USRE42318E1 - Semiconductor module with serial bus connection to multiple dies - Google Patents
Semiconductor module with serial bus connection to multiple dies Download PDFInfo
- Publication number
- USRE42318E1 USRE42318E1 US11/398,458 US39845806A USRE42318E US RE42318 E1 USRE42318 E1 US RE42318E1 US 39845806 A US39845806 A US 39845806A US RE42318 E USRE42318 E US RE42318E
- Authority
- US
- United States
- Prior art keywords
- heat spreader
- semiconductors
- semiconductor module
- flexible circuit
- termination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 250
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 9
- 230000007246 mechanism Effects 0.000 claims description 6
- 238000004873 anchoring Methods 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims 12
- 238000010168 coupling process Methods 0.000 claims 12
- 238000005859 coupling reaction Methods 0.000 claims 12
- 239000007787 solid Substances 0.000 claims 4
- 229910000679 solder Inorganic materials 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 239000003292 glue Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 238000002507 cathodic stripping potentiometry Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/647—Resistive arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5387—Flexible insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0655—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/0246—Termination of transmission lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/189—Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06517—Bump or bump-like direct electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/0652—Bump or bump-like direct electrical connections from substrate to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06527—Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06551—Conductive connections on the side of the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06579—TAB carriers; beam leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06582—Housing for the assembly, e.g. chip scale package [CSP]
- H01L2225/06586—Housing with external bump or bump-like connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06589—Thermal management, e.g. cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/4985—Flexible insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/552—Protection against radiation, e.g. light or electromagnetic waves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/86—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using tape automated bonding [TAB]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1203—Rectifying Diode
- H01L2924/12032—Schottky diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3025—Electromagnetic shielding
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/05—Flexible printed circuits [FPCs]
- H05K2201/056—Folded around rigid support or component
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09372—Pads and lands
- H05K2201/09445—Pads for connections not located at the edge of the PCB, e.g. for flexible circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10022—Non-printed resistor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10431—Details of mounted components
- H05K2201/1056—Metal over component, i.e. metal plate over component mounted on or embedded in PCB
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10674—Flip chip
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0058—Laminating printed circuit boards onto other substrates, e.g. metallic substrates
- H05K3/0061—Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
Definitions
- the present invention relates generally to semiconductor modules and in particular to a semiconductor module that allows for more efficient interconnection between the semiconductor module an a computing device's transmission channel.
- CSP chip scale package
- the semiconductor has a set of bond pads distributed across its surface.
- a first surface of an insulating, flexible film is positioned over the semiconductor surface.
- Interconnect circuitry is positioned within the film. Electrical connections are made between the interconnect circuitry and the semiconductor bond pads.
- Solder balls are subsequently attached to a second surface of the film in such a manner as to establish selective connections with the interconnect circuitry. The solder balls may then be attached to a printed circuit board.
- CSPs may be used in connection with memory chips.
- Memory chips may be grouped to form in-line memory modules.
- In-line memory modules are surface mounted memory chips positioned on a circuit board.
- in-line memory modules are single in line memory modules or SIMMs and dual in-line memory modules or DIMMs. DIMMs have begun to replace SIMMs as the compact circuit boards of preference and essentially comprise a SIMM wherein memory chips are surface mounted to opposite sides of the circuit board with connectors on each side.
- a problem with in-line memory modules is that adding more chips to the circuit board spreads out the placement of the chips on the circuit card and therefore requires reconfiguration of the circuit card connectors and their associated connections on the motherboard, which means replacing the memory card and in some cases the motherboard.
- MCM Multi-Chip Modules
- electrical contact points or ball-outs on the MCM Each electrical contact point then connects to a semiconductor in the MCM via an electrical lead, so that a signal may be transmitted along the transmission channel to each semiconductor via that semiconductor's electrical lead.
- each successive electrical lead slightly degrades the signal, by placing a load on the signal. By the time the signal reaches the last semiconductor connected to a transmission channel, the signal may have degraded so as to be unusable.
- Modem MCM's such as those disclosed in the U.S. patent application Ser. No. 09/564,064, disclose MCMs that include relatively long electrical leads. The longer the electrical lead, the more the signal degradation. This is because the speed of the signal is inversely related to the length of the electrical lead. Therefore, existing MCMs can only handle a maximum of approximately thirty two semiconductors connected to a single transmission channel before the signal has degraded to an unusable form.
- a semiconductor module which includes a heat spreader, at least two semiconductors thermally coupled to the heat spreader, and a plurality of electrically conductive leads electrically connected to the semiconductors. At least one of the electrically conductive leads is common to both of the semiconductors.
- the semiconductor module also includes a termination resistor electrically coupled to at least one of the semiconductors.
- a method of making a semiconductor module is also taught, whereby a plurality of electrically conductive leads are provided. At least two semiconductors are electrically coupled to the plurality of electrically conductive leads, where at least one of the electrically conductive leads is common to both of the semiconductors. The semiconductors are then thermally coupled to a heat spreader. Subsequently, a termination resistor is electrically coupled to at least one of the semiconductors.
- the termination resistor coupled to the semiconductors substantially reduces any degradation of the signal caused by a load placed on the signal from electrical leads, as the signal is not being split as is the case with stubs in existing semiconductor modules. Furthermore, by incorporating the termination resistor into the semiconductor module, the need for a termination resistor on the printed circuit board is eliminated, thereby reducing the need for additional circuit board space, and deceasing circuit board layout complexity and cost.
- FIG. 1 is a front view of a semiconductor module according to an embodiment of the invention.
- FIG. 2 is a side view of the semiconductor module shown in FIG. 1 ;
- FIG. 3 is an underside view of the semiconductor module shown in FIG. 1 ;
- FIG. 4 is a side view of a semiconductor module according to another embodiment of the invention.
- FIG. 5 is a side view of a semiconductor module according to yet another embodiment of the invention.
- FIG. 6 is a side view of a semiconductor module according to still another embodiment of the invention.
- FIG. 7 is a front view of a semiconductor module according to another embodiment of the invention.
- FIG. 8 is a front view of a semiconductor module according to yet another embodiment of the invention.
- FIG. 9 is a perspective view of multiple semiconductor modules installed on a printed circuit board
- FIG. 10 is a side view of a semiconductor module according to another embodiment of the invention.
- FIG. 11 is a flow chart of a method of making a semiconductor module according to an embodiment of the invention.
- FIG. 12 is a side view of a semiconductor module according to yet another embodiment of the invention.
- FIG. 13 is a front view of a semiconductor module according to a further embodiment of the invention.
- FIG. 14 is a side view of the semiconductor module shown in FIG. 13 ;
- FIG. 15 is a flow chart of a method of making a semiconductor module according to another embodiment of the invention.
- FIG. 1 is a front view of a semiconductor module 100 according to an embodiment of the invention.
- a semiconductor 102 is electrically connected to a plurality of traces or electrically conductive leads 108 by any conventional method such as wire bonding or thermocompression bonding.
- the electrically conductive leads 108 may be incorporated into flexible circuitry or tape 104 , which preferably consists of copper traces within a thin dielectric substrate (such as polyimide, epoxy, etc.).
- the flexible circuitry 104 may be bonded, with an epoxy or the like, directly onto the side of the beat spreader 106 .
- the heat spreader 106 is preferably made from a material with good heat dissipation properties, such as a metal.
- two semiconductors 102 are positioned on opposing sides of the heat spreader 106 .
- the leads 108 preferably run the length of each sides of the heat spreader 106 , culminating at electrical contact points 110 at the base of the heat spreader 106 .
- Electrical contact points 110 may for example comprise solder balls or bond pads.
- the semiconductors may further comprise of single dies or multiple stacked dies.
- FIG. 2 is a side view of the semiconductor module 200 shown in FIG. 1 . This view shows the semiconductors 102 and the flexible circuit 104 attached to both sides of the heat spreader 106 . As can be seen, the flexible circuit 104 wraps around the sides walls 202 and 204 and base 206 of the heat spreader 106 .
- FIG. 3 is an underside view of the semiconductor module shown in FIG. I. This figure more clearly shows the array of electrical contact points 110 .
- Each lead 108 connects a semiconductor 102 to a distinct contact point 110 .
- certain of the contact points 112 are common to both semiconductors 102 .
- a single lead 108 connects both semiconductors 102 to a shared common contact point 112 .
- Common contact points 112 may include a common voltage supply node, a reference voltage node, or an electrical ground node. Shared contact points 112 reduce the overall number of leads 108 and contact points 110 needed and therefore reduces the footprint of the module.
- the contact points 10 may be implemented as solder bumps or balls, metal points, or any other electrical connection.
- An advantage of placing the contact points at the base of the heat spreader 106 is that the contact points 110 , being remote from the semiconductor 102 , do not experience major temperature variations and therefore have reduced thermal mis-match stress. Thermal mismatch stress is caused by the low thermal expansion of the semiconductor 102 relative to the typically much higher expansion of a printed circuit board.
- FIG. 4 is a side view of a semiconductor module 400 according to another embodiment of the invention.
- semiconductors 402 on a flexible circuit 404 arc bonded directly to a heat spreader 406 .
- the bond may be by any means but is preferably made by gluing the semiconductors 402 , with an epoxy or the like, to the side of the heat spreader 406 .
- the glue is chosen to closely match the thermal expansion properties of the semiconductor 402 , heat spreader 406 and flexible circuit 404 .
- the glue should also have good thermal conduction properties.
- This embodiment, where the semiconductors 402 are bonded directly to the heat spreader, 406 is favored due to the direct conduction of heat from the semiconductors 402 to the heat spreader 406 .
- FIG. 5 is a side view of a semiconductor module 500 according to yet another embodiment of the invention.
- the heat spreader 506 has a “u” shape defining a channel 508 .
- This embodiment provides the benefit of increasing the surface area of the heat spreader 506 exposed to the surrounding air, thus increasing the rate that heat generated by the semiconductors 502 is dissipated to the surrounding air.
- Either the heat spreader 506 may conform to the shape of the flexible circuit 504 and semiconductor 502 , or the flexible circuit 504 and semiconductor 502 may conform to the shape of the heat spreader 506 . Both of these configurations are shown in FIG. 5 , at 510 and 512 respectively.
- FIG. 6 is a side view of a semiconductor module 600 according to still another embodiment of the invention.
- the heat spreader 606 is in a “n” shape forming an interior channel 608 .
- This embodiment also provides the benefit of increasing the surface area of the heat spreader 606 exposed to the surrounding air, thus increasing the rate heat generated by the semiconductors 602 is dissipated to the surrounding air.
- the heat dissipating external surfaces may further dissipate heat by being exposed to an external air circulation device (e.g. a fan).
- signal channels in an electronic device may enter and exit the semiconductor module at electrical contact points in one area or footprint at the base of the heat spreader, as shown at 110 of FIG. 1 .
- signal channels in an electronic device enter the semiconductor module 600 at electrical contact points 610 and exit from electrical contact points 612 .
- FIG. 7 is a side view of a semiconductor module 700 according to another embodiment of the invention.
- leads 708 fan out on the flexible circuitry 704 . That is, the leads 708 in the flexible circuitry 704 are closer together at the semiconductor 702 than at the array 710 , which is more spread out than that shown in FIG. 1 .
- the fanned out leads 708 create a more dispersed array with contact points 710 spaced further from one another. This embodiment compensates for a constant size footprint should larger semiconductors 702 be incorporated into the module at a later stage.
- FIG. 8 is a side view of a semiconductor module 800 according to yet another embodiment of the invention.
- two tape and semiconductor combinations 802 and 804 are placed on one heat spreader 806 .
- the apparatus of FIG. 8 processes two or more separate signal channels with a single heat spreader 806 .
- FIG. 9 is a perspective view 900 of multiple semiconductor modules 908 installed on a printed circuit board (PCB).
- the semiconductor modules 908 may be placed directly onto channels 902 on a PCB 910 or other suitable substrate, such that each electrical contact point electrically connects with a channel 902 .
- the semiconductor modules 908 maybe placed directly onto a PCB 910 , such as a motherboard, or alternatively onto an in-line memory module circuit card which in turn slots into another PCB, such as a motherboard.
- a PCB 910 such as a motherboard
- an in-line memory module circuit card which in turn slots into another PCB, such as a motherboard.
- the footprint of an in-line memory module circuit card may remain constant even if additional semiconductor modules 908 are slotted onto the in-line memory module circuit card.
- the in-line memory module circuit card does not have to be changed each time additional memory is required, thereby enhancing the upgradability of electronic devices.
- the invention provides a memory module with a small footprint. Adding further chips to the module does not effect the footprint.
- each electrical contact point When in an aligned position, each electrical contact point electrically connects with a corresponding electrical contact on the substrate or PCB.
- the electrical connection between the semiconductor module and the PCB may be made by heating the solder bumps to cause reflow of the solder and allowing subsequent cooling, thereby fusing the semiconductor module 908 to the PCB 910 .
- fastening mechanisms 904 and 906 may be provided for securely anchoring the semiconductor modules 908 onto the PCB 910 .
- Such fastening mechanisms 904 and 906 may include clamps, slots, or the like.
- FIG. 10 is a side view of a semiconductor module 1000 according to another embodiment of the invention.
- the semiconductor module 1000 connects to a pin grid array (PGA) socket or slot 1002 , which in turn connects to a PCB.
- PGA pin grid array
- This embodiment is especially useful when connecting a semiconductor module to PCB's with incompatible footprints.
- a semiconductor module 1000 with a footprint created by electrical contact points 110 may be connected to a PCB with a different footprint, where electrical contacts 1004 on the PGA slot 1002 are arranged to correspond with the footprint on the PCB.
- FIG. 11 is a flow chart of a method 1100 of making a semiconductor module according to an embodiment of the invention.
- a plurality of electrically conductive leads are provided 1102 , preferably on a flexible circuit or tape.
- Two semiconductors are then electrically connected 1104 to the leads.
- the semiconductors are then thermally coupled 1106 to a heat spreader. This is preferably done by mounting 1108 the semiconductor directly to opposing walls of the heat spreader as shown in FIGS. 4-6 .
- the flexible tape may be used as the contact surface with the heat spreader as shown in FIG. 2 .
- the leads may then be soldered 1110 to a PCB.
- the module may also be anchored 1112 to the PCB by means of a fastening mechanism as discussed above.
- the module may connect 1114 to a PGA as described in relation to FIG. 10 . Anchoring 1112 , soldering 1110 , and connecting 1114 may occur simultaneously.
- a semiconductor package such as a CSP may have its solder balls attached to the flexible circuitry. The combination of the semiconductor package and the flexible circuitry is then bonded to the heat spreader. In this manner existing semiconductor packages may be used to manufacture the semiconductor module according to the invention.
- Another alternative embodiment may include shielding 1115 ( FIG. 10 ) to protect the semiconductor from electromagnetic forces.
- adhesive may be placed between the tape and the base of the heat spreader to cushion the contact points and ensure contact between the contact points and the PCB.
- the semiconductor module of the invention eliminates the need for a separate heat spreader.
- the invention reduces overall cost and weight through shared common contact points or nodes.
- the common contact points also allow for a constant footprint to be maintained independent of the size or number of semiconductors used.
- the module is reliable as the semiconductors are not exposed to as high thermal stresses.
- the module also substantially improves heat dissipation by exposing greater surface areas to the surrounding air.
- Impedance matching of an electrical load to the impedance of a signal source and the characteristic impedance of a transmission channel is often necessary to reduce reflections by the load, back into the transmission channel.
- reflections become more problematic.
- a termination resistor may be inserted at the load to avoid reflections and degradations in performance.
- termination resistors are preferably internal to the MCM's.
- the use of external termination resistors presents a number of drawbacks.
- the placement of a termination resistor outside an MCM results in an additional stub or short transmission line between the termination resistor and the integrated circuit device.
- External termination resistors also require significant circuit board space, and increase circuit board layout complexity and cost.
- FIG. 12 shows a side view of a semiconductor module 1200 according to yet another embodiment of the invention.
- a number of semiconductors 1204 are electrically coupled to a plurality of traces or electrically conductive leads 1202 (only one is shown) by any conventional method such as wire bonding or thermocompression bonding.
- the electrically conductive leads 1202 are preferably incorporated into a flexible circuit or tape 1210 , which preferably consists of copper traces within a thin dielectric substrate (such as polyimide, epoxy, etc.).
- the semiconductors 1204 on the flexible circuit 1210 are preferably bonded directly to a heat spreader 1218 .
- the flexible circuit 1210 may be bonded directly to the heat spreader 1218 .
- the bond may be made by any means but is preferably made by gluing the semiconductors 1204 or flexible circuit 1210 , with an epoxy or the like, to the side of the heat spreader 1218 .
- the glue is chosen to closely match the thermal expansion properties of the semiconductor 1204 , heat spreader 1218 , and flexible circuit 1210 .
- the glue should also have good thermal conduction properties. This embodiment, where the semiconductors 1204 are bonded directly to the heat spreader 1218 is favored due to the direct conduction of heat from the semiconductors 1204 to the heat spreader.
- the heat spreader 1218 is preferably made from a material with good heat dissipation properties, such as a metal.
- the semiconductors 1204 are positioned on opposing sides of the heat spreader 1218 .
- the electrical leads 1202 connect the semiconductors 1204 to electrical contact points 1216 at the base of the semiconductor module 1200 .
- electrical contact points 1216 may for example comprise solder balls or bond pads.
- the electrical contact points 1216 electrically couple the electrical leads 1202 to a transmission channel 1214 on a printed circuit board 1212 . Electrical signals are transmitted along the transmission channel 1214 to electrical contact points 1216 . The electrical signals are then passed from the electrical contact points 1216 through the electrical leads 1202 to each of the semiconductors 1204 .
- the semiconductors 1204 on opposing sides of the heat spreader 1218 , are connected to one another in series by the electrical lead 1202 . It should be noted that multiple (i.e., more than two) semiconductors 1204 may be connected together in series.
- the final semiconductor in the series remote from the transmission channel, electrically couples to a termination resistor 1208 .
- the termination resistor 1208 is preferably thermally coupled to the heat spreader 1218 so that any heat built up in termination resistor 1208 can dissipate through the heat spreader.
- the termination resistor 1208 connected in series to the semiconductors 1204 substantially reduces any degradation of the signal caused by a load placed on the signal from the electrical leads 1210 , as the signal is not being split as is the case with stubs in existing semiconductor modules.
- a signal is transmitted from a signal source along the transmission channel 1214 , along an electrical lead 1202 , to each semiconductor 1204 connected in series, and is terminated at the termination resistor 1208 .
- the termination resistor 1208 into the semiconductor module 1200 , the need for a termination resistor on the printed circuit board 1214 is eliminated.
- This embodiment of the invention is particularly useful now that the memory capacity of individual semiconductors has increased to a point where only a few semiconductors are needed for many applications.
- FIG. 13 is a front view of the semiconductor module 1300 according to a further embodiment of the invention.
- This semiconductor module 1300 is identical to the semiconductor module 100 shown in FIG. 1 , except for a termination resistor 1302 disposed on the heat spreader.
- FIG. 14 is a side view of the same semiconductor module 1300 shown in FIG. 13 .
- the semiconductors 1304 are not connected in series, but rather each semiconductor connects to its own transmission channel.
- each termination resistor 1302 connects to a single semiconductor. In use, a signal is transmitted along each transmission channel, to its respective semiconductor, after which it is terminated at a termination resistor 1402 to eliminate reflections.
- the resistance value of the termination resistor 1208 ( FIG. 2 ) or 1302 ( FIGS. 13 and 14 ) is selected such that its impedance substantially matches the impedance of the transmission channel and signal source to which it is connected.
- any form of termination may be used, such as parallel termination, Thevenin termination, series termination, AC termination, Schotty-diode Schottky-diode termination or the like.
- FIG. 15 is a flow chart of a method 1500 of making a semiconductor module according to another embodiment of the invention.
- a plurality of electrically conductive leads are provided (step 1502 ).
- At least two semiconductors are electrically coupled (step 1504 ) to the plurality of electrically conductive leads, where at least one of the electrically conductive leads is common to both of the semiconductors.
- the semiconductors are then thermally coupled (step 1506 ) to a heat spreader.
- a termination resistor is electrically coupled (step 1508 ) to at least one of the semiconductors.
- the semiconductors may be electrically coupled in series, where the semiconductors are capable of being electrically coupled to a transmission channel.
- an additional termination resistor may be electrically coupled to the semiconductor not already connected to the termination resistor, where each of the semiconductors is capable of being electrically coupled to a separate transmission channel.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
A semiconductor module is provided which includes a beat heat spreader, at least two semiconductors thermally coupled to the heat spreader, and a plurality of electrically conductive leads electrically connected to the semiconductors. At least one of the electrically conductive leads is common to both of the semiconductors. The semiconductor module also includes a termination resistor electrically coupled to at least one of the semiconductors. A method of making a semiconductor module is also taught, whereby a plurality of electrically conductive leads are provided. At least two semiconductors are electrically coupled to the plurality of electrically conductive leads, where at least one of the electrically conductive leads is common to both of the semiconductors. The semiconductors are then thermally coupled to a heat spreader. Subsequently, a termination resistor is electrically coupled to at least one of the semiconductors.
Description
This application a continuation-in-part of U.S. Ser. No. 09/554,064 filed on May 3, 2000 entitled “Semiconductor Module with Imbedded Heat Spreader” This application is a reissue application of U.S. Pat. No. 6,833,984, which is a continuation-in-part of U.S. application Ser. No. 09/564,064 filed on May 3, 2000 entitled “Semiconductor Module with Imbedded Heat Spreader”, now U.S. Pat. No. 6,449,159; more than one reissue application has been filed for the reissue of U.S. Pat. No. 6,833,984 the reissue applications are application Ser. Nos. 11/398,458 filed on Apr. 4, 2006 (the present application); 11/754,199 filed on May 25, 2007; 11/754,206 filed on May 25, 2007; 11/754,211 filed on May 25, 2007; 11/754,212 filed on May 25, 2007; 12/790,380 filed on May 28, 2010; and 12/790,393, all of which are reissues of U.S. Pat. No. 6,833,984.
The present invention relates generally to semiconductor modules and in particular to a semiconductor module that allows for more efficient interconnection between the semiconductor module an a computing device's transmission channel.
The semiconductor industry is constantly producing smaller and more complex semiconductors, sometimes called integrated circuits or chips. This trend has brought about the need for smaller chip packages with smaller footprints, higher lead counts, and better electrical and thermal performance, while at the same time meeting accepted reliability standards.
In recent years a number of microelectronic packages have been produced to meet the need for smaller chip packaging. One such package is referred to as a chip scale package (CSP). CSPs are so called because the total package size is similar or not much larger than the size of the chip itself. Typically, the CSP size is between 1 and 1.2 times the perimeter size of the chip, or 1.5 times the area of the die. One example of a CSP is a product developed by TESSER® called “MICRO BGA” or μBGA. In a CSP, the semiconductor has a set of bond pads distributed across its surface. A first surface of an insulating, flexible film is positioned over the semiconductor surface. Interconnect circuitry is positioned within the film. Electrical connections are made between the interconnect circuitry and the semiconductor bond pads. Solder balls are subsequently attached to a second surface of the film in such a manner as to establish selective connections with the interconnect circuitry. The solder balls may then be attached to a printed circuit board.
CSPs may be used in connection with memory chips. Memory chips may be grouped to form in-line memory modules. In-line memory modules are surface mounted memory chips positioned on a circuit board.
As memory demands increase, so does the need for increased memory capacity of in-line memory modules. A need has also arisen for materials and methods that lead to increased performance by more closely matching the coefficient of thermal expansion of the materials used in these memory modules. Examples of such in-line memory modules are single in line memory modules or SIMMs and dual in-line memory modules or DIMMs. DIMMs have begun to replace SIMMs as the compact circuit boards of preference and essentially comprise a SIMM wherein memory chips are surface mounted to opposite sides of the circuit board with connectors on each side.
A problem with in-line memory modules is that adding more chips to the circuit board spreads out the placement of the chips on the circuit card and therefore requires reconfiguration of the circuit card connectors and their associated connections on the motherboard, which means replacing the memory card and in some cases the motherboard.
Another problem with current in-line memory modules is that a separate heat spreader must be positioned across a set of memory chips. The heat spreader adds cost to the assembly process and adds significant weight to the module.
Existing Multi-Chip Modules (MCM's) typically connect the transmission channel to semiconductors via electrical contact points or ball-outs on the MCM. Each electrical contact point then connects to a semiconductor in the MCM via an electrical lead, so that a signal may be transmitted along the transmission channel to each semiconductor via that semiconductor's electrical lead. However, each successive electrical lead slightly degrades the signal, by placing a load on the signal. By the time the signal reaches the last semiconductor connected to a transmission channel, the signal may have degraded so as to be unusable.
Modem MCM's, such as those disclosed in the U.S. patent application Ser. No. 09/564,064, disclose MCMs that include relatively long electrical leads. The longer the electrical lead, the more the signal degradation. This is because the speed of the signal is inversely related to the length of the electrical lead. Therefore, existing MCMs can only handle a maximum of approximately thirty two semiconductors connected to a single transmission channel before the signal has degraded to an unusable form.
In view of the foregoing it would be highly desirable to provide a semiconductor module that overcomes the short-comings of the abovementioned prior art devices.
A semiconductor module is provided which includes a heat spreader, at least two semiconductors thermally coupled to the heat spreader, and a plurality of electrically conductive leads electrically connected to the semiconductors. At least one of the electrically conductive leads is common to both of the semiconductors The semiconductor module also includes a termination resistor electrically coupled to at least one of the semiconductors.
A method of making a semiconductor module is also taught, whereby a plurality of electrically conductive leads are provided. At least two semiconductors are electrically coupled to the plurality of electrically conductive leads, where at least one of the electrically conductive leads is common to both of the semiconductors. The semiconductors are then thermally coupled to a heat spreader. Subsequently, a termination resistor is electrically coupled to at least one of the semiconductors.
The termination resistor coupled to the semiconductors substantially reduces any degradation of the signal caused by a load placed on the signal from electrical leads, as the signal is not being split as is the case with stubs in existing semiconductor modules. Furthermore, by incorporating the termination resistor into the semiconductor module, the need for a termination resistor on the printed circuit board is eliminated, thereby reducing the need for additional circuit board space, and deceasing circuit board layout complexity and cost.
For a better understanding of the nature and objects of the invention, reference should be made to the following detailed description taken in conjunction with the accompanying drawings, in which:
Like reference numerals refer to corresponding parts throughout the several views of the drawings.
As shown in FIG. 1 , the flexible circuitry 104 may be bonded, with an epoxy or the like, directly onto the side of the beat spreader 106. The heat spreader 106 is preferably made from a material with good heat dissipation properties, such as a metal.
In a preferred embodiment, two semiconductors 102 are positioned on opposing sides of the heat spreader 106. The leads 108 preferably run the length of each sides of the heat spreader 106, culminating at electrical contact points 110 at the base of the heat spreader 106. Electrical contact points 110 may for example comprise solder balls or bond pads. The semiconductors may further comprise of single dies or multiple stacked dies.
In the embodiments shown in FIGS. 1 to 5, signal channels in an electronic device may enter and exit the semiconductor module at electrical contact points in one area or footprint at the base of the heat spreader, as shown at 110 of FIG. 1. In the embodiment shown in FIG. 6 , however, signal channels in an electronic device enter the semiconductor module 600 at electrical contact points 610 and exit from electrical contact points 612.
The semiconductor modules 908 maybe placed directly onto a PCB 910, such as a motherboard, or alternatively onto an in-line memory module circuit card which in turn slots into another PCB, such as a motherboard. In this manner the footprint of an in-line memory module circuit card may remain constant even if additional semiconductor modules 908 are slotted onto the in-line memory module circuit card. As the footprint of the array is always constant, the in-line memory module circuit card does not have to be changed each time additional memory is required, thereby enhancing the upgradability of electronic devices. The invention provides a memory module with a small footprint. Adding further chips to the module does not effect the footprint.
When in an aligned position, each electrical contact point electrically connects with a corresponding electrical contact on the substrate or PCB. Where the electrical contact points are solder bumps, the electrical connection between the semiconductor module and the PCB may be made by heating the solder bumps to cause reflow of the solder and allowing subsequent cooling, thereby fusing the semiconductor module 908 to the PCB 910.
Alternatively, or in addition, fastening mechanisms 904 and 906 may be provided for securely anchoring the semiconductor modules 908 onto the PCB 910. Such fastening mechanisms 904 and 906 may include clamps, slots, or the like.
In an alternative embodiment, a semiconductor package such as a CSP may have its solder balls attached to the flexible circuitry. The combination of the semiconductor package and the flexible circuitry is then bonded to the heat spreader. In this manner existing semiconductor packages may be used to manufacture the semiconductor module according to the invention.
Another alternative embodiment may include shielding 1115 (FIG. 10 ) to protect the semiconductor from electromagnetic forces. In addition, adhesive may be placed between the tape and the base of the heat spreader to cushion the contact points and ensure contact between the contact points and the PCB.
The semiconductor module of the invention eliminates the need for a separate heat spreader. The invention reduces overall cost and weight through shared common contact points or nodes. The common contact points also allow for a constant footprint to be maintained independent of the size or number of semiconductors used. Furthermore, the module is reliable as the semiconductors are not exposed to as high thermal stresses. The module also substantially improves heat dissipation by exposing greater surface areas to the surrounding air.
As explained above in the background section of this specification, many existing semiconductor modules position their embedded semiconductors relatively far from the circuit board to which they are attached. Each semiconductor in such semiconductor modules connects to a transmission channel via its own electrical lead. A signal passing along the transmission channel from lead to lead is degraded by a load placed on the signal by each successive lead. The longer the stub, the more the signal is degraded. Each successive lead further degrades the signal, until such time as the signal has been degraded so as to be useless. Most semiconductor modules also include a termination resistor at the end of each transmission channel on the printed circuit board. The present invention addresses the problem associated with signal degradation in semiconductor modules having relatively long electrical leads.
Impedance matching of an electrical load to the impedance of a signal source and the characteristic impedance of a transmission channel is often necessary to reduce reflections by the load, back into the transmission channel. As the length of a non-terminated transmission line increases, reflections become more problematic. When high frequency signals are transmitted or passed through even very short transmission lines, such as printed circuit board (PCB) traces, a termination resistor may be inserted at the load to avoid reflections and degradations in performance.
In the multi-chip modules of the present invention, termination resistors are preferably internal to the MCM's. The use of external termination resistors presents a number of drawbacks. The placement of a termination resistor outside an MCM results in an additional stub or short transmission line between the termination resistor and the integrated circuit device. External termination resistors also require significant circuit board space, and increase circuit board layout complexity and cost.
The semiconductors 1204 on the flexible circuit 1210, are preferably bonded directly to a heat spreader 1218. Alternatively, as shown and described in relation to FIG. 2 , the flexible circuit 1210 may be bonded directly to the heat spreader 1218. The bond may be made by any means but is preferably made by gluing the semiconductors 1204 or flexible circuit 1210, with an epoxy or the like, to the side of the heat spreader 1218. The glue is chosen to closely match the thermal expansion properties of the semiconductor 1204, heat spreader 1218, and flexible circuit 1210. The glue should also have good thermal conduction properties. This embodiment, where the semiconductors 1204 are bonded directly to the heat spreader 1218 is favored due to the direct conduction of heat from the semiconductors 1204 to the heat spreader.
The heat spreader 1218 is preferably made from a material with good heat dissipation properties, such as a metal. In a preferred embodiment, the semiconductors 1204 are positioned on opposing sides of the heat spreader 1218. The electrical leads 1202 connect the semiconductors 1204 to electrical contact points 1216 at the base of the semiconductor module 1200. In use, electrical contact points 1216 may for example comprise solder balls or bond pads. The electrical contact points 1216 electrically couple the electrical leads 1202 to a transmission channel 1214 on a printed circuit board 1212. Electrical signals are transmitted along the transmission channel 1214 to electrical contact points 1216. The electrical signals are then passed from the electrical contact points 1216 through the electrical leads 1202 to each of the semiconductors 1204.
