derivatives | |
US8138373B2 (en) | Process for the manufacture of dihydropteridinones | |
JP5937087B2 (en) | Process for producing dihydropteridinone and intermediates thereof | |
AU2018308039A1 (en) | Novel intermediates useful for the synthesis of aminopyrimidine derivatives, process for preparing the same, and process for preparing aminopyrimidine derivatives using the same | |
CA2136885A1 (en) | Process for preparing imidazopyridine derivatives | |
JPH0899942A (en) | Production of substituted diaminodicarboxylic acid derivative |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |