USRE37504E1 - Ophthalmic surgery method using non-contact scanning laser - Google Patents
Ophthalmic surgery method using non-contact scanning laser Download PDFInfo
- Publication number
- USRE37504E1 USRE37504E1 US09/084,441 US8444198A USRE37504E US RE37504 E1 USRE37504 E1 US RE37504E1 US 8444198 A US8444198 A US 8444198A US RE37504 E USRE37504 E US RE37504E
- Authority
- US
- United States
- Prior art keywords
- laser
- corneal
- tissue
- scanning
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 158
- 238000001356 surgical procedure Methods 0.000 title claims description 81
- 238000002679 ablation Methods 0.000 claims abstract description 119
- 239000011521 glass Substances 0.000 claims abstract description 8
- 230000000649 photocoagulation Effects 0.000 claims abstract description 5
- 238000012937 correction Methods 0.000 claims description 47
- 230000003287 optical effect Effects 0.000 claims description 33
- 238000000608 laser ablation Methods 0.000 claims description 15
- ISQINHMJILFLAQ-UHFFFAOYSA-N argon hydrofluoride Chemical compound F.[Ar] ISQINHMJILFLAQ-UHFFFAOYSA-N 0.000 claims description 6
- 230000033001 locomotion Effects 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 3
- 238000004476 mid-IR spectroscopy Methods 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 208000036829 Device dislocation Diseases 0.000 claims 8
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 239000000463 material Substances 0.000 claims 2
- 230000015271 coagulation Effects 0.000 abstract description 25
- 238000005345 coagulation Methods 0.000 abstract description 25
- 230000008569 process Effects 0.000 abstract description 15
- 230000008901 benefit Effects 0.000 abstract description 10
- 239000007787 solid Substances 0.000 abstract description 2
- 238000002430 laser surgery Methods 0.000 abstract 2
- 210000001519 tissue Anatomy 0.000 description 28
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 24
- 239000004926 polymethyl methacrylate Substances 0.000 description 24
- 239000010410 layer Substances 0.000 description 14
- 230000008859 change Effects 0.000 description 11
- 210000004087 cornea Anatomy 0.000 description 11
- 239000013078 crystal Substances 0.000 description 11
- 201000009310 astigmatism Diseases 0.000 description 7
- 208000001491 myopia Diseases 0.000 description 7
- 230000004379 myopia Effects 0.000 description 7
- 238000012876 topography Methods 0.000 description 6
- 102000008186 Collagen Human genes 0.000 description 5
- 108010035532 Collagen Proteins 0.000 description 5
- 206010020675 Hypermetropia Diseases 0.000 description 5
- 229920001436 collagen Polymers 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000004305 hyperopia Effects 0.000 description 5
- 201000006318 hyperopia Diseases 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000003685 thermal hair damage Effects 0.000 description 4
- 241001270131 Agaricus moelleri Species 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 2
- 208000010412 Glaucoma Diseases 0.000 description 2
- 229910003334 KNbO3 Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 208000006069 Corneal Opacity Diseases 0.000 description 1
- 208000028006 Corneal injury Diseases 0.000 description 1
- 206010011044 Corneal scar Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- XBJJRSFLZVLCSE-UHFFFAOYSA-N barium(2+);diborate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]B([O-])[O-].[O-]B([O-])[O-] XBJJRSFLZVLCSE-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004424 eye movement Effects 0.000 description 1
- 238000002839 fiber optic waveguide Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- VCZFPTGOQQOZGI-UHFFFAOYSA-N lithium bis(oxoboranyloxy)borinate Chemical compound [Li+].[O-]B(OB=O)OB=O VCZFPTGOQQOZGI-UHFFFAOYSA-N 0.000 description 1
- -1 neodymium yttrium aluminum Chemical compound 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003954 pattern orientation Effects 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- WYOHGPUPVHHUGO-UHFFFAOYSA-K potassium;oxygen(2-);titanium(4+);phosphate Chemical compound [O-2].[K+].[Ti+4].[O-]P([O-])([O-])=O WYOHGPUPVHHUGO-UHFFFAOYSA-K 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000004335 scaling law Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 208000029257 vision disease Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/203—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F9/00802—Methods or devices for eye surgery using laser for photoablation
- A61F9/00804—Refractive treatments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F9/00821—Methods or devices for eye surgery using laser for coagulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/361—Removing material for deburring or mechanical trimming
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
- A61B2018/20359—Scanning mechanisms by movable mirrors, e.g. galvanometric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00853—Laser thermal keratoplasty or radial keratotomy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00861—Methods or devices for eye surgery using laser adapted for treatment at a particular location
- A61F2009/00872—Cornea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00878—Planning
- A61F2009/00882—Planning based on topography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00897—Scanning mechanisms or algorithms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/30—Organic material
- B23K2103/32—Material from living organisms, e.g. skins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
Definitions
- the present invention relates to laser ophthalmic surgery using a compact, low-cost, low-power laser system with a computer-controlled, non-contact process and corneal topography to perform corneal reshaping using either surface ablation or thermal coagulation.
- lasers have been used for ophthalmic applications including the treatments of glaucoma, cataract and refractive surgery.
- suitable laser wavelengths are in the ranges of visible to near infrared. They include: Nd:YAG (1064 nm), doubled-YAG (532 nm), argon (488, 514 nm), krypton (568, 647 nm), semiconductor lasers (630-690 nm and 780-860 nm) and tunable dye lasers (577-630 nm).
- UV lasers excimer at 193 nm and fifth-harmonic of Nd:YAG at 213 nm
- PRK photorefractive keratectomy
- Corneal reshaping may also be performed by laser thermal coagulation currently conducted with Ho:YAG lasers using a fiber-coupled, contact-type process.
- the existing ophthalmic lasers as above described have one or more of the following limitations and disadvantages: high cost due to the high-power requirement in UV lasers for photorefractive keratectomy; large size and weight; high maintenance cost and gas cost (for excimer laser), and high fiber-cost for contact-type laser coagulation.
- Another object of the present invention is to provide ophthalmic laser systems which offer the advantages of: low-cost, reduced size and weight, reliability, easy-operation and reduced maintenance. Another object of this invention is to provide a computer-controlled scanning device which enables use of a low-cost, low-energy laser for photorefractive keratectomy currently performed only by high-power UV lasers.
- This prior art however requires high UV energy of (100-300 mJ) per pulse from the laser cavity or (30-40) mJ per pulse delivered onto the corneal surface, where large area corneal ablation using a beam spot size of about (4-6) mm which gives an energy density of (120-200) mJ/cm 2 .
- the prior art Argon Fluoride excimer lasers operate at a repetition rate of (5-15) Hz and also limit the practical use of the tangential ablation concept which takes at least (5-10) minutes for a ⁇ 5 diopter corneal correction in a 5-mm optical zone.
- the high energy requirement of the currently used Argon Fluoride excimer laser suffers the problems of: high-cost (in system, erodible mask and gas cost), high-maintenance cost, large size/weight and system are sensitive to environmental conditions (such as temperature and moisture).
- the prior art proposes the method of having individual square beams (0.5 ⁇ 0.5 mm) scan to the fashion of exact matching of the square boundaries to cover the area of 6 mm, where the overlap among these individual beams should be avoided, otherwise excessive ablation near the boundaries of each 0.5 ⁇ 0.5 mm spot causes ridges. This is also part of the reason that the prior art requires a substantially square section of the individual beam with a substantially uniform density.
- the L'Esperance U.S. Pat. No. 4,665,913 requires a complex apparatus to select a section of the beam which is substantially uniform in density within a substantially square spot “dot”.
- the overall efficiency would be less than 10% from the output of the laser window to the corneal surface and requires, where a high power (at least 100 mJ) excimer laser than will be required than the Blum, et al. patent. It is almost impossible to match exactly the boundary of each square beam to achieve a substantially uniform scanned area even if each individual beam is perfectly uniform and square in shape and the smooth increase of the radius of scanned areas to obtain, for example, a myopic correction profile, would still be almost impossible to achieve for an overall smooth corneal surface.
- each required individual ablated area be substantially uniform and in a round or square shape, which is very difficult to achieve even if a perfectly uniform, square portion of a fundamental beam is produced using a complex apparatus for beam reshaping and having the high initial power.
- the present invention proposes that a large portion (50%-80%) of overlap among the individual beams is necessary in order to achieve uniform ablated areas and a smooth profile without ridges.
- a low-power UV laser (0.1-2 mJ on corneal surface) at its bare-beam (having typically a 3-lop profile) without any beam reshaping is sufficient to achieve a smooth ablation surface based on the method proposed in the present invention, where computer-controlled beam overlap and orientation are employed.
- another object of the present invention is to provide a new method of beam scanning which combines beam overlap and orientation for a random beam density distribution on the ablated corneal surface such that the individual beam profiles are not critical, where the focused beam (spot size of 0.1-1.2 mm) uses very low energy (0.1-2 mJ) and at its bare-profile is delivered onto the corneal surface in an averaged fashion.
- Uniform, near flat-top ablated areas of (1-9 mm in diameter) can be performed by the nonuniform starting-beam, but only when a set of specific predetermined overlap and orientation parameters are used.
- One of the essential feature of the present invention for the photorefractive keratectomy process is to use a scanning device in a laser system which has high repetition rates, 50 to 50,000 Hz, but requires less energy, ranging between 0.05-10 mJ per pulse, or about 10 to 100 times less than that of the prior art.
- This new concept enables one to make the refractive lasers at a lower cost, smaller size and with less weight (by a factor of 5-10) than that of prior art lasers.
- these compact lasers of the present invention are portable and suitable for mobile clinical uses.
- a mathematical model of the beam overlap and ablation speed is also disclosed in the present invention.
- the prior art uses fiber-coupled contact-type procedure which involves the following drawbacks: (i) slow processing speed (typically a few minutes to perform eight-spot coagulation) which causes the non-uniform collagen shrinkage zone; (ii) circular coagulation zone which limits the procedure only for spherical type correction such as hyperopia; and (iii) the contact fiber-tip must be replaced in each procedure.
- slow processing speed typically a few minutes to perform eight-spot coagulation
- circular coagulation zone which limits the procedure only for spherical type correction such as hyperopia
- the contact fiber-tip must be replaced in each procedure.
- a computer-controlled scanning device is able to perform the laser thermokeratoplasty procedure under a non-contact mode and conduct the procedure many times faster than that of the prior contact-procedure and without cost for a fiber-tip replacement.
- the coagulation patterns can be computer predetermined for specific applications in both spherical and astigmatic corrections.
- the flexible scanning patterns will also offer uniform and predictable collagen shrinkage.
- photorefractive keratectomy laser thermokeratoplasty, epikeratoplasty, intrastroma photokeratectomy (IPK), phototherapeutic keratectomy (PTK), and laser-assisted keratomileusis (LAK).
- the preferred embodiments of the basic ophthalmic surgery method uses a laser system for the ophthalmic surgery process, including: (1) a diode-pumped solid-state lasers of Nd:YAG or Nd:YLF which is frequency-converted by non-linear crystals of KTP (potassium titanyl phosphate), LBO (lithium triborate), KNbO3 (potassium niobate) and BBO (beta barium borate) into the fifth-harmonic at wavelength of 213 nm or 210 nm with energy of 0.01 to 5.0 mJ; (2) a compact, low-cost, low-power (energy of 1 to 10 mJ per pulse) argon fluoride excimer laser at 193 nm; (3) a frequency-converted Alexandite or Li:SAF or diode, lasers at (193-220) nm; (4) a compact, low-cost, Q-switched Er:YAG laser at 2.94 microns; (5) a free
- the above-described basic lasers includes UV-lasers (193-215 nm) and IR-laser (1.5-3.2 microns) which are focused into a spot size of (0.05-2) mm in diameter, where laser energy per pulse of (0.01-10) mJ is sufficient to achieve the photo-ablation threshold (PAT) energy density of 50 to 600 mJ/cm 2 depending upon the laser parameters (wavelengths and pulse duration) and tissue properties (absorption and scattering).
- PAT photo-ablation threshold
- the prior art excimer laser uses large beam spot ablation (4-6 mm) and require much higher laser energy (100-300 mJ) than the low-power lasers presented in this invention.
- a scanning, non-contact device is used to control the low-power laser for corneal diopter change, whereas diaphragms or masks are used in the high-power, high-cost excimer lasers, and contact, fiber-tip is used in the photo-coagulation procedure.
- a mathematical model is presented according to the optimal beam overlap for beam uniformity and fast procedure and scanning patterns for refractive corrections of myopia, hyperopia and astigmatism.
- refractive procedures may be completed in 20 to 60 seconds (depending on the diopter corrections) in the present invention, where scanning speed is only limited by the laser repetition rates.
- a three-dimensional translation device (in X, Y and Z) is integrated into the above laser systems, where the laser heads are compact and light-weight and can be steered to the corneal center by the translation stages.
- the prior art high-powered excimer laser systems are stationary and require a motorized chair for corneal concentration. Beam steering and scanning is very difficult for these high-power, heavyweight excimer lasers.
- a free-running Ho:YAG (at 2.1 microns) or Er:glass (at 1.54 microns) or diode (1.9-3.2 microns) laser delivers a beam by a fiber waveguide and coupled to a scanning device for non-contact procedure for laser thermokeratoplasty (LTK), where optimal scanning patterns for corneal coagulation are performed for both spherical and astigmatic corrections.
- LTK laser thermokeratoplasty
- the above-described laser system provides an effective, low-cost tool for procedures of synthetic epikeratoplasty (SEK), where the artificial lens is sculpted with the laser to optimize lens curvature without causing problems of corneal haze and corrective regression.
- Real corneal tissues may also be sculpted and implanted by the above-described laser systems, a procedure known as laser myopic keratomileusis (MKM).
- MKM laser myopic keratomileusis
- UV and IR lasers disclosed in the present invention provide an effective tool for phototherapeutic keratectomy (PTK) which is currently conducted by high-power excimer lasers and the procedure conducted by diamond-knife called radial keratotomy (RK).
- PTK phototherapeutic keratectomy
- RK radial keratotomy
- the fundamental beam at 1064 or 1053 nm wavelength of the present invention may also be used for the intrastroma photorefractive keratectomy (IPK), where the laser beam is focused into the intrastroma area of the corneal and collagen tissue are disrupted.
- IPK intrastroma photorefractive keratectomy
- the ophthalmic applications of the laser systems described in the present invention should include photorefractive keratectomy, phototherapeutic keratectomy, laser thermokeratoplasty, intrastroma photokeratectomy, synthetic epikeratoplasty, and laser radial keratotomy.
- FIG. 1 is a block diagram of computer-controlled laser system consisting of a laser, scanning device, power supply and the beam steering stage for ophthalmic applications;
- FIG. 2 is a block diagram for the generation of ultraviolet wavelengths at 213 nm or 210 nm using nonlinear crystals in a diode-pumped system
- FIG. 3 is a block diagram of a computer-controlled refractive laser system of Ho:YAG or Er:glass or diode laser in a non-contact scanning mode for laser thermokeratoplasty;
- FIGS. 4A through 4E shows computer-controlled scanning patterns for photo-coagulation in non-contact LTK procedures for both spherical and astigmatic corneal reshaping
- FIGS. 5A and 5B are procedures for laser-assisted myopic keratomileusis and hyperopic keratomileusis, where the reshaping can be performed either on the inner or outer part of the tissue;
- FIGS. 6A through 6D show computer-controlled beam overlap and scanning patterns for myopic, hyperopic and astigmatic correction using UV (193-240 nm) or IR (0.7-3.2 microns) lasers;
- FIGS. 7A and B laser radial keratectomy patterns (LRK) using laser excisions for myopia (radial-cut) and astigmatism (T-cut);
- FIGS. 8A through 8D show ablation patterns for refractive correction using predetermined coatings on UV or IR grade windows
- FIGS. 9A through 9B show the spatial overlap for uniform pattern
- FIGS. 10A through 10B show the beam orientation for smooth ablation
- FIG. 11 shows the oriented expanding scanning to achieve the required ablation profiles, where the diameters are governed by a mathematical formula.
- I the laser intensity
- PAT photoablation threshold
- the drawback of using a low-energy, small-spot laser for large area ablation is that the operation time will be longer than that of a large-spot but high-power laser.
- time of operation may be shortened by using a high-repetition-rate laser (higher than 50 Hz).
- Small-spot, low-energy lasers for large area surface ablation would becomes practical only when a scanning device is used in a high-repetition-rate laser and only when uniform beam profile can be assured by the appropriate beam overlap.
- the overall operation rate (R) for a given diopter correction (D) is limited by the laser scanning rate (R 1 ) which is in turn limited by the laser repetition rate.
- R is also proportional to the tissue ablation rate (RT) which is proportion to the laser intensity I (or energy density) at a given energy E.
- the diopter change (D) in the case of myopia is related to the correction zone diameter (W) and the center ablation thickness (h 0 ) and the ablation profile h(x) (at corneal position x) by:
- the number of ablation layers (M 1 ) (without beam overlap) required for D-diopter correction is therefore related to the ablation thickness per pulse (T 1 ), D, and W by
- the required effective number of overlapped ablation layers is M 1 /F.
- TS single-layer scanning time
- Equation 4 gives us the scaling-law for operation time required (T), the laser energy (E), diopter change (D) and the ablation zone diameter (W).
- T operation time required
- E laser energy
- D diopter change
- W ablation zone diameter
- T ablation zone diameter
- P beam spot size
- the laser intensity must be above the photo-ablation threshold(PAT) by either beam focusing or increase the laser energy.
- CW lasers either UV or IR
- Lasers at Q-switched or mode-locked mode and with pulse-duration shorter than 100 nanosecond will normally achieve the intensity above the PAT even at low-energy level of 0.05-5 mJ.
- picosecond lasers at high repetition rate is desirable where energy in the microjoule range would be sufficient.
- the Q-switched short pulse lasers have smaller thermal damage than that of free-running lasers.
- the cost-effective refractive lasers are those which have high repetition rate (50 Hz and up) but operated at low-energy (0.05-5 mJ) and short pulse duration (0.001-20 nanoseconds).
- the preferred embodiments disclosed in the present invention as discussed in FIG. 1 are based upon this theory. Beam focusing and scanning are always required to achieve the PAT and smooth ablation profile.
- the individual beam profile in the scanning system is not as critical as that in prior art lasers which require a uniform overall profile within the large ablation zone of (4-6) mm. In laboratory tests, we have achieved a very smooth ablation profile with zone diameter up to 8 mm starting from a non-uniform focused beam profile which was randomly scanned over the ablation zone of (1-8) mm.
- a refractive laser system in accordance with the present invention comprises a basic laser 10 having UV (193-220 nm) or IR (0.7-3.2 microns) wavelength 11 coupled by a scanning device 12 having the beam from focusing optics 14 directed onto a reflecting mirror 15 into target 16 which target may be the cornea of an eye.
- An arming system 17 has a visible wavelength (from a laser diode or He—Ne laser) 18 adjusted to be collinear with the ablation beam 11 and defines the centration of the beam onto the cornea surface at normal incident.
- the basic laser head 20 is steered by a motorized stage for X and Y horizontal directions 21 and the vertical (height) direction 22 which assures the focusing beam spot size and the centration of the beam onto the cornea.
- the system has a computer controlled panel 23 and wheels 24 for portable uses.
- the target 16 includes a human cornea for applications of photorefractive keratectomy, phototherapeutic keratectomy and laser radial keratotomy (using the UV 193, 210, 213 nm or IR 2.9 microns beam focused on the corneal surface area) and intrastroma photokeratectomy (using the 1064 or 1053 or 1047 nm beam, or their second-harmonic, focused into the intrastroma area), and synthetic or real corneal tissues for applications of synthetic epikeratoplasty and myopic keratomileusis.
- the computer controlling panel 23 also provides the synchronization between the scanning gavo (galvanometer scanner) and the laser repetition rate. A commercially available galvanometer scanner made by General Scanning, Inc. is used in scanning the laser beam.
- the basic laser 10 includes a compact, optically-pumped (either flash-lamp or laser-diode pumped) lasers of Nd:YAG, Nd:YLF or the self-frequency-doubling crystal of NYAB (neodymium yttrium aluminum) with pulse duration of 0.05-20 nanoseconds and repetition rate of 1-10,000 Hz. It is known that this basic laser 10 is available using a standard Q-switch or mode-lock, where the UV wavelength at 209-213 nm may be achieved by the frequency conversion techniques using nonlinear crystals disclosed by the inventor in U.S. Pat. No. 5,144,630. The UV laser energy required for efficient ablation ranges from 0.01 mJ to 5 mJ.
- the basic laser also includes a compact, argon fluoride excimer laser (at 193 nm) with repetition rate of (1-1,000) Hz, energy per pulse of (0.5-10) mJ, pulse duration of (1-50) nanoseconds and a compact, Er:YAG laser (at 2.94 microns) with repetition rate of (1-200) Hz, energy per pulse of (50-500) mJ, pulse duration of (50-400) nanoseconds and frequency-converted IR lasers of diode laser, optically-pumped Alexandrite or Li:SAF lasers, where efficient nonlinear crystals (as shown in FIG.
- the basic laser may also include ultrashort pulsed lasers, such as a commercialized mode-locked Ti:sapphire laser or other solid-state laser, with wavelength ranges of (750-1100 nm), repetition rates of (0.01-100 MHz), energy per pulse of (0.01-100) microjoules, and pulse durations of (0.05-10) picoseconds where focused beam spot size of (0.05-0.5) mm is required to achieve the ablation threshold.
- ultrashort pulsed lasers such as a commercialized mode-locked Ti:sapphire laser or other solid-state laser, with wavelength ranges of (750-1100 nm), repetition rates of (0.01-100 MHz), energy per pulse of (0.01-100) microjoules, and pulse durations of (0.05-10) picoseconds where focused beam spot size of (0.05-0.5) mm is required to achieve the ablation threshold.
- a focused spot size of (0.05-0.5) mm of the ultrashort pulsed lasers would be appropriate to achieve the tissue ablation and precise ablation profile is available by the scanning device proposed by the present invention. Without a scanning device, an ultrashort pulsed laser cannot be used in refractive surgery due to its energy level of less than 0.1 mJ and spot size smaller than 0.5 mm.
- the above-described lasers may also be frequency-converted into UV ranges of (190-220) nm suitable for photoablation.
- the basic laser also includes a mid-IR (2.5-3.2 microns) laser generated from optical parametric oscillation (OPO) using a near-IR laser (such as Nd:YAG or Nd:YLF, flash-lamp or diode-pumped) as the pumping sources and KTP or BBO as the frequency conversion crystals.
- OPO optical parametric oscillation
- the OPO laser has advantages over the Q-switched Er:YAG laser, including higher repetition rate (10-5,000 Hz) and shorter pulse width (1-40 n.s.). These advantages provide faster surgical procedure and reduced thermal damage on the ablated corneal tissue.
- Typical energy per pulse of the OPO laser is (0.1-10) mJ. Greater detail on OPO was published by the inventor in Optical Communications, vol. 75, p. 315 (1990).
- the scanning device 12 is synchronized with the laser repetition rate, where the computer software is capable of providing predetermined patterns according to a patient's corneal topography for the corrections of myopia, hyperopia and astigmatism.
- Astigmatic correction in particular, is difficult to perform in prior art systems using a non-scanning diaphragm but can be easily achieved by the present invention using a scanning device.
- a multi-zone procedure for high diopter (6-15) changes can be performed by the computer program rather than that of the conventional mechanical iris.
- the low-power laser systems described in the present invention can perform the procedures normally required in high-power lasers because a scanning device is used to assure the uniform corneal ablation by beam overlap and the ablation threshold is achievable by small spot size.
- a preferred embodiment for the basic laser 10 of FIG. 1 having a UV wavelength includes a diode-pumped Nd:YAG (or Nd:YLF) 25 having a fundamental wavelength of 1064 nm (or 1047 and 1053 nm) 26 and is focused by a lens 27 into a doubling crystal 28 (KTP, KNbO3, LBO or BBO) to generate a green wavelength 30 at 532 nm (or 524 and 527 nm).
- Nd:YAG or Nd:YLF
- KTP, KNbO3, LBO or BBO doubling crystal 28
- the green beam 30 is further converted by a fourth harmonic crystal 31 (BBO) to generate a UV wavelength 32 at 266 nm (or 262-263 nm) which is finally converted by a fifth harmonic crystal 33 to generate the UV wavelength 11 at 213 nm (or 209-211 nm).
- BBO fourth harmonic crystal
- a fifth harmonic crystal 33 to generate the UV wavelength 11 at 213 nm (or 209-211 nm).
- diode-pumped Nd:YLF laser I am able to achieve the UV (at 209-211 nm) energy of 0.01-2 mJ per pulse with average-power of 0.1 to 0.5 W. This energy level when focused into a spot size of (0.1-0.5) mm is sufficient to ablate the corneal tissue.
- This diode-pumped fifth-harmonic system provides the most compact refractive UV solid-state laser available today with the advantages of long lifetime, low maintenance, portability and absence of toxic gas in comparison with the excimer lasers currently used by other companies. Furthermore by using the fundamental wavelength at 1064 nm (or 1053 or 1047 nm) or their second-harmonic (at 532, 524, or 527 nm), intrastroma photokeratectomy procedure may be performed by focusing the beam into the intrastroma area of the cornea.
- the laser presented in the present invention provide a compact, portable and low-cost IPK laser and has an advantage over the lasers used by other companies where the systems are currently more than five times heavier and are more costly.
- a commercially available Ho:YAG (or Er:glass) or diode laser 35 (either flash-lamp or laser-diode pumped) is coupled by a fiber optic waveguide 36 with core diameter of (100-600) microns to a scanning device 37 , in which the fundamental beam 38 with a wavelength of 2.1 (or 1.54) or (1.9-2.5) microns which is collimated by a lens 40 and coupled to the scanning gavo 41 and focused by another lens 42 onto the beam splitters 43 and 44 , and finally delivered to a target (such as a patient's cornea) 45 .
- a target such as a patient's cornea
- the IR (2.1 microns) laser beam 38 is collinear with the aiming beam 46 (visible He—Ne or diode laser) and the patent corneal center is also defined by a commercial slit-lamp microscope station 47 .
- the above-described apparatus offers the unique feature of non-contact laser thermokeratoplasty for precise coagulation in both spherical and astigmatic corneal power corrections with scanning patterns predetermined by a computer software hereinafter discussed.
- the focusing lens 28 may be motorized for varying the focal point and thus varying the coagulation cone size for optimal results.
- the precision of the coagulation zone and patterns are limited by doctors manual operation which is a much slower procedure than the computer controlled scanning device described in the present invention.
- the requirement of replacing the fiber-tip after each operation is also a drawback of the prior art systems.
- the advantages of the present system includes: precision coagulation zone and spot size, flexible patterns for a variety of corrections, fast processing time and elimination of the need for fiber-tip replacement.
- the basic laser 22 in accordance with the preferred embodiment of the present invention is a free-running or continuous-wave (CW) flash-lamp or diode-laser pumped Ho:YAG (at 2.1 microns) or Er:glass (at 1.54 microns), or IR diode laser (1.9-2.5 microns) with average power of 0.5-5 W, pulse duration of 200-2,000 micro-seconds (if free-running).
- CW continuous-wave
- the IR wavelengths of 1.54 and 2.1 and (1.9-2.5) microns are chosen due to their strong tissue absorption which is required in the photo-coagulation processes.
- the CW diode laser (1.9-2.5 microns) may be scanned in a faster rate than that of the free-running lasers.
- FIGS. 4A through 4E summarize the possible coagulation patterns suitable for both spherical and astigmatic corneal reshaping in the LTK procedures in a cornea 50 .
- FIG. 4-A with coagulation zone (CZ) of 5 to 9 mm and spot number (SN) of (8-16) provides hyperopic corrections of 1-6 diopters;
- FIG. 4-B has a coagulation zone of 1-3 mm suitable for myopic corrections;
- FIG. 4-C has radial coagulation zone and spot number of 16-32, suitable for spherical hyperopic correction;
- FIG. 4-D has a coagulation zone of 1-9 mm and spot number of 50-200, suitable for precise coagulation control to stabilize and reinforce the collagen shrinkage tension;
- FIGS. 4-A to 4 -E are designed for astigmatic change, where the coagulation patterns are chosen according to the corneal topography. By using the computer-controlled scanning, these patterns may be easily generated and predetermined according to the measured corneal topography of each patients.
- a combination of these patterns illustrated in FIGS. 4-A to 4 -E enables the treatment of patent's optical power correction in all aspects of myopia, hyperopia, astigmatism and their mixed vision disorder.
- laser parameters such as energy per pulse, spot size and scanning patterns also provide another degree of freedom for the laser thermokeratoplasty process which are not usually available in the prior art systems using the contact fiber-tip.
- the appropriate parameters relating to FIG. 4A-B are: laser energy per pulse of 5-50 mJ for free-running mode (200-400 micro-second duration), beam spot size of (0.1-1) mm, laser repetition rate of 5-30 Hz, coagulation zone of (1-10) mm, spot number of 8-200 spots and fiber core diameter of 100-600 microns, for a flash-lamp-pumped system. Also disclosed is the use of a diode-pumped Ho:YAG, either in a pulse-mode or continuous-wave (CW) mode. For a CW mode laser, energy of 10-100 mW is sufficient for coagulation when spot size of 0.05-0.5 mm is employed.
- a fast scanning In the diode-pumped system in CW mode or with a high-repetition-rate 20-100 Hz, a fast scanning enables completion of the coagulation procedures within 2-20 seconds depending upon the coagulation zone and spot number required. Fast scanning also provides a uniform collagen shrinkage unlike that of the prior art system using a manually operated fiber-tip which normally takes 1 to 5 minutes to complete in a multiple coagulation zone and high spot number. It is difficult to use a manually operated fiber-tip to generate the precise patterns as illustrated in FIG. 4 which can be easily performed in the computer-controlled scanning device as disclosed in the present invention. The patient's eye motion and decentration is a problem for prior art systems, but it is not a critical factor in the fast scanning device described herein.
- a laser-assisted myopic keratomileusis (MKM) and hyperopic keratomileusis (HKM) can be performed either on the outer corneal surface 51 or on the inner surface 52 to reshape the resealed corneal tissue without materially effecting the Bowman's layer.
- the preferred lasers are described in FIG. 1 including the UV (193-220 nm) and IR (2.5-3.2 microns) lasers.
- the non-invasive laser-assisted procedure disclosed in the present invention has the advantages over the procedures of photorefractive keratectomy and laser thermokeratoplasty including being safer, more stable with a higher diopter change, and without materially affecting epithelium and Bowman's layer.
- the laser-assisted myopic keratomileusis and hyperopic keratomileusis do not require corneal freezing and can perform very high diopter change not available by radial keratotomy or photorefractive keratectomy.
- Laser-assisted corneal preshaping can also be employed for a donor cornea in the procedure currently performed by epikeratophakia. Details of conventional lamellar refractive surgery may be found in Leo D. Bores, Refractive Eye Surgery (Blackwell Scientific Pub., 1993), Chapter 10.
- FIGS. 6A through 6D shows a nearly flat-top beam profile achieved by overlapping a series of laser beams, where the degree of overlap, 50%-80%, depends on the individual beam profiles which are not required to be flat-top.
- the preferred individual beam profile is either a 70% Gaussian or a symmetric profile.
- I have demonstrated a smooth laser-ablated PMMA surface with zone diameter of 3-6 mm by overlapping a large number of pulses, 500 to 5,000, each one having a spot size of 0.8-1.2 mm.
- smooth transition among the ablation zones were achieved without the transition zone steps found in prior art systems using mechanical diaphragms.
- one of the significant features of the present scanning device is that it can generate predetermined patterns based upon the corneal topography for astigmatism correction (see 6 D). Corneal scar may also be easily located by a topography and photoablated by a laser based on the computer-controlled scanning patterns. The preferred lasers for the procedures described in FIG. 6 are discussed in connection with FIG. 1 .
- the scanning schemes were tested by ablation on PMMA plasty.
- the computer software is based upon the mathematical model described earlier in equations 1 and 2 where the center ablation thickness was equally spaced to define the associate scanning diameters. Given the ablation thickness per pulse and per ablation layer (at a given scanning diameter), one may easily obtain the overall corneal surface ablation profile, (see equation (1)). The number of required ablation layers is therefore proportional to the diopter change (D) and square of the ablation zone (W).
- the computer parameters designed in the present invention include: diopter change (D), optical zone diameter (W), and the degrees of overlap in both tangential (TD) and radial (RD) direction of the scan patterns as shown in FIGS. 6A through 6D.
- In vitro measurement of corneal tissue ablation can be calibrated according to the comparison of the ablation rate between PMMA and tissue.
- myopic and hyperopic corrections I have used circular scanning patterns with beam overlap controlled by the tangential scanning speed and diameters of the adjoined circles.
- the preferred scanning scheme is from small circle to large circle. For example, given a laser spot size of 1 mm, a radial overlap of 50% will require the scanning circle to start from 1 mm diameter to 5 mm diameters with an increment of 0.5 mm for an optical zone of 5 mm. Furthermore, a tangential overlap of 50% requires the scanner to move at an angular speed of about 23 degrees within the interval between each laser pulse.
- a linear scanning pattern may also be used in particular for the myoptic and astigmatic corrections.
- a laser radial keratectomy (LRK) performed by laser excision has advantages over the conventional diamond-knife radial keratotomy (RK) including higher predictability and reproducibility by precise control of the excision (or ablation) depth. Furthermore, using the scanning device of the present invention, laser radial keratotomy may be performed easily and rapidly with less dependance upon the surgeon's skill and experience. Corneal reshaping may be performed by controlling the laser parameters such as spot size, intensity, scanning speed, beam overlap, and the excision depth per pulse which typically ranges from 0.2 to 0.5 microns. The excision depth precision of a laser is at least 10 times better than that of a knife.
- laser-knife should be able to perform all the radial keratotomy procedures performed by a “diamond-knife” by using similar techniques to those introduced in the Book of Leo D. Bores, Refractive Eye Surgery, Chapters 8 and 9.
- Examples of laser radial keratotomy are shown in 7 A for myopia (radial-cut) and 7 B for astigmatism (T-cut).
- the preferred lasers for laser radial keratotomy include the lasers described in FIG. 1 .
- the ablation patterns suitable for refractive procedures may be generated by using coated windows such as UV (or IR) grade fused silica, MgF, BaF or sapphire (when an IR laser is used), with preferred thickness of (0.5-2) mm and diameter of (8-15) mm.
- coated windows such as UV (or IR) grade fused silica, MgF, BaF or sapphire (when an IR laser is used), with preferred thickness of (0.5-2) mm and diameter of (8-15) mm.
- scanning laser beams 53 at wavelength of UV or IR
- FIGS. 8A scanning laser beams 53 (at wavelength of UV or IR) with circular scanning pattern to deliver uniform (or constant) laser energy over the coated window 44 with coating specification (at UV or IR wavelength) according to the profile on the corneal tissue 55 (or PMMA surface) will also achieve the same pattern described by equation (1).
- coated windows 8B and 8C show the reflection profiles of the coated windows for myopia, hyperopia and astigmatism, respectively, based on predetermined diopter changes.
- These coated windows disclosed in the present invention can be reused for cost effectiveness and has an advantage over the prior art system using the disposable mask which is costly and is difficult to provide reproducible results due to the non-uniform transmission or ablation properties of the mask.
- the actually measured PMMA profiles were generated from the Microsensor (made by TENCOR INSTRUMENTS, INC.) using our ArF laser (the Compak-200 Mini-Excimer system, made by LaserSight, Inc.) having laser parameters of: (2-4 mJ) energy at the output window, operated at (50-200) Hz, with the beam focused onto the corneal surface at a spot size of about (0.2-1.2) mm, with energy per pulse of (0.5-1.5) mJ, tunable by a coated MgF window.
- ArF laser the Compak-200 Mini-Excimer system, made by LaserSight, Inc.
- the basic beam profile is worse than a 50% Gaussian and actually has a three-lop structure which is typical in an ArF excimer laser.
- Even under this poor beam uniformity condition we are still able to obtain very uniform overall ablated areas of (2-9) mm in diameter, as shown in FIG. 9B (curve B) with surface roughness less than 1 microns (vs. about 10 microns in curve A), when a set of appropriate beam overlap parameters are used. Smaller dx and dy will further improve smoothness, which, however, may take a longer operation time.
- I have been able to further improve the beam uniformity by the beam orientation method as follows.
- I repeated the linear scan pattern along the x-direction, or rotation angle (A) zero, for about 25 times (layers).
- An angle A 65 degrees was chosen in this particular example to randomize the basic beam structure (having a non-uniform profile) and to achieve the uniform overall ablation. This averaging procedure by beam orientation will largely reduce the potential roughness caused by the basic beam structure, noting that rotation angles, such as 20, 30, 60 or 120 degrees (in which 360 degrees can be divided into integers), should be avoided to prevent repeated patterns after a few rotation layers.
- a larger angle(A) is chosen for smaller diopter corrections and vice versa for the best results. This is to make sure that enough beam randomization is performed for various diopter corrections which are proportional to the numbers of scanned layers. Comparisons are shown in FIG.
- FIG. 11A shows the schematic of rotated ablated areas with increasing diameters (from about 0.5 to 6 mm) governed by Equation (1), where a typical number of layers (or scanned areas at various diameters) of 25 is needed for a ⁇ 5 diopter correction.
- this represents an ablation rate of about 2 microns in corneal tissue in each layer, where a pulse energy of about 0.9 mJ at spot size of 1 mm and repetition rate of 100 Hz is used.
- a smaller energy (0.6-0.8 mJ), or smaller ablation rate (0.5-1.0 microns) is desired for smoother and more accurate results.
- FIG. 11B shows the PMMA ablation profile measured from a Microsensor using the techniques shown in FIG. 11A, where an ablation zone size of about 5 mm with center depth of about 16 microns were shown. I believe that the PMMA profiles shown in FIGS. 9 through 11 represent, for the first time, the novel features of the techniques disclosed in the present invention.
- the method disclosed in the present invention combines beam scanning, overlapping and pattern rotation (randomization) provides a powerful yet simple technique for optimal results of laser refractive surgery which involves both clinical aspects (ablation diopter, ablation optical zone, smoothness, patient centration and operation speed) and engineering aspects (beam profile, uniformity, stability, energy, spot size and delivery systems).
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Ophthalmology & Optometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Electromagnetism (AREA)
- Molecular Biology (AREA)
- Laser Surgery Devices (AREA)
Abstract
Description
Claims (91)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/084,441 USRE37504E1 (en) | 1992-12-03 | 1998-05-27 | Ophthalmic surgery method using non-contact scanning laser |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US98561792A | 1992-12-03 | 1992-12-03 | |
US08/218,319 US5520679A (en) | 1992-12-03 | 1994-03-25 | Ophthalmic surgery method using non-contact scanning laser |
US09/084,441 USRE37504E1 (en) | 1992-12-03 | 1998-05-27 | Ophthalmic surgery method using non-contact scanning laser |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/218,319 Reissue US5520679A (en) | 1992-12-03 | 1994-03-25 | Ophthalmic surgery method using non-contact scanning laser |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE37504E1 true USRE37504E1 (en) | 2002-01-08 |
Family
ID=26912791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/084,441 Expired - Fee Related USRE37504E1 (en) | 1992-12-03 | 1998-05-27 | Ophthalmic surgery method using non-contact scanning laser |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE37504E1 (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6497701B2 (en) | 1999-04-30 | 2002-12-24 | Visx, Incorporated | Method and system for ablating surfaces with partially overlapping craters having consistent curvature |
US6547393B2 (en) | 1999-03-10 | 2003-04-15 | Luis Antonio Ruiz | Interactive corrective eye surgery system with topography and laser system interface |
US20030174755A1 (en) * | 2002-02-11 | 2003-09-18 | Ming Lai | Speckle free laser probe beam |
US6716210B2 (en) * | 1992-12-03 | 2004-04-06 | Lasersight Technologies, Inc. | Refractive surgical laser apparatus and method |
US20050096639A1 (en) * | 2000-05-08 | 2005-05-05 | Michael Slatkine | Non-penetrating filtration surgery |
US20050165387A1 (en) * | 2004-01-23 | 2005-07-28 | Holger Lubatschowski | Control for a surgical laser |
US20050190805A1 (en) * | 2003-06-30 | 2005-09-01 | Scripsick Michael P. | Doped stoichiometric lithium niobate and lithium tantalate for self-frequency conversion lasers |
US20050288745A1 (en) * | 2004-06-28 | 2005-12-29 | Andersen Dan E | Method and device for optical ophthalmic therapy |
US20060195076A1 (en) * | 2005-01-10 | 2006-08-31 | Blumenkranz Mark S | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US20060276776A1 (en) * | 2005-06-01 | 2006-12-07 | Lin J T | Method and system for two-step customized cornea reshaping using ultraviolet infrared lasers |
WO2006069448A3 (en) * | 2004-12-30 | 2007-03-22 | R J Dwayne Miller | Laser selective cutting by impulsive heat deposition in the ir wavelength range for direct-drive ablation |
EP1787607A1 (en) * | 2005-11-17 | 2007-05-23 | Wavelight Laser Technologie AG | Apparatus and method for surgical laser treatments of the eye. |
US20070129709A1 (en) * | 2005-12-01 | 2007-06-07 | Andersen Dan E | System and method for minimally traumatic ophthalmic photomedicine |
USRE40420E1 (en) * | 1999-08-26 | 2008-07-01 | Carl Zeiss Meditec Ag | Method and device for treating opaqueness and/or hardening of a closed eye |
US20080319427A1 (en) * | 2007-03-13 | 2008-12-25 | Palanker Daniel V | Computer guided patterned laser trabeculoplasty |
US20090012506A1 (en) * | 2006-03-09 | 2009-01-08 | Vladimir Feingold | Laser mask for creating a corneal pocket |
US20090012507A1 (en) * | 2007-03-13 | 2009-01-08 | William Culbertson | Method for patterned plasma-mediated modification of the crystalline lens |
US20090039282A1 (en) * | 2007-07-31 | 2009-02-12 | Bruker Daltonik Gmbh | Matrix-assisted laser desorption with high ionization yield |
US20090088734A1 (en) * | 2007-09-28 | 2009-04-02 | Eos Holdings, Llc | Laser-assisted thermal separation of tissue |
US20110196355A1 (en) * | 2008-11-18 | 2011-08-11 | Precise Light Surgical, Inc. | Flash vaporization surgical systems |
US20110276042A1 (en) * | 2003-07-23 | 2011-11-10 | Manfred Dick | Method device and system for determining a system parameter of a laser beam treatment system |
US20120150160A1 (en) * | 2009-08-03 | 2012-06-14 | Klaus Vogler | Apparatus for laser surgical ophthalmology |
US20120296318A1 (en) * | 2011-05-16 | 2012-11-22 | Wellhoefer Armin | System and process for surgical treatment of an eye as well as process for calibrating a system of such a type |
US20150100049A1 (en) * | 2005-09-19 | 2015-04-09 | Topcon Medical Laser Systems, Inc. | System and method for generating treatment patterns |
US9072589B2 (en) | 2005-11-17 | 2015-07-07 | Wavelight Gmbh | Assembly and method for performing surgical laser treatments of the eye |
US9168175B2 (en) | 2008-09-04 | 2015-10-27 | Vladimir Feingold | Method for laser cutting a corneal pocket |
US20160067095A1 (en) * | 2014-09-09 | 2016-03-10 | Amo Development, Llc | Systems and methods for synchronized three-dimensional laser incisions |
US20160374858A1 (en) * | 2015-06-24 | 2016-12-29 | Wavelight Gmbh | Apparatus for eye laser surgery and method for performing a transepithelial photorefractive keratectomy |
US9820886B2 (en) | 2014-02-28 | 2017-11-21 | Excel-Lens, Inc. | Laser assisted cataract surgery |
WO2017130185A3 (en) * | 2016-01-25 | 2017-11-23 | Syneron Medical Ltd. | Skin treatment apparatus and method |
US10206817B2 (en) | 2014-02-28 | 2019-02-19 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US10231872B2 (en) | 2014-02-28 | 2019-03-19 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US10327951B2 (en) | 2014-02-28 | 2019-06-25 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US20200230739A1 (en) * | 2012-05-18 | 2020-07-23 | View, Inc. | Circumscribing defects in optical devices |
US10729496B2 (en) | 2017-11-21 | 2020-08-04 | Cutera, Inc. | Dermatological picosecond laser treatment systems and methods using optical parametric oscillator |
EP2805697B1 (en) | 2003-06-02 | 2021-05-05 | Carl Zeiss Meditec AG | High-precision material processing device |
CN113907947A (en) * | 2020-08-04 | 2022-01-11 | 施温德眼科技术解决方式有限公司 | Method for controlling an ophthalmic surgical laser and treatment device |
US11253317B2 (en) | 2017-03-20 | 2022-02-22 | Precise Light Surgical, Inc. | Soft tissue selective ablation surgical systems |
US11400308B2 (en) | 2017-11-21 | 2022-08-02 | Cutera, Inc. | Dermatological picosecond laser treatment systems and methods using optical parametric oscillator |
US11886088B2 (en) | 2011-09-14 | 2024-01-30 | View, Inc. | Portable defect mitigators for electrochromic windows |
Citations (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2480737A (en) | 1948-03-08 | 1949-08-30 | Jayle Gaetan Jean-Edward | Cutting instrument particularly useful in connection with corneal grafting |
US3074407A (en) | 1956-09-17 | 1963-01-22 | Marguerite Barr Moon Eye Res F | Surgical devices for keratoplasty and methods thereof |
US3476112A (en) | 1966-12-05 | 1969-11-04 | Jacob K Elstein | Surgical instrument for removal of thin layers |
US3697889A (en) | 1970-02-17 | 1972-10-10 | Xerox Corp | Tunable laser |
US3743965A (en) | 1971-07-12 | 1973-07-03 | Spectro Physics Inc | Tunable lasers |
US3848104A (en) | 1973-04-09 | 1974-11-12 | Avco Everett Res Lab Inc | Apparatus for heat treating a surface |
US3938058A (en) | 1973-03-26 | 1976-02-10 | Hitachi, Ltd. | Tunable laser |
US3982541A (en) | 1974-07-29 | 1976-09-28 | Esperance Jr Francis A L | Eye surgical instrument |
US3983507A (en) | 1975-01-06 | 1976-09-28 | Research Corporation | Tunable laser systems and method |
US4169663A (en) | 1978-02-27 | 1979-10-02 | Synemed, Inc. | Eye attention monitor |
US4180751A (en) | 1978-09-08 | 1979-12-25 | Gte Sylvania Incorporated | Mode-locked optical parametric oscillator apparatus |
US4349907A (en) | 1980-04-23 | 1982-09-14 | The United Stated Of America As Represented By The Department Of Energy | Broadly tunable picosecond IR source |
US4386428A (en) | 1980-10-14 | 1983-05-31 | Sanders Associates, Inc. | Tripled Nd:YAG Pumped Tm3+ laser oscillator |
US4423728A (en) | 1982-02-26 | 1984-01-03 | Lieberman David M | Cam-guided trephine |
US4461294A (en) | 1982-01-20 | 1984-07-24 | Baron Neville A | Apparatus and process for recurving the cornea of an eye |
US4477159A (en) | 1980-11-06 | 1984-10-16 | Nidek Co., Ltd. | Photocoagulator |
US4520816A (en) | 1983-01-12 | 1985-06-04 | Schachar Ronald A | Method and apparatus for delivering laser energy for ophthalmic use |
US4526171A (en) | 1980-01-15 | 1985-07-02 | Schachar Ronald A | Cornea incision device |
US4538608A (en) * | 1984-03-23 | 1985-09-03 | Esperance Jr Francis A L | Method and apparatus for removing cataractous lens tissue by laser radiation |
US4546773A (en) | 1981-01-23 | 1985-10-15 | Accutome, Inc. | Apparatus to measure conical thickness |
US4573467A (en) | 1983-05-13 | 1986-03-04 | The United States Of America As Represented By The Department Of Health And Human Services | Optical coupling device for biomicroscope |
US4580559A (en) | 1984-07-24 | 1986-04-08 | Esperance Francis A L | Indirect ophthalmoscopic photocoagulation delivery system for retinal surgery |
US4598714A (en) | 1983-02-22 | 1986-07-08 | Accutome, Inc. | Apparatus for measuring the thickness of corneas |
US4619259A (en) | 1980-05-09 | 1986-10-28 | Graybill Walter R | Ophthalmic surgery tool |
US4633866A (en) | 1981-11-23 | 1987-01-06 | Gholam Peyman | Ophthalmic laser surgical method |
US4653495A (en) | 1984-01-13 | 1987-03-31 | Kabushiki Kaisha Toshiba | Laser medical apparatus |
US4662370A (en) | 1984-09-13 | 1987-05-05 | Carl-Zeiss-Stiftung | Apparatus for performing lamellar refractive corneal surgery |
US4665913A (en) | 1983-11-17 | 1987-05-19 | Lri L.P. | Method for ophthalmological surgery |
US4669466A (en) | 1985-01-16 | 1987-06-02 | Lri L.P. | Method and apparatus for analysis and correction of abnormal refractive errors of the eye |
US4688570A (en) | 1981-03-09 | 1987-08-25 | The Regents Of The University Of California | Ophthalmologic surgical instrument |
US4718418A (en) | 1983-11-17 | 1988-01-12 | Lri L.P. | Apparatus for ophthalmological surgery |
US4720189A (en) | 1986-01-07 | 1988-01-19 | Northern Telecom Limited | Eye-position sensor |
US4729373A (en) | 1986-12-18 | 1988-03-08 | Peyman Gholam A | Laser-powered surgical device with a vibrating crystalline tip |
US4729372A (en) | 1983-11-17 | 1988-03-08 | Lri L.P. | Apparatus for performing ophthalmic laser surgery |
US4732148A (en) | 1983-11-17 | 1988-03-22 | Lri L.P. | Method for performing ophthalmic laser surgery |
US4764930A (en) | 1988-01-27 | 1988-08-16 | Intelligent Surgical Lasers | Multiwavelength laser source |
US4770172A (en) | 1983-11-17 | 1988-09-13 | Lri L.P. | Method of laser-sculpture of the optically used portion of the cornea |
US4773414A (en) | 1983-11-17 | 1988-09-27 | Lri L.P. | Method of laser-sculpture of the optically used portion of the cornea |
CA1243732A (en) | 1983-11-17 | 1988-10-25 | Francis A. L'esperance | Method and apparatus for ophthalmological surgery |
US4784135A (en) | 1982-12-09 | 1988-11-15 | International Business Machines Corporation | Far ultraviolet surgical and dental procedures |
US4798204A (en) | 1987-05-13 | 1989-01-17 | Lri L.P. | Method of laser-sculpture of the optically used portion of the cornea |
US4807623A (en) | 1986-05-30 | 1989-02-28 | David M. Lieberman | Device for simultaneously forming two incisions along a path on an eye |
US4838266A (en) | 1986-09-08 | 1989-06-13 | Koziol Jeffrey E | Lens shaping device using a laser attenuator |
US4838679A (en) * | 1984-06-14 | 1989-06-13 | Josef Bille | Apparatus for, and method of, examining eyes |
US4840175A (en) | 1986-12-24 | 1989-06-20 | Peyman Gholam A | Method for modifying corneal curvature |
US4848340A (en) | 1988-02-10 | 1989-07-18 | Intelligent Surgical Lasers | Eyetracker and method of use |
US4856513A (en) | 1987-03-09 | 1989-08-15 | Summit Technology, Inc. | Laser reprofiling systems and methods |
US4862886A (en) | 1985-05-08 | 1989-09-05 | Summit Technology Inc. | Laser angioplasty |
US4896015A (en) | 1988-07-29 | 1990-01-23 | Refractive Laser Research & Development Program, Ltd. | Laser delivery system |
US4901718A (en) * | 1988-02-02 | 1990-02-20 | Intelligent Surgical Lasers | 3-Dimensional laser beam guidance system |
US4903695A (en) | 1988-11-30 | 1990-02-27 | Lri L.P. | Method and apparatus for performing a keratomileusis or the like operation |
US4907586A (en) | 1988-03-31 | 1990-03-13 | Intelligent Surgical Lasers | Method for reshaping the eye |
US4911711A (en) | 1986-12-05 | 1990-03-27 | Taunton Technologies, Inc. | Sculpture apparatus for correcting curvature of the cornea |
US4925523A (en) | 1988-10-28 | 1990-05-15 | International Business Machines Corporation | Enhancement of ultraviolet laser ablation and etching organic solids |
EP0368512A2 (en) | 1988-11-10 | 1990-05-16 | Premier Laser Systems, Inc. | Multiwavelength medical laser system |
US4941093A (en) * | 1985-09-12 | 1990-07-10 | Summit Technology, Inc. | Surface erosion using lasers |
US4968130A (en) | 1987-10-28 | 1990-11-06 | Kabushiki Kaisha Topcon | Laser beam scanning type ophthalmological instrument |
US4975918A (en) | 1989-06-07 | 1990-12-04 | Maxwell Laboratories, Inc. | Tunable laser |
US4994058A (en) | 1986-03-19 | 1991-02-19 | Summit Technology, Inc. | Surface shaping using lasers |
US4993826A (en) | 1987-11-25 | 1991-02-19 | Taunton Technologies, Inc. | Topography measuring apparatus |
US5019074A (en) | 1987-03-09 | 1991-05-28 | Summit Technology, Inc. | Laser reprofiling system employing an erodable mask |
US5052004A (en) | 1987-08-04 | 1991-09-24 | The General Electric Company P.L.C. | Tunable lasers |
US5063942A (en) | 1989-12-14 | 1991-11-12 | Corneal Contouring, Inc. | Method for surgically re-profiling the cornea |
US5065046A (en) | 1990-11-28 | 1991-11-12 | Amoco Corporation | Method and apparatus for parametric generation of midinfrared light in KNbO3 |
US5074859A (en) | 1990-01-05 | 1991-12-24 | Koziol Jeffrey E | Beam delivery system for corneal surgery |
EP0418890A3 (en) | 1989-09-21 | 1992-03-25 | Mitsui Petrochemical Industries, Ltd. | Solid state laser device for lithography light source and semiconductor lithography method |
US5102409A (en) | 1988-04-22 | 1992-04-07 | Balgorod Barry M | Method and apparatus for modification of corneal refractive properties |
US5108412A (en) | 1988-11-11 | 1992-04-28 | Jorg H. Krumeich | Suction ring for surgical operations on the human eye |
US5108388A (en) | 1983-12-15 | 1992-04-28 | Visx, Incorporated | Laser surgery method |
WO1992009625A1 (en) * | 1990-11-29 | 1992-06-11 | Smithkline Beecham Corporation | Conformationally constrained peptides i |
US5133726A (en) | 1990-02-14 | 1992-07-28 | Ruiz Luis A | Automatic corneal shaper |
US5144630A (en) * | 1991-07-29 | 1992-09-01 | Jtt International, Inc. | Multiwavelength solid state laser using frequency conversion techniques |
US5152759A (en) * | 1989-06-07 | 1992-10-06 | University Of Miami, School Of Medicine, Dept. Of Ophthalmology | Noncontact laser microsurgical apparatus |
US5163934A (en) | 1987-08-05 | 1992-11-17 | Visx, Incorporated | Photorefractive keratectomy |
US5163936A (en) | 1991-01-22 | 1992-11-17 | Reliant Laser Corp. | Endoscopic mirror laser beam delivery system and method for controlling alignment |
US5182759A (en) | 1990-05-16 | 1993-01-26 | Amoco Corporation | Apparatus and method for pumping of a weakly absorbing lasant material |
US5188631A (en) | 1983-11-17 | 1993-02-23 | Visx, Incorporated | Method for opthalmological surgery |
US5196006A (en) | 1989-04-25 | 1993-03-23 | Summit Technology, Inc. | Method and apparatus for excision endpoint control |
US5207668A (en) | 1983-11-17 | 1993-05-04 | Visx Incorporated | Method for opthalmological surgery |
EP0207648B2 (en) | 1985-06-06 | 1993-05-19 | Visx Incorporated | Apparatus for ophthalmological surgery |
US5217452A (en) | 1992-05-18 | 1993-06-08 | Donnell Francis E O | Transscleral laser treatment of subretinal neovascularization |
US5219344A (en) | 1988-06-09 | 1993-06-15 | Visx, Incorporated | Methods and apparatus for laser sculpture of the cornea |
US5219343A (en) | 1983-11-17 | 1993-06-15 | Visx Incorporated | Apparatus for performing ophthalmogolical surgery |
US5222960A (en) | 1990-10-05 | 1993-06-29 | Poley Brooks J | Cracking and rotating cataract for removal from eye |
US5226903A (en) | 1991-01-30 | 1993-07-13 | Nidek Co., Ltd. | Apparatus for ophthalmic operation using photocoagulation by a laser beam |
EP0296982B1 (en) | 1987-06-25 | 1993-09-15 | Hanna Khalil | Device for correcting the shape of an object by laser treatment |
US5250062A (en) | 1990-12-20 | 1993-10-05 | Khalil Hanna | Instrument for surgically correcting astigmatism |
US5257988A (en) | 1991-07-19 | 1993-11-02 | L'esperance Medical Technologies, Inc. | Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment |
US5263950A (en) | 1991-07-24 | 1993-11-23 | L'esperance Medical Technologies, Inc. | Phaco-extractor for fragmenting cataractous-lens situs of fragmentation |
US5284477A (en) * | 1987-06-25 | 1994-02-08 | International Business Machines Corporation | Device for correcting the shape of an object by laser treatment |
US5288292A (en) | 1992-12-04 | 1994-02-22 | Micro Precision Instrument Company | Keratome with miniature differential micrometer |
US5290301A (en) | 1991-09-10 | 1994-03-01 | Lieberman David M | Cam guided corneal trephine |
US5324281A (en) | 1987-03-09 | 1994-06-28 | Summit Technology, Inc. | Laser reprofiling system employing a photodecomposable mask |
US5334190A (en) * | 1990-10-16 | 1994-08-02 | Summit Technology, Inc. | Laser thermokeratoplasty methods and apparatus |
US5336217A (en) | 1986-04-24 | 1994-08-09 | Institut National De La Sante Et De La Recherche Medicale (Insepm) | Process for treatment by irradiating an area of a body, and treatment apparatus usable in dermatology for the treatment of cutaneous angio dysplasias |
US5345534A (en) | 1993-03-29 | 1994-09-06 | Texas Instruments Incorporated | Semiconductor wafer heater with infrared lamp module with light blocking means |
US5349590A (en) | 1992-04-10 | 1994-09-20 | Premier Laser Systems, Inc. | Medical laser apparatus for delivering high power infrared light |
US5350374A (en) | 1993-03-18 | 1994-09-27 | Smith Robert F | Topography feedback control system for photoablation |
US5353262A (en) | 1993-03-12 | 1994-10-04 | General Electric Company | Optical transducer and method of use |
US5360424A (en) | 1993-06-04 | 1994-11-01 | Summit Technology, Inc. | Tracking system for laser surgery |
US5363388A (en) | 1991-10-18 | 1994-11-08 | Cedars-Sinai Medical Center | Continuously tunable solid state ultraviolet coherent light source |
US5364388A (en) | 1988-04-01 | 1994-11-15 | Koziol Jeffrey E | Beam delivery system for corneal surgery |
US5370641A (en) | 1992-05-22 | 1994-12-06 | O'donnell, Jr.; Francis E. | Laser trabeculodissection |
US5395356A (en) | 1993-06-04 | 1995-03-07 | Summit Technology, Inc. | Correction of presbyopia by photorefractive keratectomy |
US5395362A (en) | 1992-01-14 | 1995-03-07 | Summit Technology | Methods and apparatus for distributing laser radiation |
US5405355A (en) | 1993-09-10 | 1995-04-11 | Vitrophage, Inc. | Method of radial keratotomy employing a vibrating cutting blade |
US5411501A (en) | 1993-06-04 | 1995-05-02 | Summit Technology, Inc. | Laser reprofiling system for correction of astigmatisms |
US5423801A (en) | 1986-03-19 | 1995-06-13 | Summit Technology, Inc. | Laser corneal surgery |
US5425727A (en) | 1988-04-01 | 1995-06-20 | Koziol; Jeffrey E. | Beam delivery system and method for corneal surgery |
US5425729A (en) | 1985-10-18 | 1995-06-20 | Kowa Company Ltd. | Laser coagulation system |
US5437658A (en) | 1992-10-07 | 1995-08-01 | Summit Technology, Incorporated | Method and system for laser thermokeratoplasty of the cornea |
US5442487A (en) | 1990-04-12 | 1995-08-15 | Nidek Co., Ltd. | Ophthalmic photocoagulating apparatus using a laser diode and a lens system for the apparatus |
US5441511A (en) | 1990-04-12 | 1995-08-15 | Hanna; Khalil | Keratotome for performing arcuate incisions |
US5445633A (en) | 1992-11-07 | 1995-08-29 | Nidek Co., Ltd. | Ablation apparatus for ablating a cornea by laser beam |
US5461212A (en) | 1993-06-04 | 1995-10-24 | Summit Technology, Inc. | Astigmatic laser ablation of surfaces |
US5470329A (en) | 1992-08-31 | 1995-11-28 | Nidek Co., Ltd. | Operation apparatus for correcting ametropia with laser beam |
US5474548A (en) | 1993-07-14 | 1995-12-12 | Knopp; Carl F. | Method of establishing a unique machine independent reference frame for the eye |
US5480396A (en) * | 1994-12-09 | 1996-01-02 | Simon; Gabriel | Laser beam ophthalmological surgery method and apparatus |
US5505723A (en) | 1994-02-10 | 1996-04-09 | Summit Technology, Inc. | Photo-refractive keratectomy |
US5507741A (en) | 1983-11-17 | 1996-04-16 | L'esperance, Jr.; Francis A. | Ophthalmic method for laser surgery of the cornea |
US5507799A (en) * | 1990-12-28 | 1996-04-16 | Nidek Co., Ltd. | Ablation apparatus for ablating an object by laser beam |
US5520679A (en) | 1992-12-03 | 1996-05-28 | Lasersight, Inc. | Ophthalmic surgery method using non-contact scanning laser |
US5549597A (en) | 1993-05-07 | 1996-08-27 | Visx Incorporated | In situ astigmatism axis alignment |
US5556395A (en) | 1993-05-07 | 1996-09-17 | Visx Incorporated | Method and system for laser treatment of refractive error using an offset image of a rotatable mask |
US5582752A (en) | 1993-12-17 | 1996-12-10 | Laser Industries, Ltd. | Method and apparatus for applying laser beams to a working surface, particularly for ablating tissue |
US5599340A (en) | 1994-12-09 | 1997-02-04 | Simon; Gabriel | Laser beam ophthalmological surgery method and apparatus |
US5613965A (en) | 1994-12-08 | 1997-03-25 | Summit Technology Inc. | Corneal reprofiling using an annular beam of ablative radiation |
US5624436A (en) | 1993-01-29 | 1997-04-29 | Nidek Co., Ltd. | Laser beam and ablating apparatus and related method |
US5634920A (en) | 1992-10-01 | 1997-06-03 | Chiron Technolas Gmbh Ophthalmologische Systeme | Method and apparatus for removing epithelium from the surface of the eye |
US5637109A (en) | 1992-02-14 | 1997-06-10 | Nidek Co., Ltd. | Apparatus for operation on a cornea using laser-beam |
US5646791A (en) | 1995-01-04 | 1997-07-08 | Visx Incorporated | Method and apparatus for temporal and spatial beam integration |
US5651784A (en) | 1993-06-04 | 1997-07-29 | Summit Technology, Inc. | Rotatable aperture apparatus and methods for selective photoablation of surfaces |
US5684562A (en) | 1994-12-12 | 1997-11-04 | Nidek Company, Ltd. | Ophthalmic apparatus |
US5711792A (en) | 1993-11-30 | 1998-01-27 | Borden Chemical Uk Limited | Foundry binder |
US5713892A (en) | 1991-08-16 | 1998-02-03 | Visx, Inc. | Method and apparatus for combined cylindrical and spherical eye corrections |
US5735843A (en) | 1983-12-15 | 1998-04-07 | Visx, Incorporated | Laser surgery apparatus and method |
US5782822A (en) | 1995-10-27 | 1998-07-21 | Ir Vision, Inc. | Method and apparatus for removing corneal tissue with infrared laser radiation |
US5849006A (en) | 1994-04-25 | 1998-12-15 | Autonomous Technologies Corporation | Laser sculpting method and system |
-
1998
- 1998-05-27 US US09/084,441 patent/USRE37504E1/en not_active Expired - Fee Related
Patent Citations (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2480737A (en) | 1948-03-08 | 1949-08-30 | Jayle Gaetan Jean-Edward | Cutting instrument particularly useful in connection with corneal grafting |
US3074407A (en) | 1956-09-17 | 1963-01-22 | Marguerite Barr Moon Eye Res F | Surgical devices for keratoplasty and methods thereof |
US3476112A (en) | 1966-12-05 | 1969-11-04 | Jacob K Elstein | Surgical instrument for removal of thin layers |
US3697889A (en) | 1970-02-17 | 1972-10-10 | Xerox Corp | Tunable laser |
US3743965A (en) | 1971-07-12 | 1973-07-03 | Spectro Physics Inc | Tunable lasers |
US3938058A (en) | 1973-03-26 | 1976-02-10 | Hitachi, Ltd. | Tunable laser |
US3848104A (en) | 1973-04-09 | 1974-11-12 | Avco Everett Res Lab Inc | Apparatus for heat treating a surface |
US3982541A (en) | 1974-07-29 | 1976-09-28 | Esperance Jr Francis A L | Eye surgical instrument |
US3983507A (en) | 1975-01-06 | 1976-09-28 | Research Corporation | Tunable laser systems and method |
US4169663A (en) | 1978-02-27 | 1979-10-02 | Synemed, Inc. | Eye attention monitor |
US4180751A (en) | 1978-09-08 | 1979-12-25 | Gte Sylvania Incorporated | Mode-locked optical parametric oscillator apparatus |
US4526171A (en) | 1980-01-15 | 1985-07-02 | Schachar Ronald A | Cornea incision device |
US4349907A (en) | 1980-04-23 | 1982-09-14 | The United Stated Of America As Represented By The Department Of Energy | Broadly tunable picosecond IR source |
US4619259A (en) | 1980-05-09 | 1986-10-28 | Graybill Walter R | Ophthalmic surgery tool |
US4386428A (en) | 1980-10-14 | 1983-05-31 | Sanders Associates, Inc. | Tripled Nd:YAG Pumped Tm3+ laser oscillator |
US4477159A (en) | 1980-11-06 | 1984-10-16 | Nidek Co., Ltd. | Photocoagulator |
US4546773A (en) | 1981-01-23 | 1985-10-15 | Accutome, Inc. | Apparatus to measure conical thickness |
US4688570A (en) | 1981-03-09 | 1987-08-25 | The Regents Of The University Of California | Ophthalmologic surgical instrument |
US4633866A (en) | 1981-11-23 | 1987-01-06 | Gholam Peyman | Ophthalmic laser surgical method |
US4461294A (en) | 1982-01-20 | 1984-07-24 | Baron Neville A | Apparatus and process for recurving the cornea of an eye |
US4423728A (en) | 1982-02-26 | 1984-01-03 | Lieberman David M | Cam-guided trephine |
US4784135A (en) | 1982-12-09 | 1988-11-15 | International Business Machines Corporation | Far ultraviolet surgical and dental procedures |
US4520816A (en) | 1983-01-12 | 1985-06-04 | Schachar Ronald A | Method and apparatus for delivering laser energy for ophthalmic use |
US4598714A (en) | 1983-02-22 | 1986-07-08 | Accutome, Inc. | Apparatus for measuring the thickness of corneas |
US4573467A (en) | 1983-05-13 | 1986-03-04 | The United States Of America As Represented By The Department Of Health And Human Services | Optical coupling device for biomicroscope |
US4732148A (en) | 1983-11-17 | 1988-03-22 | Lri L.P. | Method for performing ophthalmic laser surgery |
US4729372A (en) | 1983-11-17 | 1988-03-08 | Lri L.P. | Apparatus for performing ophthalmic laser surgery |
US4665913A (en) | 1983-11-17 | 1987-05-19 | Lri L.P. | Method for ophthalmological surgery |
US5312320A (en) | 1983-11-17 | 1994-05-17 | Visx, Incorporated | Apparatus for performing ophthalmological surgery |
US5188631A (en) | 1983-11-17 | 1993-02-23 | Visx, Incorporated | Method for opthalmological surgery |
US4718418A (en) | 1983-11-17 | 1988-01-12 | Lri L.P. | Apparatus for ophthalmological surgery |
EP0151869B1 (en) | 1983-11-17 | 1990-01-31 | L'Esperance, Francis A. | Apparatus for ophthalmological surgery |
US5507741A (en) | 1983-11-17 | 1996-04-16 | L'esperance, Jr.; Francis A. | Ophthalmic method for laser surgery of the cornea |
CA1243732A (en) | 1983-11-17 | 1988-10-25 | Francis A. L'esperance | Method and apparatus for ophthalmological surgery |
US5207668A (en) | 1983-11-17 | 1993-05-04 | Visx Incorporated | Method for opthalmological surgery |
US4773414A (en) | 1983-11-17 | 1988-09-27 | Lri L.P. | Method of laser-sculpture of the optically used portion of the cornea |
US5219343A (en) | 1983-11-17 | 1993-06-15 | Visx Incorporated | Apparatus for performing ophthalmogolical surgery |
US4770172A (en) | 1983-11-17 | 1988-09-13 | Lri L.P. | Method of laser-sculpture of the optically used portion of the cornea |
US5108388A (en) | 1983-12-15 | 1992-04-28 | Visx, Incorporated | Laser surgery method |
US5735843A (en) | 1983-12-15 | 1998-04-07 | Visx, Incorporated | Laser surgery apparatus and method |
US5108388B1 (en) | 1983-12-15 | 2000-09-19 | Visx Inc | Laser surgery method |
US4653495A (en) | 1984-01-13 | 1987-03-31 | Kabushiki Kaisha Toshiba | Laser medical apparatus |