In this embodiment, the semiconductors 1204, on opposing sides of the heat spreader 1218, are connected to one another in series by the electrical lead 1202. It should be noted that multiple (i.e., more than two) semiconductors 1204 may be connected together in series. The final semiconductor in the series, remote from the transmission channel, electrically couples to a termination resistor 1208. The termination resistor 1208 is preferably thermally coupled to the heat spreader 1218 so that any heat built up in termination resistor 1208 can dissipate through the heat spreader.
The termination resistor 1208 connected in series to the semiconductors 1204 substantially reduces any degradation of the signal caused by a load placed on the signal from the electrical leads 1210, as the signal is not being split as is the case with stubs in existing semiconductor modules. A signal is transmitted from a signal source along the transmission channel 1214, along an electrical lead 1202, to each semiconductor 1204 connected in series, and is terminated at the termination resistor 1208. Furthermore, by incorporating the termination resistor 1208 into the semiconductor module 1200, the need for a termination resistor on the printed circuit board 1214 is eliminated.
This embodiment of the invention is particularly useful now that the memory capacity of individual semiconductors has increased to a point where only a few semiconductors are needed for many applications.
The resistance value of the termination resistor 1208 (FIG. 2 ) or 1302 (FIGS. 13 and 14 ) is selected such that its impedance substantially matches the impedance of the transmission channel and signal source to which it is connected. Furthermore, any form of termination may be used, such as parallel termination, Thevenin termination, series termination, AC termination, Schotty-diode Schottky-diode termination or the like.
The semiconductors may be electrically coupled in series, where the semiconductors are capable of being electrically coupled to a transmission channel. Moreover, an additional termination resistor may be electrically coupled to the semiconductor not already connected to the termination resistor, where each of the semiconductors is capable of being electrically coupled to a separate transmission channel.
While the foregoing description and drawings represent the preferred embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope of the present invention as defined in the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, proportions, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and not limited to the foregoing description.
Claims (49)
1. A semiconductor module, comprising:
a heat spreader comprising a solid block of heat spreading material having a substantially planar first side, a substantially planar opposing second side and a respective edge between the first side and the second side;
a flexible circuit including a first portion bonded to at least part of the first side of the heat spreader, a second portion wrapped around the respective edge of the heat spreader, and a third portion bonded to at least part of the second side of the heat spreader;
at least two semiconductors coupled to the flexible circuit and thermally coupled to said the heat spreader, wherein one of the semiconductors is disposed at the first side of the heat spreader and another one of the semiconductors is disposed at the second side of the heat spreader; and,
a plurality of electrically conductive leads electrically connected to said semiconductors, where at least one of said electrically conductive leads is common to both of said semiconductors; and
a termination resistor electrically coupled to at least one of said semiconductors.
a plurality of electrical contacts disposed on the flexible circuit proximate to the second portion of the flexible circuit, where each of the plurality of electrical contacts is electrically coupled to at least one of the semiconductors via the flexible circuit, wherein the plurality of electrical contacts are configured to removeably couple the semiconductor module to corresponding electrical contacts formed in a slot on a circuit board when a portion of the semiconductor module, including the respective edge of the heat spreader, the second portion of the flexible circuit wrapped around the respective edge of the heat spreader, and the plurality of electrical contacts, is inserted into the slot.
2. A semiconductor module according to claim 1 , wherein said at least some of the semiconductors are electrically coupled to one another in series, and where said the semiconductors are capable of being electrically coupled to a transmission channel.
3. A semiconductor module according to claim 2 , further comprising a termination circuit electrically coupled to at least one of the semiconductors, wherein a final semiconductor in said series, remote from said the transmission channel, is electrically coupled to said the termination resistor circuit.
4. A semiconductor module according to claim 1 , wherein one each semiconductor of the at least two semiconductors is not connected to said termination resistor, and an additional termination resistor is electrically coupled to the one semiconductor not connected to said termination resistor. a separate transmission channel, where each transmission channel is separately terminated.
5. A semiconductor module according to claim 1 , further comprising a termination resistor electrically coupled to at least one of the semiconductors, wherein a resistance value of the termination resistor is selected such that an impedance of said the termination resistor substantially matches an impedance of a transmission channel and a signal source to which said the termination resistor is connected.
6. A semiconductor module according to claim 1 , further comprising a termination circuit electrically coupled to at least one of the semiconductors, wherein said the termination resistor's form of termination is selected from a group consisting of: parallel termination, Thevenin termination, series termination, AC termination, and Schotty-diode Schottky-diode termination.
7. A semiconductor module according to claim 1 , further comprising a termination circuit electrically coupled to at least one of the semiconductors, wherein said the termination resistor circuit is thermally coupled to said the heat spreader.
8. A semiconductor module according to claim 1 , further comprising a termination circuit electrically coupled to at least one of the semiconductors, wherein said the termination resistor is bonded directly to a side wall of said the heat spreader.
9. A semiconductor module according to claim 1 , wherein said the two semiconductors are mounted on opposing side walls of said the heat spreader.
10. A semiconductor module according to claim 2 , wherein each of said semiconductors are bonded directly to said side wall of said heat spreader.
11. A semiconductor module according to claim 1 , wherein said leads form part of a the flexible circuit at least partially attached to said heat spreader includes a plurality of electrically conductive leads electrically connected to the semiconductors, where at least one of the electrically conductive leads is common to both of the semiconductors.
12. A semiconductor module according to claim 11 , wherein said the flexible circuit is a flexible dielectric tape.
13. A semiconductor module according to claim 12 , wherein said the flexible circuit is bonded directly to said the side wall of said the heat spreader.
14. A semiconductor module according to claim 11 , wherein said the common electrically conductive lead is selected from a group consisting of a voltage supply node, a reference voltage node, and an electrical ground node.
15. A semiconductor module according to claim 1 , wherein said heat spreader is a solid block of heat dissipating material.
16. A semiconductor module according to claim 1 , wherein said heat spreader is “u” shaped.
17. A method of making a semiconductor module, comprising:
providing a heat spreader comprising a solid block of heat spreading material having a substantially planar first side, a substantially planar opposing second side and a respective edge between the first side and the second side;
attaching a flexible circuit to the heat spreader including bonding a first portion to at least part of the first side of the heat spreader, wrapping a second portion around the respective edge of the heat spreader, and bonding a third portion to at least part of the second side of the heat spreader;
providing a plurality of electrically conductive leads;
electrically coupling at least two semiconductors to said plurality of electrically conductive leads, where at least one of said electrically conductive leads is common to both of said semiconductors; the flexible circuit;
thermally coupling said the at least two semiconductors to a the heat spreader, wherein one of the semiconductors is disposed at the first side of the heat spreader and another one of the semiconductors is disposed at the second side of the heat spreader; and
electrically coupling a termination resistor to at least one of said semiconductors.
providing a plurality of electrical contacts disposed on the flexible circuit proximate to the second portion of the flexible circuit such that each of a plurality of electrical contacts is electrically coupled to at least one of the semiconductors via the flexible circuit, wherein the plurality of electrical contacts are configured to removeably couple the semiconductor module to corresponding electrical contacts formed in a slot on a circuit board when a portion of the semiconductor module, including the respective edge of the heat spreader, the second portion of the flexible circuit wrapped around the respective edge of the heat spreader, and the plurality of electrical contacts, is inserted into the slot.
18. A method according to claim 17 , initially comprising electrically coupling said at least some of the semiconductors in series, where said the semiconductors are capable of being electrically coupled to a transmission channel.
19. A method according to claim 17 , further comprising wherein electrically coupling at least two semiconductors to the flexible circuit includes electrically coupling an additional termination resistor to the semiconductor not already connected to said termination resistor, where each of said semiconductors is capable of being electrically coupled each semiconductor to a separate transmission channel, where each transmission channel is separately terminated.
20. A method according to claim 17 , including electrically coupling a termination circuit to at least one of the semiconductors; and bonding said the termination resistor directly to a side wall of said the heat spreader.
21. A method according to claim 17 , including mounting said the two semiconductors on opposing side walls of said the heat spreader.
22. A method according to claim 17 , including bonding each of said semiconductors directly to a side wall of said heat spreader.
23. A method according to claim 17 , wherein said leads form part of a the flexible circuit at least partially attached to said heat spreader, said method including bonding said flexible circuit directly to a side wall of said heat spreader includes a plurality of electrically conductive leads electrically connected to the semiconductors, where at least one of the electrically conductive leads is common to both of the semiconductors.
24. A semiconductor module according to claim 1 , further comprising a fastening mechanism for anchoring the semiconductor module to a circuit board.
25. A semiconductor module according to claim 24 , wherein clamps anchor the semiconductor module to the circuit board.
26. A semiconductor module according to claim 1 , wherein the plurality of electrical contacts disposed on the flexible circuit are a linear array of electrical contact pads coupled to the heat spreader.
27. A semiconductor module according to claim 26 , wherein the plurality of electrical contact pads are an array of bond pads.
28. A semiconductor module according to claim 26 , wherein the plurality of electrical contact pads are an array of metal points.
29. A semiconductor module according to claim 1 , wherein the flexible circuit is at least partially bonded to the heat spreader using a bonding adhesive with thermal expansion properties similar to those of the flexible circuit and the heat spreader.
30. A semiconductor module according to claim 1 , wherein the plurality of electrical contacts are disposed at on a section the flexible circuit that is bonded to the heat spreader, and the section the flexible circuit having the plurality of electrical contacts disposed thereon is bonded to the heat spreader proximate to the respective edge of the heat spreader.
31. A semiconductor module according to claim 1 , wherein the plurality of electrical contacts disposed on the flexible circuit are electrically and mechanically coupled to a section of the flexible circuit that is bonded to the heat spreader near an apex of the heat spreader.
32. A semiconductor module according to claim 1 , wherein the first side of the heat spreader and the second side of the heat spreader are substantially perpendicular to the circuit board when the semiconductor module is coupled to the electrical contacts formed in the slot.
33. A method according to claim 17 , wherein the first side of the heat spreader and the second side of the heat spreader are substantially perpendicular to the circuit board when the semiconductor module is coupled to the electrical contacts formed in the slot.
34. A method according to claim 18 , further comprising electrically coupling a termination circuit to at least one of the semiconductors, wherein a final semiconductor in the series, remote from the transmission channel, is electrically coupled to the termination circuit.
35. A method according to claim 17 , further comprising electrically coupling a termination resistor to at least one of the semiconductors, wherein a resistance value of the termination resistor is selected such that an impedance of the termination resistor substantially matches an impedance of a transmission channel and a signal source to which the termination resistor is connected.
36. A method according to claim 17 , further comprising electrically coupling a termination circuit to at least one of the semiconductors, wherein the termination circuit's form of termination is selected from a group consisting of: parallel termination, Thevenin termination, series termination, AC termination, and Schottky-diode termination.
37. A method according to claim 17 , further comprising electrically coupling a termination circuit to at least one of the semiconductors, wherein the termination circuit is thermally coupled to the heat spreader.
38. A method according to claim 23 , wherein the flexible circuit is a flexible dielectric tape.
39. A method according to claim 17 , wherein the flexible circuit includes a plurality of electrically conductive leads electrically connected to the semiconductors, where at least one of the electrically conductive leads is common to both of the semiconductors.
40. A method according to claim 39 , wherein the common electrically conductive lead is selected from a group consisting of a voltage supply node, a reference voltage node, and an electrical ground node.
41. A method according to claim 17 , further comprising mechanically coupling the semiconductor module to a fastening mechanism for anchoring the semiconductor module to a circuit board.
42. A method according to claim 30 , wherein the fastening mechanism for anchoring the semiconductor module includes a clamp.
43. A method according to claim 17 , wherein the plurality of electrical contacts disposed on the flexible circuit are a linear array of electrical contact pads coupled to the heat spreader.
44. A method according to claim 43 , wherein the plurality of electrical contact pads are an array of bond pads.
45. A method according to claim 43 , wherein the plurality of electrical contact pads are an array of metal points.
46. A method according to claim 17 , wherein the flexible circuit is at least partially bonded to the heat spreader using a bonding adhesive with thermal expansion properties similar to those of the flexible circuit and the heat spreader.
47. A method according to claim 17 , wherein the plurality of electrical contacts are disposed at on a section the flexible circuit that is bonded to the heat spreader, and the section the flexible circuit having the plurality of electrical contacts disposed thereon is bonded to the heat spreader proximate to the respective edge of the heat spreader.
48. A method according to claim 17 , wherein the plurality of electrical contacts disposed on the flexible circuit are electrically and mechanically coupled to a section of the flexible circuit that is bonded to the heat spreader near an apex of the heat spreader.
49. A semiconductor module, comprising:
a heat spreader comprising a solid block of heat spreading material having a substantially planar first side, a substantially planar opposing second side and a respective edge between the first side and the second side;
at least two semiconductors each comprising circuitry, where the semiconductors are thermally coupled to the heat spreader, and one of the semiconductors is disposed at the first side of the heat spreader and another one of the semiconductors is disposed at the second side of the heat spreader;
a flexible circuit including a first portion bonded to at least part of the first side of the heat spreader, a second portion wrapped around the respective edge of the heat spreader, and a third portion bonded to at least part of the second side of the heat spreader, wherein the flexible circuit comprises a plurality of electrically conductive leads that are electrically connected to the semiconductors, where at least one of the electrically conductive leads is common to both of the semiconductors;
a termination resistor electrically coupled to the circuitry of at least one of the semiconductors; and
a plurality of electrical contacts disposed on the flexible circuit proximate to the second portion of the flexible circuit, where each of the plurality of electrical contacts is electrically coupled to at least one of the semiconductors via the flexible circuit, wherein the plurality of electrical contacts are configured to removeably couple the semiconductor module to corresponding electrical contacts formed in a slot on a circuit board when a portion of the semiconductor module, including the respective edge of the heat spreader, the second portion of the flexible circuit wrapped around the respective edge of the heat spreader, and the plurality of electrical contacts, is inserted into the slot.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/398,458 USRE42318E1 (en) | 2000-05-03 | 2006-04-04 | Semiconductor module with serial bus connection to multiple dies |
US11/754,211 US20070230139A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US11/754,206 US20070222061A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module With Serial Bus Connection to Multiple Dies |
US11/754,212 US20070230134A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US11/754,199 US20070223159A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US12/790,393 USRE42429E1 (en) | 2000-05-03 | 2010-05-28 | Semiconductor module with serial bus connection to multiple dies |
US12/790,380 USRE42785E1 (en) | 2000-05-03 | 2010-05-28 | Semiconductor module with serial bus connection to multiple dies |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/564,064 US6449159B1 (en) | 2000-05-03 | 2000-05-03 | Semiconductor module with imbedded heat spreader |
US10/071,298 US6833984B1 (en) | 2000-05-03 | 2002-02-07 | Semiconductor module with serial bus connection to multiple dies |
US11/398,458 USRE42318E1 (en) | 2000-05-03 | 2006-04-04 | Semiconductor module with serial bus connection to multiple dies |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/564,064 Continuation-In-Part US6449159B1 (en) | 2000-05-03 | 2000-05-03 | Semiconductor module with imbedded heat spreader |
US10/071,298 Reissue US6833984B1 (en) | 2000-05-03 | 2002-02-07 | Semiconductor module with serial bus connection to multiple dies |
Related Child Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/071,298 Continuation US6833984B1 (en) | 2000-05-03 | 2002-02-07 | Semiconductor module with serial bus connection to multiple dies |
US11/754,211 Continuation US20070230139A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US11/754,206 Continuation US20070222061A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module With Serial Bus Connection to Multiple Dies |
US11/754,212 Continuation US20070230134A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US11/754,199 Continuation US20070223159A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE42318E1 true USRE42318E1 (en) | 2011-05-03 |
Family
ID=38532494
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/071,298 Ceased US6833984B1 (en) | 2000-05-03 | 2002-02-07 | Semiconductor module with serial bus connection to multiple dies |
US11/398,458 Expired - Lifetime USRE42318E1 (en) | 2000-05-03 | 2006-04-04 | Semiconductor module with serial bus connection to multiple dies |
US11/754,206 Abandoned US20070222061A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module With Serial Bus Connection to Multiple Dies |
US11/754,212 Abandoned US20070230134A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US11/754,211 Abandoned US20070230139A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US11/754,199 Abandoned US20070223159A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US12/790,393 Expired - Lifetime USRE42429E1 (en) | 2000-05-03 | 2010-05-28 | Semiconductor module with serial bus connection to multiple dies |
US12/790,380 Expired - Fee Related USRE42785E1 (en) | 2000-05-03 | 2010-05-28 | Semiconductor module with serial bus connection to multiple dies |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/071,298 Ceased US6833984B1 (en) | 2000-05-03 | 2002-02-07 | Semiconductor module with serial bus connection to multiple dies |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/754,206 Abandoned US20070222061A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module With Serial Bus Connection to Multiple Dies |
US11/754,212 Abandoned US20070230134A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US11/754,211 Abandoned US20070230139A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US11/754,199 Abandoned US20070223159A1 (en) | 2000-05-03 | 2007-05-25 | Semiconductor Module with Serial Bus Connection to Multiple Dies |
US12/790,393 Expired - Lifetime USRE42429E1 (en) | 2000-05-03 | 2010-05-28 | Semiconductor module with serial bus connection to multiple dies |
US12/790,380 Expired - Fee Related USRE42785E1 (en) | 2000-05-03 | 2010-05-28 | Semiconductor module with serial bus connection to multiple dies |
Country Status (1)
Country | Link |
---|---|
US (8) | US6833984B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140196540A1 (en) * | 2013-01-14 | 2014-07-17 | Analog Devices, Technology | Two-axis vertical mount package assembly |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7122889B2 (en) * | 2000-05-03 | 2006-10-17 | Rambus, Inc. | Semiconductor module |
US6833984B1 (en) * | 2000-05-03 | 2004-12-21 | Rambus, Inc. | Semiconductor module with serial bus connection to multiple dies |
US8391039B2 (en) | 2001-04-24 | 2013-03-05 | Rambus Inc. | Memory module with termination component |
US6675272B2 (en) | 2001-04-24 | 2004-01-06 | Rambus Inc. | Method and apparatus for coordinating memory operations among diversely-located memory components |
US7656678B2 (en) | 2001-10-26 | 2010-02-02 | Entorian Technologies, Lp | Stacked module systems |
US20060255446A1 (en) | 2001-10-26 | 2006-11-16 | Staktek Group, L.P. | Stacked modules and method |
US6721189B1 (en) | 2002-03-13 | 2004-04-13 | Rambus, Inc. | Memory module |
US7308524B2 (en) | 2003-01-13 | 2007-12-11 | Silicon Pipe, Inc | Memory chain |
WO2004092904A2 (en) * | 2003-04-10 | 2004-10-28 | Silicon Pipe, Inc. | Memory system having a multiplexed high-speed channel |
US7254036B2 (en) | 2004-04-09 | 2007-08-07 | Netlist, Inc. | High density memory module using stacked printed circuit boards |
US7446410B2 (en) * | 2004-09-03 | 2008-11-04 | Entorian Technologies, Lp | Circuit module with thermal casing systems |
US7606040B2 (en) * | 2004-09-03 | 2009-10-20 | Entorian Technologies, Lp | Memory module system and method |
US7443023B2 (en) | 2004-09-03 | 2008-10-28 | Entorian Technologies, Lp | High capacity thin module system |
US7423885B2 (en) | 2004-09-03 | 2008-09-09 | Entorian Technologies, Lp | Die module system |
US7289327B2 (en) * | 2006-02-27 | 2007-10-30 | Stakick Group L.P. | Active cooling methods and apparatus for modules |
US7760513B2 (en) | 2004-09-03 | 2010-07-20 | Entorian Technologies Lp | Modified core for circuit module system and method |
US7301831B2 (en) | 2004-09-15 | 2007-11-27 | Rambus Inc. | Memory systems with variable delays for write data signals |
US7442050B1 (en) | 2005-08-29 | 2008-10-28 | Netlist, Inc. | Circuit card with flexible connection for memory module with heat spreader |
US7365990B2 (en) * | 2005-12-19 | 2008-04-29 | Infineon Technologies Ag | Circuit board arrangement including heat dissipater |
US7619893B1 (en) | 2006-02-17 | 2009-11-17 | Netlist, Inc. | Heat spreader for electronic modules |
US20080032446A1 (en) * | 2006-08-04 | 2008-02-07 | Steve Wood | combination heat dissipation device with termination and a method of making the same |
US7417310B2 (en) | 2006-11-02 | 2008-08-26 | Entorian Technologies, Lp | Circuit module having force resistant construction |
US8018723B1 (en) | 2008-04-30 | 2011-09-13 | Netlist, Inc. | Heat dissipation for electronic modules |
US8319326B2 (en) * | 2010-09-30 | 2012-11-27 | Apple Inc. | Stacked die with vertically-aligned conductors and methods for making the same |
KR20120118538A (en) * | 2011-04-19 | 2012-10-29 | 삼성전자주식회사 | Multichip package, manufacturing method thereof, and memory system having the multi chip package |
CN104486902B (en) * | 2014-11-27 | 2018-01-16 | 深圳市华星光电技术有限公司 | Bending type printed circuit board (PCB) |
Citations (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3506877A (en) | 1968-09-25 | 1970-04-14 | Us Navy | Hermetically sealed and shielded circuit module |
US3654580A (en) | 1969-03-14 | 1972-04-04 | Sanders Associates Inc | Resistor structure |
US3868724A (en) | 1973-11-21 | 1975-02-25 | Fairchild Camera Instr Co | Multi-layer connecting structures for packaging semiconductor devices mounted on a flexible carrier |
US4314270A (en) | 1977-12-02 | 1982-02-02 | Mitsubishi Denki Kabushiki Kaisha | Hybrid thick film integrated circuit heat dissipating and grounding assembly |
US4377855A (en) * | 1980-11-06 | 1983-03-22 | National Semiconductor Corporation | Content-addressable memory |
US4737903A (en) * | 1983-04-28 | 1988-04-12 | Canon Kabushiki Kaisha | Electronic apparatus |
US4811165A (en) * | 1987-12-07 | 1989-03-07 | Motorola, Inc. | Assembly for circuit modules |
US4858703A (en) | 1987-11-02 | 1989-08-22 | Underground Technologies, Inc. | Self-propelled subsoil penetrating tool system |
US4879588A (en) | 1987-01-19 | 1989-11-07 | Sumitomo Electric Industries, Ltd. | Integrated circuit package |
US4914551A (en) * | 1988-07-13 | 1990-04-03 | International Business Machines Corporation | Electronic package with heat spreader member |
US5045921A (en) * | 1989-12-26 | 1991-09-03 | Motorola, Inc. | Pad array carrier IC device using flexible tape |
US5066250A (en) * | 1990-12-21 | 1991-11-19 | Itt Corporation | Polarizing key permitting connector displacement |
US5090920A (en) | 1990-04-17 | 1992-02-25 | Amp Incorporated | Module retention/ejection system |
US5161986A (en) | 1991-10-15 | 1992-11-10 | Ceridian Corporation | Low inductance circuit apparatus with controlled impedance cross-unders and connector for connecting to backpanels |
US5179501A (en) | 1992-02-24 | 1993-01-12 | Motorola, Inc. | Laminated electronic module assembly |
US5214318A (en) * | 1990-01-12 | 1993-05-25 | Hitachi, Ltd. | Semiconductor integrated circuit device having a signal transmission line pair interconnected by propagation delay time control resistance |
US5213868A (en) | 1991-08-13 | 1993-05-25 | Chomerics, Inc. | Thermally conductive interface materials and methods of using the same |
US5224023A (en) | 1992-02-10 | 1993-06-29 | Smith Gary W | Foldable electronic assembly module |
US5229916A (en) | 1992-03-04 | 1993-07-20 | International Business Machines Corporation | Chip edge interconnect overlay element |
US5268813A (en) | 1990-12-12 | 1993-12-07 | International Business Machines Corp. | Flexible printed circuit package and flexible printed circuit for incorporating in such a package |
US5276418A (en) | 1988-11-16 | 1994-01-04 | Motorola, Inc. | Flexible substrate electronic assembly |
US5315153A (en) | 1989-09-29 | 1994-05-24 | Toyo Aluminium Kabushiki Kaisha | Packages for semiconductor integrated circuit |
US5386341A (en) | 1993-11-01 | 1995-01-31 | Motorola, Inc. | Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape |
US5468999A (en) | 1994-05-26 | 1995-11-21 | Motorola, Inc. | Liquid encapsulated ball grid array semiconductor device with fine pitch wire bonding |
US5477933A (en) * | 1994-10-24 | 1995-12-26 | At&T Corp. | Electronic device interconnection techniques |
US5485351A (en) * | 1989-06-09 | 1996-01-16 | Labinal Components And Systems, Inc. | Socket assembly for integrated circuit chip package |
US5518964A (en) | 1994-07-07 | 1996-05-21 | Tessera, Inc. | Microelectronic mounting with multiple lead deformation and bonding |
US5527998A (en) * | 1993-10-22 | 1996-06-18 | Sheldahl, Inc. | Flexible multilayer printed circuit boards and methods of manufacture |
US5550406A (en) | 1992-06-04 | 1996-08-27 | Lsi Logic Corporation | Multi-layer tab tape having distinct signal, power and ground planes and wafer probe card with multi-layer substrate |
US5640305A (en) * | 1995-06-07 | 1997-06-17 | Thermalloy, Inc. | Anchor for securing a heat sink to a printed circuit board |
US5663661A (en) * | 1995-04-04 | 1997-09-02 | Rambus, Inc. | Modular bus with single or double parallel termination |
US5703436A (en) | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US5751553A (en) | 1992-09-16 | 1998-05-12 | Clayton; James E. | Thin multichip module including a connector frame socket having first and second apertures |
US5764489A (en) | 1996-07-18 | 1998-06-09 | Compaq Computer Corporation | Apparatus for controlling the impedance of high speed signals on a printed circuit board |
US5777345A (en) | 1996-01-03 | 1998-07-07 | Intel Corporation | Multi-chip integrated circuit package |
US5785535A (en) * | 1996-01-17 | 1998-07-28 | International Business Machines Corporation | Computer system with surface mount socket |
US5804004A (en) | 1992-05-11 | 1998-09-08 | Nchip, Inc. | Stacked devices for multichip modules |
US5808870A (en) * | 1996-10-02 | 1998-09-15 | Stmicroelectronics, Inc. | Plastic pin grid array package |
US5925934A (en) | 1995-10-28 | 1999-07-20 | Institute Of Microelectronics | Low cost and highly reliable chip-sized package |
US5926369A (en) | 1998-01-22 | 1999-07-20 | International Business Machines Corporation | Vertically integrated multi-chip circuit package with heat-sink support |
US5926951A (en) | 1993-11-16 | 1999-07-27 | Formfactor, Inc. | Method of stacking electronic components |
US5936850A (en) | 1995-03-03 | 1999-08-10 | Canon Kabushiki Kaisha | Circuit board connection structure and method, and liquid crystal device including the connection structure |
US5940721A (en) | 1995-10-11 | 1999-08-17 | International Rectifier Corporation | Termination structure for semiconductor devices and process for manufacture thereof |
US5949657A (en) | 1997-12-01 | 1999-09-07 | Karabatsos; Chris | Bottom or top jumpered foldable electronic assembly |
US5954536A (en) * | 1998-03-27 | 1999-09-21 | Molex Incorporated | Connector for flat flexible circuitry |
US5959839A (en) | 1997-01-02 | 1999-09-28 | At&T Corp | Apparatus for heat removal using a flexible backplane |
US5963427A (en) * | 1997-12-11 | 1999-10-05 | Sun Microsystems, Inc. | Multi-chip module with flexible circuit board |
US5995370A (en) | 1997-09-01 | 1999-11-30 | Sharp Kabushiki Kaisha | Heat-sinking arrangement for circuit elements |
US5998864A (en) | 1995-05-26 | 1999-12-07 | Formfactor, Inc. | Stacking semiconductor devices, particularly memory chips |
US6002589A (en) | 1997-07-21 | 1999-12-14 | Rambus Inc. | Integrated circuit package for coupling to a printed circuit board |
US6005778A (en) | 1995-06-15 | 1999-12-21 | Honeywell Inc. | Chip stacking and capacitor mounting arrangement including spacers |
US6007357A (en) | 1995-05-26 | 1999-12-28 | Rambus Inc. | Chip socket assembly and chip file assembly for semiconductor chips |
US6009487A (en) | 1996-05-31 | 1999-12-28 | Rambus Inc. | Method and apparatus for setting a current of an output driver for the high speed bus |
US6023103A (en) | 1994-11-15 | 2000-02-08 | Formfactor, Inc. | Chip-scale carrier for semiconductor devices including mounted spring contacts |
US6034878A (en) | 1996-12-16 | 2000-03-07 | Hitachi, Ltd. | Source-clock-synchronized memory system and memory unit |
US6040624A (en) | 1997-10-02 | 2000-03-21 | Motorola, Inc. | Semiconductor device package and method |
US6049476A (en) | 1995-05-15 | 2000-04-11 | Silicon Graphics, Inc. | High memory capacity DIMM with data and state memory |
US6072700A (en) | 1997-06-30 | 2000-06-06 | Hyundai Electronics Industries Co., Ltd. | Ball grid array package |
US6094075A (en) | 1997-08-29 | 2000-07-25 | Rambus Incorporated | Current control technique |
US6093969A (en) | 1999-05-15 | 2000-07-25 | Lin; Paul T. | Face-to-face (FTF) stacked assembly of substrate-on-bare-chip (SOBC) modules |
US6115909A (en) * | 1999-05-26 | 2000-09-12 | Miller; Dennis K. | ZIF PGA socket tool |
US6133629A (en) | 1999-03-20 | 2000-10-17 | United Microelectronics Corp. | Multi-chip module package |
US6137682A (en) | 1998-07-28 | 2000-10-24 | Fujitsu Limited | Air-cooled electronic apparatus |
US6172895B1 (en) * | 1999-12-14 | 2001-01-09 | High Connector Density, Inc. | High capacity memory module with built-in-high-speed bus terminations |
US6180881B1 (en) | 1998-05-05 | 2001-01-30 | Harlan Ruben Isaak | Chip stack and method of making same |
US6181002B1 (en) | 1998-12-22 | 2001-01-30 | Sharp Kabushiki Kaisha | Semiconductor device having a plurality of semiconductor chips |
US6185122B1 (en) | 1998-11-16 | 2001-02-06 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6212073B1 (en) * | 1998-10-19 | 2001-04-03 | Kitagawa Industries Co., Inc. | Heat sink |
US6215182B1 (en) | 1999-10-19 | 2001-04-10 | Fujitsu Limited | Semiconductor device and method for producing the same |
US6229217B1 (en) | 1998-01-14 | 2001-05-08 | Sharp Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
US6234820B1 (en) | 1997-07-21 | 2001-05-22 | Rambus Inc. | Method and apparatus for joining printed circuit boards |
US6273759B1 (en) | 2000-04-18 | 2001-08-14 | Rambus Inc | Multi-slot connector with integrated bus providing contact between adjacent modules |
US6341971B1 (en) | 2000-02-04 | 2002-01-29 | Hon Hai Precision Ind. Co., Ltd. | Duplex profile connector assembly |
US6356106B1 (en) * | 2000-09-12 | 2002-03-12 | Micron Technology, Inc. | Active termination in a multidrop memory system |
US6376904B1 (en) | 1999-12-23 | 2002-04-23 | Rambus Inc. | Redistributed bond pads in stacked integrated circuit die package |
US6404660B1 (en) | 1999-12-23 | 2002-06-11 | Rambus, Inc. | Semiconductor package with a controlled impedance bus and method of forming same |
US6449159B1 (en) | 2000-05-03 | 2002-09-10 | Rambus Inc. | Semiconductor module with imbedded heat spreader |
US6490325B1 (en) | 1997-12-19 | 2002-12-03 | Lsi Logic Corporation | Transmission circuit having an inductor-assisted termination |
US6496889B1 (en) | 1999-09-17 | 2002-12-17 | Rambus Inc. | Chip-to-chip communication system using an ac-coupled bus and devices employed in same |
US6520789B2 (en) | 2001-05-22 | 2003-02-18 | Delphi Technologies, Inc. | Connecting system for printed circuit boards |
US6530062B1 (en) | 2000-03-10 | 2003-03-04 | Rambus Inc. | Active impedance compensation |
US6532157B1 (en) | 2000-11-16 | 2003-03-11 | Amkor Technology, Inc. | Angulated semiconductor packages |
US6545875B1 (en) | 2000-05-10 | 2003-04-08 | Rambus, Inc. | Multiple channel modules and bus systems using same |
US6621373B1 (en) | 2000-05-26 | 2003-09-16 | Rambus Inc. | Apparatus and method for utilizing a lossy dielectric substrate in a high speed digital system |
US6618938B1 (en) | 2000-02-08 | 2003-09-16 | Lsi Logic Corporation | Interposer for semiconductor package assembly |
US6705388B1 (en) | 1997-11-10 | 2004-03-16 | Parker-Hannifin Corporation | Non-electrically conductive thermal dissipator for electronic components |
US6721189B1 (en) | 2002-03-13 | 2004-04-13 | Rambus, Inc. | Memory module |
US6751192B1 (en) | 1996-07-24 | 2004-06-15 | Canon Kabushiki Kaisha | Network system and communication method |
US6754129B2 (en) | 2002-01-24 | 2004-06-22 | Micron Technology, Inc. | Memory module with integrated bus termination |
US6784526B1 (en) | 1998-01-19 | 2004-08-31 | Fujitsu Limited | Integrated circuit device module |
US6833984B1 (en) | 2000-05-03 | 2004-12-21 | Rambus, Inc. | Semiconductor module with serial bus connection to multiple dies |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US550406A (en) * | 1895-11-26 | Bill-file | ||
US4858073A (en) * | 1986-12-10 | 1989-08-15 | Akzo America Inc. | Metal substrated printed circuit |
US5879588A (en) * | 1997-09-24 | 1999-03-09 | Osram Sylvania Inc. | Terbium-activated gadolinium oxysulfide phosphor with reduced blue emission |
US5914551A (en) * | 1997-10-14 | 1999-06-22 | Generac Corporation | Electrical alternator |
-
2002
- 2002-02-07 US US10/071,298 patent/US6833984B1/en not_active Ceased
-
2006
- 2006-04-04 US US11/398,458 patent/USRE42318E1/en not_active Expired - Lifetime
-
2007
- 2007-05-25 US US11/754,206 patent/US20070222061A1/en not_active Abandoned
- 2007-05-25 US US11/754,212 patent/US20070230134A1/en not_active Abandoned
- 2007-05-25 US US11/754,211 patent/US20070230139A1/en not_active Abandoned
- 2007-05-25 US US11/754,199 patent/US20070223159A1/en not_active Abandoned
-
2010
- 2010-05-28 US US12/790,393 patent/USRE42429E1/en not_active Expired - Lifetime
- 2010-05-28 US US12/790,380 patent/USRE42785E1/en not_active Expired - Fee Related
Patent Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3506877A (en) | 1968-09-25 | 1970-04-14 | Us Navy | Hermetically sealed and shielded circuit module |
US3654580A (en) | 1969-03-14 | 1972-04-04 | Sanders Associates Inc | Resistor structure |
US3868724A (en) | 1973-11-21 | 1975-02-25 | Fairchild Camera Instr Co | Multi-layer connecting structures for packaging semiconductor devices mounted on a flexible carrier |
US4314270A (en) | 1977-12-02 | 1982-02-02 | Mitsubishi Denki Kabushiki Kaisha | Hybrid thick film integrated circuit heat dissipating and grounding assembly |
US4377855A (en) * | 1980-11-06 | 1983-03-22 | National Semiconductor Corporation | Content-addressable memory |
US4737903A (en) * | 1983-04-28 | 1988-04-12 | Canon Kabushiki Kaisha | Electronic apparatus |
US4879588A (en) | 1987-01-19 | 1989-11-07 | Sumitomo Electric Industries, Ltd. | Integrated circuit package |
US4858703A (en) | 1987-11-02 | 1989-08-22 | Underground Technologies, Inc. | Self-propelled subsoil penetrating tool system |
US4811165A (en) * | 1987-12-07 | 1989-03-07 | Motorola, Inc. | Assembly for circuit modules |
US4914551A (en) * | 1988-07-13 | 1990-04-03 | International Business Machines Corporation | Electronic package with heat spreader member |
US5276418A (en) | 1988-11-16 | 1994-01-04 | Motorola, Inc. | Flexible substrate electronic assembly |
US5485351A (en) * | 1989-06-09 | 1996-01-16 | Labinal Components And Systems, Inc. | Socket assembly for integrated circuit chip package |
US5315153A (en) | 1989-09-29 | 1994-05-24 | Toyo Aluminium Kabushiki Kaisha | Packages for semiconductor integrated circuit |
US5045921A (en) * | 1989-12-26 | 1991-09-03 | Motorola, Inc. | Pad array carrier IC device using flexible tape |
US5214318A (en) * | 1990-01-12 | 1993-05-25 | Hitachi, Ltd. | Semiconductor integrated circuit device having a signal transmission line pair interconnected by propagation delay time control resistance |
US5090920A (en) | 1990-04-17 | 1992-02-25 | Amp Incorporated | Module retention/ejection system |
US5268813A (en) | 1990-12-12 | 1993-12-07 | International Business Machines Corp. | Flexible printed circuit package and flexible printed circuit for incorporating in such a package |
US5066250A (en) * | 1990-12-21 | 1991-11-19 | Itt Corporation | Polarizing key permitting connector displacement |
US5213868A (en) | 1991-08-13 | 1993-05-25 | Chomerics, Inc. | Thermally conductive interface materials and methods of using the same |
US5161986A (en) | 1991-10-15 | 1992-11-10 | Ceridian Corporation | Low inductance circuit apparatus with controlled impedance cross-unders and connector for connecting to backpanels |
US5224023A (en) | 1992-02-10 | 1993-06-29 | Smith Gary W | Foldable electronic assembly module |
US5179501A (en) | 1992-02-24 | 1993-01-12 | Motorola, Inc. | Laminated electronic module assembly |
US5229916A (en) | 1992-03-04 | 1993-07-20 | International Business Machines Corporation | Chip edge interconnect overlay element |
US5804004A (en) | 1992-05-11 | 1998-09-08 | Nchip, Inc. | Stacked devices for multichip modules |
US5550406A (en) | 1992-06-04 | 1996-08-27 | Lsi Logic Corporation | Multi-layer tab tape having distinct signal, power and ground planes and wafer probe card with multi-layer substrate |
US5763952A (en) | 1992-06-04 | 1998-06-09 | Lsi Logic Corporation | Multi-layer tape having distinct signal, power and ground planes, semiconductor device assembly employing same, apparatus for and method of assembling same |
US5751553A (en) | 1992-09-16 | 1998-05-12 | Clayton; James E. | Thin multichip module including a connector frame socket having first and second apertures |
US5527998A (en) * | 1993-10-22 | 1996-06-18 | Sheldahl, Inc. | Flexible multilayer printed circuit boards and methods of manufacture |
US5386341A (en) | 1993-11-01 | 1995-01-31 | Motorola, Inc. | Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape |
US5926951A (en) | 1993-11-16 | 1999-07-27 | Formfactor, Inc. | Method of stacking electronic components |
US6184587B1 (en) | 1993-11-16 | 2001-02-06 | Formfactor, Inc. | Resilient contact structures, electronic interconnection component, and method of mounting resilient contact structures to electronic components |
US5468999A (en) | 1994-05-26 | 1995-11-21 | Motorola, Inc. | Liquid encapsulated ball grid array semiconductor device with fine pitch wire bonding |
US5518964A (en) | 1994-07-07 | 1996-05-21 | Tessera, Inc. | Microelectronic mounting with multiple lead deformation and bonding |
US5477933A (en) * | 1994-10-24 | 1995-12-26 | At&T Corp. | Electronic device interconnection techniques |
US6023103A (en) | 1994-11-15 | 2000-02-08 | Formfactor, Inc. | Chip-scale carrier for semiconductor devices including mounted spring contacts |
US5703436A (en) | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US5936850A (en) | 1995-03-03 | 1999-08-10 | Canon Kabushiki Kaisha | Circuit board connection structure and method, and liquid crystal device including the connection structure |
US5663661A (en) * | 1995-04-04 | 1997-09-02 | Rambus, Inc. | Modular bus with single or double parallel termination |
US6049476A (en) | 1995-05-15 | 2000-04-11 | Silicon Graphics, Inc. | High memory capacity DIMM with data and state memory |
US5998864A (en) | 1995-05-26 | 1999-12-07 | Formfactor, Inc. | Stacking semiconductor devices, particularly memory chips |
US6007357A (en) | 1995-05-26 | 1999-12-28 | Rambus Inc. | Chip socket assembly and chip file assembly for semiconductor chips |
US5640305A (en) * | 1995-06-07 | 1997-06-17 | Thermalloy, Inc. | Anchor for securing a heat sink to a printed circuit board |
US6005778A (en) | 1995-06-15 | 1999-12-21 | Honeywell Inc. | Chip stacking and capacitor mounting arrangement including spacers |
US5940721A (en) | 1995-10-11 | 1999-08-17 | International Rectifier Corporation | Termination structure for semiconductor devices and process for manufacture thereof |
US5925934A (en) | 1995-10-28 | 1999-07-20 | Institute Of Microelectronics | Low cost and highly reliable chip-sized package |
US5777345A (en) | 1996-01-03 | 1998-07-07 | Intel Corporation | Multi-chip integrated circuit package |
US5785535A (en) * | 1996-01-17 | 1998-07-28 | International Business Machines Corporation | Computer system with surface mount socket |
US6009487A (en) | 1996-05-31 | 1999-12-28 | Rambus Inc. | Method and apparatus for setting a current of an output driver for the high speed bus |
US5764489A (en) | 1996-07-18 | 1998-06-09 | Compaq Computer Corporation | Apparatus for controlling the impedance of high speed signals on a printed circuit board |
US6751192B1 (en) | 1996-07-24 | 2004-06-15 | Canon Kabushiki Kaisha | Network system and communication method |
US5808870A (en) * | 1996-10-02 | 1998-09-15 | Stmicroelectronics, Inc. | Plastic pin grid array package |
US6034878A (en) | 1996-12-16 | 2000-03-07 | Hitachi, Ltd. | Source-clock-synchronized memory system and memory unit |
US5959839A (en) | 1997-01-02 | 1999-09-28 | At&T Corp | Apparatus for heat removal using a flexible backplane |
US6072700A (en) | 1997-06-30 | 2000-06-06 | Hyundai Electronics Industries Co., Ltd. | Ball grid array package |
US6002589A (en) | 1997-07-21 | 1999-12-14 | Rambus Inc. | Integrated circuit package for coupling to a printed circuit board |
US6234820B1 (en) | 1997-07-21 | 2001-05-22 | Rambus Inc. | Method and apparatus for joining printed circuit boards |
US6608507B2 (en) | 1997-08-29 | 2003-08-19 | Rambus Inc. | Memory system including a memory device having a controlled output driver characteristic |
US6094075A (en) | 1997-08-29 | 2000-07-25 | Rambus Incorporated | Current control technique |
US5995370A (en) | 1997-09-01 | 1999-11-30 | Sharp Kabushiki Kaisha | Heat-sinking arrangement for circuit elements |
US6040624A (en) | 1997-10-02 | 2000-03-21 | Motorola, Inc. | Semiconductor device package and method |
US6705388B1 (en) | 1997-11-10 | 2004-03-16 | Parker-Hannifin Corporation | Non-electrically conductive thermal dissipator for electronic components |
US5949657A (en) | 1997-12-01 | 1999-09-07 | Karabatsos; Chris | Bottom or top jumpered foldable electronic assembly |
US5963427A (en) * | 1997-12-11 | 1999-10-05 | Sun Microsystems, Inc. | Multi-chip module with flexible circuit board |
US6490325B1 (en) | 1997-12-19 | 2002-12-03 | Lsi Logic Corporation | Transmission circuit having an inductor-assisted termination |
US6229217B1 (en) | 1998-01-14 | 2001-05-08 | Sharp Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
US6784526B1 (en) | 1998-01-19 | 2004-08-31 | Fujitsu Limited | Integrated circuit device module |
US5926369A (en) | 1998-01-22 | 1999-07-20 | International Business Machines Corporation | Vertically integrated multi-chip circuit package with heat-sink support |
US5954536A (en) * | 1998-03-27 | 1999-09-21 | Molex Incorporated | Connector for flat flexible circuitry |
US6180881B1 (en) | 1998-05-05 | 2001-01-30 | Harlan Ruben Isaak | Chip stack and method of making same |
US6137682A (en) | 1998-07-28 | 2000-10-24 | Fujitsu Limited | Air-cooled electronic apparatus |
US6212073B1 (en) * | 1998-10-19 | 2001-04-03 | Kitagawa Industries Co., Inc. | Heat sink |
US6185122B1 (en) | 1998-11-16 | 2001-02-06 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6181002B1 (en) | 1998-12-22 | 2001-01-30 | Sharp Kabushiki Kaisha | Semiconductor device having a plurality of semiconductor chips |
US6133629A (en) | 1999-03-20 | 2000-10-17 | United Microelectronics Corp. | Multi-chip module package |
US6093969A (en) | 1999-05-15 | 2000-07-25 | Lin; Paul T. | Face-to-face (FTF) stacked assembly of substrate-on-bare-chip (SOBC) modules |
US6115909A (en) * | 1999-05-26 | 2000-09-12 | Miller; Dennis K. | ZIF PGA socket tool |
US6496889B1 (en) | 1999-09-17 | 2002-12-17 | Rambus Inc. | Chip-to-chip communication system using an ac-coupled bus and devices employed in same |
US6215182B1 (en) | 1999-10-19 | 2001-04-10 | Fujitsu Limited | Semiconductor device and method for producing the same |
US6172895B1 (en) * | 1999-12-14 | 2001-01-09 | High Connector Density, Inc. | High capacity memory module with built-in-high-speed bus terminations |
US6404660B1 (en) | 1999-12-23 | 2002-06-11 | Rambus, Inc. | Semiconductor package with a controlled impedance bus and method of forming same |
US6376904B1 (en) | 1999-12-23 | 2002-04-23 | Rambus Inc. | Redistributed bond pads in stacked integrated circuit die package |
US6514794B2 (en) | 1999-12-23 | 2003-02-04 | Rambus Inc. | Redistributed bond pads in stacked integrated circuit die package |
US6341971B1 (en) | 2000-02-04 | 2002-01-29 | Hon Hai Precision Ind. Co., Ltd. | Duplex profile connector assembly |
US6618938B1 (en) | 2000-02-08 | 2003-09-16 | Lsi Logic Corporation | Interposer for semiconductor package assembly |
US6530062B1 (en) | 2000-03-10 | 2003-03-04 | Rambus Inc. | Active impedance compensation |
US6273759B1 (en) | 2000-04-18 | 2001-08-14 | Rambus Inc | Multi-slot connector with integrated bus providing contact between adjacent modules |
US6449159B1 (en) | 2000-05-03 | 2002-09-10 | Rambus Inc. | Semiconductor module with imbedded heat spreader |
US6833984B1 (en) | 2000-05-03 | 2004-12-21 | Rambus, Inc. | Semiconductor module with serial bus connection to multiple dies |
US6545875B1 (en) | 2000-05-10 | 2003-04-08 | Rambus, Inc. | Multiple channel modules and bus systems using same |
US6590781B2 (en) | 2000-05-10 | 2003-07-08 | Rambus, Inc. | Clock routing in multiple channel modules and bus systems |
US6765800B2 (en) | 2000-05-10 | 2004-07-20 | Rambus Inc. | Multiple channel modules and bus systems using same |
US6657871B2 (en) | 2000-05-10 | 2003-12-02 | Rambus Inc. | Multiple channel modules and bus systems using same |
US6621373B1 (en) | 2000-05-26 | 2003-09-16 | Rambus Inc. | Apparatus and method for utilizing a lossy dielectric substrate in a high speed digital system |
US6356106B1 (en) * | 2000-09-12 | 2002-03-12 | Micron Technology, Inc. | Active termination in a multidrop memory system |
US6532157B1 (en) | 2000-11-16 | 2003-03-11 | Amkor Technology, Inc. | Angulated semiconductor packages |
US6520789B2 (en) | 2001-05-22 | 2003-02-18 | Delphi Technologies, Inc. | Connecting system for printed circuit boards |
US6754129B2 (en) | 2002-01-24 | 2004-06-22 | Micron Technology, Inc. | Memory module with integrated bus termination |
US6721189B1 (en) | 2002-03-13 | 2004-04-13 | Rambus, Inc. | Memory module |
Non-Patent Citations (24)
Title |
---|
Decision, Sua Sponte, To Merge Reissue and Reexamination Proceedings mailed Dec. 11, 2006 for reexam control U.S. Appl. No. 90/007,681. |
Ex Parte Reexamination Communication Transmittal Form for reexam control U.S. Appl. No. 90/007,681 dated Dec. 7, 2007. |
Ex Parte Reexamination Communication Transmittal Form for reexam control U.S. Appl. No. 90/007,681 mailed Dec. 16, 2005. |
House-Keeping Amendment filed Jan. 10, 2007 and Certificate of Service for reexam control U.S. Appl. No. 90/007,681. |
IBM Technical Disclosure Bulletin, Concept for Forming Multilayer Structures for Packaging, 5 pages, Aug. 1, 1987. |
IEEE 100, The Authoritative Dictionary of IEEE Standard Terms, 7th Edition, 2000, IEEE Press, pp. 144, 704. |
NN87081353, Concept for Forming Multilayer Structure for Electronic Packaging, Aug. 1, 1987, IBM Technical Disclosure. * |
Notice of Assignment of Reexamination Request mailed Aug. 29, 2005 for reexam control U.S. Appl. No. 90/007,681. |
Notice of Reexamination Request Filing Date, mailed Aug. 29, 2005 for reexam control U.S. Appl. No. 90/007,681. |
Notification of Concurrent Proceedings Pursuant tp 37 C.F.R. § 1.565(a) filed Apr. 4, 2006 for reexam control No. U.S. Appl. No. 90/007,681. |
Office Action mailed Aug. 14, 2008 from related U.S. Appl. No. 11/754,211. |
Office Action mailed Dec. 23, 2008 from related U.S. Appl. No. 11/754,206. |
Office Action mailed Dec. 7, 2007 from related reexam U.S. Appl. No. 90/007,681. |
Office Action mailed Jun. 25, 2008 from related U.S. Appl. No. 11/754,206. |
Office Action mailed May 14, 2008 from related U.S. Appl. No. 11/754,199. |
Office Action mailed Sep. 26, 2008 from related U.S. Appl. No. 11/754,212. |
Office Action miled Aug. 20, 2008 from related U.S. Appl. No. 11/754,199. |
Request for Continued Examination (RCE) transmittal and Certificate of Service filed Oct. 7, 2008 for reexam control U.S. Appl. No. 90/007,681. |
Request for Reexamination of US Patent No. 6,833,984 filed Aug. 19, 2005. |
Response to Office Action and Certificate of Service filed Sep. 10, 2008 for related reexamination control U.S. Appl. No. 90/007,681. |
Selected Prosecution History U.S. Appl. No. 11/754,199 through May 25, 2010. |
Selected Prosecution History U.S. Appl. No. 11/754,206 through May 25, 2010. |
Selected Prosecution History U.S. Appl. No. 11/754,211 through May 25, 2010. |
Selected Prosecution History U.S. Appl. No. 11/754,212 through May 25, 2010. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140196540A1 (en) * | 2013-01-14 | 2014-07-17 | Analog Devices, Technology | Two-axis vertical mount package assembly |
US9475694B2 (en) * | 2013-01-14 | 2016-10-25 | Analog Devices Global | Two-axis vertical mount package assembly |
Also Published As
Publication number | Publication date |
---|---|
US20070223159A1 (en) | 2007-09-27 |
US20070230139A1 (en) | 2007-10-04 |
USRE42785E1 (en) | 2011-10-04 |
USRE42429E1 (en) | 2011-06-07 |
US20070222061A1 (en) | 2007-09-27 |
US20070230134A1 (en) | 2007-10-04 |
US6833984B1 (en) | 2004-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE42318E1 (en) | Semiconductor module with serial bus connection to multiple dies | |
US6449159B1 (en) | Semiconductor module with imbedded heat spreader | |
JP3560488B2 (en) | Chip scale package for multichip | |
US7408255B2 (en) | Assembly for stacked BGA packages | |
US7061092B2 (en) | High-density modularity for ICS | |
US5777345A (en) | Multi-chip integrated circuit package | |
US5642261A (en) | Ball-grid-array integrated circuit package with solder-connected thermal conductor | |
US5895230A (en) | Integrated circuit chip package having configurable contacts and method for making the same | |
US6480014B1 (en) | High density, high frequency memory chip modules having thermal management structures | |
US6861283B2 (en) | Package for integrated circuit with thermal vias and method thereof | |
EP0660399A2 (en) | Ball-grid-array integrated circuit package with thermal conductivity | |
US20100103605A1 (en) | multi-configuration processor-memory substrate device | |
US20060209515A1 (en) | Processor/memory module with foldable substrate | |
KR100386018B1 (en) | Stacked Semiconductor Device Package | |
JP2803603B2 (en) | Multi-chip package structure | |
JP2812014B2 (en) | Semiconductor device | |
US6963129B1 (en) | Multi-chip package having a contiguous heat spreader assembly | |
KR200295665Y1 (en) | Stacked Semiconductor Package | |
JP2001244667A (en) | Electronic circuit device | |
KR100207901B1 (en) | Method for fabricating a package having multi chip | |
KR20000052094A (en) | Multi-chip chip scale package | |
JP2000223654A (en) | Chip scale package for multichip |