USRE39003E1 - Closed caption support with timewarp - Google Patents
Closed caption support with timewarp Download PDFInfo
- Publication number
- USRE39003E1 USRE39003E1 US09/047,176 US4717698A USRE39003E US RE39003 E1 USRE39003 E1 US RE39003E1 US 4717698 A US4717698 A US 4717698A US RE39003 E USRE39003 E US RE39003E
- Authority
- US
- United States
- Prior art keywords
- data
- closed captioned
- window
- display
- video
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
- G06F3/1423—Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/41—Structure of client; Structure of client peripherals
- H04N21/4104—Peripherals receiving signals from specially adapted client devices
- H04N21/4122—Peripherals receiving signals from specially adapted client devices additional display device, e.g. video projector
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/431—Generation of visual interfaces for content selection or interaction; Content or additional data rendering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/435—Processing of additional data, e.g. decrypting of additional data, reconstructing software from modules extracted from the transport stream
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/12—Overlay of images, i.e. displayed pixel being the result of switching between the corresponding input pixels
- G09G2340/125—Overlay of images, i.e. displayed pixel being the result of switching between the corresponding input pixels wherein one of the images is motion video
Definitions
- This invention relates to methods of displaying closed captioned text transmitted in conjunction with a television signal.
- written text corresponding to spoken dialog is encoded into transmitted television signals.
- This text is decoded in a decoder at the viewing location of the television program, and is displayed over the video signal of the television set, whereby the audio portion of a transmitted program may be read from the television screen.
- the text is typically displayed adjacent the bottom of the television screen.
- the encoding of the text signal into the television signal whereby it is not displayed unless decoded is referred to a closed captioning.
- a North American closed captioning standard was originally proposed by The Closed Captioning Association and the Public Broadcasting System (PBS).
- the standard is defined by the FCC in FCC document FCC-91-119 and in the FCC Federal Register Vol. 56 No 114.
- the standard specifies that closed captioned data should be transmitted on scan line 21 of every odd video field of the North American interlaced video signal.
- the closed captioned signal is sent as a black and white (luminance only) signal with no color component.
- Each odd video field which contains closed captioned data is prefixed with a 0.5035 MHz sinusoidal run-in signal which is intended to be used at the decoder to lock to the closed captioned data.
- This run-in signal is illustrated as element 1 in FIG. 1.
- a start bit 2 immediately follows the run-in signal 1 , which is immediately followed by 16 bits of closed captioning data 3 , These bits form two 7 bit ASCII codes plus odd parity bits, forming two bytes 4 of closed captioned data.
- the bytes can define text or define color, style, and attribute information.
- the bytes may also contain information which controls the mode of the decoder, which defines whether the text should be shown full screen, 2 , 3 or 4 line roll up, paint on, and pop on. Cursor positioning data may also be defined.
- a decoder is connected between the incoming video signal and the television set. When activated, the decoder decodes the closed captioned data signal and produces a video signal containing the closed captioned text, which replaces part or all of a television program which is being watched. The result is that some portion of the broadcast image is obscured by the closed captioned text. Further, passing through the decoder the image to be displayed on the television screen may be degraded.
- the present invention provides a method whereby persons with a personal computer may obtain and view closed captioned text without obscuring any portion of the television image. Further, it provides a method whereby the closed captioned text may be controlled in ways in addition to or in substitution for that specified by the closed captioned control bytes.
- the video signal may displayed on a television screen with no closed captioned text, and closed captioned text may be displayed on a totally separate display screen that may be placed adjacent the television screen.
- the font and font size may be changed to any pleasing font and size as desired by the user, the color and background, and the display mode may be controlled to whatever is desired by the user.
- the video program may be displayed without obstruction in a window on a single display screen, and the closed captioned text may be displayed in a separate window on the same display screen.
- the positioning and sizes of either or both of the video program and closed captioned text windows on the display screen may be controlled to whatever is desired by the user.
- the result is an improvement in the usability of the television program with closed captioned text, since at the same time the entire video program may be viewed without obstruction by the closed captioned text, and the character of the text, its display mode and placement on the screen may be completely controlled by the user. Since the size of the windows may be controlled, a user who is both hearing and seeing impaired may optimize the video and text sizes to suit the disability of the user.
- the video signal is applied to a video interface circuit of a computer, where closed captioned text is detected and decoded.
- the closed captioned text is applied to the computer display screen, with parameters controllable by the user.
- the computer display screen may be placed adjacent to a television screen which displays the television program without closed captioned text, whereby both screens are visible at the same time by the user. Since the program displayed by the television screen does not pass through a decoder, degradation thereby is avoided, yet the closed captioned text is available to the user.
- the video signal is applied to a video interface circuit of a multimedia computer.
- the live motion video signal is provided by the computer to a window on the computer display.
- the closed captioned data is captured and is placed in a separate window on the computer display.
- the computer is used to vary the sizes and locations of the windows containing the live motion video and the closed captioned data, as well as the character of the text, its background, the remaining screen “wallpaper”, etc.
- the present invention can be built into and form part of a television set, or may be disguised as a television set or the equivalent. It may be built into a home entertainment and utility product which contains audio controls, a VCR, a video screen, home security modules, a computer, etc.
- a method of providing closed captioned data to a television viewer is comprised of detecting closed captioned data signals transmitted in conjunction with a television signal, decoding the data signals to caption display signals, and displaying the caption display signals on an auxiliary screen separate from a screen displaying the television signals.
- the method described above further includes providing the caption display signals to a computer microprocessor, providing the television signal to a computer video display circuit, processing the caption data signals to control at least the location of display of the decoded signal, displaying the television signal on a display screen and displaying the caption display signals at the location on said display screen, the television screen being a window displayed on a computer screen, the decoded data being contained in a window on the display screen and constituting the auxiliary screen.
- FIG. 1 illustrates the form of a closed captioned signal transmitted with a standard television signal
- FIG. 2A illustrates a display screen of a television program and a separate display of closed captioned text on a separate display screen in accordance with an embodiment of the invention
- FIG. 2B illustrates a single display screen containing separate windows, one containing and displaying a full motion video program and the other containing and diplaying closed captioned text
- FIG. 3 isillustrates a block diagram of the architecture of a multimedia computer on which an embodiment of the present invention may be carried out
- FIG. 4 isillustrates a block diagram of a part of the architecture of a standard non-multimedia computer on which another embodiment of the present invention may be carried out
- FIG. 5 isillustrates a block diagram of a part of a video interface circuit which can be used to carry out an embodiment of the present invention.
- FIG. 6 isillustrates an algorithm used by the computer used to carry out the present invention.
- a video signal containing a closed captioned signal is received via cable or antenna lead 5 .
- the signal is fed to standard television set 7 , and as well, to computer 9 .
- Television set 7 displays the video signal without the closed captioned text.
- the computer contains a video interface circuit that decodes the closed captioned signal, and provides it to a computer display 11 .
- the decoded closed captioned signal is at least temporarily resident in a random access memory (RAM) of the computer, its character such as font and font size, color, background, display mode such as roll on, etc., can be controlled by the computer. This may be enabled by the control codes in the closed captioned signal, or manually by the user, or partly by both.
- RAM random access memory
- closed captioned text data that is resident in RAM may be stored in a file on the hard disk drive of the computer, or on a floppy disk, whereby it may be later retrieved and printed out as a record of the spoken part of the program. This also provides a means for distributing printed materials to viewers of closed captioned data which may be different than that which is spoken.
- FIG. 2B illustrates a multimedia computer screen 13 in accordance with another embodiment of the invention.
- the video signal is only provided to a multimedia computer video interface circuit, and is not provided to a separate television screen.
- the interface circuit digitizes the video signal and the computer places it into a full motion video window 15 on the computer display 13 .
- the closed captioned text data is decoded, and is placed into a second window 17 on the computer display 13 .
- Both the closed captioned text data and video signals are located respectively in video memory, and at least temporarily in RAM in the computer at least temporarily in the computer , and therefore their characters may be manipulated. For example, the size, location and relative dimensions of the window displaying the video program may be changed to suit the program being transmitted, e.g. either standard or high definition.
- the size, location and relative dimensions of the window displaying the closed captioned text may be changed to suit the viewer. Since the text data is ASCII, it may be controlled to be displayed in any font and size supported by the computer, and as well in any color and on any background color or design supported by the computer.
- FIG. 3 illustrates the architecture of a multimedia computer, such as one on which the present invention may be carried out.
- the computer is comprised of a main bus 19 to which a microprocessor 20 , RAM 21 , a hard disk drive 22 and a printer 23 via a serial or parallel port are connected.
- a high speed bus 25 having the capacity to carry data signals at live motion video rates has video RAM 26 connected to it, as well as graphics control circuit 27 , and video interface circuit 30 .
- a mediatingAn arbitration circuit 32 is connected to graphics control circuit 27 and to video interface circuit 30 , to control which of the circuits 27 , 30 has access to high speed bus 25 .
- Each of the circuits 27 , 30 is connected to a bus interface circuit 34 , which is also connected to the host or system bus 19 for receiving control and data signals, and for providing signals thereto.
- a random access memory and digital to analog converter (RAMDAC) 36 is connected to high speed bus 25 and converts video signals stored in video RAM 26 to analog signals.
- the analog signals are applied to a video monitor 38 for display.
- the video monitor 38 corresponds preferably to computer display 13 referred to in respect of FIG. 2B , and could correspond to the display 11 referred to in respect of FIG. 2 A.
- the display 11 need not be the display of a multimedia computer of the type illustrated in FIG. 3 , and could be the standard display of a normal computer.
- the computer on which the present invention is carried out is similar to the one described in U.S. patent application Ser. No. 08/092,477 filed Jul. 16, 1993, invented by Robert P. Bicevskis, Adrian H. Hartog, Gordon Caruk and Michael A. Alford entitled “Multi-Media Computer Architecture”, which is incorporated herein by reference.
- any multimedia computer which can receive a video interface circuit that can operate as described herein and which can display live motion video in a controllable window while providing another window in which other material is shown can be used.
- a video signal (which may have passed through a television tuner and thus is baseband video) is applied to the video interface circuit 30 .
- the circuit digitizes the signal and stores it in video RAM 26 .
- graphics circuit 27 which generates a window, the video signal is read out of video RAM 26 , is scaled and timed to be contained within the window, and is applied to RAMDAC 36 .
- the analog output signal is applied to video monitor 38 for display, e.g. as with respect to window 15 in FIG. 2 B.
- the video in line 21 of the odd video fields is detected and decoded by the closed captioned circuit 40 of the video interface circuit 30 .
- the decoded data is stored in video RAM 26 . It is then placed into another window by means of graphics circuit 27 , which is scaled and timed to provide its size and display position using parameters provided under control of processor 20 , and is sent to the RAMDAC 36 with other video data, to be displayed on video monitor 38 , e.g. as window 17 on display 13 as in FIG. 2 B.
- the graphics circuit 27 or the video circuit 30 can also determine whether the closed captioned data is control data or ASCII text, and provide this data to the processor 20 , which can analyze the control data and control the parameters of the displayed text accordingly.
- the control data can be looked up in a table stored in RAM 21 or in video circuit 30 , to obtain instructions corresponding to the control data bytes, and send instructions to graphics circuit 27 to display the text accordingly.
- computer keyboard 24 can be used to select text style, size, display mode and other characteristics offered to the user on the display 38 in a setup procedure of a graphical user interface controlled by graphics circuit 27 .
- a standard computer instead of using a multimedia form of computer such as that described above, a standard computer is used.
- a video interface circuit 42 is connected to the main bus 19 of the computer, to which the baseband video is applied.
- a graphics interface circuit 44 such as a well known VGA circuit is connected to the bus 19 , to which a standard monitor such as a VGA monitor 38 is connected.
- the video circuit 42 receives, detects and decodes the closed captioned signal from line 21 of the input video signal and applies it to bus 19 of the computer.
- Microprocessor 20 controls storage of the decoded closed captioned signal in RAM 21 . It then accesses the signal to determine whether the signal is control code or ASCII text, and operates on the text in accordance with the control code, or in accordance with other control signals applied via keyboard 24 to display the text on video display 38 . In this manner the size, color, background and display mode for the closed captioned text is controlled.
- the text may be inserted in a window on the screen, and the graphics circuit may be controlled by the control program and the microprocessor to perform other functions on the screen depending on the text or control codes.
- the program can access a look-up table and display various colors of green to the user beside a window displaying the text, whereby the user, who may have some green color-blindness, can select the most legible color of green (or indeed some other color), for display.
- This data can be stored on the hard disk drive 22 , for future reference, which can be accessed and used each time the closed captioned control code defines green as the display color.
- the graphics circuit can be controlled to provide other graphical and/or text in or around the closed captioned text, such as wallpaper, still or moving images, selection menus, a selection cursor, etc.
- the video interface circuit or the computer under control of the processor 20 carries out the following functions, as shown in FIG. 5 .
- a source of video containing a closed captioned data signal is carried via input line 51 to analog-to-digital converter 53 .
- the resulting digital signal is captured in a memory 55 which is preferably local to the video interface circuit.
- Scan line 21 of every odd video field is extracted from memory 55 and is transferred to local memory 57 (such as memory 21 in FIG. 3 ).
- local memory 57 such as memory 21 in FIG. 3 .
- the decoding phase of the process involves detecting and extracting the encoded data from the video stream, and then interpreting the data and translating it into displayable information.
- the detecting phase involves applying samples of the signal shown in FIG. 1 to a phase locked loop (PLL) 59 , which triggers on the zero crossings of the 0.5035 MHz run-in signal.
- PLL phase locked loop
- the signal is also applied to register 61 , to which the PLL is connected.
- the PLL thus determines the location within the captured scan line stored in register 61 of the 16 bits of closed captioned data.
- the PLL could determine the location by being coupled to memory 57 , which of course functions as a register.
- the data is then extracted by computing the average value of several samples in the location of each bit of data and determining whether the transmitted bit is a zero or a one based on a threshold, or based on an upper and lower threshold, in detector 63 .
- This averaging and threshold procedure is repeated for each of the 16 bits of data to produce two bytes of odd parity closed captioned data for every field processed.
- Each byte has 7 significant bits (7 bit ASCII) and odd parity.
- the detection function should examine either the luma (Y) portion of the signal, or the green portion of the signal, depending on whether the circuit is capturing YUV or RGB data.
- Green is preferred because typically when digitizing to 16 bits per pixel RGB data, the color component bit weight used is 565 (5 bits of red, 6 bits of green, and 5 bits of blue). This results in one extra bit of green data than red or blue, thus improving the accuracy of the data detection.
- the output of the detection phase (detector 63 ) is then processed in the interpretation phase (interpreter 65 ).
- the interpretation algorithm is illustrated in FIG. 6 , and involves parsing the two bytes of data which were extracted during the detection phase. Because some closed caption sequences are encoded as two bytes which are transmitted in the same field, the data bytes are preferably passed in pairs to interpreter 65 , which maintains the display.
- the interpreter parses the ASCII byte pairs and interprets their meaning. It handles detection of all the various formatting codes which can be embedded in closed captioned data including color, style, and positioning information as well as the textual data itself, in accordance with the aforenoted FCC-91-119 standard.
- the data are applied to bus 19 whereby it can be dealt with by processor 20 .
- the interpreter interprets each byte pair and decides what type of code the bytes represent. If the bytes are character data, then these bytes are placed into an internal table at the next cursor location and are drawn on the display using the current color and style (at startup the cursor should be set at 0,0 on the display, and the style should start as plain white text).
- Decoded caption data is stored internally in a character map (or grid) with a single byte storing the character and a second byte storing the format of the character.
- a pop-on caption mode should not render characters to the display, but instead should cache the characters until an “end-caption” command is received.
- the stored data can then be provided using the graphics circuit 44 ( FIG. 4 ) or 27 ( FIG. 3 ) to the associated computer display, in a window generated by a resident graphics user interface (GUI), or generally on the screen without generating a GUI window.
- GUI graphics user interface
- the PLL is preferred to be a software PLL
- the detection and interpretation module should be software modules, etc.
- the software modules can reside in RAM 21 (called from hard drive 22 when required), and can be performed by control processor 20 to perform the required functions as required by the steps described above and in FIG. 6 .
- the 0.5035 MHz run-in signal can be detected without a phase locked loop in software. For example, zero crossings of the run-in signal can be detected, and the closed captioned data located from that method. Other methods could be used within the skill of a person skilled in the art.
- Closed captioned data can be transmitted in two different channels. In current systems, only one channel can be viewed at a time. Using the present invention, both channels can be decoded and the captured closed caption data can be displayed at the same time.
- the closed captioned data control codes define 2 , 3 and 4 line roll-up display modes to avoid obscuring parts of the video program display.
- the present invention can convert those modes to full screen (e.g. 15 line display ) without obscuring the video program being watched.
- a permanent record of a program can be kept.
- a transcript can be used to facilitate looking back over earlier details, such as in news programs, lectures, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Television Systems (AREA)
- Controls And Circuits For Display Device (AREA)
- Details Of Television Scanning (AREA)
Abstract
Method of providing closed captioned data to a television viewer comprised of detecting closed captioned data signals transmitted in conjunction with a television signal, decoding the data signals to caption display signals, and displaying the caption display signals on an auxiliary screen separate from a screen displaying the television signals.
Description
This invention relates to methods of displaying closed captioned text transmitted in conjunction with a television signal.
In order to aid the hearing impaired, written text corresponding to spoken dialog is encoded into transmitted television signals. This text is decoded in a decoder at the viewing location of the television program, and is displayed over the video signal of the television set, whereby the audio portion of a transmitted program may be read from the television screen. The text is typically displayed adjacent the bottom of the television screen. The encoding of the text signal into the television signal whereby it is not displayed unless decoded is referred to a closed captioning.
A North American closed captioning standard was originally proposed by The Closed Captioning Association and the Public Broadcasting System (PBS). The standard is defined by the FCC in FCC document FCC-91-119 and in the FCC Federal Register Vol. 56 No 114.
The standard specifies that closed captioned data should be transmitted on scan line 21 of every odd video field of the North American interlaced video signal. The closed captioned signal is sent as a black and white (luminance only) signal with no color component. Each odd video field which contains closed captioned data is prefixed with a 0.5035 MHz sinusoidal run-in signal which is intended to be used at the decoder to lock to the closed captioned data. This run-in signal is illustrated as element 1 in FIG. 1. A start bit 2 immediately follows the run-in signal 1, which is immediately followed by 16 bits of closed captioning data 3, These bits form two 7 bit ASCII codes plus odd parity bits, forming two bytes 4 of closed captioned data. These two bytes can define text or define color, style, and attribute information. The bytes may also contain information which controls the mode of the decoder, which defines whether the text should be shown full screen, 2, 3 or 4 line roll up, paint on, and pop on. Cursor positioning data may also be defined.
In prior art closed captioned signal decoding systems a decoder is connected between the incoming video signal and the television set. When activated, the decoder decodes the closed captioned data signal and produces a video signal containing the closed captioned text, which replaces part or all of a television program which is being watched. The result is that some portion of the broadcast image is obscured by the closed captioned text. Further, passing through the decoder the image to be displayed on the television screen may be degraded.
The present invention provides a method whereby persons with a personal computer may obtain and view closed captioned text without obscuring any portion of the television image. Further, it provides a method whereby the closed captioned text may be controlled in ways in addition to or in substitution for that specified by the closed captioned control bytes.
In accordance with the present invention, the video signal may displayed on a television screen with no closed captioned text, and closed captioned text may be displayed on a totally separate display screen that may be placed adjacent the television screen.
The font and font size may be changed to any pleasing font and size as desired by the user, the color and background, and the display mode may be controlled to whatever is desired by the user.
In accordance with another embodiment, the video program may be displayed without obstruction in a window on a single display screen, and the closed captioned text may be displayed in a separate window on the same display screen. The positioning and sizes of either or both of the video program and closed captioned text windows on the display screen may be controlled to whatever is desired by the user.
The result is an improvement in the usability of the television program with closed captioned text, since at the same time the entire video program may be viewed without obstruction by the closed captioned text, and the character of the text, its display mode and placement on the screen may be completely controlled by the user. Since the size of the windows may be controlled, a user who is both hearing and seeing impaired may optimize the video and text sizes to suit the disability of the user.
In accordance with an embodiment of the present invention, the video signal is applied to a video interface circuit of a computer, where closed captioned text is detected and decoded. The closed captioned text is applied to the computer display screen, with parameters controllable by the user. The computer display screen may be placed adjacent to a television screen which displays the television program without closed captioned text, whereby both screens are visible at the same time by the user. Since the program displayed by the television screen does not pass through a decoder, degradation thereby is avoided, yet the closed captioned text is available to the user.
In accordance with another embodiment, the video signal is applied to a video interface circuit of a multimedia computer. The live motion video signal is provided by the computer to a window on the computer display. The closed captioned data is captured and is placed in a separate window on the computer display. The computer is used to vary the sizes and locations of the windows containing the live motion video and the closed captioned data, as well as the character of the text, its background, the remaining screen “wallpaper”, etc.
It should be understood that while the description herein will be directed to a separate and free standing computer, the present invention can be built into and form part of a television set, or may be disguised as a television set or the equivalent. It may be built into a home entertainment and utility product which contains audio controls, a VCR, a video screen, home security modules, a computer, etc.
In accordance with an embodiment of the invention, a method of providing closed captioned data to a television viewer is comprised of detecting closed captioned data signals transmitted in conjunction with a television signal, decoding the data signals to caption display signals, and displaying the caption display signals on an auxiliary screen separate from a screen displaying the television signals.
In accordance with another embodiment, the method described above further includes providing the caption display signals to a computer microprocessor, providing the television signal to a computer video display circuit, processing the caption data signals to control at least the location of display of the decoded signal, displaying the television signal on a display screen and displaying the caption display signals at the location on said display screen, the television screen being a window displayed on a computer screen, the decoded data being contained in a window on the display screen and constituting the auxiliary screen.
A better understanding of the invention will be obtained by reading the description of the invention below, with reference to the following drawings, in which:
Turning now to FIG. 2A , a video signal containing a closed captioned signal is received via cable or antenna lead 5. The signal is fed to standard television set 7, and as well, to computer 9. Television set 7 displays the video signal without the closed captioned text. The computer contains a video interface circuit that decodes the closed captioned signal, and provides it to a computer display 11. The decoded closed captioned signal is at least temporarily resident in a random access memory (RAM) of the computer, its character such as font and font size, color, background, display mode such as roll on, etc., can be controlled by the computer. This may be enabled by the control codes in the closed captioned signal, or manually by the user, or partly by both.
Further, the closed captioned text data that is resident in RAM may be stored in a file on the hard disk drive of the computer, or on a floppy disk, whereby it may be later retrieved and printed out as a record of the spoken part of the program. This also provides a means for distributing printed materials to viewers of closed captioned data which may be different than that which is spoken.
A random access memory and digital to analog converter (RAMDAC) 36 is connected to high speed bus 25 and converts video signals stored in video RAM 26 to analog signals. The analog signals are applied to a video monitor 38 for display.
The video monitor 38 corresponds preferably to computer display 13 referred to in respect of FIG. 2B , and could correspond to the display 11 referred to in respect of FIG. 2A. The display 11 need not be the display of a multimedia computer of the type illustrated in FIG. 3 , and could be the standard display of a normal computer.
It is preferred that the computer on which the present invention is carried out is similar to the one described in U.S. patent application Ser. No. 08/092,477 filed Jul. 16, 1993, invented by Robert P. Bicevskis, Adrian H. Hartog, Gordon Caruk and Michael A. Alford entitled “Multi-Media Computer Architecture”, which is incorporated herein by reference. However, any multimedia computer which can receive a video interface circuit that can operate as described herein and which can display live motion video in a controllable window while providing another window in which other material is shown can be used.
In operation, in accordance with the second embodiment, and as described in the aforenoted patent application, a video signal (which may have passed through a television tuner and thus is baseband video) is applied to the video interface circuit 30. The circuit digitizes the signal and stores it in video RAM 26. In conjunction with graphics circuit 27 which generates a window, the video signal is read out of video RAM 26, is scaled and timed to be contained within the window, and is applied to RAMDAC 36. The analog output signal is applied to video monitor 38 for display, e.g. as with respect to window 15 in FIG. 2B.
As will be described in more detail below, the video in line 21 of the odd video fields is detected and decoded by the closed captioned circuit 40 of the video interface circuit 30. The decoded data is stored in video RAM 26. It is then placed into another window by means of graphics circuit 27, which is scaled and timed to provide its size and display position using parameters provided under control of processor 20, and is sent to the RAMDAC 36 with other video data, to be displayed on video monitor 38, e.g. as window 17 on display 13 as in FIG. 2B.
The graphics circuit 27 or the video circuit 30 can also determine whether the closed captioned data is control data or ASCII text, and provide this data to the processor 20, which can analyze the control data and control the parameters of the displayed text accordingly. For example the control data can be looked up in a table stored in RAM 21 or in video circuit 30, to obtain instructions corresponding to the control data bytes, and send instructions to graphics circuit 27 to display the text accordingly. Alternatively, computer keyboard 24 can be used to select text style, size, display mode and other characteristics offered to the user on the display 38 in a setup procedure of a graphical user interface controlled by graphics circuit 27.
In accordance with the first embodiment of the invention, instead of using a multimedia form of computer such as that described above, a standard computer is used. In this case, a video interface circuit 42 is connected to the main bus 19 of the computer, to which the baseband video is applied. A graphics interface circuit 44 such as a well known VGA circuit is connected to the bus 19, to which a standard monitor such as a VGA monitor 38 is connected.
In this case, the video circuit 42 receives, detects and decodes the closed captioned signal from line 21 of the input video signal and applies it to bus 19 of the computer. Microprocessor 20 controls storage of the decoded closed captioned signal in RAM 21. It then accesses the signal to determine whether the signal is control code or ASCII text, and operates on the text in accordance with the control code, or in accordance with other control signals applied via keyboard 24 to display the text on video display 38. In this manner the size, color, background and display mode for the closed captioned text is controlled.
Indeed, the text may be inserted in a window on the screen, and the graphics circuit may be controlled by the control program and the microprocessor to perform other functions on the screen depending on the text or control codes. For example, in a set-up sequence in the event the closed captioned control code defines the color of the text to be displayed as green, the program can access a look-up table and display various colors of green to the user beside a window displaying the text, whereby the user, who may have some green color-blindness, can select the most legible color of green (or indeed some other color), for display. This data can be stored on the hard disk drive 22, for future reference, which can be accessed and used each time the closed captioned control code defines green as the display color.
Similarly, the graphics circuit can be controlled to provide other graphical and/or text in or around the closed captioned text, such as wallpaper, still or moving images, selection menus, a selection cursor, etc.
In either of the embodiments, the video interface circuit or the computer under control of the processor 20 carries out the following functions, as shown in FIG. 5.
A source of video containing a closed captioned data signal is carried via input line 51 to analog-to-digital converter 53. The resulting digital signal is captured in a memory 55 which is preferably local to the video interface circuit. Scan line 21 of every odd video field is extracted from memory 55 and is transferred to local memory 57 (such as memory 21 in FIG. 3). Once the scan line containing the closed captioned data is in the local memory, a software algorithm can be used to decode the closed captioned data and display it on a monitor or store it on a disk-based ASCII file.
The decoding phase of the process involves detecting and extracting the encoded data from the video stream, and then interpreting the data and translating it into displayable information.
The detecting phase involves applying samples of the signal shown in FIG. 1 to a phase locked loop (PLL) 59, which triggers on the zero crossings of the 0.5035 MHz run-in signal. The signal is also applied to register 61, to which the PLL is connected. The PLL thus determines the location within the captured scan line stored in register 61 of the 16 bits of closed captioned data. Alternatively, the PLL could determine the location by being coupled to memory 57, which of course functions as a register.
The data is then extracted by computing the average value of several samples in the location of each bit of data and determining whether the transmitted bit is a zero or a one based on a threshold, or based on an upper and lower threshold, in detector 63. This averaging and threshold procedure is repeated for each of the 16 bits of data to produce two bytes of odd parity closed captioned data for every field processed. Each byte has 7 significant bits (7 bit ASCII) and odd parity.
Because the data is fundamentally black and white, the detection function should examine either the luma (Y) portion of the signal, or the green portion of the signal, depending on whether the circuit is capturing YUV or RGB data. Green is preferred because typically when digitizing to 16 bits per pixel RGB data, the color component bit weight used is 565 (5 bits of red, 6 bits of green, and 5 bits of blue). This results in one extra bit of green data than red or blue, thus improving the accuracy of the data detection.
The output of the detection phase (detector 63) is then processed in the interpretation phase (interpreter 65). The interpretation algorithm is illustrated in FIG. 6 , and involves parsing the two bytes of data which were extracted during the detection phase. Because some closed caption sequences are encoded as two bytes which are transmitted in the same field, the data bytes are preferably passed in pairs to interpreter 65, which maintains the display. The interpreter parses the ASCII byte pairs and interprets their meaning. It handles detection of all the various formatting codes which can be embedded in closed captioned data including color, style, and positioning information as well as the textual data itself, in accordance with the aforenoted FCC-91-119 standard. The data are applied to bus 19 whereby it can be dealt with by processor 20.
As shown in FIG. 6 , the interpreter interprets each byte pair and decides what type of code the bytes represent. If the bytes are character data, then these bytes are placed into an internal table at the next cursor location and are drawn on the display using the current color and style (at startup the cursor should be set at 0,0 on the display, and the style should start as plain white text).
If the bytes are determined to be closed captioned control code then they are preferably used to modify the cursor position, pen color and style effecting the next text characters that are parsed. Decoded caption data is stored internally in a character map (or grid) with a single byte storing the character and a second byte storing the format of the character.
A pop-on caption mode should not render characters to the display, but instead should cache the characters until an “end-caption” command is received.
The stored data can then be provided using the graphics circuit 44 (FIG. 4 ) or 27 (FIG. 3 ) to the associated computer display, in a window generated by a resident graphics user interface (GUI), or generally on the screen without generating a GUI window.
While the various process steps have been illustrated as block elements, it is preferred that all of the process steps should be handled by software. For example the PLL is preferred to be a software PLL, the detection and interpretation module should be software modules, etc. The software modules can reside in RAM 21 (called from hard drive 22 when required), and can be performed by control processor 20 to perform the required functions as required by the steps described above and in FIG. 6.
It should be noted that the 0.5035 MHz run-in signal can be detected without a phase locked loop in software. For example, zero crossings of the run-in signal can be detected, and the closed captioned data located from that method. Other methods could be used within the skill of a person skilled in the art.
Closed captioned data can be transmitted in two different channels. In current systems, only one channel can be viewed at a time. Using the present invention, both channels can be decoded and the captured closed caption data can be displayed at the same time.
The closed captioned data control codes define 2, 3 and 4 line roll-up display modes to avoid obscuring parts of the video program display. The present invention can convert those modes to full screen (e.g. 15 line display ) without obscuring the video program being watched.
By allowing closed captioned text to be saved to a file on disk, a permanent record of a program can be kept. Thus a transcript can be used to facilitate looking back over earlier details, such as in news programs, lectures, etc.
A person understanding this invention may now conceive of alternative structures and embodiments or variations of the above. All of those which fall within the scope of the claims appended hereto are considered to be part of the present invention.
Claims (21)
1. A method of providing closed captioned data to a television viewer comprising:
(a) detecting closed captioned data signals transmitted in conjunction with a television signal,
(b) decoding said data signals to caption display signals,
(c) displaying said caption display signals on an auxiliary screen separate from a screen displaying said television signals,
(d) providing said caption display signals to a computer microprocessor,
(e) providing said television signal to a computer video display circuit,
(f) processing said caption data signals to control at least the location of display of said decoded signal,
(g) displaying said television signal on a display screen and displaying said caption display signals at said location on said display screen,
(h) said television screen being a window displayed on a computer screen,
(i) said decoded data being contained in a window on said display screen and constituting said auxiliary screen.
2. A The A method of claim 1 , for providing closed captioned data and video data on a display, the method comprises the steps of:
a) receiving a video signal that includes the closed captioned data and the video data;
b) decoding the closed captioned data to produce decoded closed captioned data;
c) digitizing the video data to produce digital video data;
d) associating the digital video data in a first window on the display;
e) associating the decoded closed captioned data in a second window for subsequent presentation on the display, wherein the first and second windows, when presented, are non-obscuring of each other, and wherein, when presented, locations of the first and second windows are based on control input;
wherein the control input is at least one of: a control code contained in the closed captioned data and a control signal, wherein the control input further controls at least one of size of the first window, size of the second window, size of text of the decoded closed captioned data, color of the text of the decoded closed captioned data, background of the second window and display mode of the decoded captioned data.
3. The method of claim 1 2, wherein the display comprises a computer display or a television, and wherein the second window is located above, below, or to a side of the first window on the display.
4. The method of claim 1 2 further comprises:
locking a phase locked loop to a run-in signal of the closed captioned data,
obtaining data bits of the closed caption data by sampling the data bits and computing an average value of several samples of each data bit and determining whether each of the data bits is a zero or a one based on the average value being above or below a predetermined threshold.
5. A The method of claim 4 , for providing captioned data and video data on a display, the method comprises the steps of:
a) receiving a video signal that includes the closed captioned data and the video data;
b) decoding the closed captioned data to produce decoded closed captioned data;
c) digitizing the video data to produce digital video data;
d) associating the digital video data in a first window on the display;
e) associating the decoded closed captioned data in a second window for subsequent presentation on the display, wherein the first and second windows, when presented, are non-obscuring of each other, and wherein, when presented, locations of the first and second windows are based on control input;
locking a phase locked loop to a run-in signal of the closed captioned data, and
obtaining data bits of the closed caption data by sampling the data bits and computing an average value of several samples of each data bit and determining whether each of the data bits is a zero or a one based on the average value being above or below a predetermined threshold
wherein the data bits comprise a pair of bytes of data representing at least one of characters and captioning code, further including passing the bytes of data to a computer microprocessor, determining whether the bytes of data are captioning code and if so controlling at least one of a display cursor position on said auxiliary screen, character color, and style of subsequent characters to be displayed by means of said microprocessor, determining whether the bytes of data are character data and if so displaying corresponding characters in sequence on the second window starting at either of a default cursor position or at a cursor position designated by the captioning code if preceded by a cursor position indicating captioning code.
6. The method of claim 1 2 further comprises storing the decoded closed captioned data such that, at a subsequent time, a transcript of the closed captioned data may be obtained.
7. A method of providing closed captioned data to a television viewer comprising:
(a) detecting closed captioned data signals transmitted in conjunction with a television signal,
(b) decoding said data signals to caption display signals,
(c) displaying said caption display signals on an auxiliary screen separate from a screen displaying said television signals,
(d) providing said caption display signals to a computer microprocessor,
(e) processing said caption display signals to control at least one of font and size of said caption display signals,
(f) in which the closed captioned data signal includes an initial sinusoidal run-in signal followed by data bits, and
(g) in which the detection step includes locking a phase locked loop to the run-in signal, locating the data bits and obtaining closed captioned data bits by sampling the data bits and computing the average value of several samples in the location of each data bit and determining whether each data bit is a zero or a one based on the average value being above or below a predetermined threshold.
8. A method defined in claim 7 in which the data bits comprise a pair of bytes of data representing at least one of characters and captioning code, further including passing the bytes of data to a computer microprocessor, determining whether the bytes of data are captioning code and if so controlling at least one of a display cursor position on said auxiliary screen, character color, and style of subsequent characters to be displayed by means of said microprocessor, determining whether the bytes of data are character data and if so displaying corresponding characters in sequence on said auxiliary screen starting at either of a default cursor position or at a cursor position designated by the captioning code if preceded by a cursor position indicating captioning code.
9. A method for providing closed captioned data and video data on a display, the method comprises the steps of:
a) receiving a video signal that includes the closed captioned data and the video data;
b) decoding the closed captioned data to produce decoded closed captioned data;
c) digitizing the video data to produce digital video data;
d) associating the digital video data in a first window on the display;
e) associating the decoded closed captioned data in a second window for subsequent presentation on the display, wherein the first and second windows, when presented, are non-obscuring of each other, and wherein, when presented, locations of the first and second windows are based on control input;
wherein the step (d) further comprises:
storing the digitized video data in video memory to produce stored video data;
retrieving the stored video data from memory to produce retrieved video data;
scaling and timing the retrieved video data to be contained within the first window to produce scaled video data; and
converting the scaled video data to analog video data, wherein the analog video data is presented on the display in the first window.
10. A method for providing closed captioned data and video on a display, the method comprises the steps of:
a) receiving a video signal that includes the closed captioned data and the video data;
b) decoding the closed captioned data to produce decoded closed captioned data;
c) digitizing the video data to produce digital video data;
d) associating the digital video data in a first window on the display;
e) associating the decoded captioned data in a second window for subsequent presentation on the display, wherein the first and second windows, when presented, are non-obscuring of each other, and wherein, when presented, locations of the first and second windows are based on control input;
wherein step (e) further comprises:
storing the decoded closed captioned data in video memory to produce stored closed captioned data;
retrieving the stored closed captioned data from memory to produce retrieved closed captioned data;
scaling and timing the retrieved closed captioned data to be contained within the second window to produce scaled closed captioned data; and
converting the scaled closed captioned data to analog closed captioned data, wherein the analog closed captioned data is presented on the display in the second window.
11. An apparatus for displaying closed captioned data and video data comprises:
video interface circuit operably coupled to receive a video signal that includes the closed captioned data and the video data, wherein the video interface circuit digitizes the video data to produce digital video data and decodes the closed captioned data or produce decoded closed captioned data; and
a graphics control circuit operable to generate a first and second windows, wherein the graphics control circuit associates the digital video data with the first window and associates the decoded closed captioned data with the second window, wherein the first and second windows are non-obscuring of each other, and wherein locations of the first and second windows are based on control input;
wherein the control input is a control signal, wherein the control input further controls at least one of: size of the first window, size of the second window, and size of text of the decoded closed captioned data, color of the text of the decoded closed captioned data, background of the second window and display mode of the decoded closed captioned data.
12. The apparatus of claim 13 further comprises video memory operably coupled to the video interface and the graphics control circuit, wherein the video memory store the digital video data and the decoded closed captioned data prior to being placed in the first and second windows.
13. An apparatus for displaying closed captioned data and video data comprises:
video interface circuit operably coupled to receive a video signal that includes the closed captioned data and the video data, wherein the video interface circuit digitizes the video data to produce digital video data and decodes the closed captioned data to produce decoded closed captioned data;
a graphics control circuit operable to generate a first and second windows, wherein the graphics control circuit associates the digital video data with the first window and associates the decoded closed captioned data with the second window, wherein the first and second windows are non-obscuring of each other, and wherein location of the first and second windows are based on control input; and
a random access memory digital to analog converter operably coupled to the graphics control circuit, wherein the random access memory digital to analog converter converts the digital video data and the decoded closed captioned data in to analog video signals and analog closed captioned signals, respectively, that are provided to a display, such that the display presents the first and second windows.
14. The apparatus of claim 11 , wherein the display comprises a computer display or a television, and wherein the second window is located above, below, or to a side of the first window on the display.
15. The apparatus of claim 13 , wherein the graphics control circuit associates the digital video data with the first window by:
storing the digitized video data in video memory to produce stored video data;
retrieving the stored video data from memory to produce retrieved video data;
scaling and timing the retrieved video data to be contained within the first window to produce scaled video data; and
providing the scaled video data to the random access memory digital to analog converter to produce the analog video data, wherein the analog video data is presented on the display in the first window.