US4538608A (en) * | 1984-03-23 | 1985-09-03 | Esperance Jr Francis A L | Method and apparatus for removing cataractous lens tissue by laser radiation |
US4838679A (en) * | 1984-06-14 | 1989-06-13 | Josef Bille | Apparatus for, and method of, examining eyes |
US4580559A (en) | 1984-07-24 | 1986-04-08 | Esperance Francis A L | Indirect ophthalmoscopic photocoagulation delivery system for retinal surgery |
US4662370A (en) | 1984-09-13 | 1987-05-05 | Carl-Zeiss-Stiftung | Apparatus for performing lamellar refractive corneal surgery |
US4721379A (en) | 1985-01-16 | 1988-01-26 | Lri L.P. | Apparatus for analysis and correction of abnormal refractive errors of the eye |
US4669466A (en) | 1985-01-16 | 1987-06-02 | Lri L.P. | Method and apparatus for analysis and correction of abnormal refractive errors of the eye |
US4862886A (en) | 1985-05-08 | 1989-09-05 | Summit Technology Inc. | Laser angioplasty |
EP0207648B2 (en) | 1985-06-06 | 1993-05-19 | Visx Incorporated | Apparatus for ophthalmological surgery |
US4941093A (en) * | 1985-09-12 | 1990-07-10 | Summit Technology, Inc. | Surface erosion using lasers |
US5425729A (en) | 1985-10-18 | 1995-06-20 | Kowa Company Ltd. | Laser coagulation system |
US4720189A (en) | 1986-01-07 | 1988-01-19 | Northern Telecom Limited | Eye-position sensor |
US5423801A (en) | 1986-03-19 | 1995-06-13 | Summit Technology, Inc. | Laser corneal surgery |
US4994058A (en) | 1986-03-19 | 1991-02-19 | Summit Technology, Inc. | Surface shaping using lasers |
US5336217A (en) | 1986-04-24 | 1994-08-09 | Institut National De La Sante Et De La Recherche Medicale (Insepm) | Process for treatment by irradiating an area of a body, and treatment apparatus usable in dermatology for the treatment of cutaneous angio dysplasias |
US4807623A (en) | 1986-05-30 | 1989-02-28 | David M. Lieberman | Device for simultaneously forming two incisions along a path on an eye |
US4838266A (en) | 1986-09-08 | 1989-06-13 | Koziol Jeffrey E | Lens shaping device using a laser attenuator |
US4911711A (en) | 1986-12-05 | 1990-03-27 | Taunton Technologies, Inc. | Sculpture apparatus for correcting curvature of the cornea |
US4729373A (en) | 1986-12-18 | 1988-03-08 | Peyman Gholam A | Laser-powered surgical device with a vibrating crystalline tip |
US4840175A (en) | 1986-12-24 | 1989-06-20 | Peyman Gholam A | Method for modifying corneal curvature |
US4856513A (en) | 1987-03-09 | 1989-08-15 | Summit Technology, Inc. | Laser reprofiling systems and methods |
US5019074A (en) | 1987-03-09 | 1991-05-28 | Summit Technology, Inc. | Laser reprofiling system employing an erodable mask |
US5324281A (en) | 1987-03-09 | 1994-06-28 | Summit Technology, Inc. | Laser reprofiling system employing a photodecomposable mask |
US4798204A (en) | 1987-05-13 | 1989-01-17 | Lri L.P. | Method of laser-sculpture of the optically used portion of the cornea |
EP0296982B1 (en) | 1987-06-25 | 1993-09-15 | Hanna Khalil | Device for correcting the shape of an object by laser treatment |
US5284477A (en) * | 1987-06-25 | 1994-02-08 | International Business Machines Corporation | Device for correcting the shape of an object by laser treatment |
US5052004A (en) | 1987-08-04 | 1991-09-24 | The General Electric Company P.L.C. | Tunable lasers |
US5163934A (en) | 1987-08-05 | 1992-11-17 | Visx, Incorporated | Photorefractive keratectomy |
US4968130A (en) | 1987-10-28 | 1990-11-06 | Kabushiki Kaisha Topcon | Laser beam scanning type ophthalmological instrument |
US4993826A (en) | 1987-11-25 | 1991-02-19 | Taunton Technologies, Inc. | Topography measuring apparatus |
US4764930A (en) | 1988-01-27 | 1988-08-16 | Intelligent Surgical Lasers | Multiwavelength laser source |
US4901718A (en) * | 1988-02-02 | 1990-02-20 | Intelligent Surgical Lasers | 3-Dimensional laser beam guidance system |
US4848340A (en) | 1988-02-10 | 1989-07-18 | Intelligent Surgical Lasers | Eyetracker and method of use |
US4907586A (en) | 1988-03-31 | 1990-03-13 | Intelligent Surgical Lasers | Method for reshaping the eye |
US5425727A (en) | 1988-04-01 | 1995-06-20 | Koziol; Jeffrey E. | Beam delivery system and method for corneal surgery |
US5364388A (en) | 1988-04-01 | 1994-11-15 | Koziol Jeffrey E | Beam delivery system for corneal surgery |
US5102409A (en) | 1988-04-22 | 1992-04-07 | Balgorod Barry M | Method and apparatus for modification of corneal refractive properties |
US5219344A (en) | 1988-06-09 | 1993-06-15 | Visx, Incorporated | Methods and apparatus for laser sculpture of the cornea |
US4896015A (en) | 1988-07-29 | 1990-01-23 | Refractive Laser Research & Development Program, Ltd. | Laser delivery system |
US4925523A (en) | 1988-10-28 | 1990-05-15 | International Business Machines Corporation | Enhancement of ultraviolet laser ablation and etching organic solids |
EP0368512A2 (en) | 1988-11-10 | 1990-05-16 | Premier Laser Systems, Inc. | Multiwavelength medical laser system |
US5108412A (en) | 1988-11-11 | 1992-04-28 | Jorg H. Krumeich | Suction ring for surgical operations on the human eye |
US4903695A (en) | 1988-11-30 | 1990-02-27 | Lri L.P. | Method and apparatus for performing a keratomileusis or the like operation |
US4903695C1 (en) | 1988-11-30 | 2001-09-11 | Lri L P | Method and apparatus for performing a keratomileusis or the like operation |
US5196006A (en) | 1989-04-25 | 1993-03-23 | Summit Technology, Inc. | Method and apparatus for excision endpoint control |
US5152759A (en) * | 1989-06-07 | 1992-10-06 | University Of Miami, School Of Medicine, Dept. Of Ophthalmology | Noncontact laser microsurgical apparatus |
US5865830A (en) | 1989-06-07 | 1999-02-02 | Parel; Jean-Marie | Noncontact laser microsurgical apparatus |
US4975918A (en) | 1989-06-07 | 1990-12-04 | Maxwell Laboratories, Inc. | Tunable laser |
EP0602756B1 (en) | 1989-06-07 | 1999-09-01 | University Of Miami | Noncontact laser microsurgical apparatus |
EP0418890A3 (en) | 1989-09-21 | 1992-03-25 | Mitsui Petrochemical Industries, Ltd. | Solid state laser device for lithography light source and semiconductor lithography method |
US5063942A (en) | 1989-12-14 | 1991-11-12 | Corneal Contouring, Inc. | Method for surgically re-profiling the cornea |
US5074859A (en) | 1990-01-05 | 1991-12-24 | Koziol Jeffrey E | Beam delivery system for corneal surgery |
US5133726A (en) | 1990-02-14 | 1992-07-28 | Ruiz Luis A | Automatic corneal shaper |
US5442487A (en) | 1990-04-12 | 1995-08-15 | Nidek Co., Ltd. | Ophthalmic photocoagulating apparatus using a laser diode and a lens system for the apparatus |
US5441511A (en) | 1990-04-12 | 1995-08-15 | Hanna; Khalil | Keratotome for performing arcuate incisions |
US5182759A (en) | 1990-05-16 | 1993-01-26 | Amoco Corporation | Apparatus and method for pumping of a weakly absorbing lasant material |
US5222960A (en) | 1990-10-05 | 1993-06-29 | Poley Brooks J | Cracking and rotating cataract for removal from eye |
US5334190A (en) * | 1990-10-16 | 1994-08-02 | Summit Technology, Inc. | Laser thermokeratoplasty methods and apparatus |
US5065046A (en) | 1990-11-28 | 1991-11-12 | Amoco Corporation | Method and apparatus for parametric generation of midinfrared light in KNbO3 |
WO1992009625A1 (en) * | 1990-11-29 | 1992-06-11 | Smithkline Beecham Corporation | Conformationally constrained peptides i |
US5250062A (en) | 1990-12-20 | 1993-10-05 | Khalil Hanna | Instrument for surgically correcting astigmatism |
US5507799A (en) * | 1990-12-28 | 1996-04-16 | Nidek Co., Ltd. | Ablation apparatus for ablating an object by laser beam |
US5163936A (en) | 1991-01-22 | 1992-11-17 | Reliant Laser Corp. | Endoscopic mirror laser beam delivery system and method for controlling alignment |
US5226903A (en) | 1991-01-30 | 1993-07-13 | Nidek Co., Ltd. | Apparatus for ophthalmic operation using photocoagulation by a laser beam |
US5257988A (en) | 1991-07-19 | 1993-11-02 | L'esperance Medical Technologies, Inc. | Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment |
US5263950A (en) | 1991-07-24 | 1993-11-23 | L'esperance Medical Technologies, Inc. | Phaco-extractor for fragmenting cataractous-lens situs of fragmentation |
US5144630A (en) * | 1991-07-29 | 1992-09-01 | Jtt International, Inc. | Multiwavelength solid state laser using frequency conversion techniques |
US5713892A (en) | 1991-08-16 | 1998-02-03 | Visx, Inc. | Method and apparatus for combined cylindrical and spherical eye corrections |
US5290301A (en) | 1991-09-10 | 1994-03-01 | Lieberman David M | Cam guided corneal trephine |
US5363388A (en) | 1991-10-18 | 1994-11-08 | Cedars-Sinai Medical Center | Continuously tunable solid state ultraviolet coherent light source |
US5395362A (en) | 1992-01-14 | 1995-03-07 | Summit Technology | Methods and apparatus for distributing laser radiation |
US5637109A (en) | 1992-02-14 | 1997-06-10 | Nidek Co., Ltd. | Apparatus for operation on a cornea using laser-beam |
US5349590A (en) | 1992-04-10 | 1994-09-20 | Premier Laser Systems, Inc. | Medical laser apparatus for delivering high power infrared light |
US5217452A (en) | 1992-05-18 | 1993-06-08 | Donnell Francis E O | Transscleral laser treatment of subretinal neovascularization |
US5370641A (en) | 1992-05-22 | 1994-12-06 | O'donnell, Jr.; Francis E. | Laser trabeculodissection |
US5470329A (en) | 1992-08-31 | 1995-11-28 | Nidek Co., Ltd. | Operation apparatus for correcting ametropia with laser beam |
US5683379A (en) | 1992-10-01 | 1997-11-04 | Chiron Technolas Gmbh Ophthalmologische Systeme | Apparatus for modifying the surface of the eye through large beam laser polishing and method of controlling the apparatus |
US5634920A (en) | 1992-10-01 | 1997-06-03 | Chiron Technolas Gmbh Ophthalmologische Systeme | Method and apparatus for removing epithelium from the surface of the eye |
US5437658A (en) | 1992-10-07 | 1995-08-01 | Summit Technology, Incorporated | Method and system for laser thermokeratoplasty of the cornea |
US5445633A (en) | 1992-11-07 | 1995-08-29 | Nidek Co., Ltd. | Ablation apparatus for ablating a cornea by laser beam |
US5520679A (en) | 1992-12-03 | 1996-05-28 | Lasersight, Inc. | Ophthalmic surgery method using non-contact scanning laser |
US5288292A (en) | 1992-12-04 | 1994-02-22 | Micro Precision Instrument Company | Keratome with miniature differential micrometer |
US5624436A (en) | 1993-01-29 | 1997-04-29 | Nidek Co., Ltd. | Laser beam and ablating apparatus and related method |
US5353262A (en) | 1993-03-12 | 1994-10-04 | General Electric Company | Optical transducer and method of use |
US5350374A (en) | 1993-03-18 | 1994-09-27 | Smith Robert F | Topography feedback control system for photoablation |
US5345534A (en) | 1993-03-29 | 1994-09-06 | Texas Instruments Incorporated | Semiconductor wafer heater with infrared lamp module with light blocking means |
US5556395A (en) | 1993-05-07 | 1996-09-17 | Visx Incorporated | Method and system for laser treatment of refractive error using an offset image of a rotatable mask |
US5549597A (en) | 1993-05-07 | 1996-08-27 | Visx Incorporated | In situ astigmatism axis alignment |
US5360424A (en) | 1993-06-04 | 1994-11-01 | Summit Technology, Inc. | Tracking system for laser surgery |
US5461212A (en) | 1993-06-04 | 1995-10-24 | Summit Technology, Inc. | Astigmatic laser ablation of surfaces |
US5411501A (en) | 1993-06-04 | 1995-05-02 | Summit Technology, Inc. | Laser reprofiling system for correction of astigmatisms |
US5395356A (en) | 1993-06-04 | 1995-03-07 | Summit Technology, Inc. | Correction of presbyopia by photorefractive keratectomy |
US5651784A (en) | 1993-06-04 | 1997-07-29 | Summit Technology, Inc. | Rotatable aperture apparatus and methods for selective photoablation of surfaces |
US5474548A (en) | 1993-07-14 | 1995-12-12 | Knopp; Carl F. | Method of establishing a unique machine independent reference frame for the eye |
US5405355A (en) | 1993-09-10 | 1995-04-11 | Vitrophage, Inc. | Method of radial keratotomy employing a vibrating cutting blade |
US5711792A (en) | 1993-11-30 | 1998-01-27 | Borden Chemical Uk Limited | Foundry binder |
US5582752A (en) | 1993-12-17 | 1996-12-10 | Laser Industries, Ltd. | Method and apparatus for applying laser beams to a working surface, particularly for ablating tissue |
US5505723A (en) | 1994-02-10 | 1996-04-09 | Summit Technology, Inc. | Photo-refractive keratectomy |
US5849006A (en) | 1994-04-25 | 1998-12-15 | Autonomous Technologies Corporation | Laser sculpting method and system |
US5613965A (en) | 1994-12-08 | 1997-03-25 | Summit Technology Inc. | Corneal reprofiling using an annular beam of ablative radiation |
US5599340A (en) | 1994-12-09 | 1997-02-04 | Simon; Gabriel | Laser beam ophthalmological surgery method and apparatus |
US5480396A (en) * | 1994-12-09 | 1996-01-02 | Simon; Gabriel | Laser beam ophthalmological surgery method and apparatus |
US5684562A (en) | 1994-12-12 | 1997-11-04 | Nidek Company, Ltd. | Ophthalmic apparatus |
US5646791A (en) | 1995-01-04 | 1997-07-08 | Visx Incorporated | Method and apparatus for temporal and spatial beam integration |
US5782822A (en) | 1995-10-27 | 1998-07-21 | Ir Vision, Inc. | Method and apparatus for removing corneal tissue with infrared laser radiation |
Non-Patent Citations (44)
Title |
---|
"LaserSight Denies Device Patent Infringement-Debuts Auto-PRK at ASCRS Convention", Press Release by LaserSight Technologies, Inc, Mar. 31, 1995. |
"Summit Refutes LaserSight's Assertions", Press Release by Summit Technology, Waltham, Massachusetts, Nov. 17, 1992. |
A.A. Babin, F.I. Fel'dshtein, & I.V. Yakovlev, "Generation of the Fifth Harmonic of Yttrium Orthoaluminate: Nd3+ Laser Radiation in KDP at Room Temperatures", Soviet Technical Physics Letters Jun. 1990, pp. 417-418. |
A.G. Arutyunyan, G.G. Gurzadyan, & R.K. Ispiryan, "Generation of the Fifth Harmonic of Picosecond Yttrium Aluminate Laser Radiation", Soviet Journal Quantum Electron, Dec. 1989, pp. 1602-1603. |
Barraquer, "Lamellar Keratoplasty (special techniques)" Annals of Ophthalmology, Jun. 1972, pp. 437-469. |
Burnett, "Company Denies Delay in Approval for Laser", Orlando Sentinel, Feb. 1993, pp. 12-13. |
Burnett, "Medical Technology", Orlando Sentinel, Feb./1993, pp. 1-5. |
Conference on Lasers and Electro-Optics, Optical Society of America, Apr. 1989, p. 390. |
Conference on Lasers and Electro-Optics, Optical Society of America, May 1990, pp. 28-30. |
D. Eimerl, L. Davis, & S. Vlesko, Optical, mechanical, and thermal properties of barium borate, Journal of Applied Physics, Sep. 1987, pp. 1968-1983. |
G.P.A. Malcom, M.A. Persaud, & A.I. Ferguson, "Resonant Frequency Quadrupling of a Mode-Locked Diode-Pumped Nd: YLF Laser", Optics Letters, Jul. 1991, pp. 983-985. |
Gailitis et al., "Solid State Ultraviolet Laser (213 nm) Ablation of the Cornea and Synethetic Collagen Lenticules", Lasers in Surgery and Medicine, Dec. 1991, pp. 556-562. |
Gartry et al., "Excimer Laser Photorefractive Keratectomy", Ophalmology, Aug. 1992, pp. 1210-1219. |
Gilbert, "Corneal Topography: In Search of the Excimer Islands", Eye Care Technology, Oct. 1993, pp. 23-28. |
J.T. Lin, J.L. Montgomery, "Temperature-Tuned Noncritically Phase-Matched Frequency Conversion in LiB3O5 Crystal", Optics Communications, Dec. 1990, pp. 159-165. |
J.T. Lin, Non-linear crystals for tunable coherent sources, Optical and Quatum Electronics, 1990, pp. S283-S313. |
J.T. Lin, Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal, Optics Communications, Dec. 1990, pp. 159-165. |
LaserSight Press Release of Nov. 16, 1992. |
LaserSight Press Release of Nov. 18, 1992. |
L'Esperance, "New Laser Systems, Their Potential Clinical Usefulness, and Investigative Laser Procedures", Ophthalmic Lasers, 1989, pp. 995-1045. |
L'Esperance, Jr., Francis A., "Ophthalmic Lasers,"Vol. II, Third Edition, Chapter 24: Corneal Lase Surgery, The C.V. Mosby Company, St. Louis (1989). |
Lin et al, "A Multiwavelength Solid State Laser for Ophthalmic Applications", Opthalmic Technologies, Jun. 1992, pp. 266-275. |
Lin et al, "Corneal Topography Following Excimer Photorefractive Kerectomy for Myopia", Journal of Cataract Refractive Surgery, 1993, pp. 149-154. |
Marguerite B. McDonald et al, "Central Photorefractive Keratectomy for Myopia", Ophthalmology, Sep. 1991, pp. 1327-1337. |
Marshall et al, "Long-term Healing of the Central Cornea after Photorefractive Keratectomy Using an Excimer Laser", Oct. 1998, pp. 1411-1421. |
Marshall et al, "Photoablative Reprofiling of the Cornea Using an Excimer Laser: Photorefractive Keratectomy", Lasers in Ophthalmology, Jan. 1986, pp. 21-48. |
McDonald et al., "Central Photorefractive Keratectomy for Myopia", Arch Ophtalmology, Jun. 1990, pp. 799-808. |
Palikaris et al, "Excimer Laser in Situ Keratomileusis and Photorefractive Keratectomy for Correction of High Myopia", Journal of Refractive and Corneal Surgery, Sep. 1994, pp. 498-510. |
Qiushi Ren, Raymond P. Galitis, Keith P. Thompson, & J.T. Lin, "Ablation of the Cornea and Synthetic Polymers Using a UV (213 nm) Solid State Laser", IEEE Journal of Quatum Electronics, Dec. 1990, pp. 2284-2288. |
Ren et al, "Corneal Refractive Surgery . . . Solid State Laser", Opth. Tech, vol. 1423, pp. 129-139, 1991.* |
Ren et al, "Corneal Refractive Surgery Using an Ultra-Violet (213mn) Solid State Laser" Ophthalmic Technologies, Jun. 1991, pp. 129-139. |
Rozakis, "Refractive Lamellar Keratoplasty" History of Keratomileusis, 1994, Chapt. 1-13. |
Seiler et al, "Excimer Laser (193nm) Myopic Keratomileusis in Sighted and Blind Human Eyes" Refractive and Corneal Laser Surgery, Jun. 1990, pp. 165-173. |
Serdarevic, "Corneal Laser Surgery", Ophthalmic Lasers, 1989, pp. 919-970. |
Shinichi Imai, Toshitaka Yamada, Yasutomo Fujimori & Ken Ishikawa, Third-Harmonic Generation of an Alexandrite Laser in beta-BaB2O4, Applied Physics Letters, May 1989, pp. 1206-1208. |
Shinichi Imai, Toshitaka Yamada, Yasutomo Fujimori & Ken Ishikawa, Third—Harmonic Generation of an Alexandrite Laser in β-BaB2O4, Applied Physics Letters, May 1989, pp. 1206-1208. |
Steinert et al, "Laser Corneal Surgery", Laser Research Laboratory, 1998, pp. 151-154. |
Thompson et al, "Philosophy and Technique for Excimer Laser Phototheraputic Keratectomy", Refractive and Corneal Surgery, Apr. 1993, pp. 81-85. |
Trockel et al, "Evolution of Excimer Laser Corneal Surgery", Jul. 1989, pp. 373-381. |
Trokel et al "Excimer Laser Surgery of the Cornea", American Journal of Ophthalmology, Dec. 1983, pp. 710-715. |
V.D. Volosov & E.V. Nilov, "Effect of the Spatial Structure of a Laser Beam on the Generation of the Second Harmonic in ADP and KDP Crystal", UDC, Nov. 1965, pp. 715-719. |
Van Mielaert et al, "On the Safety of 193-Nanometer Excimer Laser Refractive Corneal Surgery" Refractive and Corneal Surgery, Jun. 1992, pp. 235-239. |
Wilson et al, "Changes in Corneal Topography after Excimer Laser Photorefractive Keratectomy for Myopia", Ophthalmology, Sep. 1991, pp. 1338-1347. |
Y. Tanaka, H. Kuroda, & S. Shionoya, Generation of Tunable Picsecond Pulses in the Ultraviolet Region Down to 197nm, May 1982, pp. 434-436. |
Cited By (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6716210B2 (en) * | 1992-12-03 | 2004-04-06 | Lasersight Technologies, Inc. | Refractive surgical laser apparatus and method |
US6547393B2 (en) | 1999-03-10 | 2003-04-15 | Luis Antonio Ruiz | Interactive corrective eye surgery system with topography and laser system interface |
US6497701B2 (en) | 1999-04-30 | 2002-12-24 | Visx, Incorporated | Method and system for ablating surfaces with partially overlapping craters having consistent curvature |
USRE40420E1 (en) * | 1999-08-26 | 2008-07-01 | Carl Zeiss Meditec Ag | Method and device for treating opaqueness and/or hardening of a closed eye |
US7886747B2 (en) | 2000-05-08 | 2011-02-15 | I Optima Ltd. | Non-penetrating filtration surgery |
US20050096639A1 (en) * | 2000-05-08 | 2005-05-05 | Michael Slatkine | Non-penetrating filtration surgery |
US20110092965A1 (en) * | 2000-05-08 | 2011-04-21 | I Optima Ltd. | Non-penetrating filtration surgery |
US6952435B2 (en) * | 2002-02-11 | 2005-10-04 | Ming Lai | Speckle free laser probe beam |
US20030174755A1 (en) * | 2002-02-11 | 2003-09-18 | Ming Lai | Speckle free laser probe beam |
EP2805697B1 (en) | 2003-06-02 | 2021-05-05 | Carl Zeiss Meditec AG | High-precision material processing device |
US20050190805A1 (en) * | 2003-06-30 | 2005-09-01 | Scripsick Michael P. | Doped stoichiometric lithium niobate and lithium tantalate for self-frequency conversion lasers |
US20110276042A1 (en) * | 2003-07-23 | 2011-11-10 | Manfred Dick | Method device and system for determining a system parameter of a laser beam treatment system |
US8303577B2 (en) * | 2003-07-23 | 2012-11-06 | Carl Zeiss Meditec Ag | Method device and system for determining a system parameter of a laser beam treatment system |
US20050165387A1 (en) * | 2004-01-23 | 2005-07-28 | Holger Lubatschowski | Control for a surgical laser |
US8186357B2 (en) * | 2004-01-23 | 2012-05-29 | Rowiak Gmbh | Control device for a surgical laser |
US20050288745A1 (en) * | 2004-06-28 | 2005-12-29 | Andersen Dan E | Method and device for optical ophthalmic therapy |
US11026860B2 (en) | 2004-06-28 | 2021-06-08 | Iridex | Method and device for optical ophthalmic therapy |
EP2772333A1 (en) * | 2004-12-30 | 2014-09-03 | Attodyne Inc. | Laser selective cutting by impulsive heat deposition in the ir wavelength range for direct-drive ablation |
US8029501B2 (en) | 2004-12-30 | 2011-10-04 | Attodyne Inc. | Laser selective cutting by impulsive heat deposition in the IR wavelength range for direct-drive ablation |
WO2006069448A3 (en) * | 2004-12-30 | 2007-03-22 | R J Dwayne Miller | Laser selective cutting by impulsive heat deposition in the ir wavelength range for direct-drive ablation |
US8709001B2 (en) | 2005-01-10 | 2014-04-29 | Optimedica Corporation | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US9125725B2 (en) | 2005-01-10 | 2015-09-08 | Optimedica Corporation | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US10130510B2 (en) | 2005-01-10 | 2018-11-20 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US20100191226A1 (en) * | 2005-01-10 | 2010-07-29 | Optimedica Corporation | Method Of Patterned Plasma-Mediated Laser Trephination Of The Lens Capsule And Three Dimensional Phaco-Segmentation |
US9750640B2 (en) | 2005-01-10 | 2017-09-05 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US12102565B2 (en) | 2005-01-10 | 2024-10-01 | Amo Development, Llc | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US9693905B2 (en) | 2005-01-10 | 2017-07-04 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US9693903B2 (en) | 2005-01-10 | 2017-07-04 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US20110178512A1 (en) * | 2005-01-10 | 2011-07-21 | Blumenkranz Mark S | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US20110178511A1 (en) * | 2005-01-10 | 2011-07-21 | Blumenkranz Mark S | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US9693904B2 (en) | 2005-01-10 | 2017-07-04 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US11998486B2 (en) | 2005-01-10 | 2024-06-04 | Amo Development, Llc | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US10874553B2 (en) | 2005-01-10 | 2020-12-29 | Amo Development, Llc | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US20060195076A1 (en) * | 2005-01-10 | 2006-08-31 | Blumenkranz Mark S | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US9480601B2 (en) | 2005-01-10 | 2016-11-01 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US9474648B2 (en) | 2005-01-10 | 2016-10-25 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US9474649B2 (en) | 2005-01-10 | 2016-10-25 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US11364147B2 (en) | 2005-01-10 | 2022-06-21 | Amo Development, Llc | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US9271870B2 (en) | 2005-01-10 | 2016-03-01 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
US9119704B2 (en) | 2005-01-10 | 2015-09-01 | Optimedica Corporation | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US8394084B2 (en) | 2005-01-10 | 2013-03-12 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US8403921B2 (en) | 2005-01-10 | 2013-03-26 | Optimedica Corporation | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US9119703B2 (en) | 2005-01-10 | 2015-09-01 | Optimedica Corporation | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US8425497B2 (en) | 2005-01-10 | 2013-04-23 | Optimedica Corporation | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US8500724B2 (en) | 2005-01-10 | 2013-08-06 | Optimedica Corporation | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US9107732B2 (en) | 2005-01-10 | 2015-08-18 | Optimedica Corporation | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US9101448B2 (en) | 2005-01-10 | 2015-08-11 | Optimedica Corporation | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US9095415B2 (en) | 2005-01-10 | 2015-08-04 | Optimedica Corporation | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US8690862B2 (en) | 2005-01-10 | 2014-04-08 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US20060276776A1 (en) * | 2005-06-01 | 2006-12-07 | Lin J T | Method and system for two-step customized cornea reshaping using ultraviolet infrared lasers |
US20150100049A1 (en) * | 2005-09-19 | 2015-04-09 | Topcon Medical Laser Systems, Inc. | System and method for generating treatment patterns |
US10179071B2 (en) * | 2005-09-19 | 2019-01-15 | Topcon Medical Laser Systems, Inc. | System and method for generating treatment patterns |
US10744036B2 (en) | 2005-09-19 | 2020-08-18 | Topcon Medical Laser Systems, Inc. | System and method for generating treatment patterns |
US9072589B2 (en) | 2005-11-17 | 2015-07-07 | Wavelight Gmbh | Assembly and method for performing surgical laser treatments of the eye |
US8343142B2 (en) | 2005-11-17 | 2013-01-01 | Wavelight Ag | Assembly and method for performing surgical laser treatments of the eye |
WO2007057174A1 (en) * | 2005-11-17 | 2007-05-24 | Wavelight Ag | Assembly and method for performing surgical laser treatments of the eye |
EP1787607A1 (en) * | 2005-11-17 | 2007-05-23 | Wavelight Laser Technologie AG | Apparatus and method for surgical laser treatments of the eye. |
US20090318906A1 (en) * | 2005-11-17 | 2009-12-24 | Wavelight Ag | Assembly and Method for Performing Surgical Laser Treatments of the Eye |
US9681985B2 (en) * | 2005-12-01 | 2017-06-20 | Topcon Medical Laser Systems, Inc. | System and method for minimally traumatic ophthalmic photomedicine |
US20070129709A1 (en) * | 2005-12-01 | 2007-06-07 | Andersen Dan E | System and method for minimally traumatic ophthalmic photomedicine |
WO2008072092A3 (en) * | 2006-03-09 | 2010-09-02 | Biovision Ag | Laser mask for creating a corneal pocket |
US20090012506A1 (en) * | 2006-03-09 | 2009-01-08 | Vladimir Feingold | Laser mask for creating a corneal pocket |
US9526608B2 (en) | 2007-03-13 | 2016-12-27 | Optimedica Corporation | Apparatus for creating incisions to improve intraocular lens placement |
US10729538B2 (en) | 2007-03-13 | 2020-08-04 | Amo Development, Llc | Method for patterned plasma-mediated modification of the crystalline lens |
US9233024B2 (en) | 2007-03-13 | 2016-01-12 | Optimedica Corporation | Method and apparatus for creating ocular surgical and relaxing incisions |
US11612478B2 (en) | 2007-03-13 | 2023-03-28 | Amo Development, Llc | Apparatus for creating incisions to improve intraocular lens placement |
US11839536B2 (en) | 2007-03-13 | 2023-12-12 | Amo Development, Llc | Method for patterned plasma-mediated modification of the crystalline lens |
US11826245B2 (en) | 2007-03-13 | 2023-11-28 | Amo Development, Llc | Method for patterned plasma-mediated modification of the crystalline lens |
US11759310B2 (en) | 2007-03-13 | 2023-09-19 | Amo Development, Llc | Method for creating incision to improve intraocular lens placement |
US9364317B2 (en) | 2007-03-13 | 2016-06-14 | Optimedica Corporation | Method for creating incisions to improve intraocular lens placement |
US9402715B2 (en) | 2007-03-13 | 2016-08-02 | Optimedica Corporation | Method for patterned plasma-mediated modification of the crystalline lens |
US8518026B2 (en) | 2007-03-13 | 2013-08-27 | Optimedica Corporation | Apparatus for creating incisions to improve intraocular lens placement |
US11931243B2 (en) | 2007-03-13 | 2024-03-19 | Amo Development, Llc | Method and apparatus for creating ocular surgical and relaxing incisions |
US20080319427A1 (en) * | 2007-03-13 | 2008-12-25 | Palanker Daniel V | Computer guided patterned laser trabeculoplasty |
US10548715B2 (en) | 2007-03-13 | 2020-02-04 | Optimedica Corporation | Apparatus for creating incisions to improve intraocular lens placement |
US8568393B2 (en) | 2007-03-13 | 2013-10-29 | Topcon Medical Laser Systems, Inc. | Computer guided patterned laser trabeculoplasty |
US10925720B2 (en) | 2007-03-13 | 2021-02-23 | Amo Development, Llc | Method and apparatus for creating ocular surgical and relaxing incisions |
US20090012507A1 (en) * | 2007-03-13 | 2009-01-08 | William Culbertson | Method for patterned plasma-mediated modification of the crystalline lens |
US9662198B2 (en) | 2007-03-13 | 2017-05-30 | Optimedica Corporation | Method for creating incisions to improve intraocular lens placement |
US8657810B2 (en) | 2007-03-13 | 2014-02-25 | Optimedica Corporation | Method for creating incisions to improve intraocular lens placement |
US20110184392A1 (en) * | 2007-03-13 | 2011-07-28 | William Culbertson | Method for patterned plasma-mediated modification of the crystalline lens |
US10405970B2 (en) | 2007-03-13 | 2019-09-10 | Optimedica Corporation | Method and apparatus for creating ocular surgical and relaxing incisions |
US10376356B2 (en) | 2007-03-13 | 2019-08-13 | Optimedica Corporation | Method and apparatus for creating ocular surgical and relaxing incisions |
US8968375B2 (en) | 2007-03-13 | 2015-03-03 | Optimedica Corporation | Method for patterned plasma-mediated modification of the crystalline lens |
US9782253B2 (en) | 2007-03-13 | 2017-10-10 | Optimedica Corporation | Method for patterned plasma-mediated modification of the crystalline lens |
US9795472B2 (en) | 2007-03-13 | 2017-10-24 | Optimedica Corporation | Method for creating incision to improve intraocular lens placement |
US9820848B2 (en) | 2007-03-13 | 2017-11-21 | Optimedica Corporation | Method for creating incision to improve intraocular lens placement |
US10828149B2 (en) | 2007-03-13 | 2020-11-10 | Amo Development, Llc | Method for patterned plasma-mediated modification of the crystalline lens |
US11654015B2 (en) | 2007-03-13 | 2023-05-23 | Amo Development, Llc | Intraocular lens |
US10736733B2 (en) | 2007-03-13 | 2020-08-11 | Amo Development, Llc | Intraocular lens |
US9233023B2 (en) | 2007-03-13 | 2016-01-12 | Optimedica Corporation | Method and apparatus for creating ocular surgical and relaxing incisions |
US9968439B2 (en) | 2007-03-13 | 2018-05-15 | Optimedica Corporation | Method for patterned plasma-mediated modification of the crystalline lens |
US10034795B2 (en) | 2007-03-13 | 2018-07-31 | Optimedica Corporation | Intraocular lens |
US20100137850A1 (en) * | 2007-03-13 | 2010-06-03 | William Culbertson | Method For Patterned Plasma-Mediated Modification Of The Crystalline Lens |
US11701221B2 (en) | 2007-03-13 | 2023-07-18 | Amo Development, Llc | Intraocular lens |
US10195017B2 (en) | 2007-03-13 | 2019-02-05 | Optimedica Corporation | Method for creating incision to improve intraocular lens placement |
US10709548B2 (en) | 2007-03-13 | 2020-07-14 | Amo Development, Llc | Method and apparatus for creating ocular surgical and relaxing incisions |
US10639140B2 (en) | 2007-03-13 | 2020-05-05 | Amo Development, Llc | Method for patterned plasma-mediated modification of the crystalline lens |
US10548716B2 (en) | 2007-03-13 | 2020-02-04 | Optimedica Corporation | Method for creating incision to improve intraocular lens placement |
US20090039282A1 (en) * | 2007-07-31 | 2009-02-12 | Bruker Daltonik Gmbh | Matrix-assisted laser desorption with high ionization yield |
US20110139977A1 (en) * | 2007-07-31 | 2011-06-16 | Bruker Daltonik Gmbh | Matrix-assisted laser desorption with high ionization yield |
US9351877B2 (en) | 2007-09-28 | 2016-05-31 | Eos Holdings, Llc | Laser-assisted thermal separation of tissue |
US8409182B2 (en) * | 2007-09-28 | 2013-04-02 | Eos Holdings, Llc | Laser-assisted thermal separation of tissue |
US20090088734A1 (en) * | 2007-09-28 | 2009-04-02 | Eos Holdings, Llc | Laser-assisted thermal separation of tissue |
US9579235B2 (en) | 2007-09-28 | 2017-02-28 | Excel-Lens, Inc. | Laser-assisted thermal separation of tissue |
US9872797B2 (en) | 2007-09-28 | 2018-01-23 | Excel-Lens, Inc. | Laser-assisted thermal separation of tissue |
US9168175B2 (en) | 2008-09-04 | 2015-10-27 | Vladimir Feingold | Method for laser cutting a corneal pocket |
US8881735B2 (en) | 2008-11-18 | 2014-11-11 | Precise Light Surgical, Inc. | Flash vaporization surgical systems and method |
US9844410B2 (en) | 2008-11-18 | 2017-12-19 | Precise Light Surgical, Inc. | Flash vaporization surgical systems |
US20110196355A1 (en) * | 2008-11-18 | 2011-08-11 | Precise Light Surgical, Inc. | Flash vaporization surgical systems |
US20120150160A1 (en) * | 2009-08-03 | 2012-06-14 | Klaus Vogler | Apparatus for laser surgical ophthalmology |
US9622819B2 (en) | 2010-04-22 | 2017-04-18 | Precise Light Surgical, Inc. | Flash vaporization surgical systems |
EP2560569A4 (en) * | 2010-04-22 | 2014-06-04 | Precise Light Surgical Inc | Flash vaporization surgical systems |
EP2560569A2 (en) * | 2010-04-22 | 2013-02-27 | Precise Light Surgical, Inc. | Flash vaporization surgical systems |
US20120296318A1 (en) * | 2011-05-16 | 2012-11-22 | Wellhoefer Armin | System and process for surgical treatment of an eye as well as process for calibrating a system of such a type |
US9301876B2 (en) * | 2011-05-16 | 2016-04-05 | Wavelight Gmbh | System and process for surgical treatment of an eye as well as process for calibrating a system of such a type |
US11886088B2 (en) | 2011-09-14 | 2024-01-30 | View, Inc. | Portable defect mitigators for electrochromic windows |
US20200230739A1 (en) * | 2012-05-18 | 2020-07-23 | View, Inc. | Circumscribing defects in optical devices |
US10327951B2 (en) | 2014-02-28 | 2019-06-25 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US9820886B2 (en) | 2014-02-28 | 2017-11-21 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US10231872B2 (en) | 2014-02-28 | 2019-03-19 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US10561531B2 (en) | 2014-02-28 | 2020-02-18 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US10206817B2 (en) | 2014-02-28 | 2019-02-19 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US11033431B2 (en) | 2014-09-09 | 2021-06-15 | Amo Development, Llc | Systems and methods for synchronized three-dimensional laser incisions |
US12053417B2 (en) | 2014-09-09 | 2024-08-06 | Amo Development, Llc | Systems and methods for synchronized three-dimensional laser incisions |
US20160067095A1 (en) * | 2014-09-09 | 2016-03-10 | Amo Development, Llc | Systems and methods for synchronized three-dimensional laser incisions |
US10456297B2 (en) * | 2014-09-09 | 2019-10-29 | Amo Development, Llc | Systems and methods for synchronized three-dimensional laser incisions |
US10786390B2 (en) * | 2015-06-24 | 2020-09-29 | Alcon Inc. | Apparatus for eye laser surgery and method for performing a transepithelial photorefractive keratectomy |
US20160374858A1 (en) * | 2015-06-24 | 2016-12-29 | Wavelight Gmbh | Apparatus for eye laser surgery and method for performing a transepithelial photorefractive keratectomy |
AU2016284930B2 (en) * | 2015-06-24 | 2020-07-16 | Alcon Inc. | Apparatus for eye laser surgery for performing a transepithelial photorefractive keratectomy |
EP3407961A4 (en) * | 2016-01-25 | 2019-11-20 | Syneron Medical Ltd. | APPARATUS AND METHOD FOR TREATING SKIN |
WO2017130185A3 (en) * | 2016-01-25 | 2017-11-23 | Syneron Medical Ltd. | Skin treatment apparatus and method |
US11253317B2 (en) | 2017-03-20 | 2022-02-22 | Precise Light Surgical, Inc. | Soft tissue selective ablation surgical systems |
US11400308B2 (en) | 2017-11-21 | 2022-08-02 | Cutera, Inc. | Dermatological picosecond laser treatment systems and methods using optical parametric oscillator |
US11389237B2 (en) | 2017-11-21 | 2022-07-19 | Cutera, Inc. | Dermatological picosecond laser treatment systems and methods using optical parametric oscillator |
US10729496B2 (en) | 2017-11-21 | 2020-08-04 | Cutera, Inc. | Dermatological picosecond laser treatment systems and methods using optical parametric oscillator |
US12102840B2 (en) | 2017-11-21 | 2024-10-01 | Cutera, Inc. | Dermatological laser treatment systems and methods using optical parametric oscillator |
CN113907947A (en) * | 2020-08-04 | 2022-01-11 | 施温德眼科技术解决方式有限公司 | Method for controlling an ophthalmic surgical laser and treatment device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37504E1 (en) | Ophthalmic surgery method using non-contact scanning laser | |
US5520679A (en) | Ophthalmic surgery method using non-contact scanning laser | |
USRE40184E1 (en) | Refractive surgery and presbyopia correction using infrared and ultraviolet lasers | |
US6572606B2 (en) | Laser fluence compensation of a curved surface | |
AU645513B2 (en) | Collagen treatment apparatus and method | |
US6824540B1 (en) | Apparatus and methods for the treatment of presbyopia using fiber-coupled-lasers | |
US6263879B1 (en) | Treatment of presbyopia and other eye disorders using a scanning laser system | |
US6716210B2 (en) | Refractive surgical laser apparatus and method | |
US6342053B1 (en) | Apparatus for cornea reshaping | |
US5779696A (en) | Method and apparatus for performing corneal reshaping to correct ocular refractive errors | |
US5984916A (en) | Ophthalmic surgical laser and method | |
US5374265A (en) | Collagen treatment apparatus and method | |
Reinstein et al. | The history of LASIK | |
US4665913A (en) | Method for ophthalmological surgery | |
EP0591191B1 (en) | Apparatus for performing corneal reshaping to correct ocular refractive errors | |
Ren et al. | Axicon: a new laser beam delivery system for corneal surgery | |
US6745775B2 (en) | Methods and apparatus for presbyopia treatment using a scanning laser system | |
US20110295243A1 (en) | Laser-based methods and systems for corneal surgery | |
JP4278715B2 (en) | Surgical parametric oscillator using short pulse mid-infrared radiation | |
USRE40002E1 (en) | Treatment of presbyopia and other eye disorders using a scanning laser system | |
US20060129141A1 (en) | Treatment of eye disorders using articulated-arm coupled ultraviolet lasers | |
Ren et al. | Laser refractive surgery: a review and current status | |
Lin | Critical review on refractive surgical lasers | |
Linz et al. | Laser Micro-and Nanostructuring for Refractive Eye Surgery | |
Lin | Multiwavelength solid state laser for ophthalmic applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HELLER HEALTHCARE FINANCE, INC., MARYLAND Free format text: SECURITY INTEREST;ASSIGNORS:LASERSIGHT INCORPORATED;LASERSIGHT TECHNOLOGIES, INC.;LASERSIGHT CENTERS INCORPORATED;AND OTHERS;REEL/FRAME:012802/0276 Effective date: 20010312 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, MARYLAND Free format text: ASSIGNMENT OF SECURITY AGREEMENT;ASSIGNOR:GE HFS HOLDINGS, INC., FORMERLY HELLER HEALTHCARE FINANCE, INC.;REEL/FRAME:014646/0908 Effective date: 20040506 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees |