USRE35557E - Mineral fibers decomposable in a physiological medium - Google Patents
Mineral fibers decomposable in a physiological medium Download PDFInfo
- Publication number
- USRE35557E USRE35557E US08/432,000 US43200095A USRE35557E US RE35557 E USRE35557 E US RE35557E US 43200095 A US43200095 A US 43200095A US RE35557 E USRE35557 E US RE35557E
- Authority
- US
- United States
- Prior art keywords
- sub
- amount
- composition
- cao
- mgo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/06—Mineral fibres, e.g. slag wool, mineral wool, rock wool
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2213/00—Glass fibres or filaments
- C03C2213/02—Biodegradable glass fibres
Definitions
- the present invention relates to mineral fibers which, by virtue of their composition, are readily decomposable upon contact with a physiological medium.
- mineral fibers are also used in industry to produce, e.g., geometrically shaped panels and tubular products for various applications.
- fibers are also commonly used in industry to form, e.g., mats sewn over cardboard or metal grills or netting to form pads or alternately to form such pads by filling in bulk form.
- the finished product must be cut and/or shaped prior to its final installation.
- An object of the present invention is to provide mineral fibers having a composition which decomposes rapidly upon contact with a physiological medium.
- a physiological medium applicants make a medium such as that typically found within a human body.
- a further object of the present invention is to provide composition which may be formed into decomposable fibers of the type described above by the use of so-called "outer" centrifugation techniques.
- Outer centrifugation techniques which are well known in the art, are typically used to form fibers from glasses obtained by melting raw materials such as blast furnace slag or basalts. Some of these techniques, also referred to as free centrifuging techniques, involve pouring a thin stream of molten glass onto the peripheral strip of a centrifuging wheel rotating at high speed about a shaft perpendicular to the direction of the thin glass stream. Under the effect of centrifugal force, some of the glass is converted into fibers, with the remainder of the glass being conveyed to a second wheel where the same procedure is repeated. In this manner, therefore, three or four wheels may be interposed along the path of the molten glass. Techniques such as those described above are particularly useful in forming the mineral fibers of the present invention.
- compositions typically used in the free centrifuging techniques described above Based upon compositions of this type, essentially comprising silica, alumina and alkaline earth oxides, it has been discovered that the addition of phosphorus pentoxide results in the formation of mineral fibers which decompose rapidly in a physiological medium.
- compositions of the present invention do not suffer any substantial diminution of their properties in comparison to those of prior art products, i.e., those which are only slightly or not at all decomposable in a physiological medium.
- the compositions of the invention can be readily converted into fibers using conventional centrifuging wheels.
- the mineral fibers formed according to the present invention are prepared from compositions comprising the following components (in weight percent):
- the total iron contained in the compositions of the invention is expressed in the form of ferric oxide (i.e., Fe 2 O 3 ).
- compositions defined above may, if desired, be prepared from substantially pure constituents. Generally, however, they are obtained by melting a mixture of vitrifiable raw materials, possibly additionally containing other metal oxides such as, for example, titanium oxide and manganese oxide. These additional oxides are considered as impurities within the scope of the invention. The total content of these impurities should be maintained at less than or equal to about 3 weight percent of the total composition.
- the compositions of the invention must have a suitable, viscosity at a relatively low temperature.
- the viscosity of these materials depends to a great extent on the total amount of SiO 2 and Al 2 O 3 in the subject compositions. Within the scope of the invention, the amount of these oxides is generally equal to or greater than about 50 weight percent of the total composition.
- the ability to produce fibers from the compositions of the invention is inversely proportional to the ability of the material to develop crystals in its mass.
- This phenomenon known as devitrification, is characterized by several temperatures: that at which the rate of crystal growth is at its maximum and that at which this rate of growth is zero, i.e., the liquidus temperature.
- devitrification may be increased or decreased by adjusting the total amount of alkaline earth oxides in the composition. Within the scope of the invention, the amount of such alkaline earth oxides should be maintained at less than about 40 weight percent of the total composition.
- the amount of CaO+MgO+-Fe 2 O 3 in the compositions is desirable for the amount of CaO+MgO+-Fe 2 O 3 in the compositions to be greater than about 25 weight percent of the composition.
- a first preferred range of components for mineral fiber formed according to the present invention is set forth below in the following proportions by weight:
- the measurements of the degree of decomposition undergone by the fibers of the present invention in the physiological medium were performed on fibers having a substantially constant diameter of approximately 10 ⁇ m.
- the fibers were immersed in a solution which simulated an extracellular fluid having the following composition (expressed in g/l):
- the test conditions selected for determining the degree of decomposition of the mineral fibers in the above-described solution were as follows: 200 mg of fibers were placed between two perforated discs separated by a circular ring. These two discs, each 4.3 cm in diameter, were covered with a polycarbonate filter. This assembly formed a measuring cell through which the physiological solution was circulated. The flow rate of the solution was regulated by a peristaltic pump. The flow rate of the solution was 40 ml per day, with the duration of the test being 20 days. The cell and the flask containing the physiological solution was maintained at a substantially constant temperature of 37° C. After passing through the cell, the physiological solution was collected in bottles to permit subsequent analysis.
- the amount of dissolved silica within the solution was thereafter measured by analysis such that the weight of dissolved silica in relation to the weight of silica initially present in the fiber provided a percentage result. This percentage is therefore a good indicator of the capacity of the fiber tested to decompose in a physiological medium.
- Tables 1 and 2 set forth below.
- Table 1 sets forth several mineral fiber compositions according to the invention, as well as two prior art compositions used as a reference (i.e., example no. 1 and no. 4). As illustrated in Table 2, therefore, the presence of phosphorous pentoxide in compositions formed according to the present invention has thus been demonstrated to have the effect of increasing the rate of decomposition of fibers formed from these compositions when such fibers are placed in a physiological medium.
- example nos. 1 and 3 shows that the effect of reducing the alumina and replacing this amount by silica causes a considerable increase in the degree of decomposition of the fibers tested.
- example nos. 2 and 3 illustrates that in examples where the degree of decomposition is considerable, the substitution of silica by phosphorus pentoxide results in a substantial increase in the degree of decomposition on the fibers tested.
- the phosphorus containing compound is added to the vitrifiable mixture as, for example, disodic phosphate or calcium phosphate.
- the amount of phosphate introduced into the vitrifiable mixture is relatively large, it may sometimes be difficult to melt the mixture. It is for this reason that the phosphorus pentoxide content of the compositions of the invention is maintained at an amount less than or equal to about 10 weight percent of the total composition.
- the compositions according to the invention comprise less than about 7 weight percent of alkaline oxides.
- Such compositions have viscosity and devitrification properties suitable to permit the formation of mineral fibers from these compositions with the use of outer centrifuging techniques of the type described above.
- the resultant fibers have a high rate of decomposition in a physiological medium.
- the mineral fibers of the invention listed in table no. 1 are all resistant to temperatures of up to about 700° C. It was found that sample blocks of these fibers (100 kg/m 3 ) heated into an oven during 30 minutes sag less than 10% at 700° C.
- compositions of the invention may be converted into fibers by known "outer" centrifuging devices, such as those described in U.S. Pat. Nos. 2,663,051 and 4,661,134 or French Patent Publication No. 2,609,708, for example, The disclosure of each of these references in incorporated herein by reference.
- the fibers obtained in this manner permit the formation of excellent quality fibrous products suitable for numerous applications.
- the fibers of the present invention may advantageously be formed into geometrically shaped panels, stiffened by a polymerized bonding material, or into tubular products intended, e,g., for duct insulation.
- Fibers produced according to the invention may also be used to form mats sewn over cardboard or metal grills or netting in the form of pads, or even in bulk form, i.e., by filling.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Glass Compositions (AREA)
Abstract
The present invention relates to mineral fiber compositions useful for forming fibers which are readily degraded in a physiological medium such as that found within the human body. Advantageous compositions formed according to the present invention comprise the following components in the proportions by weight set forth below:
______________________________________
SiO2 37 to 58 wt. %;
Al2 O3
4 to 14 wt. %;
CaO 7 to 40 wt. %;
MgO 4 to 16 wt. %;
P2 O5
1 to 10 wt. %;
Fe2 O3
up to about to 15 wt. %:
______________________________________
wherein the amount of CaO+MgO+Fe2 O3 is greater than 25% and the total amount of Na2 O+K2 O is less than 7%. The total iron contained within the composition is expressed in the form of ferric oxide (Fe2 O3).
Description
Continuation of Ser. No. 708,661, May 31, 1991, abandoned .[., which is a continuation-in-part of Ser. No. 565,282, Aug. 9, 1990, U.S. Pat. No. 5,108,957.]..
The present invention relates to mineral fibers which, by virtue of their composition, are readily decomposable upon contact with a physiological medium.
Buildings are frequently insulated with respect to heat and sound by products incorporating mineral fibers, such as rock or slag fibers. The particular arrangement of the premises to be insulated often requires the personnel responsible for fitting these products to cut and/or shape them at the job site, this operation, however, typically causes breakage of the fibers and the possible dispersion of some of these fibers and/or fiber fragments into the atmosphere.
In a like manner mineral fibers are also used in industry to produce, e.g., geometrically shaped panels and tubular products for various applications. In addition such fibers are also commonly used in industry to form, e.g., mats sewn over cardboard or metal grills or netting to form pads or alternately to form such pads by filling in bulk form. In many of these applications the finished product must be cut and/or shaped prior to its final installation.
It follows, therefore that at times there is a danger of accidental inhalation of fibers or fiber fragments by those who come into contact with them. Although the inhalation of these fibers and/or fragments has not been demonstrated to be harmful, the need is felt to reassure those working with these products by offering them a demonstrably safe product.
An object of the present invention is to provide mineral fibers having a composition which decomposes rapidly upon contact with a physiological medium. By a "physiological medium", applicants make a medium such as that typically found within a human body.
A further object of the present invention is to provide composition which may be formed into decomposable fibers of the type described above by the use of so-called "outer" centrifugation techniques.
Outer centrifugation techniques, which are well known in the art, are typically used to form fibers from glasses obtained by melting raw materials such as blast furnace slag or basalts. Some of these techniques, also referred to as free centrifuging techniques, involve pouring a thin stream of molten glass onto the peripheral strip of a centrifuging wheel rotating at high speed about a shaft perpendicular to the direction of the thin glass stream. Under the effect of centrifugal force, some of the glass is converted into fibers, with the remainder of the glass being conveyed to a second wheel where the same procedure is repeated. In this manner, therefore, three or four wheels may be interposed along the path of the molten glass. Techniques such as those described above are particularly useful in forming the mineral fibers of the present invention.
The objects of the present invention are achieved by modifying known glass compositions typically used in the free centrifuging techniques described above. Based upon compositions of this type, essentially comprising silica, alumina and alkaline earth oxides, it has been discovered that the addition of phosphorus pentoxide results in the formation of mineral fibers which decompose rapidly in a physiological medium.
It has further been found that mineral fibers formed from the compositions of the present invention do not suffer any substantial diminution of their properties in comparison to those of prior art products, i.e., those which are only slightly or not at all decomposable in a physiological medium. Thus, the compositions of the invention can be readily converted into fibers using conventional centrifuging wheels.
The mineral fibers formed according to the present invention are prepared from compositions comprising the following components (in weight percent):
______________________________________ SiO.sub.2 37 to 58% Al.sub.2 O.sub.3 4 to 14%CaO 7 to 40%MgO 4 to 16% P.sub.2 O.sub.5 1 to 10% Fe.sub.2 O.sub.3 up to 15% ______________________________________
wherein the amount of CaO+MgO+Fe2 O3 is greater than 25% by weight of the total composition, and the total amount of Na2 O and K2 O is less than about 7 wt. %. The total iron contained in the compositions of the invention is expressed in the form of ferric oxide (i.e., Fe2 O3).
The compositions defined above may, if desired, be prepared from substantially pure constituents. Generally, however, they are obtained by melting a mixture of vitrifiable raw materials, possibly additionally containing other metal oxides such as, for example, titanium oxide and manganese oxide. These additional oxides are considered as impurities within the scope of the invention. The total content of these impurities should be maintained at less than or equal to about 3 weight percent of the total composition.
To permit the formation of mineral fibers from the compositions of the invention with the use of outer centrifuging techniques, the compositions of the invention must have a suitable, viscosity at a relatively low temperature. The viscosity of these materials depends to a great extent on the total amount of SiO2 and Al2 O3 in the subject compositions. Within the scope of the invention, the amount of these oxides is generally equal to or greater than about 50 weight percent of the total composition.
In addition, the ability to produce fibers from the compositions of the invention is inversely proportional to the ability of the material to develop crystals in its mass. This phenomenon, known as devitrification, is characterized by several temperatures: that at which the rate of crystal growth is at its maximum and that at which this rate of growth is zero, i.e., the liquidus temperature. Generally, devitrification may be increased or decreased by adjusting the total amount of alkaline earth oxides in the composition. Within the scope of the invention, the amount of such alkaline earth oxides should be maintained at less than about 40 weight percent of the total composition.
Moreover, in order to ensure that the fibers formed according to the invention are sufficiently heat resistant, it is desirable for the amount of CaO+MgO+-Fe2 O3 in the compositions to be greater than about 25 weight percent of the composition.
A first preferred range of components for mineral fiber formed according to the present invention is set forth below in the following proportions by weight:
______________________________________ SiO.sub.2 45 to 57% Al.sub.2 O.sub.3 3 to 6%CaO 20 to 30%MgO 6 to 16% Fe.sub.2 O.sub.3 0.1 to 4% P.sub.2 O.sub.5 1 to 7% Na.sub.2 O + K.sub.2 O 0.1 to 5% Impurities ≦3% ______________________________________
A second embodiment of the present invention comprises the following components in the following weight proportions:
______________________________________ SiO.sub.2 39 to 50% Al.sub.2 O.sub.3 7 to 13%CaO 20 to 30%MgO 6 to 16% Fe.sub.2 O.sub.3 0.1 to 4% P.sub.2 O.sub.5 3 to 9% Na.sub.2 O + K.sub.2 O 0.1 to 5% Impurities ≦3% ______________________________________
The advantages of the mineral fiber compositions of the present invention are set forth in the following description, illustrated by some non-limiting examples.
The measurements of the degree of decomposition undergone by the fibers of the present invention in the physiological medium were performed on fibers having a substantially constant diameter of approximately 10 μm.
The fibers were immersed in a solution which simulated an extracellular fluid having the following composition (expressed in g/l):
______________________________________ MgCl.sub.2.6H.sub.2 O 0.212 NaCl 6.415 Na.sub.2 HPO.sub.4 0.148 Na.sub.2 SO.sub.4.2H.sub.2 O 0.179 CaCl.sub.2.4H.sub.2 O 0.318 NaHCO.sub.3 2.703 (Na.sub.2 tartrate).2H.sub.2 O 0.180 (Na.sub.3 citrate).5, 5H.sub.2 O 0.186 Na lactate 0.175 Na pyruvate 0.172 Glycine 0.118 ______________________________________
The test conditions selected for determining the degree of decomposition of the mineral fibers in the above-described solution were as follows: 200 mg of fibers were placed between two perforated discs separated by a circular ring. These two discs, each 4.3 cm in diameter, were covered with a polycarbonate filter. This assembly formed a measuring cell through which the physiological solution was circulated. The flow rate of the solution was regulated by a peristaltic pump. The flow rate of the solution was 40 ml per day, with the duration of the test being 20 days. The cell and the flask containing the physiological solution was maintained at a substantially constant temperature of 37° C. After passing through the cell, the physiological solution was collected in bottles to permit subsequent analysis. The amount of dissolved silica within the solution was thereafter measured by analysis such that the weight of dissolved silica in relation to the weight of silica initially present in the fiber provided a percentage result. This percentage is therefore a good indicator of the capacity of the fiber tested to decompose in a physiological medium.
The compositions tested and the results obtained are presented in Tables 1 and 2 set forth below. Table 1 sets forth several mineral fiber compositions according to the invention, as well as two prior art compositions used as a reference (i.e., example no. 1 and no. 4). As illustrated in Table 2, therefore, the presence of phosphorous pentoxide in compositions formed according to the present invention has thus been demonstrated to have the effect of increasing the rate of decomposition of fibers formed from these compositions when such fibers are placed in a physiological medium.
A comparison between example nos. 1 and 3, on the one hand, and example nos. 4 and no. 6, on the other, shows that the effect of reducing the alumina and replacing this amount by silica causes a considerable increase in the degree of decomposition of the fibers tested.
A comparison between example nos. 2 and 3, and between example nos. 5 and 6, illustrates that in examples where the degree of decomposition is considerable, the substitution of silica by phosphorus pentoxide results in a substantial increase in the degree of decomposition on the fibers tested.
The influence of phosphorus pentoxide on the degree of decomposition of the fibers is still quite considerable in compositions having a high alumina content, as shown by the results obtained with example nos. 4 and 7.
The phosphorus containing compound is added to the vitrifiable mixture as, for example, disodic phosphate or calcium phosphate. When the amount of phosphate introduced into the vitrifiable mixture is relatively large, it may sometimes be difficult to melt the mixture. It is for this reason that the phosphorus pentoxide content of the compositions of the invention is maintained at an amount less than or equal to about 10 weight percent of the total composition.
Preferably, the compositions according to the invention comprise less than about 7 weight percent of alkaline oxides. Such compositions have viscosity and devitrification properties suitable to permit the formation of mineral fibers from these compositions with the use of outer centrifuging techniques of the type described above. In addition, as shown, the resultant fibers have a high rate of decomposition in a physiological medium. The mineral fibers of the invention listed in table no. 1 are all resistant to temperatures of up to about 700° C. It was found that sample blocks of these fibers (100 kg/m3) heated into an oven during 30 minutes sag less than 10% at 700° C.
The compositions of the invention may be converted into fibers by known "outer" centrifuging devices, such as those described in U.S. Pat. Nos. 2,663,051 and 4,661,134 or French Patent Publication No. 2,609,708, for example, The disclosure of each of these references in incorporated herein by reference.
The fibers obtained in this manner permit the formation of excellent quality fibrous products suitable for numerous applications. Thus, for example, the fibers of the present invention may advantageously be formed into geometrically shaped panels, stiffened by a polymerized bonding material, or into tubular products intended, e,g., for duct insulation. Fibers produced according to the invention may also be used to form mats sewn over cardboard or metal grills or netting in the form of pads, or even in bulk form, i.e., by filling.
TABLE NO.1 ______________________________________ Compositions in weight percentages Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Consti- No. No. No. No. No. No. No.No. tuents 1 2 3 4 5 6 7 8 ______________________________________ SiO.sub.2 47.1 49.9 56.4 45.7 49.7 52.7 39.7 44.9 Fe.sub.2 O.sub.3 12.9 12.9 12.9 2.1 2.1 2.1 2.1 10 Al.sub.2 O.sub.3 13.8 4.5 4.5 11.5 4.5 4.5 11.5 4.5 CaO 10.3 10.3 10.3 29.5 29.5 29.5 29.5 29.5 Mgo 9.1 9.1 9.1 7.4 7.4 7.4 7.4 7.4 Na.sub.2 O 2.7 2.7 2.7 1.4 1.4 1.4 1.4 1.4 K.sub.2 O 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 P.sub.2 O.sub.5 0.3 6.5 0.3 0.1 3 0.2 6 3 Impur- 2.6 2.9 2.6 1.0 1.1 0.9 1.1 0.7 ities ______________________________________
TABLE No.2 ______________________________________ Chemical Resistance in Physiological Medium Amount of dissolved SiO.sub.2 (in percent) dura- tion Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex. of No. No. No. No. No. No. No.No. test 1 2 3 4 5 6 7 8 ______________________________________ 20 0.7 5.1 2.5 0.9 11.4 5.2 2.6 53 days ______________________________________
While it is apparent that the invention herein disclosed is well calculated to fulfill the objectives stated above, it will be appreciated that numerous modifications and embodiments may be devised by those skilled in the art. It is intended that the appended claims cover al such modifications and embodiments as fall within the true spirit and scope of the present invention.
Claims (9)
1. A mineral fiber composition decomposable in a physiological medium, said composition consisting essentially of:
______________________________________ SiO.sub.2 37 to 58 wt. %; Al.sub.2 O.sub.3 4 to 11.5 .[.14.]. wt. %; CaO 7 to 40 wt. %; MgO 4 to 16 wt. %; P.sub.2 O.sub.5 1 to 7 .[.10.]. wt. %; Fe.sub.2 O.sub.3 0.1 to 15 wt. %; Na.sub.2 O + K.sub.2 O up to about 7 wt. %; and Impurities up to about 3 wt. %, ______________________________________
wherein the amount of CaO+MgO+Fe2 O3 is greater than 25 wt. % of the composition.
2. The composition of claim 1, wherein the amount of SiO2 +Al2 O3 is greater than about 50 wt % of said composition.
3. The composition of claim 1 wherein the amount of CaO+MgO less than about 40 wt % of said composition.
4. A mineral fiber composition decomposable in a physiological medium, said composition consisting essentially of:
______________________________________ SiO.sub.2 45 to 57 wt. %; Al.sub.2 O.sub.3 3 to 6 wt. %. CaO 20 to 30 wt. % MgO 6 to 16 wt. %; Fe.sub.2 O.sub.3 1 to 7 wt. %; P.sub.2 O.sub.5 0.1 to 4 wt. %; Na.sub.2 O + K.sub.2 O 0.1 to 5 wt. %; Impurities up to about 3 wt. % ______________________________________
wherein the amount of CaO+MgO+Fe2 O3 is greater than about 25 wt % of said composition.
5. A mineral fiber composition decomposable in a physiological medium, said composition consisting essentially of:
______________________________________ SiO.sub.2 40 to 50 wt. %; Al.sub.2 O.sub.3 7 to 11.5 .[.13.]. wt. %; CaO 20 to 30 wt. %; MgO 6 to 16 wt. %; P.sub.2 O.sub.5 3 to 7 .[.9.]. wt. %; Fe.sub.2 O.sub.3 up to about 4 wt. %; Na.sub.2 O + K.sub.2 O 0.1 to 5 wt. %; and Impurities up to about 3 wt. %; ______________________________________
wherein the amount of CaO+MgO+Fe2 O3 is greater than 25 wt. % of the composition.
6. Mineral fibers comprising the mineral fiber compositions set forth in any one of claims 1 to 5.
7. An insulating material comprising the mineral fibers of claim 6. .Iadd.
8. A mineral fiber composition decomposable in a physiological medium, said composition consisting essentially of:
SiO2 in an amount of about 45 to 57 wt. %
Al2 O3 in an amount of about 4 to 6 wt. %
CaO in an amount of about 7 to 40 wt. %
MgO in an amount of about 4 to 9.1 wt. %
P2 O5 in an amount of about 1 to 7 wt. %
Fe2 O3 in an amount of about 2.1 to 15 wt. %, and
Na2 O+K2 O in an amount of about 0.1 to 5 wt. %; wherein the composition contains impurity elements in an amount of less than about 3 wt. % and the amount of CaO+MgO+Fe2 O3 is greater than 25 wt. % of the composition.Iaddend.. .Iadd.
9. A mineral fiber composition decomposable in a physiological medium, said composition consisting essentially of about 49.7 wt. % SiO2, about 2.1 wt. % Fe2 O3, about 4.5 wt. % Al2 O3, about 29.5 wt. % CaO, about 7.4 wt. % MgO, about 1.4 wt. % Na2 O, about 1.3 wt. % K2 O, about 3 wt. % P2 O5 and impurities in an amount of about 1.1 wt. %, wherein the weight ratio of P2 O5 to (Al2 O3 and Fe2 O3) is about 0.45..Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/432,000 USRE35557E (en) | 1990-06-01 | 1995-05-01 | Mineral fibers decomposable in a physiological medium |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9006841 | 1990-06-01 | ||
FR9006841A FR2662688B1 (en) | 1990-06-01 | 1990-06-01 | MINERAL FIBERS LIKELY TO DECOMPOSE IN A PHYSIOLOGICAL ENVIRONMENT. |
FR9006840 | 1990-06-01 | ||
FR9006840A FR2662687B1 (en) | 1990-06-01 | 1990-06-01 | MINERAL FIBERS LIKELY TO DECOMPOSE IN A PHYSIOLOGICAL ENVIRONMENT. |
US70866191A | 1991-05-31 | 1991-05-31 | |
US07/982,136 US5250488A (en) | 1989-08-11 | 1992-11-25 | Mineral fibers decomposable in a physiological medium |
US08/432,000 USRE35557E (en) | 1990-06-01 | 1995-05-01 | Mineral fibers decomposable in a physiological medium |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US70866191A Continuation | 1989-08-11 | 1991-05-31 | |
US07/982,136 Reissue US5250488A (en) | 1989-08-11 | 1992-11-25 | Mineral fibers decomposable in a physiological medium |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE35557E true USRE35557E (en) | 1997-07-08 |
Family
ID=27446762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/432,000 Expired - Lifetime USRE35557E (en) | 1990-06-01 | 1995-05-01 | Mineral fibers decomposable in a physiological medium |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE35557E (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5962355A (en) | 1996-04-24 | 1999-10-05 | Owens Corning Fiberglas Technology, Inc. | Glass compositions having high KI values and fibers therefrom |
US6034014A (en) | 1997-08-04 | 2000-03-07 | Owens Corning Fiberglas Technology, Inc. | Glass fiber composition |
US20040254056A1 (en) * | 2002-01-04 | 2004-12-16 | Jubb Gary Anthony | Saline soluble inorganic fibres |
US20050014624A1 (en) * | 1992-01-17 | 2005-01-20 | Jubb Gary Anthony | Saline soluble inorganic fibers |
US6861381B1 (en) | 1999-09-10 | 2005-03-01 | The Morgan Crucible Company Plc | High temperature resistant saline soluble fibres |
US6987076B1 (en) | 1998-09-15 | 2006-01-17 | The Morgan Crucible Company Plc | Bonded fibrous materials |
US20060094583A1 (en) * | 2004-11-01 | 2006-05-04 | Freeman Craig J | Modification of alkaline earth silicate fibres |
US20070020454A1 (en) * | 2005-06-30 | 2007-01-25 | Unifrax Corporation | Inorganic fiber |
US20090048088A1 (en) * | 2007-08-15 | 2009-02-19 | Leed Elam A | Fire resistant glass fiber |
US20090312171A1 (en) * | 2005-07-05 | 2009-12-17 | Toshikatu Tanaka | Glass Fiber Composition, Glass Fiber, and Glass Fiber Containing Composition Material |
US8652980B2 (en) | 2010-11-16 | 2014-02-18 | Unifax I LLC | Inorganic fiber |
US9556063B2 (en) | 2014-07-17 | 2017-01-31 | Unifrax I Llc | Inorganic fiber with improved shrinkage and strength |
US9567256B2 (en) | 2013-03-15 | 2017-02-14 | Unifrax I Llc | Inorganic fiber |
US9708214B2 (en) | 2014-07-16 | 2017-07-18 | Unifrax I Llc | Inorganic fiber with improved shrinkage and strength |
US9919957B2 (en) | 2016-01-19 | 2018-03-20 | Unifrax I Llc | Inorganic fiber |
US10023491B2 (en) | 2014-07-16 | 2018-07-17 | Unifrax I Llc | Inorganic fiber |
US10882779B2 (en) | 2018-05-25 | 2021-01-05 | Unifrax I Llc | Inorganic fiber |
US11203551B2 (en) | 2017-10-10 | 2021-12-21 | Unifrax I Llc | Low biopersistence inorganic fiber free of crystalline silica |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2663051A (en) * | 1951-01-24 | 1953-12-22 | Johns Manville | Method and apparatus for fiberizing mineral materials |
US3013888A (en) * | 1959-11-06 | 1961-12-19 | Saint Gobain | Glass composition |
US3328142A (en) * | 1956-05-11 | 1967-06-27 | Saint Gobain | Formation of glass mats |
US3513002A (en) * | 1966-04-29 | 1970-05-19 | Johns Manville | Chemical resistant glass composition for fiberization |
US3853569A (en) * | 1963-02-07 | 1974-12-10 | Saint Gobain | Silicate glass fiber compositions |
SU525623A1 (en) * | 1973-08-02 | 1976-08-25 | Уфимский Нефтяной Институт | Gypsum Hydrocarbon Removal Solution |
EP0009418A2 (en) * | 1978-09-27 | 1980-04-02 | Oy Partek Ab | Glass composition for the production of fibres |
US4312952A (en) * | 1979-05-09 | 1982-01-26 | Oy Partek Ab | Fibre glass composition |
GB2080281A (en) * | 1980-06-11 | 1982-02-03 | Nippon Kogaku Kk | Biologically active glass |
US4381347A (en) * | 1979-05-09 | 1983-04-26 | Oy Partek Ab | Fibre glass composition |
SU1211233A1 (en) * | 1984-01-27 | 1986-02-15 | Научно-производственное объединение "Камень и силикаты" | Opacified glass |
US4605415A (en) * | 1982-12-02 | 1986-08-12 | Region Wallonne, Representee Par L'executif Regional Wallon | Bioreactive materials |
US4615988A (en) * | 1983-09-19 | 1986-10-07 | Isover Saint-Gobain | Glass fibers and a composition for manufacturing the same |
WO1987005007A1 (en) * | 1986-02-20 | 1987-08-27 | Manville Corporation | INORGANIC FIBER COMPOSITION CONSISTING ESSENTIALLY OF Al2O3, MgO, CaO AND SiO2 |
EP0247817A1 (en) * | 1986-05-28 | 1987-12-02 | Pfizer Inc. | Alkali-resistant glass fiber |
US4756732A (en) * | 1982-04-06 | 1988-07-12 | Isover Saint-Gobain | Glass fiberization method |
US4756785A (en) * | 1985-12-06 | 1988-07-12 | Bayer Aktiengesellschaft | Process for the preparation of adhesives and their use for the formation of bonds |
US4759974A (en) * | 1982-04-06 | 1988-07-26 | Isover Saint-Gobain | Glass fiberization |
WO1989012032A2 (en) * | 1988-06-01 | 1989-12-14 | Manville Sales Corporation | Process for decomposing an inorganic fiber |
US5108957A (en) * | 1989-08-11 | 1992-04-28 | Isover Saint-Gobain | Glass fibers decomposable in a physiological medium |
WO1992009536A1 (en) * | 1990-11-23 | 1992-06-11 | Paroc Oy Ab | Mineral fibre composition |
-
1995
- 1995-05-01 US US08/432,000 patent/USRE35557E/en not_active Expired - Lifetime
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2663051A (en) * | 1951-01-24 | 1953-12-22 | Johns Manville | Method and apparatus for fiberizing mineral materials |
US3328142A (en) * | 1956-05-11 | 1967-06-27 | Saint Gobain | Formation of glass mats |
US3013888A (en) * | 1959-11-06 | 1961-12-19 | Saint Gobain | Glass composition |
US3853569A (en) * | 1963-02-07 | 1974-12-10 | Saint Gobain | Silicate glass fiber compositions |
US3513002A (en) * | 1966-04-29 | 1970-05-19 | Johns Manville | Chemical resistant glass composition for fiberization |
SU525623A1 (en) * | 1973-08-02 | 1976-08-25 | Уфимский Нефтяной Институт | Gypsum Hydrocarbon Removal Solution |
EP0009418A2 (en) * | 1978-09-27 | 1980-04-02 | Oy Partek Ab | Glass composition for the production of fibres |
US4312952A (en) * | 1979-05-09 | 1982-01-26 | Oy Partek Ab | Fibre glass composition |
US4381347A (en) * | 1979-05-09 | 1983-04-26 | Oy Partek Ab | Fibre glass composition |
GB2080281A (en) * | 1980-06-11 | 1982-02-03 | Nippon Kogaku Kk | Biologically active glass |
US4756732A (en) * | 1982-04-06 | 1988-07-12 | Isover Saint-Gobain | Glass fiberization method |
US4759974A (en) * | 1982-04-06 | 1988-07-26 | Isover Saint-Gobain | Glass fiberization |
US4605415A (en) * | 1982-12-02 | 1986-08-12 | Region Wallonne, Representee Par L'executif Regional Wallon | Bioreactive materials |
US4615988A (en) * | 1983-09-19 | 1986-10-07 | Isover Saint-Gobain | Glass fibers and a composition for manufacturing the same |
SU1211233A1 (en) * | 1984-01-27 | 1986-02-15 | Научно-производственное объединение "Камень и силикаты" | Opacified glass |
US4756785A (en) * | 1985-12-06 | 1988-07-12 | Bayer Aktiengesellschaft | Process for the preparation of adhesives and their use for the formation of bonds |
WO1987005007A1 (en) * | 1986-02-20 | 1987-08-27 | Manville Corporation | INORGANIC FIBER COMPOSITION CONSISTING ESSENTIALLY OF Al2O3, MgO, CaO AND SiO2 |
EP0247817A1 (en) * | 1986-05-28 | 1987-12-02 | Pfizer Inc. | Alkali-resistant glass fiber |
WO1989012032A2 (en) * | 1988-06-01 | 1989-12-14 | Manville Sales Corporation | Process for decomposing an inorganic fiber |
US5108957A (en) * | 1989-08-11 | 1992-04-28 | Isover Saint-Gobain | Glass fibers decomposable in a physiological medium |
EP0412878B1 (en) * | 1989-08-11 | 1994-03-16 | Isover Saint-Gobain | Glass fibres degradable in physiological medium |
WO1992009536A1 (en) * | 1990-11-23 | 1992-06-11 | Paroc Oy Ab | Mineral fibre composition |
Non-Patent Citations (24)
Title |
---|
Chemical Abstract, vol. 108, No. 8 (Feb. 1988) #612226y. |
Chemical Abstract, vol. 108, No. 8 (Feb. 1988) 612226y. * |
Chemical Abstract, vol. 81, No. 26 (Dec. 1974) #175133v. |
Chemical Abstract, vol. 81, No. 26 (Dec. 1974) 175133v. * |
Chemical Abstract, vol. 84, No. 12 (Mar. 22, 1976) #78592y. |
Chemical Abstract, vol. 84, No. 12 (Mar. 22, 1976) 78592y. * |
Chemical Abstract, vol. 84, No. 12 (Mar. 22, 1983) #78607g. |
Chemical Abstract, vol. 84, No. 12 (Mar. 22, 1983) 78607g. * |
Chemical Abstract, vol. 92, No. 8 (Jun. 1980) #202476v. |
Chemical Abstract, vol. 92, No. 8 (Jun. 1980) 202476v. * |
Chemical Abstract, vol. 98, No. 8 (Feb. 21, 1983) #58810d. |
Chemical Abstract, vol. 98, No. 8 (Feb. 21, 1983) 58810d. * |
L.L. Hench et al., "Biomaterials -An Interfacial Approach", Academic Press, 1982, pp. 68-71, 134-143. no month. |
L.L. Hench et al., Biomaterials An Interfacial Approach , Academic Press, 1982, pp. 68 71, 134 143. no month. * |
McVay, Materials Research Symposia Proceedings, "Stability of Radioactive Waste Glasses Assessed from Hydration Thermodynamics", vol. 26, 1983, pp. 755-761, Nov. |
McVay, Materials Research Symposia Proceedings, Stability of Radioactive Waste Glasses Assessed from Hydration Thermodynamics , vol. 26, 1983, pp. 755 761, Nov. * |
N.K. Mitra et al., Indian Ceramics, vol. 13, No. 4, 1968, pp. 97 102, Jul. * |
N.K. Mitra et al., Indian Ceramics, vol. 13, No. 4, 1968, pp. 97-102, Jul. |
Silikattechnik (1960) No. 2 -"Erfahrungsaustausch" by Martin Hubscher, pp. 88-90. no month. |
Silikattechnik (1960) No. 2 Erfahrungsaustausch by Martin Hubscher, pp. 88 90. no month. * |
Ullmanns Encyklopadie der Technishen Chemie, 1976 pp. 359 365. no month. * |
Ullmanns Encyklopadie der Technishen Chemie, 1976 pp. 359-365. no month. |
Z.M. Syritskaya, Steklo 1 Keremlka, vol. 15, 1958 No. 6 no month. * |
Z.M. Syritskaya, Steklo 1-Keremlka, vol. 15, 1958 No. 6 no month. |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050014624A1 (en) * | 1992-01-17 | 2005-01-20 | Jubb Gary Anthony | Saline soluble inorganic fibers |
US7259118B2 (en) | 1992-01-17 | 2007-08-21 | The Morgan Crucible Company Plc | Saline soluble inorganic fibers |
US5962355A (en) | 1996-04-24 | 1999-10-05 | Owens Corning Fiberglas Technology, Inc. | Glass compositions having high KI values and fibers therefrom |
US6034014A (en) | 1997-08-04 | 2000-03-07 | Owens Corning Fiberglas Technology, Inc. | Glass fiber composition |
US6987076B1 (en) | 1998-09-15 | 2006-01-17 | The Morgan Crucible Company Plc | Bonded fibrous materials |
US6861381B1 (en) | 1999-09-10 | 2005-03-01 | The Morgan Crucible Company Plc | High temperature resistant saline soluble fibres |
US7651965B2 (en) | 2002-01-04 | 2010-01-26 | The Morgan Crucible Company Plc | Saline soluble inorganic fibres |
US7153796B2 (en) | 2002-01-04 | 2006-12-26 | The Morgan Crucible Company Plc | Saline soluble inorganic fibres |
US20050233887A1 (en) * | 2002-01-04 | 2005-10-20 | Jubb Gary A | Saline soluble inorganic fibres |
US7470641B2 (en) | 2002-01-04 | 2008-12-30 | The Morgan Crucible Company Plc | Saline soluble inorganic fibres |
US20090127489A1 (en) * | 2002-01-04 | 2009-05-21 | Gary Anthony Jubb | Saline soluble inorganic fibres |
US20040254056A1 (en) * | 2002-01-04 | 2004-12-16 | Jubb Gary Anthony | Saline soluble inorganic fibres |
US20090156386A1 (en) * | 2004-11-01 | 2009-06-18 | Craig John Freeman | Modification of alkaline earth silicate fibres |
US20060094583A1 (en) * | 2004-11-01 | 2006-05-04 | Freeman Craig J | Modification of alkaline earth silicate fibres |
US7875566B2 (en) | 2004-11-01 | 2011-01-25 | The Morgan Crucible Company Plc | Modification of alkaline earth silicate fibres |
US7887917B2 (en) | 2005-06-30 | 2011-02-15 | Unifrax I Llc | Inorganic fiber |
US20070020454A1 (en) * | 2005-06-30 | 2007-01-25 | Unifrax Corporation | Inorganic fiber |
US8551897B2 (en) | 2005-06-30 | 2013-10-08 | Unifrax I Llc | Inorganic fiber |
US20110118102A1 (en) * | 2005-06-30 | 2011-05-19 | Zoitos Bruce K | Inorganic fiber |
US7989375B2 (en) | 2005-07-05 | 2011-08-02 | Nippon Electric Glass Co., Ltd. | Glass fiber composition, glass fiber, and glass fiber containing composition material |
US20090312171A1 (en) * | 2005-07-05 | 2009-12-17 | Toshikatu Tanaka | Glass Fiber Composition, Glass Fiber, and Glass Fiber Containing Composition Material |
US7803731B2 (en) * | 2007-08-15 | 2010-09-28 | Johns Manville | Fire resistant glass fiber |
US20090048088A1 (en) * | 2007-08-15 | 2009-02-19 | Leed Elam A | Fire resistant glass fiber |
US8652980B2 (en) | 2010-11-16 | 2014-02-18 | Unifax I LLC | Inorganic fiber |
US9919954B2 (en) | 2013-03-15 | 2018-03-20 | Unifrax I Llc | Inorganic fiber |
US9567256B2 (en) | 2013-03-15 | 2017-02-14 | Unifrax I Llc | Inorganic fiber |
US9708214B2 (en) | 2014-07-16 | 2017-07-18 | Unifrax I Llc | Inorganic fiber with improved shrinkage and strength |
US10023491B2 (en) | 2014-07-16 | 2018-07-17 | Unifrax I Llc | Inorganic fiber |
US10301213B2 (en) | 2014-07-16 | 2019-05-28 | Unifrax I Llc | Inorganic fiber with improved shrinkage and strength |
US9556063B2 (en) | 2014-07-17 | 2017-01-31 | Unifrax I Llc | Inorganic fiber with improved shrinkage and strength |
US9926224B2 (en) | 2014-07-17 | 2018-03-27 | Unifrax I Llc | Inorganic fiber with improved shrinkage and strength |
US9919957B2 (en) | 2016-01-19 | 2018-03-20 | Unifrax I Llc | Inorganic fiber |
US11203551B2 (en) | 2017-10-10 | 2021-12-21 | Unifrax I Llc | Low biopersistence inorganic fiber free of crystalline silica |
US12122704B2 (en) | 2017-10-10 | 2024-10-22 | Unifrax I Llc | Low biopersistence inorganic fiber free of crystalline silica |
US10882779B2 (en) | 2018-05-25 | 2021-01-05 | Unifrax I Llc | Inorganic fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5250488A (en) | Mineral fibers decomposable in a physiological medium | |
USRE35557E (en) | Mineral fibers decomposable in a physiological medium | |
US5108957A (en) | Glass fibers decomposable in a physiological medium | |
KR100198907B1 (en) | Mineral fibers that can be broken down in physiological media | |
US6060414A (en) | Mineral fibres capable of dissolving in a physiological medium | |
EP0019600B2 (en) | Fiber glass composition | |
EP0711256B1 (en) | Glass-fiber compositions | |
EP0711257B1 (en) | Glass-fiber compositions | |
KR100582534B1 (en) | Mineral wool that can be dissolved in physiological media and insulation | |
KR100732868B1 (en) | Biodegradable Mineral Cotton Composition | |
AU741801B2 (en) | Artificial mineral wool composition | |
US4381347A (en) | Fibre glass composition | |
US6218322B1 (en) | Mineral fibre | |
JP2002512817A (en) | Mineral wool composition | |
JPS6217041A (en) | Glass composition for fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
FPAY | Fee payment |
Year of fee payment: 12 |