16. An apparatus for displaying closed captioned data and video data comprises:
video interface circuit operably coupled to receive a video signal that includes the closed captioned data and the video data, wherein the video interface circuit digitizes the video data to produce digital video data and decodes the closed captioned data to produce decoded closed captioned data; and
a graphics control circuit operable to generate a first and second windows, wherein the graphics control circuit associates the digital video data with the first window and associates the decoded closed captioned data with the second window, wherein the first and second windows are non-obscuring of each other, and wherein locations of the first and second windows are based on control input;
wherein the graphics control circuit associates the decoded closed captioned data with the second window by:
storing the decoded closed captioned data in video memory to produce stored closed captioned data;
retrieving the stored closed captioned data from memory to produce retrieved closed captioned data;
scaling and timing the retrieved closed captioned data to be contained within the second window to produce scaled closed captioned data; and
providing the scaled closed captioned data to the random access memory digital to analog converter to produce the analog closed captioned data, wherein the analog closed captioned data is presented on the display in the second window.
17. A digital storage medium that stores programming instructions that, when executed by a computer, cause the computer to provide non-obscuring closed captioned data, the digital storage medium comprises:
a first storage means for storing programming instructions that cause the computer to receive a video signal that includes the closed captioned data and the video data;
a second storage means for storing programming instructions that cause the computer to decode the closed captioned data to produce decoded closed captioned data;
a third storage means for storing programming instructions that cause the computer to digitize the video data to produce digital video data;
a fourth storage means for storing programming instructions that cause the computer to associate the digital video data in a first window on the display;
a fifth storage means for storing programming instructions that cause the computer to associate the decoded closed captioned data in a second window for subsequent presentation on the display, wherein the first and second windows, when presented, are non-obscuring of each other, and wherein, when presented, locations of the first and second windows are based on control input.
18. The digital storage medium of claim 17 , further comprises means for storing programming instructions that cause the computer to identify the control input as at least one of: a control code contained in the closed captioned data and a control signal, wherein the control input further controls at least one of: size of the first window, size of the second window, size of text of the decoded closed captioned data, color of the text of the decoded closed captioned data, background of the second window and display mode of the decoded closed captioned data.
19. The digital storage medium of claim 17 further comprises means for storing programming instructions that cause the computer to provide the first and second windows to a computer display or a television, wherein the second window is located above, below, or to a side of the first window on the display.
20. The apparatus of claim 11 wherein the control signal is user controllable.
21. The apparatus of claim 2 wherein the control signal is user controllable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/047,176 USRE39003E1 (en) | 1994-02-16 | 1998-03-24 | Closed caption support with timewarp |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/197,336 US5537151A (en) | 1994-02-16 | 1994-02-16 | Close caption support with timewarp |
US09/047,176 USRE39003E1 (en) | 1994-02-16 | 1998-03-24 | Closed caption support with timewarp |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/197,336 Reissue US5537151A (en) | 1994-02-16 | 1994-02-16 | Close caption support with timewarp |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE39003E1 true USRE39003E1 (en) | 2006-03-07 |
Family
ID=22728988
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/197,336 Ceased US5537151A (en) | 1994-02-16 | 1994-02-16 | Close caption support with timewarp |
US09/047,176 Expired - Lifetime USRE39003E1 (en) | 1994-02-16 | 1998-03-24 | Closed caption support with timewarp |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/197,336 Ceased US5537151A (en) | 1994-02-16 | 1994-02-16 | Close caption support with timewarp |
Country Status (2)
Country | Link |
---|---|
US (2) | US5537151A (en) |
CA (1) | CA2124390C (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020154161A1 (en) * | 2001-02-01 | 2002-10-24 | Friedman Michael A. | Method and system for providing universal remote control of computing devices |
US20050105003A1 (en) * | 2002-03-29 | 2005-05-19 | Koninklijke Philips Electronics N.V. | Television receiving system |
US20050225674A1 (en) * | 2002-05-15 | 2005-10-13 | Lynch David J | Close captioning system in windows based graphics system |
US20060044469A1 (en) * | 2004-08-28 | 2006-03-02 | Samsung Electronics Co., Ltd. | Apparatus and method for coordinating synchronization of video and captions |
US20060114355A1 (en) * | 2002-05-13 | 2006-06-01 | Microsoft Corporation | Selectively overlaying a user interface atop a video signal |
US7508450B1 (en) * | 2008-05-06 | 2009-03-24 | International Business Machines Corporation | Method for closed captioning of audio video content on a portable playback device |
US20090228948A1 (en) * | 2008-03-10 | 2009-09-10 | Sony Corporation | Viewer selection of subtitle position on tv screen |
US20100250794A1 (en) * | 2009-03-27 | 2010-09-30 | Microsoft Corporation | Removable accessory for a computing device |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0370064A4 (en) * | 1987-07-27 | 1993-02-10 | David Geshwind | A method for transmitting high-definition television over low-bandwidth channels |
US5760838A (en) | 1994-09-30 | 1998-06-02 | Intel Corporation | Method and system for configuring a display |
AU4364296A (en) * | 1994-10-24 | 1996-05-15 | Intel Corporation | Video indexing protocol |
EP0872120A1 (en) | 1995-03-07 | 1998-10-21 | Interval Research Corporation | System and method for selective recording of information |
JPH08275205A (en) * | 1995-04-03 | 1996-10-18 | Sony Corp | Method and device for data coding/decoding and coded data recording medium |
US5910825A (en) * | 1995-05-09 | 1999-06-08 | Sony Corporation | Video signal transmitting apparatus with attendant data insertion and extraction functions |
KR0144890B1 (en) * | 1995-05-27 | 1998-07-15 | 김광호 | Caption and text broadcasting display device and method in double screen TV |
US6209132B1 (en) * | 1995-06-15 | 2001-03-27 | Intel Corporation | Host apparatus for simulating two way connectivity for one way data streams |
JPH0993548A (en) * | 1995-09-27 | 1997-04-04 | Toshiba Corp | Television receiver with teletext information display function |
US5724103A (en) * | 1995-11-13 | 1998-03-03 | Intel Corporation | CD ROM information references delivered to a personal computer using the vertical blanking intervals associated data technology from a nabts compliant television broadcast program |
US5805153A (en) * | 1995-11-28 | 1998-09-08 | Sun Microsystems, Inc. | Method and system for resizing the subtitles of a video |
US5835153A (en) * | 1995-12-22 | 1998-11-10 | Cirrus Logic, Inc. | Software teletext decoder architecture |
US5850266A (en) * | 1995-12-22 | 1998-12-15 | Cirrus Logic, Inc. | Video port interface supporting multiple data formats |
US6141693A (en) * | 1996-06-03 | 2000-10-31 | Webtv Networks, Inc. | Method and apparatus for extracting digital data from a video stream and using the digital data to configure the video stream for display on a television set |
US5838382A (en) * | 1996-06-26 | 1998-11-17 | Intel Corporation | Method and apparatus for optimizing starting point for run-in clock recovery |
US6377308B1 (en) | 1996-06-26 | 2002-04-23 | Intel Corporation | Method and apparatus for line-specific decoding of VBI scan lines |
US5953065A (en) * | 1996-06-26 | 1999-09-14 | Intel Corporation | Method and apparatus for common vertical blanking interval scan line decoding |
US5812217A (en) * | 1996-06-26 | 1998-09-22 | Intel Corporation | Automatically adjusting anti-ghosting filter coefficients when the coefficients exceed particular values |
US6268888B1 (en) | 1996-06-26 | 2001-07-31 | Intel Corporation | Mechanism for adaptive selection of anti-ghosting filtering |
US5926491A (en) * | 1996-06-26 | 1999-07-20 | Intel Corporation | Noise tolerant run-in clock recovery method and apparatus |
US5893062A (en) | 1996-12-05 | 1999-04-06 | Interval Research Corporation | Variable rate video playback with synchronized audio |
US6263507B1 (en) | 1996-12-05 | 2001-07-17 | Interval Research Corporation | Browser for use in navigating a body of information, with particular application to browsing information represented by audiovisual data |
US6088064A (en) * | 1996-12-19 | 2000-07-11 | Thomson Licensing S.A. | Method and apparatus for positioning auxiliary information proximate an auxiliary image in a multi-image display |
US5812207A (en) * | 1996-12-20 | 1998-09-22 | Intel Corporation | Method and apparatus for supporting variable oversampling ratios when decoding vertical blanking interval data |
US6262713B1 (en) | 1997-03-31 | 2001-07-17 | Compaq Computer Corporation | Mechanism and method for focusing remote control input in a PC/TV convergence system |
US5973734A (en) | 1997-07-09 | 1999-10-26 | Flashpoint Technology, Inc. | Method and apparatus for correcting aspect ratio in a camera graphical user interface |
DE19737115A1 (en) * | 1997-08-27 | 1999-03-04 | Metec Multimedia Technik Gmbh | Method for operating a media device comprising a television set and a personal computer |
US6532039B2 (en) | 1997-09-17 | 2003-03-11 | Flashpoint Technology, Inc. | Method and system for digital image stamping |
JPH11196386A (en) | 1997-10-30 | 1999-07-21 | Toshiba Corp | Computer system and closed caption display method |
US6816201B1 (en) * | 1998-01-13 | 2004-11-09 | Mitsubishi Digital Electronics America, Inc. | XDS enhancement system |
US7889964B1 (en) | 1998-07-30 | 2011-02-15 | Tivo Inc. | Closed caption tagging system |
US6317141B1 (en) | 1998-12-31 | 2001-11-13 | Flashpoint Technology, Inc. | Method and apparatus for editing heterogeneous media objects in a digital imaging device |
US7155735B1 (en) | 1999-10-08 | 2006-12-26 | Vulcan Patents Llc | System and method for the broadcast dissemination of time-ordered data |
WO2001047257A1 (en) * | 1999-12-21 | 2001-06-28 | Tivo, Inc. | Intelligent system and methods of recommending media content items based on user preferences |
US6757682B1 (en) | 2000-01-28 | 2004-06-29 | Interval Research Corporation | Alerting users to items of current interest |
US6513003B1 (en) | 2000-02-03 | 2003-01-28 | Fair Disclosure Financial Network, Inc. | System and method for integrated delivery of media and synchronized transcription |
US6870570B1 (en) * | 2000-10-31 | 2005-03-22 | Matsushita Electric Industrial Co., Ltd. | Television receiver with shared data port and control software |
US7221405B2 (en) * | 2001-01-31 | 2007-05-22 | International Business Machines Corporation | Universal closed caption portable receiver |
US6975991B2 (en) | 2001-01-31 | 2005-12-13 | International Business Machines Corporation | Wearable display system with indicators of speakers |
KR100477642B1 (en) * | 2002-01-17 | 2005-03-23 | 삼성전자주식회사 | Apparatus and method for processing closed caption |
US20030189669A1 (en) * | 2002-04-05 | 2003-10-09 | Bowser Todd S. | Method for off-image data display |
KR100939711B1 (en) * | 2002-12-12 | 2010-02-01 | 엘지전자 주식회사 | Text-based subtitle playback device and method |
KR20050072255A (en) * | 2004-01-06 | 2005-07-11 | 엘지전자 주식회사 | Method for managing and reproducing a subtitle of high density optical disc |
EP1721319A2 (en) * | 2004-01-06 | 2006-11-15 | LG Electronics Inc. | Recording medium and method and apparatus for reproducing and recording text subtitle streams |
EP1733392A2 (en) * | 2004-02-10 | 2006-12-20 | LG Electronics, Inc. | Recording medium having a data structure for managing various data and recording and reproducing methods and apparatuses |
JP2007522595A (en) * | 2004-02-10 | 2007-08-09 | エルジー エレクトロニクス インコーポレーテッド | Recording medium and method and apparatus for decoding text subtitle stream |
KR20070028323A (en) * | 2004-02-10 | 2007-03-12 | 엘지전자 주식회사 | Method and apparatus for recording media and recording / reproducing having a data structure for managing data streams associated with different languages |
EP1716566A1 (en) * | 2004-02-10 | 2006-11-02 | LG Electronic Inc. | Recording medium having a data structure for managing font information for text subtitles and recording and reproducing methods and apparatuses |
WO2005076601A1 (en) * | 2004-02-10 | 2005-08-18 | Lg Electronic Inc. | Text subtitle decoder and method for decoding text subtitle streams |
KR20070028326A (en) | 2004-02-10 | 2007-03-12 | 엘지전자 주식회사 | Method and apparatus for decoding record carrier and text subtitle streams |
US20050196146A1 (en) * | 2004-02-10 | 2005-09-08 | Yoo Jea Y. | Method for reproducing text subtitle and text subtitle decoding system |
RU2377669C2 (en) * | 2004-02-10 | 2009-12-27 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Recording medium with data structure for managing different data, and method and device for recording and playing back |
EP1721453A2 (en) * | 2004-02-26 | 2006-11-15 | LG Electronics, Inc. | Recording medium and method and apparatus for reproducing and recording text subtitle streams |
KR20070007824A (en) * | 2004-03-17 | 2007-01-16 | 엘지전자 주식회사 | Method and apparatus for playing recording media and text subtitle streams |
KR20060047266A (en) * | 2004-04-26 | 2006-05-18 | 엘지전자 주식회사 | Recording medium, method of playing back and recording device |
JP4724710B2 (en) * | 2004-05-03 | 2011-07-13 | エルジー エレクトロニクス インコーポレイティド | RECORDING MEDIUM HAVING DATA STRUCTURE FOR REPRODUCING MANAGEMENT OF TEXT SUBTITLE DATA |
JP4897698B2 (en) * | 2004-11-19 | 2012-03-14 | ティヴォ インク | Method and apparatus for securely transferring previously broadcast content |
US7661121B2 (en) * | 2006-06-22 | 2010-02-09 | Tivo, Inc. | In-band data recognition and synchronization system |
US7873982B2 (en) * | 2006-06-22 | 2011-01-18 | Tivo Inc. | Method and apparatus for creating and viewing customized multimedia segments |
US9224145B1 (en) | 2006-08-30 | 2015-12-29 | Qurio Holdings, Inc. | Venue based digital rights using capture device with digital watermarking capability |
US8346049B2 (en) * | 2007-05-21 | 2013-01-01 | Casio Hitachi Mobile Communications Co., Ltd. | Captioned video playback apparatus and recording medium |
WO2009157893A1 (en) | 2008-06-24 | 2009-12-30 | Thomson Licensing | Method and system for redisplaying text |
US8359399B2 (en) * | 2008-10-16 | 2013-01-22 | Echostar Technologies L.L.C. | Method and device for delivering supplemental content associated with audio/visual content to a user |
US8438596B2 (en) | 2009-04-08 | 2013-05-07 | Tivo Inc. | Automatic contact information transmission system |
IL198370A0 (en) * | 2009-04-23 | 2010-02-17 | Michael Stalaw | Flat large high panoramic display |
US8281231B2 (en) * | 2009-09-11 | 2012-10-02 | Digitalsmiths, Inc. | Timeline alignment for closed-caption text using speech recognition transcripts |
US10448083B2 (en) * | 2010-04-06 | 2019-10-15 | Comcast Cable Communications, Llc | Streaming and rendering of 3-dimensional video |
US11711592B2 (en) | 2010-04-06 | 2023-07-25 | Comcast Cable Communications, Llc | Distribution of multiple signals of video content independently over a network |
US9204123B2 (en) | 2011-01-14 | 2015-12-01 | Comcast Cable Communications, Llc | Video content generation |
US9456170B1 (en) * | 2013-10-08 | 2016-09-27 | 3Play Media, Inc. | Automated caption positioning systems and methods |
US10880515B2 (en) | 2018-12-14 | 2020-12-29 | Sony Corporation | Audio-video reproduction for closed caption display control based on multi-media content |
CN110652295B (en) * | 2019-10-16 | 2022-04-26 | 中山大学 | A method and system for quantifying individual differences in activation time series |
US11735186B2 (en) | 2021-09-07 | 2023-08-22 | 3Play Media, Inc. | Hybrid live captioning systems and methods |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894789A (en) * | 1988-02-22 | 1990-01-16 | Yee Keen Y | TV data capture device |
US4954882A (en) * | 1988-08-19 | 1990-09-04 | Kabushiki Kaisha Toshiba | Color television set having a teletext receiver built-in |
US5023721A (en) * | 1988-12-12 | 1991-06-11 | Samsung Electronics Co. Ltd. | TV of internal PiP type for receiving the character multibroadcasting |
US5109279A (en) * | 1988-03-28 | 1992-04-28 | Kabushiki Kaisha Toshiba | Television receiver with teletext receiving function and a method for superimposing a teletext picture on a television picture |
US5111296A (en) * | 1990-04-19 | 1992-05-05 | Thomson Consumer Electronics, Inc. | Data transfer from a television receiver having picture-in-picture capability to an external computer |
US5138450A (en) * | 1989-05-23 | 1992-08-11 | Matsushita Electric Industrial Co., Ltd. | High density character and/or figure displaying apparatus |
US5262860A (en) * | 1992-04-23 | 1993-11-16 | International Business Machines Corporation | Method and system communication establishment utilizing captured and processed visually perceptible data within a broadcast video signal |
US5404172A (en) * | 1992-03-02 | 1995-04-04 | Eeg Enterprises, Inc. | Video signal data and composite synchronization extraction circuit for on-screen display |
US5579057A (en) * | 1993-06-07 | 1996-11-26 | Scientific-Atlanta, Inc. | Display system for selectively overlaying symbols and graphics onto a video signal |
US6331877B1 (en) * | 1993-09-09 | 2001-12-18 | Tv Guide Magazine Group, Inc. | Electronic television program guide schedule system and method |
-
1994
- 1994-02-16 US US08/197,336 patent/US5537151A/en not_active Ceased
- 1994-05-26 CA CA002124390A patent/CA2124390C/en not_active Expired - Lifetime
-
1998
- 1998-03-24 US US09/047,176 patent/USRE39003E1/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894789A (en) * | 1988-02-22 | 1990-01-16 | Yee Keen Y | TV data capture device |
US5109279A (en) * | 1988-03-28 | 1992-04-28 | Kabushiki Kaisha Toshiba | Television receiver with teletext receiving function and a method for superimposing a teletext picture on a television picture |
US4954882A (en) * | 1988-08-19 | 1990-09-04 | Kabushiki Kaisha Toshiba | Color television set having a teletext receiver built-in |
US5023721A (en) * | 1988-12-12 | 1991-06-11 | Samsung Electronics Co. Ltd. | TV of internal PiP type for receiving the character multibroadcasting |
US5138450A (en) * | 1989-05-23 | 1992-08-11 | Matsushita Electric Industrial Co., Ltd. | High density character and/or figure displaying apparatus |
US5111296A (en) * | 1990-04-19 | 1992-05-05 | Thomson Consumer Electronics, Inc. | Data transfer from a television receiver having picture-in-picture capability to an external computer |
US5404172A (en) * | 1992-03-02 | 1995-04-04 | Eeg Enterprises, Inc. | Video signal data and composite synchronization extraction circuit for on-screen display |
US5262860A (en) * | 1992-04-23 | 1993-11-16 | International Business Machines Corporation | Method and system communication establishment utilizing captured and processed visually perceptible data within a broadcast video signal |
US5579057A (en) * | 1993-06-07 | 1996-11-26 | Scientific-Atlanta, Inc. | Display system for selectively overlaying symbols and graphics onto a video signal |
US6331877B1 (en) * | 1993-09-09 | 2001-12-18 | Tv Guide Magazine Group, Inc. | Electronic television program guide schedule system and method |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080222165A9 (en) * | 2001-02-01 | 2008-09-11 | Microsoft Corporation | Method and system for providing universal remote control of computing devices |
US20050125425A1 (en) * | 2001-02-01 | 2005-06-09 | Microsoft Corporation | Method and system for providing universal remote control of computing devices |
US20020154161A1 (en) * | 2001-02-01 | 2002-10-24 | Friedman Michael A. | Method and system for providing universal remote control of computing devices |
US20050105003A1 (en) * | 2002-03-29 | 2005-05-19 | Koninklijke Philips Electronics N.V. | Television receiving system |
US7633554B2 (en) | 2002-05-13 | 2009-12-15 | Microsoft Corporation | Selectively overlaying a user interface atop a video signal |
US20060114355A1 (en) * | 2002-05-13 | 2006-06-01 | Microsoft Corporation | Selectively overlaying a user interface atop a video signal |
US20060139373A1 (en) * | 2002-05-13 | 2006-06-29 | Microsoft Corporation | Selectively overlaying a user interface atop a video signal |
US7148930B2 (en) * | 2002-05-13 | 2006-12-12 | Microsoft Corporation | Selectively overlaying a user interface atop a video signal |
US7176981B2 (en) * | 2002-05-13 | 2007-02-13 | Microsoft Corporation | Selectively overlaying a user interface atop a video signal |
US20070079322A1 (en) * | 2002-05-13 | 2007-04-05 | Microsoft Corporation | Selectively overlaying a user interface atop a video signal |
US7511761B2 (en) * | 2002-05-15 | 2009-03-31 | Thomson Licensing | Close captioning system in windows based graphics system |
US20050225674A1 (en) * | 2002-05-15 | 2005-10-13 | Lynch David J | Close captioning system in windows based graphics system |
US20060044469A1 (en) * | 2004-08-28 | 2006-03-02 | Samsung Electronics Co., Ltd. | Apparatus and method for coordinating synchronization of video and captions |
US20090228948A1 (en) * | 2008-03-10 | 2009-09-10 | Sony Corporation | Viewer selection of subtitle position on tv screen |
US7508450B1 (en) * | 2008-05-06 | 2009-03-24 | International Business Machines Corporation | Method for closed captioning of audio video content on a portable playback device |
US20100250794A1 (en) * | 2009-03-27 | 2010-09-30 | Microsoft Corporation | Removable accessory for a computing device |
US8019903B2 (en) * | 2009-03-27 | 2011-09-13 | Microsoft Corporation | Removable accessory for a computing device |
Also Published As
Publication number | Publication date |
---|---|
CA2124390A1 (en) | 1995-08-17 |
US5537151A (en) | 1996-07-16 |
CA2124390C (en) | 1999-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE39003E1 (en) | Closed caption support with timewarp | |
US5543850A (en) | System and method for displaying closed caption data on a PC monitor | |
KR100596149B1 (en) | Apparatus for reformatting auxiliary information included in a television signal | |
EP1143745B1 (en) | Image processing apparatus | |
JP3936390B2 (en) | Apparatus for receiving MPEG compressed video data including closed caption data contained within user data in an MPEG image header | |
US6335763B1 (en) | Television receiver and additional information transmitting method | |
US6903779B2 (en) | Method and system for displaying related components of a media stream that has been transmitted over a computer network | |
US5914719A (en) | Index and storage system for data provided in the vertical blanking interval | |
JP2001507180A (en) | Method and apparatus for generating a modulated scroll route for text display | |
JPH1075430A (en) | Video data processing device and video data display device | |
JPH10164521A (en) | Image processor | |
JP2014175793A (en) | Video processing apparatus, display device, television receiver, and video processing method | |
US20070140593A1 (en) | Method and apparatus for scaling selected areas of a graphics display | |
JP4631258B2 (en) | Portable device | |
US20050162446A1 (en) | Common on screen display size for multiple display formats | |
JP2002271751A (en) | Display control method and device | |
KR100188279B1 (en) | Televiewer option caption broadcasting, receive apparatus & method with dual-words caption transmit function | |
KR100188275B1 (en) | Televiewer option caption broadcasting, receiving apparatus & method possible two-words display | |
JPH10308931A (en) | Data multiplex broadcast reception system | |
KR100850999B1 (en) | Caption Signal Processing Device in Set Top Box | |
JP2000341623A (en) | Auxiliary display method for character picture on tv monitor and its device | |
KR100188273B1 (en) | Pop-on scroll method of caption broadcasting televiewer option | |
KR100246424B1 (en) | Character information translation apparatus and method of TV receiver | |
JP3253533B2 (en) | Decoding device for digital signal multiplexed with video signal | |
KR100206115B1 (en) | How to pause the viewer-selective side information display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |