USRE33683E - Catalyst composition for polymerizing alpha-olefins - Google Patents
Catalyst composition for polymerizing alpha-olefins Download PDFInfo
- Publication number
- USRE33683E USRE33683E US07/357,249 US35724989A USRE33683E US RE33683 E USRE33683 E US RE33683E US 35724989 A US35724989 A US 35724989A US RE33683 E USRE33683 E US RE33683E
- Authority
- US
- United States
- Prior art keywords
- composition
- catalyst composition
- catalyst
- iadd
- contacting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 117
- 239000003054 catalyst Substances 0.000 title claims abstract description 108
- 239000004711 α-olefin Substances 0.000 title claims abstract description 22
- 230000000379 polymerizing effect Effects 0.000 title claims abstract description 6
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 48
- 229920000642 polymer Polymers 0.000 claims abstract description 48
- 239000012190 activator Substances 0.000 claims abstract description 47
- 230000008569 process Effects 0.000 claims abstract description 39
- 125000002734 organomagnesium group Chemical group 0.000 claims abstract description 23
- 150000003623 transition metal compounds Chemical class 0.000 claims abstract description 21
- -1 titanium Chemical class 0.000 claims abstract description 17
- 239000010936 titanium Substances 0.000 claims abstract description 17
- 150000002681 magnesium compounds Chemical class 0.000 claims abstract description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 39
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 38
- 239000002243 precursor Substances 0.000 claims description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 35
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 30
- 239000005977 Ethylene Substances 0.000 claims description 30
- 239000012018 catalyst precursor Substances 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 21
- 150000003609 titanium compounds Chemical class 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 19
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 19
- 239000000377 silicon dioxide Substances 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 15
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 12
- 239000011777 magnesium Substances 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 8
- 229910003074 TiCl4 Inorganic materials 0.000 claims description 7
- 239000002002 slurry Substances 0.000 claims description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 6
- 229910010062 TiCl3 Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 230000006872 improvement Effects 0.000 claims description 4
- YCCXQARVHOPWFJ-UHFFFAOYSA-M magnesium;ethane;chloride Chemical compound [Mg+2].[Cl-].[CH2-]C YCCXQARVHOPWFJ-UHFFFAOYSA-M 0.000 claims description 4
- 239000002685 polymerization catalyst Substances 0.000 claims description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 3
- 239000002879 Lewis base Substances 0.000 claims 10
- 150000007527 lewis bases Chemical class 0.000 claims 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 6
- 125000000217 alkyl group Chemical group 0.000 claims 4
- 229910052794 bromium Inorganic materials 0.000 claims 4
- 150000004292 cyclic ethers Chemical class 0.000 claims 4
- 229910052736 halogen Inorganic materials 0.000 claims 4
- 150000002367 halogens Chemical class 0.000 claims 4
- 229910052740 iodine Inorganic materials 0.000 claims 4
- 229910052751 metal Inorganic materials 0.000 claims 4
- 239000002184 metal Substances 0.000 claims 4
- 150000001335 aliphatic alkanes Chemical class 0.000 claims 2
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 2
- 150000001924 cycloalkanes Chemical class 0.000 claims 2
- 150000002170 ethers Chemical class 0.000 claims 2
- 238000001704 evaporation Methods 0.000 claims 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 abstract description 31
- 229910052719 titanium Inorganic materials 0.000 abstract description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 6
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 abstract description 6
- 125000005234 alkyl aluminium group Chemical group 0.000 abstract 1
- 229910052770 Uranium Inorganic materials 0.000 description 29
- 239000000047 product Substances 0.000 description 29
- 229920000092 linear low density polyethylene Polymers 0.000 description 21
- 239000004707 linear low-density polyethylene Substances 0.000 description 21
- 239000011347 resin Substances 0.000 description 21
- 229920005989 resin Polymers 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 16
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 14
- 238000006116 polymerization reaction Methods 0.000 description 14
- 239000012632 extractable Substances 0.000 description 13
- LIKMAJRDDDTEIG-UHFFFAOYSA-N n-hexene Natural products CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 10
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- ORYGRKHDLWYTKX-UHFFFAOYSA-N trihexylalumane Chemical compound CCCCCC[Al](CCCCCC)CCCCCC ORYGRKHDLWYTKX-UHFFFAOYSA-N 0.000 description 8
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 7
- VXNZUUAINFGPBY-UHFFFAOYSA-N ethyl ethylene Natural products CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000010926 purge Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 150000002901 organomagnesium compounds Chemical class 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000002952 polymeric resin Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- 150000004795 grignard reagents Chemical class 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 230000037048 polymerization activity Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- AWFYPPSBLUWMFQ-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(1,4,6,7-tetrahydropyrazolo[4,3-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=C2 AWFYPPSBLUWMFQ-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- 229910015221 MoCl5 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910021551 Vanadium(III) chloride Inorganic materials 0.000 description 1
- 229910021552 Vanadium(IV) chloride Inorganic materials 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000004791 alkyl magnesium halides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- XEHUIDSUOAGHBW-UHFFFAOYSA-N chromium;pentane-2,4-dione Chemical compound [Cr].CC(=O)CC(C)=O.CC(=O)CC(C)=O.CC(=O)CC(C)=O XEHUIDSUOAGHBW-UHFFFAOYSA-N 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N dimethylbutene Natural products CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010096 film blowing Methods 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GICWIDZXWJGTCI-UHFFFAOYSA-I molybdenum pentachloride Chemical compound Cl[Mo](Cl)(Cl)(Cl)Cl GICWIDZXWJGTCI-UHFFFAOYSA-I 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- JTJFQBNJBPPZRI-UHFFFAOYSA-J vanadium tetrachloride Chemical compound Cl[V](Cl)(Cl)Cl JTJFQBNJBPPZRI-UHFFFAOYSA-J 0.000 description 1
- HQYCOEXWFMFWLR-UHFFFAOYSA-K vanadium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[V+3] HQYCOEXWFMFWLR-UHFFFAOYSA-K 0.000 description 1
- 238000004260 weight control Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
Definitions
- the present invention relates to a catalyst for polymerizing alphaolefins, a method for producing such a catalyst and to a method of polymerizing alpha-olefins with such a catalyst.
- a particular aspect of the present invention relates to a method for preparing a high activity catalyst composition which produces medium density and linear low density polyethylene (LLDPE), having relatively narrow molecular weight distribution, and to the polymerization process utilizing such a catalyst composition.
- LLDPE medium density and linear low density polyethylene
- Linear low density polyethylene polymers possess properties which distinguish them from other polyethylene polymers, such as ethylene homopolymers. Certain of these properties are described by Anderson et al, U.S. Pat. No. 4,076,698.
- Karol et al, U.S. Pat. No. 4,302,566, describe a process for producing certain linear low density polyethylene polymers in a gas phase, fluid red reactor.
- a catalyst prepared by first reacting a support (e.g., silica containing reactive hydroxyl groups) with an organomagnesium compound (e.g., a Grignard reagent) and then combining this reacted support with a tetravalent titanium compound.
- a support e.g., silica containing reactive hydroxyl groups
- an organomagnesium compound e.g., a Grignard reagent
- a vanadium-containing catalyst, used in conjunction with triisobutylaluminum as a co-catalyst, is disclosed by W. L. Carrick et al in Journal of American Chemical Society, Volume 82, page 1502 (1960) and Volume 83, page 2654 (1961).
- An alpha-olefin polymerization catalyst composition is prepared in a process comprising reacting a transition metal compound with trimethylaluminum, used as the catalyst activator.
- the catalyst composition is prepared in a process comprising contacting an organomagnesium composition with a solid, porous carrier and contacting the product of that step with a transition metal compound, as described by Nowlin et al, U.S. Pat. No. 4,481,301. The resulting precursor product is then contacted with trimethylaluminum.
- the catalyst composition is prepared in a process comprising forming a precursor composition from a magnesium compound, a titanium compound and an electron donor compound and diluting the precursor composition with an inert carrier, as described by Karol et al, European Patent Application No. 8410344.6, filed Mar. 28, 1984, Publication No. 0 120 503, published on Oct. 3, 1984, the entire contents of which are incorporated herein by reference.
- the precursor is then activated, in accordance with the present invention, with trimethylaluminum.
- the invention is also directed to an alpha-olefin polymerization process conducted in the presence of a catalyst composition of this invention and to the polymer products produced thereby.
- the FIGURE is a graphical representation of the effect of TMA content on productivity for the catalyst of Examples 5-9.
- TMA trimethylaluminum
- TEAL triethylaluminum
- MFR melt flow ratio
- polymer resins produced with the novel catalyst composition of this invention have reduced hexane extractables, and films manufactured from such polymer resins have improved strength properties, as compared to resins and films prepared from resins made with catalyst compositions activated with TEAL.
- the resins prepared with the catalyst of the invention may have higher settled bulk densities than the resins prepared with similar catalysts synthesized with TEAL or other prior art activators, and may have substantially improved higher alpha-olefins, e.g., 1-hexane, incorporation properties, as compared to similar catalyst compositions synthesized with triethylaluminum.
- the improvements of the present invention are unexpected, especially since other workers in this field have emphasized the use of TEAL as the preferred catalyst activator (e.g., see Nowlin et al, U.S. Pat. No. 4,481,301).
- hexane extractables is used herein to define the amount of a polymer sample extracted by refluxing the sample in hexane in accordance with the FDA-approved procedure. As is known to those skilled in the art, the FDA requires that all polymer products having food contact contain less than 5.5% by weight of such hexane extractables.
- the polymers prepared in the presence of the catalyst of this invention are linear low density polyethylene resins or high density polyethylene resins which are homopolymers of ethylene or copolymers of ethylene and higher alpha-olefins. They exhibit relatively low values of melt flow ratio, evidencing a relatively narrow molecular weight distribution, than similar polymers prepared in the presence of similar previously-known catalyst compositions prepared with TEAL as the activator, e.g., those disclosed by Karol et al, European Patent Application No. 84103441.6.
- the polymers prepared with the catalysts of this invention are especially suitable for the production of low density, high strength film resins, and low density injection molding resins.
- the manner of combining the TMA catalyst activator with the catalyst precursor is not critical to the present invention, and the TMA may be combined with the precursor in any convenient, known manner.
- the TMA may be combined with the catalyst precursor either outside of the reactor vessel, prior to the polymerization reaction, or it can be introduced into the reactor vessel simultaneously or substantially simultaneously with the catalyst precursor.
- the catalyst precursor (defined herein as the catalyst composition prior to the reaction thereof with the trimethylaluminum, TMA) is any one of the well known to those skilled in the art Ziegler catalyst precursors comprising a transition metal or a compound thereof, e.g., titanium tetrachloride.
- the catalyst precursor may be supported on an insert support, e.g., see Karol et al, U.S. Pat. No. 4,302,566 and Newlin et al, U.S. Pat. No. 4,481,301, or unsupported, e.g., Yamaguchi et al, U.S. Pat. No. 3,989,881.
- Suitable catalyst precursor compositions are disclosed, for example, by Yamaguchi et al, U.S.
- transition metal compounds are compounds of Groups IVA, VA, or VIA, VILA or VIII of the Periodic Chart of the Elements, published by the Fisher Scientific Company, Catalog No. 5-702-10, 1978, e.g., compounds of titanium (Ti), zirconium (Zr), vanadium (V), tantalum (Ta), chromium (Cr) and molybdenum (Mo), such as TiCl 4 , TiCl 3 , VCl 4 , VCl 3 , VOCl 3 , MoCl 5 , ZrCl 5 and chromiumacetylacetonate.
- Ti titanium
- Zr zirconium
- V vanadium
- Ta tantalum
- Cr chromium
- Mo molybdenum
- the compounds of titanium and vanadium are preferred, and the compounds of titanium are most preferred.
- the transition metal compound is reacted with TMA in any conventional manner in which the transition metal compounds of prior art were reacted with the activators used in prior art.
- the transition metal compound can be dissolved in a suitable solvent, e.g., isopentane or hexane, and the resulting solution reacted with TMA, which may also be used as a solution in a suitable solvent, e.g., isopentane.
- a suitable solvent e.g., isopentane
- the catalyst precursor composition is prepared by reacting an organometallic or a halide compound of Groups IA to IIIA with a transition metal compound.
- the Group IA to IIIA organometallic or halide compounds are also any compounds used in prior art in Ziegler-Natta catalyst synthesis. Suitable compounds are compounds of magnesium, e.g., Grignard reagents, magnesium dialkyls, and magnesium halides.
- the thus-formed catalyst precursor is optionally contacted with at least one pre-reducing agent, e.g., tri-n-hexyl aluminum, or diethyl aluminum chloride, prior to activation with TMA.
- the amount of the pre-reducing agent may be adjusted as described by Karol et al, European Patent Application No. 84103441.6, to obtain a favorable balance of catalyst productivity and settled bulk density of the resin.
- the pre-reduced precursor is then activated either outside of the reactor vessel or inside the vessel with the trimethylaluminum catalyst activator.
- the TMA activator is employed in an amount which is at least effective to promote the polymerization activity of the solid component of the catalyst of this invention.
- the TMA activator is used in such amounts that the concentration thereof in the polymer product is about 15 to about 300 parts per million (ppm), preferably it is about 30 to about 150 ppm, and most preferably about 40 to about 80 ppm.
- ppm parts per million
- a portion of the TMA activator can be employed to pretreat the polymerization medium if desired.
- the catalyst may be activated in situ by adding the activator and catalyst separately to the polymerization medium. It is also possible to combine the catalyst and activator before the introduction thereof into the polymerization medium, e.g., for up to about 2 hours prior to the introduction thereof into the polymerization medium at a temperature of from about -40° to about 100° C.
- a suitable activating amount of the activator may be used to promote the polymerization activity of the catalyst.
- the aforementioned proportions of the activator can also be expressed in terms of the number of moles of activator per gram atom of titanium in the catalyst composition, e.g., from about 6 to about 80, preferably about 8 to about 30 moles of activator per gram atom of titanium.
- Alpha-olefins may be polymerized with the catalysts prepared according to the present invention by any suitable process. Such processes include polymerizations carried out in suspension in solution or in the gas phase. Gas phase polymerization reactions are preferred, e.g., those taking place in stirred bed reactors and, especially, fluidized bed reactors.
- the molecular weight of the polymer may be controlled in a known manner, e.g., by using hydrogen.
- molecular weight may be suitably controlled with hydrogen when the polymerization is carried out at relatively low temperatures, e.g., from about 70° to about 105° C.
- the molecular weight control is evidenced by a measurable positive change in melt index (I 2 ) of the polymer when the molar ratio of hydrogen to ethylene in the reactor is increased.
- the average molecular weight of the polymer is also dependent on the amount of the TMA activator employed. Increasing the TMA concentration in the reactor gives small, positive changes in melt index.
- the molecular weight distribution of the polymers prepared in the presence of the catalysts of the present invention varies from about 24 to about 29 for LLDPE products having a density of about 0.914 to about 0.926 gms/cc, and an I 2 melt index of about 0.9 to about 4.0.
- MFR values are indicative of a relatively narrow molecular weight distribution, thereby rendering the polymers especially suitable for low density film applications since the products exhibit less molecular orientation in high-speed film blowing processes, and therefore have greater film strength.
- the polymers produced with the catalyst compositions of the present invention have about 20-30% lower hexane extractables than the polymers prepared with catalysts activated with triethylaluminum (TEAL) or triisobutylaluminum (TIBA), both of which were commonly used as catalyst activators in prior art.
- TEAL triethylaluminum
- TIBA triisobutylaluminum
- the physical properties of the films made from the resins polymerized with the catalysts of this invention are also better than those made from the resins polymerized with the TEAL- and TIBA-activated catalysts.
- the films of the present invention exhibit about 20-30% improvement in dart drop and machine dimension (MD) tear properties than the films prepared with such previously-known catalysts.
- MD machine dimension
- the films also exhibit about 30% to about 40% lower relaxation time and about 20% lower die swell characteristics than films prepared with the heretofore known catalyst compositions.
- Dart drop is defined herein by A.S.T.M. D-1709, Method A; with a 3.81 mm dart, and a drop height of 0.66 meters.
- Melt relaxation time is defined herein as the time for shear stress in a polymer melt at 190° C. to decay to 10% of its steady value after cessation of steady shear flow of 0.1 sec -1 .
- Die swell is defined herein as the diameter of the extrudate divided by the diameter of the die using an extrusion plastometer, as described by A.S.T.M. D-1238.
- the higher alpha-olefin incorporation properties of the catalysts of this invention are also improved as compared to TEAL- and TIBA-activated catalysts as evidenced by the lower mole ratio of higher alpha-olefin/ethylene necessary to produce resins of a certain melt index and density.
- the catalysts prepared according to the present invention are highly active, their productivity is at least about 1,000, and can be as much as about 10,000, grams of polymer per gram of catalyst precursor per 100 psi of ethylene partial pressure.
- the polyethylene polymers prepared in accordance with the present invention may be homopolymers of ethylene or copolymers of ethylene with one or more C 3 -C 10 alpha-olefins.
- copolymers having two monomeric units are possible as well as terpolymers having three monomeric units.
- Particular examples of such polymers include ethylene/1-butene copolymers, ethylene/1-hexene copolymers, ethylene/4-methyl-1-pentene copolymers, ethylene/1-butene/1-hexene terpolymers, ethylene/propylene/1-hexene terpolymers and ethylene/propylene/1-butene terpolymers.
- the resulting linear low density polyethylene polymer preferably has at least one other alpha-olefin comonomer having at least four carbon atoms in an amount of at least 1 percent by weight of the polymer. Accordingly, ethylene/propylene copolymers are possible, but not preferred. The most preferred polymers are copolymers of ethylene and 1 -hexene, and copolymers of ethylene and 1-butene.
- the linear low density polyethylene polymers produced in accordance with the present invention preferably contain at least about 80 percent by weight of ethylene units. .Iadd.Such linear low density polyethylene polymers have a density of about 0.940 g/cc or less and they are copolymers of ethylene and at least one C 3 -C 10 alpha-olefin. .Iaddend.
- a particularly desirable method for producing linear low density polyethylene polymers according to the present invention is in a fluid bed reactor.
- a reactor and means for operating the same is described by Levine et al, U.S. Pat. No. 4,011,382 and Karol et al, U.S. Pat. No. 4,302,566, the entire contents of both of which being incorporated herein by reference, and by Nowlin et al, U.S. Pat. No. 4,481,301.
- Density ASTM D-1505--A plaque is made and conditioned for one hour at 100° C. to approach equilibrium crystallinity. Measurement for density is then made in a density gradient column; reported as gms/cc.
- MI Melt Index
- HLMI High Load Melt Index
- the resin is poured via 1" diameter funnel into a 100 mil graduated cylinder to 100 mil line without shaking the cylinder, and weighed by difference. The cylinder is then vibrated for 5-10 minutes until the resin level drops to a final, steady-state level. The settled bulk density is taken as the indicated cylinder volume at the settled level, divided by the measured resin weight.
- n-hexane extractables (FDA test used for polyethylene film intended for food contact applications). A 200 square inch sample of 1.5 mil gauge film is cut into strips measuring 1" ⁇ 6" and weighed to the nearest 0.1 mg. The strips are placed in a vessel and extracted with 300 ml of n-hexene at 50° ⁇ 1° C. for 2 hours. The extract is then decanted into tared culture dishes. After drying the extract in a vacuum dessicator the culture dish is weighed to the nearest 0.1 mg. The extractables, normalized with respect to the original sample weight, is then reported as the weight fraction of n-hexane extractables.
- This catalyst precursor was prepared substantially according to the disclosure of Hagerty et al, U.S. Pat. No. 4,562,169.
- the catalyst precursor composition of example 1 was used to prepare a linear low density polyethylene product (LLDPE) in a fluid bed, pilot plant reactor operated substantially in the manner disclosed by Nowlin et al, U.S. Pat. No. 4,481,301.
- the reactor was 0.45 meters in diameter and it was capable of producing up to 25 kgs/hr of resin.
- a steady-state reaction was obtained by continuously feeding catalyst precursors, TEAL activator, and reactant gases (ethylene, 1-hexane and hydrogen) to the reactor while also continuously withdrawing polymer product from the reactor.
- the feed rate of ethylene was maintained at a constant 13.0 kgs/hr, and the feed rate of catalyst precursor was adjusted to achieve a substantially equal rate of polymer production.
- the feed rate of TEAL was 4.69 gms/hr, equivalent to a 361 ppm feed ratio of TEAL to ethylene.
- Reaction temperature was 88° C.
- superficial gas velocity was 0.45 meters/sec
- fluid bed residence time was approximately 5 hours.
- Other reaction conditions, including gas phase composition in the reactor, are given in Table 1.
- Catalyst productivity was determined by dividing the polymer production rate by the catalyst feed rate. A value of 5270 grams of polymer per gram of catalyst precursor was thereby obtained (Table I). The polymer product was evaluated in a conventional manner, and the results are summarized in Table II.
- LLDPE polymer was produced with the catalyst precursor of Example 1, using substantially the same reaction conditions as in Example 2, except that TMA was used as the activator in place of TEAL.
- the TMA feed ratio to ethylene was 156 ppm. Reaction conditions are summarized in Table I, and product properties are summarized in Table II.
- TMA activator in place of TEAL produced at catalyst composition with somewhat less productivity (grams of polymer per gram of catalyst precursor).
- the catalyst productivity in Example 3 was reduced by 16% in comparison with Example 2 (Table I) at an approximately constant level of ethylene partial pressure ( P C 2 ⁇ ).
- Polymer settled bulk density was approximately 14% higher with the TMA activator-containing catalyst in comparison with the TEAL activator-containing catalyst (Table II).
- the treated silica was then added to the solution prepared as above.
- the resulting slurry was stirred for 1/4 hour and then dried under a nitrogen purge at 60° C. over a period of about 4 hours to provide a dry, impregnated, free-flowing powder.
- silica-impregnated precursor composition prepared in accordance with Example 4(a) was partially activated with diethylaluminum chloride and tri-n-hexylaluminum employing the same procedure as in 2(a) except that each compound was employed in an amount sufficient to provide 0.3 mols of such compound per mol of tetrahydrofuran in the precursor.
- the hydrogen to ethylene molar ratio in the reactor (H 2 /C 2 ⁇ ) was adjusted as required to obtain a high load melt index (I 21 ) of about 30 gms/10 min. Different levels of H 2 /C 2 ⁇ were required depending on the TMA activator feed ratio (Table III).
- the productivity of the TMA-activated precursor was found to be strongly dependent on the ethylene partial pressure and activator feed ratio.
- the ethylene partial pressure effect is illustrated by comparing Examples 9 and 10 Table III: the productivity at 129 psi ethylene partial pressure was approximately 75% higher than at 94 psi. This effect is typical for Ziegler catalysts, including those disclosed by Nowlin et al, U.S. Pat. No. 4,481,301.
- FIG. 1 is a graphical representation of the data of Examples 6-9.
- the highest level of productivity are attained with relatively low activator feed ratios.
- a similar effect is known to exist with certain Ziegler catalyst compositions activated with TEAL, such as those of Example 1, although it is not present with the catalyst composition disclosed by Karol et al in the aforementioned European Patent Application (i.e., activated with TEAL).
- the productivity is not sensitive to the TEAL feed ratio over a broad range.
- the catalyst composition of the present invention produced polymer with lower melt flow ratio (MFR), lower FDA extractables, and higher MD tear strength in comparison with the prior art composition of Karol et al.
- MFR melt flow ratio
- FDA extractables FDA extractables
- MD tear strength MD tear strength in comparison with the prior art composition of Karol et al.
- there were no differences noted in settled bulk density or in comonomer incorporation e.g., 1-C 6 ⁇ /C 2 ⁇ ratio in the reactor required to attain a density of 0.917 gms/cc).
- melt flow ratio in Table IV was reduced from 32.3 (Example 5 with TEAL) to an average of 28.2 (Examples 6-10 with TMA).
- FDA extractables were reduced by an average of 32%, and MD tear strength was increased by an average of 29%, in the same examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
A catalyst composition for polymerizing alpha-olefins is prepared by reacting a transition metal compound, e.g., titanium, with trimethylaluminum catalyst activator. In a preferred embodiment, the catalyst is supported on a porous refractory support and is prepared by additionally reacting a magnesium compound or an organomagnesium composition with the support.
Also disclosed is a process for polymerizing alpha-olefins in the presence of the catalyst of the invention. The polymer products have higher bulk density and produce films of greater strength than polymers prepared with similar catalysts utilizing different alkyl-aluminum activators, e.g., triethylaluminum and triisobutylaluminum.
Description
This application is a reissue of Ser. No. 822,359, filed Jan. 24, 1986 and issued Mar. 22, 1988 as U.S. Pat. No. 4,732,882.
1. Field of the Invention
The present invention relates to a catalyst for polymerizing alphaolefins, a method for producing such a catalyst and to a method of polymerizing alpha-olefins with such a catalyst. A particular aspect of the present invention relates to a method for preparing a high activity catalyst composition which produces medium density and linear low density polyethylene (LLDPE), having relatively narrow molecular weight distribution, and to the polymerization process utilizing such a catalyst composition.
2. Description of the Prior Art
Linear low density polyethylene polymers possess properties which distinguish them from other polyethylene polymers, such as ethylene homopolymers. Certain of these properties are described by Anderson et al, U.S. Pat. No. 4,076,698.
Karol et al, U.S. Pat. No. 4,302,566, describe a process for producing certain linear low density polyethylene polymers in a gas phase, fluid red reactor.
Graff, U.S. Pat. No. 4,173,547, Stevens et al, U.S. Pat. No. 3,787,384, Strobel et al, U.S. Pat. No. 4,148,754, and Ziegler, deceased, et al, U.S. Pat. No. 4,063,009, each describe various polymerization processes suitable for producing forms of polyethylene other than linear low density polyethylene, per se.
Graff, U.S. Pat. No. 4,173,547, describes a supported catalyst obtained by treating a support with both an organoaluminum compound and an organomagnesium compound followed by contacting this treated support with a tetravalent titanium compound.
Stevens et al, U.S. Pat. No. 3,787,384, and Stroebel et al, U.S. Pat. No. 4,148,754, describe a catalyst prepared by first reacting a support (e.g., silica containing reactive hydroxyl groups) with an organomagnesium compound (e.g., a Grignard reagent) and then combining this reacted support with a tetravalent titanium compound. According to the teachings of both of these patents, no unreacted organomagnesium compound is present when the reacted support is contacted with the tetravalent titanium compound.
Ziegler, deceased, et al, U.S. Pat. No. 4,063,009, describe a catalyst which is the reaction product of an organomagnesium compound (e.g., an alkylmagnesium halide) with a tetravalent titanium compound. The reaction of the organomagnesium compound with the tetravalent titanium compound takes place in the absence of a support material.
A vanadium-containing catalyst, used in conjunction with triisobutylaluminum as a co-catalyst, is disclosed by W. L. Carrick et al in Journal of American Chemical Society, Volume 82, page 1502 (1960) and Volume 83, page 2654 (1961).
Nowlin et al, U.S. Pat. No. 4,481,301, the entire contents of which are incorporated herein by reference, disclose a supported alpha-olefin polymerization catalyst composition prepared by reacting a support containing OH groups with a stoichiometric excess of an organomagnesium composition, with respect to the OH groups content, and then reacting the product with a tetravalent titanium compound. The thus-obtained catalyst is activated with a suitable activator, e.g., disclosed by Stevens et al, U.S. Pat. No. 3,787,384 or by Stroebel et al, U.S. Pat. No. 4,148,754. The preferred activator of Nowlin et al is triethylaluminum.
It is primary object of the present invention to prepare a catalyst composition for the polymerization of alpha-olefins which yields polymerization products having a relatively narrow molecular weight distribution.
Additional objects of the present invention will become apparent to those skilled in the art from the following description.
An alpha-olefin polymerization catalyst composition is prepared in a process comprising reacting a transition metal compound with trimethylaluminum, used as the catalyst activator.
In one preferred embodiment, the catalyst composition is prepared in a process comprising contacting an organomagnesium composition with a solid, porous carrier and contacting the product of that step with a transition metal compound, as described by Nowlin et al, U.S. Pat. No. 4,481,301. The resulting precursor product is then contacted with trimethylaluminum.
In another preferred embodiment, the catalyst composition is prepared in a process comprising forming a precursor composition from a magnesium compound, a titanium compound and an electron donor compound and diluting the precursor composition with an inert carrier, as described by Karol et al, European Patent Application No. 8410344.6, filed Mar. 28, 1984, Publication No. 0 120 503, published on Oct. 3, 1984, the entire contents of which are incorporated herein by reference. The precursor is then activated, in accordance with the present invention, with trimethylaluminum.
The invention is also directed to an alpha-olefin polymerization process conducted in the presence of a catalyst composition of this invention and to the polymer products produced thereby.
The FIGURE is a graphical representation of the effect of TMA content on productivity for the catalyst of Examples 5-9.
We unexpectedly found that the use of trimethylaluminum (TMA) as the activator for the precursor composition instead of triethylaluminum (TEAL), commonly used heretofore as the preferred catalyst activator, produces improved catalyst compositions which, when used in alpha-olefin polymerization reactions, produce linear low density polyethylene polymer resins (LLDPE) and high density resins having substantially lower values of melt flow ratio (MFR) (calculated by dividing the value of high load melt index, HLMI, I21, by the value of melt index, MI, I2, for a given polymer) than similar resins produced with similar catalyst compositions synthesized with TEAL as the catalyst activator.
Additionally, the polymer resins produced with the novel catalyst composition of this invention have reduced hexane extractables, and films manufactured from such polymer resins have improved strength properties, as compared to resins and films prepared from resins made with catalyst compositions activated with TEAL.
The resins prepared with the catalyst of the invention may have higher settled bulk densities than the resins prepared with similar catalysts synthesized with TEAL or other prior art activators, and may have substantially improved higher alpha-olefins, e.g., 1-hexane, incorporation properties, as compared to similar catalyst compositions synthesized with triethylaluminum. The improvements of the present invention are unexpected, especially since other workers in this field have emphasized the use of TEAL as the preferred catalyst activator (e.g., see Nowlin et al, U.S. Pat. No. 4,481,301).
The term "hexane extractables" is used herein to define the amount of a polymer sample extracted by refluxing the sample in hexane in accordance with the FDA-approved procedure. As is known to those skilled in the art, the FDA requires that all polymer products having food contact contain less than 5.5% by weight of such hexane extractables.
The polymers prepared in the presence of the catalyst of this invention are linear low density polyethylene resins or high density polyethylene resins which are homopolymers of ethylene or copolymers of ethylene and higher alpha-olefins. They exhibit relatively low values of melt flow ratio, evidencing a relatively narrow molecular weight distribution, than similar polymers prepared in the presence of similar previously-known catalyst compositions prepared with TEAL as the activator, e.g., those disclosed by Karol et al, European Patent Application No. 84103441.6. Thus, the polymers prepared with the catalysts of this invention are especially suitable for the production of low density, high strength film resins, and low density injection molding resins.
The manner of combining the TMA catalyst activator with the catalyst precursor is not critical to the present invention, and the TMA may be combined with the precursor in any convenient, known manner. Thus, the TMA may be combined with the catalyst precursor either outside of the reactor vessel, prior to the polymerization reaction, or it can be introduced into the reactor vessel simultaneously or substantially simultaneously with the catalyst precursor.
The catalyst precursor (defined herein as the catalyst composition prior to the reaction thereof with the trimethylaluminum, TMA) is any one of the well known to those skilled in the art Ziegler catalyst precursors comprising a transition metal or a compound thereof, e.g., titanium tetrachloride. The catalyst precursor may be supported on an insert support, e.g., see Karol et al, U.S. Pat. No. 4,302,566 and Newlin et al, U.S. Pat. No. 4,481,301, or unsupported, e.g., Yamaguchi et al, U.S. Pat. No. 3,989,881. Suitable catalyst precursor compositions are disclosed, for example, by Yamaguchi et al, U.S. Pat. No. 3,989,881; Nowlin et al, U.S. Pat. No. 4,481,301; Hagerty et al, U.S. Pat. No. 4,562,169; Goeke et al, U.S. Pat. No. 4,354,009; Karol et al, U.S. Pat. No. 4,302,566; Strobel et al, U.S. Pat. No. 4,148,754; and Ziegler, Deceased, et al, U.S. Pat. No. 4,063,009, the entire contents of all of which are incorporated herein by reference.
Catalyst compositions produced in accordance with the present invention are described below in terms of the manner in which they are synthesized.
Any one or a combination of any of the well known transition metal compounds can be used in preparing the catalyst precursor of this invention. Suitable transition metal compounds are compounds of Groups IVA, VA, or VIA, VILA or VIII of the Periodic Chart of the Elements, published by the Fisher Scientific Company, Catalog No. 5-702-10, 1978, e.g., compounds of titanium (Ti), zirconium (Zr), vanadium (V), tantalum (Ta), chromium (Cr) and molybdenum (Mo), such as TiCl4, TiCl3, VCl4, VCl3, VOCl3, MoCl5, ZrCl5 and chromiumacetylacetonate. Of these compounds, the compounds of titanium and vanadium are preferred, and the compounds of titanium are most preferred. The transition metal compound is reacted with TMA in any conventional manner in which the transition metal compounds of prior art were reacted with the activators used in prior art. For example, the transition metal compound can be dissolved in a suitable solvent, e.g., isopentane or hexane, and the resulting solution reacted with TMA, which may also be used as a solution in a suitable solvent, e.g., isopentane. It is preferable, however to introduce the catalyst precursor into a reactor and introduce the TMA activator into the reactor simultaneously with the introduction of the catalyst precursor or after the introduction of the precursor is terminated.
In an alternative and preferred embodiment, the catalyst precursor composition is prepared by reacting an organometallic or a halide compound of Groups IA to IIIA with a transition metal compound. The Group IA to IIIA organometallic or halide compounds are also any compounds used in prior art in Ziegler-Natta catalyst synthesis. Suitable compounds are compounds of magnesium, e.g., Grignard reagents, magnesium dialkyls, and magnesium halides.
The thus-formed catalyst precursor is optionally contacted with at least one pre-reducing agent, e.g., tri-n-hexyl aluminum, or diethyl aluminum chloride, prior to activation with TMA. The amount of the pre-reducing agent may be adjusted as described by Karol et al, European Patent Application No. 84103441.6, to obtain a favorable balance of catalyst productivity and settled bulk density of the resin. The pre-reduced precursor is then activated either outside of the reactor vessel or inside the vessel with the trimethylaluminum catalyst activator.
The TMA activator is employed in an amount which is at least effective to promote the polymerization activity of the solid component of the catalyst of this invention. Preferably, the TMA activator is used in such amounts that the concentration thereof in the polymer product is about 15 to about 300 parts per million (ppm), preferably it is about 30 to about 150 ppm, and most preferably about 40 to about 80 ppm. In slurry polymerization processes, a portion of the TMA activator can be employed to pretreat the polymerization medium if desired.
The catalyst may be activated in situ by adding the activator and catalyst separately to the polymerization medium. It is also possible to combine the catalyst and activator before the introduction thereof into the polymerization medium, e.g., for up to about 2 hours prior to the introduction thereof into the polymerization medium at a temperature of from about -40° to about 100° C.
A suitable activating amount of the activator may be used to promote the polymerization activity of the catalyst. The aforementioned proportions of the activator can also be expressed in terms of the number of moles of activator per gram atom of titanium in the catalyst composition, e.g., from about 6 to about 80, preferably about 8 to about 30 moles of activator per gram atom of titanium.
Alpha-olefins may be polymerized with the catalysts prepared according to the present invention by any suitable process. Such processes include polymerizations carried out in suspension in solution or in the gas phase. Gas phase polymerization reactions are preferred, e.g., those taking place in stirred bed reactors and, especially, fluidized bed reactors.
The molecular weight of the polymer may be controlled in a known manner, e.g., by using hydrogen. With the catalysts produced according to the present invention, molecular weight may be suitably controlled with hydrogen when the polymerization is carried out at relatively low temperatures, e.g., from about 70° to about 105° C. The molecular weight control is evidenced by a measurable positive change in melt index (I2) of the polymer when the molar ratio of hydrogen to ethylene in the reactor is increased.
We found that the average molecular weight of the polymer is also dependent on the amount of the TMA activator employed. Increasing the TMA concentration in the reactor gives small, positive changes in melt index.
The molecular weight distribution of the polymers prepared in the presence of the catalysts of the present invention, as expressed by the melt flow ratio (MFR) values, varies from about 24 to about 29 for LLDPE products having a density of about 0.914 to about 0.926 gms/cc, and an I2 melt index of about 0.9 to about 4.0. As is known to those skilled in the art, such MFR values are indicative of a relatively narrow molecular weight distribution, thereby rendering the polymers especially suitable for low density film applications since the products exhibit less molecular orientation in high-speed film blowing processes, and therefore have greater film strength.
The polymers produced with the catalyst compositions of the present invention have about 20-30% lower hexane extractables than the polymers prepared with catalysts activated with triethylaluminum (TEAL) or triisobutylaluminum (TIBA), both of which were commonly used as catalyst activators in prior art. The physical properties of the films made from the resins polymerized with the catalysts of this invention are also better than those made from the resins polymerized with the TEAL- and TIBA-activated catalysts. For example, the films of the present invention exhibit about 20-30% improvement in dart drop and machine dimension (MD) tear properties than the films prepared with such previously-known catalysts. The films also exhibit about 30% to about 40% lower relaxation time and about 20% lower die swell characteristics than films prepared with the heretofore known catalyst compositions.
Dart drop is defined herein by A.S.T.M. D-1709, Method A; with a 3.81 mm dart, and a drop height of 0.66 meters.
Melt relaxation time is defined herein as the time for shear stress in a polymer melt at 190° C. to decay to 10% of its steady value after cessation of steady shear flow of 0.1 sec-1.
Die swell is defined herein as the diameter of the extrudate divided by the diameter of the die using an extrusion plastometer, as described by A.S.T.M. D-1238.
The higher alpha-olefin incorporation properties of the catalysts of this invention are also improved as compared to TEAL- and TIBA-activated catalysts as evidenced by the lower mole ratio of higher alpha-olefin/ethylene necessary to produce resins of a certain melt index and density.
The catalysts prepared according to the present invention are highly active, their productivity is at least about 1,000, and can be as much as about 10,000, grams of polymer per gram of catalyst precursor per 100 psi of ethylene partial pressure.
The polyethylene polymers prepared in accordance with the present invention may be homopolymers of ethylene or copolymers of ethylene with one or more C3 -C10 alpha-olefins. Thus, copolymers having two monomeric units are possible as well as terpolymers having three monomeric units. Particular examples of such polymers include ethylene/1-butene copolymers, ethylene/1-hexene copolymers, ethylene/4-methyl-1-pentene copolymers, ethylene/1-butene/1-hexene terpolymers, ethylene/propylene/1-hexene terpolymers and ethylene/propylene/1-butene terpolymers. When propylene is employed as a comonomer, the resulting linear low density polyethylene polymer preferably has at least one other alpha-olefin comonomer having at least four carbon atoms in an amount of at least 1 percent by weight of the polymer. Accordingly, ethylene/propylene copolymers are possible, but not preferred. The most preferred polymers are copolymers of ethylene and 1 -hexene, and copolymers of ethylene and 1-butene.
The linear low density polyethylene polymers produced in accordance with the present invention preferably contain at least about 80 percent by weight of ethylene units. .Iadd.Such linear low density polyethylene polymers have a density of about 0.940 g/cc or less and they are copolymers of ethylene and at least one C3 -C10 alpha-olefin. .Iaddend.
A particularly desirable method for producing linear low density polyethylene polymers according to the present invention is in a fluid bed reactor. Such a reactor and means for operating the same is described by Levine et al, U.S. Pat. No. 4,011,382 and Karol et al, U.S. Pat. No. 4,302,566, the entire contents of both of which being incorporated herein by reference, and by Nowlin et al, U.S. Pat. No. 4,481,301.
The following Examples further illustrate the essential features of the invention. However, it will be apparent to those skilled in the art that the specific reactants and reaction conditions used in the Examples do not limit the scope of the invention.
The properties of the polymers produced in the Examples were determined by the following test methods:
Density: ASTM D-1505--A plaque is made and conditioned for one hour at 100° C. to approach equilibrium crystallinity. Measurement for density is then made in a density gradient column; reported as gms/cc.
Melt Index (MI), I2 : ASTM D-1238--Condition E--Measured at 190° C.--reported as grams per 10 minutes.
High Load Melt Index (HLMI), I2 : ASTM D-1238--Condition F--Measured at 10.5 times the weight used in the melt index test above.
Melt Flow Ratio (MFR)=I21 /I2
Productivity: A sample of the resin product is ashed, and the weight % of ash is determined; since the ash is essentially composed of the catalyst, the productivity is thus the pounds of polymer produced per pound of total catalyst consumed. The amount of Ti, Mg and Cl in the ash are determined by elemental analysis.
Settled Bulk Density: The resin is poured via 1" diameter funnel into a 100 mil graduated cylinder to 100 mil line without shaking the cylinder, and weighed by difference. The cylinder is then vibrated for 5-10 minutes until the resin level drops to a final, steady-state level. The settled bulk density is taken as the indicated cylinder volume at the settled level, divided by the measured resin weight.
n-hexane extractables: (FDA test used for polyethylene film intended for food contact applications). A 200 square inch sample of 1.5 mil gauge film is cut into strips measuring 1"×6" and weighed to the nearest 0.1 mg. The strips are placed in a vessel and extracted with 300 ml of n-hexene at 50°±1° C. for 2 hours. The extract is then decanted into tared culture dishes. After drying the extract in a vacuum dessicator the culture dish is weighed to the nearest 0.1 mg. The extractables, normalized with respect to the original sample weight, is then reported as the weight fraction of n-hexane extractables.
Machine Direction Tear, MDTEAR (gm/mil): ASTM D-1922
All procedures were carried out in clean, commercial scale equipment under purified nitrogen, or dry air. All solvents were pre-dried and nitrogen-purged. This catalyst precursor was prepared substantially according to the disclosure of Hagerty et al, U.S. Pat. No. 4,562,169.
First Step:
348 kgs of Davison 955 silica was heated at 825° C. for about 4 hours in an atmosphere of dry air (Analysis: OH=0.53 mmoles/gm). The silica was then transferred into a 4000 liter mix vessel under a slow nitrogen purge. The mix vessel was equipped with a ribbon-type mechanical stirrer to provide mixing of the internal contents. Approximately 27000 liters of dry isopentane was added while stirring, and the resulting slurry was heated to 70° C. 160 kgs of a 2.28 molar solution of ethylmagnesium chloride (EtMgCl) in tetrahydrofuran (THF) was added through a spray nozzle over a 60 minute period while stirring. The slurry was mixed for an additional 60 minutes to complete reaction. Then the solvent was removed by distillation at 70° C., and the product was dried at 82° C. for about 55 hours with a slow nitrogen purge to yield a free-flowing powder. Analysis: Mg=2.54 wt. %, THF=4.55 wt. %.
Second Step:
The product from the first step was held in the mix vessel under a dry nitrogen atmosphere at 62° C., while stirring. 1700 liters of dry isopentane was fed to the mix vessel simultaneously with 300 kgs of TiCl4 through a common feed line. The addition time was approximately 90 minutes. The mix vessel's internal temperature was then raised to 80° C. and held for 2 hours to complete reaction. The solids were allowed to settle, and the supernatant liquid was withdrawn through a dip-tube. The product was washed nine (9) times with 2000 l portions of isopentane to remove excess TiCl4. The product was then dried for 8.5 hours with a slow nitrogen purge at 60° C. The resulting catalyst precursor product was analyzed as follows: Mg=2.23 wt. %; Ti=3.33 wt. %; Cl=1.20 wt. % THF=1.91 wt. %.
The catalyst precursor composition of example 1 was used to prepare a linear low density polyethylene product (LLDPE) in a fluid bed, pilot plant reactor operated substantially in the manner disclosed by Nowlin et al, U.S. Pat. No. 4,481,301. The reactor was 0.45 meters in diameter and it was capable of producing up to 25 kgs/hr of resin. A steady-state reaction was obtained by continuously feeding catalyst precursors, TEAL activator, and reactant gases (ethylene, 1-hexane and hydrogen) to the reactor while also continuously withdrawing polymer product from the reactor. The feed rate of ethylene was maintained at a constant 13.0 kgs/hr, and the feed rate of catalyst precursor was adjusted to achieve a substantially equal rate of polymer production. The feed rate of TEAL was 4.69 gms/hr, equivalent to a 361 ppm feed ratio of TEAL to ethylene. Reaction temperature was 88° C., superficial gas velocity was 0.45 meters/sec, and fluid bed residence time was approximately 5 hours. Other reaction conditions, including gas phase composition in the reactor, are given in Table 1.
Catalyst productivity was determined by dividing the polymer production rate by the catalyst feed rate. A value of 5270 grams of polymer per gram of catalyst precursor was thereby obtained (Table I). The polymer product was evaluated in a conventional manner, and the results are summarized in Table II.
LLDPE polymer was produced with the catalyst precursor of Example 1, using substantially the same reaction conditions as in Example 2, except that TMA was used as the activator in place of TEAL. The TMA feed ratio to ethylene was 156 ppm. Reaction conditions are summarized in Table I, and product properties are summarized in Table II.
TABLE I __________________________________________________________________________ (Precursor of Example 1) Activator Catalyst Productivity Ex. Activator Feed Ratio .sup.P C.sub.2 ═ Mole Ratio (gms polymer/gms No. Type (ppm) (psi) 1-C.sub.6 ═/C.sub.2 ═ H.sub.2 /C.sub.2 ═ catalyst precursor) __________________________________________________________________________ 2 TEAL 182 93 0.141 0.239 5270 3 TMA 187 95 0.115 0.229 4450 __________________________________________________________________________
TABLE II __________________________________________________________________________ Resin Properties (Precursor of Example 1) Settled Bulk Ex. Density I.sub.21 FDA Extract Density MD Tear No. (gm/cc) (gms/10 min) MFR (wt. %) (lbs/ft.sup.3) (gms/mil) __________________________________________________________________________ 2 0.9169 54.5 32.3 6.51 21.3 332 3 0.9152 48.8 32.5 7.37 24.3 324 __________________________________________________________________________
The use of TMA activator in place of TEAL produced at catalyst composition with somewhat less productivity (grams of polymer per gram of catalyst precursor). The catalyst productivity in Example 3 was reduced by 16% in comparison with Example 2 (Table I) at an approximately constant level of ethylene partial pressure (P C2 ═).
The comonomer incorporation was significantly improved with TMA, as indicated by an 18% lower gas phase molar ratio of 1-hexene to ethylene (1-C6 ═/C2 ═) that was required to produce a product density in the 0.915 to 0.917 gms/cc density range (Tables I and II).
FDA extractables were higher with TMA (7.37 wt. %) than with TEAL (6.15%). This difference is believed to be the result of the lower polymer density obtained in Example 3 (0.9152 gms/cc) in comparison with Example 2 (0.9169 gms/cc). Lower density LLDPE polymers inherently exhibity higher levels of extractable material. The apparent difference in FDA extractables between the polymers of Examples 2 and 3 is therefore not believed to be a fundamental difference between TMA and TEAL activators.
Polymer settled bulk density was approximately 14% higher with the TMA activator-containing catalyst in comparison with the TEAL activator-containing catalyst (Table II).
Another catalyst precursor was synthesized according to the teachings of Karol et al, European Patent Application No. 84103441.6, filed on Mar. 28, 1984, Publication No. 0 120 503, published on Oct. 3, 1984. This catalyst precursor is substantially equivalent to that of Karol et al, as disclosed in the aforementioned Published European Patent Application. It is also substantially equivalent to the precursors prepared by the following representative procedure.
(a) Impregnation of Support with Precursor
In a 12 liter flask equipped with a mechanical stirrer were placed 41.8 g (0.439 mol) of anhydrous MgCl2 and 2.5 liters of tetrahydrofuran (THF). To this mixture, 29.0 (0.146 mol) of TiCl3 ·0.33AlCl3 were added dropwise over a 1/2 hour period. The mixture was then heated at 60° C. for another 1/2 hour in order to completely dissolve the material.
Five hundred grams (500 g) of silica were dehydrated by heating at a temperature of 600° C. and slurried in 3 liters of isopentane. The slurry was stirred while 186 ml of a 20 percent by weight solution of triethylaluminum in hexane was added thereto over a 1/4 hour period. The resulting mixture was then dried under a nitrogen purge at 60° C. over a period of about 4 hours to provide a dry, free-flowing powder containing 5.5 percent by weight of the aluminum alkyl.
The treated silica was then added to the solution prepared as above. The resulting slurry was stirred for 1/4 hour and then dried under a nitrogen purge at 60° C. over a period of about 4 hours to provide a dry, impregnated, free-flowing powder.
(b) Preparation of Partially Activated Precursor
(i) The silica-impregnated precursor composition prepared in accordance with Example 4(a) was slurried in 3 liters of anhydrous isopentane and stirred while a 20 percent by weight solution of diethylaluminum chloride in anhydrous hexane was added thereto over a 1/4 hour period. The diethylaluminum chloride (DEAC) solution was employed in an amount sufficient to provide 0.4 mols of this compound per mol of tetrahydrofuran (THF) in the precursor. After addition of the diethylaluminum chloride was completed, stirring was continued for an additional 1/4 to 1/2 hour while a 20 percent by weight solution of tri-n-hexylaluminum (TNHAL) in anhydrous hexane was added in an amount sufficient to provide 0.6 mols of this compound per mol of tetrahydrofuran in the precursor. The mixture was then dried under a nitrogen purge at a temperature of 65°±10° C. over a period of about 4 hours to provide a dry, free-flowing powder. This material was stored under dry nitrogen until it was needed.
Two alternative procedures (ii) and (iii) for partially activating the precursor may be employed. (ii) The silica-impregnated precursor composition prepared in accordance with Example 4(a) was partially activated with diethylaluminum chloride and tri-n-hexylaluminum employing the same procedure as in 4(b)(i) except that the tri-n-hexylaluminum was employed in an amount sufficient to provide 0.4 mols of this compound per mol of tetrahydrofuran in the precursor.
(iii) The silica-impregnated precursor composition prepared in accordance with Example 4(a) was partially activated with diethylaluminum chloride and tri-n-hexylaluminum employing the same procedure as in 2(a) except that each compound was employed in an amount sufficient to provide 0.3 mols of such compound per mol of tetrahydrofuran in the precursor.
The partially activated catalyst precursor composition of Example 4, with the molar ratios of DEAC/THF=0.36 and TNHAL/THF=0.25, was used to prepare LLDPE product in a fluid bed, pilot plant reactor. Reaction conditions were substantially equivalent to those of Examples 2 and 3, except that the reaction temperature was 86° C. Other reaction conditions are summarized in Table III. The product properties were determined in a conventional manner and are summarized in Table IV.
The partially activated precursor composition of Example 4, with the molar ratios of DEAC/THF=0.36 and TNHAL/THF=0.25, was used to prepare LLDPE product in a fluid bed, pilot plant reactor. Reaction conditions were substantially equivalent to those of Example 5, except that a TMA activator was used in place of TEAL, and adjustments were made to the activator feed ratio and ethylene partial pressure (P C2 ═) to determine the separate effects of these variables. Reaction conditions are summarized in Table III, and the product properties are summarized in Table IV.
The hydrogen to ethylene molar ratio in the reactor (H2 /C2 ═) was adjusted as required to obtain a high load melt index (I21) of about 30 gms/10 min. Different levels of H2 /C2 ═ were required depending on the TMA activator feed ratio (Table III).
TABLE III __________________________________________________________________________ Reaction Conditions (Precursor of Example 4) Activator/ Ex. Activator C.sub.2 ═ Feed .sup.P C.sub.2 ═ 1-C.sub.6 ═/C.sub.2 ═ H.sub.2 /C.sub.2 ═ Productivity No. Type (ppm) (psi) (moles/moles) (moles/moles) (gms/gm) __________________________________________________________________________ 5 TEAL 361 89 0.149 0.129 4190 6 TMA 156 93 0.139 0.177 3320 7 TMA 71 86 0.148 0.170 4000 8 TMA 74 90 0.149 0.215 3640 9 TMA 240 94 0.142 0.162 2580 10 TMA 245 129 0.143 0.161 4510 __________________________________________________________________________
TABLE IV __________________________________________________________________________ Resin Properties (Precursor of Example 4) Settled Bulk Ex. Density I.sub.21 FDA Extract Density MD Tear No. (gm/cc) (gms/10 min) MFR (wt. %) (lbs/ft.sup.3) (gms/mil) __________________________________________________________________________ 5 0.9160 31.0 32.3 6.05 25.5 266 6 0.9166 31.6 28.5 4.54 25.2 310 7 0.9159 22.4 28.7 3.69 25.4 345 8 0.9165 34.9 28.6 3.86 25.9 382 9 0.9159 26.6 27.1 4.02 25.9 321 10 0.9169 32.2 28.3 4.37 25.4 356 __________________________________________________________________________
The various levels of ethylene partial pressure and TMA activator feed ratios used in Examples 6-10 had no substantial effect on product properties. As indicated in Table IV, the polymer MFR, FDA extractables, settled bulk density, and MD tear strength were essentially the same in Examples 6 through 10.
However, the productivity of the TMA-activated precursor was found to be strongly dependent on the ethylene partial pressure and activator feed ratio. The ethylene partial pressure effect is illustrated by comparing Examples 9 and 10 Table III: the productivity at 129 psi ethylene partial pressure was approximately 75% higher than at 94 psi. This effect is typical for Ziegler catalysts, including those disclosed by Nowlin et al, U.S. Pat. No. 4,481,301.
The effect on productivity of various activator feed ratios is illustrated in FIG. 1, which is a graphical representation of the data of Examples 6-9. The highest level of productivity are attained with relatively low activator feed ratios. A similar effect is known to exist with certain Ziegler catalyst compositions activated with TEAL, such as those of Example 1, although it is not present with the catalyst composition disclosed by Karol et al in the aforementioned European Patent Application (i.e., activated with TEAL). In the case of the Karol et al catalyst, the productivity is not sensitive to the TEAL feed ratio over a broad range.
The catalyst composition of the present invention produced polymer with lower melt flow ratio (MFR), lower FDA extractables, and higher MD tear strength in comparison with the prior art composition of Karol et al. However, unlike the previous Examples 2 and 3, there were no differences noted in settled bulk density or in comonomer incorporation (e.g., 1-C6 ═/C2 ═ ratio in the reactor required to attain a density of 0.917 gms/cc).
The melt flow ratio in Table IV was reduced from 32.3 (Example 5 with TEAL) to an average of 28.2 (Examples 6-10 with TMA). FDA extractables were reduced by an average of 32%, and MD tear strength was increased by an average of 29%, in the same examples.
It will be apparent to those skilled in the art that the specific embodiments discussed above can be successfully repeated with ingredients equivalent to those generically or specifically set forth above and under variable process conditions.
From the foregoing specification, one skilled in the art can readily ascertain the essential features of this invention and without departing from the spirit and scope thereof can adapt it to various diverse applications.
Claims (57)
1. In a process for preparing an alpha-olefin polymerization catalyst composition .Iadd.for polymerizing ethylene and at least one C3 -C10 alpha-olefin to produce a linear low density copolymer having a density of about 0.940 gm/cc or less, .Iaddend.comprising, .Iadd.a precursor composition which comprises .Iaddend.a .Iadd.halogen-containing .Iaddend.transition metal compound .Iadd.and .Iaddend.a magnesium compound.Iadd., which precursor composition is supported on a solid, porous carrier, .Iaddend.and a metal alkyl .Iadd.activator, .Iaddend.the improvement comprising using trimethylaluminum as the metal alkyl .Iadd.activator.Iaddend..
2. A process of claim 1 wherein the magnesium compound is an organomagnesium composition.
3. A process of claim 2 wherein the catalyst composition is prepared by:
(A) contacting a solid, porous carrier with the organomagnesium composition;
(B) contacting the product of step (A) with the transition metal compound; and
(C) contacting the product of step (B) with the trimethylaluminum.
4. A process of claim 3 wherein the catalyst composition is prepared in a process comprising the steps of:
(i) contacting a solid, porous carrier having reactive OH groups with a liquid containing at least one organomagnesium composition having the empirical formula:
R.sub.n MgR'.sub.(2-n)
where R and R' are the same or different and they are C1 -C12 hydrocarbyl groups, provided that R' may also be a halogen, and n is 0, 1 or 2, the number of moles of said organomagnesium composition being in excess of the number of moles of said OH groups on said carrier;
(ii) evaporating said liquid from step (i) to produce a supported magnesium composition in the form of a dry, free-flowing powder; and
(iii) reacting said powder of step (ii) with at least one transition metal compound in a liquid medium, the number of moles of said transition metal compound being in excess of the number of moles of the OH groups on said carrier prior to the reaction of the carrier with said organomagnesium composition in step (i), said transition metal compound being soluble in said liquid medium, and said supported magnesium composition being substantially insoluble in said liquid medium.
5. A process of claim 4 wherein the transition metal compound is a titanium compound.
6. A process of claim 5 wherein the titanium compound is a tetravalent titanium compound.
7. A process of claim 6 wherein the catalyst composition comprises such an amount of the trimethylaluminum that the polymer prepared with the catalyst composition comprises about 15 to about 300 parts per million of the trimethylaluminum.
8. A process of claim 7 wherein n is 1.
9. A process of claim 8 wherein said step (i) comprises:
(a) slurrying the carrier in a non-Lewis base liquid; and
(b) adding to the slurry resulting from step (a) the organomagnesium composition in the form of an ether solution thereof.
10. A process of claim 9 wherein the ether is tetrahydrofuran.
11. A process of claim 10 wherein the porous, solid carrier is silica, alumina or combinations thereof.
12. A process of claim 11 wherein the porous, solid carrier is silica.
13. A process of claim 12 wherein the tetravalent titanium compound is TiCl4.
14. A process of claim 13 wherein, in step (i), the ratio of the number of moles of said organomagnesium composition to the number of moles of the OH groups on said silica is from about 1.1 to about 3.5.
15. A process of claim 14 wherein in step (i), the ratio of the number of moles of said organomagnesium composition to the number of moles of the OH groups on said silica is about 1.5 to 3.5.
16. A process of claim 15 wherein said liquid medium is an alkane, cycloalkane, aromatics or halogenated aromatics.
17. A process of claim 16 wherein said liquid medium is hexane.
18. A process of claim .[.17.]. .Iadd.58 .Iaddend.wherein, prior to contacting the silica in step (i), it is heated at a temperature of about 750° C. for at least four hours.
19. A process of claim 18 wherein the organomagnesium composition is ethylmagnesium chloride.
20. In a alpha-olefin polymerization catalyst composition.[.,.]. .Iadd.used to polymerize ethylene and at least one C3 -C10 alpha-olefin to produce a linear low density copolymer having a density of about 0.940 gm/cc or less, .Iaddend.comprising .Iadd.a precursor composition which comprises .Iaddend.a .Iadd.halogen-containing .Iaddend.transition metal compound.[.,.]. and a magnesium compound.Iadd., which precursor composition is supported on a solid, porous carrier, .Iaddend.and a metal alkyl activator, the improvement comprising using trimethylaluminum as the metal alkyl .Iadd.activator.Iaddend..
21. A catalyst composition of claim 20 wherein the magnesium compound is an organomagnesium composition.
22. A catalyst composition of claim 21 wherein it is prepared by:
(A) contacting a solid, porous carrier with the organomagnesium composition;
(B) contacting the product of step (A) with the transition metal compound; and
(C) contacting the product of step (B) with the trimethylaluminum.
23. A catalyst composition of claim 22 wherein it is prepared in a process comprising the steps of
(i) contacting a solid, porous carrier having reactive OH groups with a liquid containing at least one organomagnesium composition having the empirical formula:
R.sub.n MgR'.sub.(2-n)
where R and R' are the same or different and they are C1 -C12 hydrocarbyl groups, provided that R' may also be a halogen, and n is 0, 1 or 2, the number of moles of said organomagnesium composition being in excess of the number of moles of said OH groups on said carrier;
(ii) evaporating said liquid from step (i) to produce a supported magnesium composition in the form of a dry, free-flowing powder; and
(iii) reacting said powder of step (ii) with at least one transition metal compound in a liquid medium, the number of moles of said transition metal compound being in excess of the number of moles of the OH groups on said carrier prior to the reaction of the carrier with said organomagnesium composition in step (i), said transition metal compound being soluble in said liquid medium, and said supported magnesium composition being substantially insoluble in said liquid medium.
24. A catalyst composition of claim 23 wherein the transition metal compound is a titanium compound.
25. A catalyst composition of claim 24 wherein the titanium compound is a tetravalent titanium compound.
26. A catalyst composition of claim 25 which comprises such an amount of the trimethylaluminum that the polymer prepared with the catalyst composition comprises about 15 to about 300 parts per million of the trimethylaluminum.
27. A catalyst composition of claim 26 wherein n is 1.
28. A catalyst composition of claim 27 wherein said step (i) comprises:
(a) slurrying the carrier in a non-Lewis base liquid; and
(b) adding to the slurry resulting from step (a) the organomagnesium composition in the form of an ether solution thereof.
29. A catalyst composition of claim 28 wherein the ether is tetrahydrofuran.
30. A catalyst composition of claim 29 wherein the porous, solid carrier is silica, alumina or combinations thereof.
31. A catalyst composition of claim 30 wherein the porous, solid carrier is silica.
32. A catalyst composition of claim 31 wherein the tetravalent titanium compound is TiCl4.
33. A catalyst composition of claim 32 wherein, in step (i), the ratio of the number of moles of said organomagnesium composition to the number of moles of the OH groups on said silica is from about 1.1 to about 3.5.
34. A catalyst composition of claim 33 wherein, in step (i), the ratio of the number of moles of said organomagnesium composition to the number of moles of the OH groups on said silica is about 1.5 to 3.5.
35. A catalyst composition of claim 34 wherein said liquid medium is an alkane, cycloalkane, aromatics or halogenated aromatics.
36. A catalyst composition of claim 35 wherein said liquid medium is hexane.
37. A catalyst composition of claim .[.36.]. .Iadd.60 .Iaddend.wherein, prior to contacting the silica in step (i), it is heated at a temperature of about 750° C. for at least four hours.
38. A catalyst composition of claim 37 wherein the organomagnesium composition is ethylmagnesium chloride.
39. A process of claim 1 wherein the catalyst composition is prepared by
(A) contacting a solution of a magnesium compound in a liquid with a titanium compound;
(B) contacting the resulting solution of step (A) with a solid, inert porous carrier to form a catalyst precursor; and
(C) contacting the precursor with the trimethylaluminum.
40. A process of claim 39 wherein the magnesium compound has the empirical formula
MgX.sub.2
wherein X is Cl, Br, I or mixtures thereof.
41. A process of claim 40 wherein the magnesium compound is MgCl2.
42. A process of claim 41 wherein said liquid is at least one Lewis base.
43. A process of claim 42 wherein the Lewis base is selected from the group consisting of aliphatic carboxylic acids, aromatic carboxylic acids, aliphatic ethers, cyclic ethers and aliphatic ketones.
44. A process of claim 43 wherein the Lewis base is selected from the group consisting of aliphatic ethers and cyclic ethers.
45. A process of claim 44 wherein the Lewis base is tetrahydrofuran.
46. A process of claim 45 wherein the titanium compound is TiCl3, TiCl4, Ti(OCH3)Cl3, Ti(OC6 H5)Cl3, Ti(OCOCH3)Cl3 to Ti(OCOC6 H5)Cl3.
47. A process of claim 46 wherein the titanium compound is TiCl3.
48. A catalyst composition of claim 20 wherein it is prepared by
(A) contacting a solution of a magnesium compound in a liquid with a titanium compound;
(B) contacting the resulting solution of step (A) with a solid, inert porous carrier to form a catalyst precursor, and,
(C) contacting the precursor with the trimethylaluminum.
49. A catalyst composition of claim 48 wherein the magnesium compound has the empirical formula
MgX.sub.2
wherein X is Cl, Br, I or mixtures thereof.
50. A catalyst composition of claim 49 wherein the magnesium compound is MgCl2.
51. A catalyst composition of claim 50 wherein the liquid is at least one Lewis base.
52. A catalyst composition of claim 51 wherein the Lewis base is selected from the group consisting of aliphatic carboxylic acids, aromatic carboxylic acids, aliphatic ethers, cyclic ethers and aliphatic ketones.
53. A catalyst composition of claim 52 wherein the Lewis base is selected from the group consisting of aliphatic ethers and cyclic ethers.
54. A catalyst composition of claim 53 wherein the Lewis base is tetrahydrofuran.
55. A catalyst composition of claim 54 wherein the titanium compound is TiCl3, TiCl4, Ti(OCH3)Cl3, Ti(OC6 H5)Cl3, Ti(OCOCH3)Cl3 or Ti(OCOC6 H5)Cl3.
56. A catalyst composition of claim 55 wherein the titanium compound is TiCl3. .Iadd.
57. A process of claim 17 wherein the silica, prior to the contacting thereof in said step (i), is heated at a temperature of about 750° to about 850° C. for 16 hours or less. .Iaddend. .Iadd.58. A process of claim 57 wherein the organomagnesium composition R' is Cl, Br or I. .Iaddend. .Iadd.59. A catalyst composition of claim 36 wherein the silica, prior to the contacting thereof in said step (i), is heated at a temperature of about 750° to about 850° C. for 16 hours or less. .Iaddend. .Iadd.60. A catalyst composition of claim 59 wherein in the organomagnesium composition R' is Cl, Br or I.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/357,249 USRE33683E (en) | 1986-01-24 | 1989-05-26 | Catalyst composition for polymerizing alpha-olefins |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/822,359 US4732882A (en) | 1986-01-24 | 1986-01-24 | Catalyst composition for polymerizing alpha-olefins |
US07/357,249 USRE33683E (en) | 1986-01-24 | 1989-05-26 | Catalyst composition for polymerizing alpha-olefins |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/822,359 Reissue US4732882A (en) | 1986-01-24 | 1986-01-24 | Catalyst composition for polymerizing alpha-olefins |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE33683E true USRE33683E (en) | 1991-09-03 |
Family
ID=26999575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/357,249 Expired - Lifetime USRE33683E (en) | 1986-01-24 | 1989-05-26 | Catalyst composition for polymerizing alpha-olefins |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE33683E (en) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5395471A (en) * | 1991-10-15 | 1995-03-07 | The Dow Chemical Company | High drawdown extrusion process with greater resistance to draw resonance |
US5582923A (en) * | 1991-10-15 | 1996-12-10 | The Dow Chemical Company | Extrusion compositions having high drawdown and substantially reduced neck-in |
US5674342A (en) | 1991-10-15 | 1997-10-07 | The Dow Chemical Company | High drawdown extrusion composition and process |
US5747594A (en) | 1994-10-21 | 1998-05-05 | The Dow Chemical Company | Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus |
US5986028A (en) | 1991-10-15 | 1999-11-16 | The Dow Chemical Company | Elastic substantially linear ethlene polymers |
US6025448A (en) | 1989-08-31 | 2000-02-15 | The Dow Chemical Company | Gas phase polymerization of olefins |
US6140264A (en) | 1998-05-12 | 2000-10-31 | Nova Chemicals Ltd. | Split aluminum addition process for making catalyst |
US6191239B1 (en) | 1998-02-18 | 2001-02-20 | Eastman Chemical Company | Process for producing polyethylene |
US6191238B1 (en) | 1999-08-31 | 2001-02-20 | Eastman Chemical Company | Process for producing polyolefins |
US6228957B1 (en) | 1998-02-18 | 2001-05-08 | Eastman Chemical Company | Process for producing polyethlene |
US6271321B1 (en) | 1998-02-18 | 2001-08-07 | Eastman Chemical Company | Process for producing polyethylene |
US6291613B1 (en) | 1998-10-27 | 2001-09-18 | Eastman Chemical Company | Process for the polymerization of olefins |
US6300432B1 (en) | 1999-03-30 | 2001-10-09 | Eastman Chemical Company | Process for producing polyolefins |
US6417296B2 (en) | 1999-03-30 | 2002-07-09 | Eastman Chemical Company | Process for producing polyolefins |
US6465383B2 (en) | 2000-01-12 | 2002-10-15 | Eastman Chemical Company | Procatalysts, catalyst systems, and use in olefin polymerization |
US6506867B1 (en) | 1991-10-15 | 2003-01-14 | The Dow Chemical Company | Elastic substantially linear ethylene polymers |
US6534613B2 (en) | 1998-02-18 | 2003-03-18 | Eastman Chemical Company | Process for producing polyethylene |
US6538080B1 (en) | 1990-07-03 | 2003-03-25 | Bp Chemicals Limited | Gas phase polymerization of olefins |
US6548611B2 (en) | 1991-10-15 | 2003-04-15 | Dow Global Technologies Inc. | Elastic substantially linear olefin polymers |
US6608152B2 (en) | 1998-10-27 | 2003-08-19 | Eastman Chemical Company | Process for the polymerization of olefins; novel polyethylenes, and films and articles produced therefrom |
US6677410B2 (en) | 2000-01-12 | 2004-01-13 | Eastman Chemical Company | Procatalysts, catalyst systems, and use in olefin polymerization |
US6677266B1 (en) | 2002-07-09 | 2004-01-13 | Eastman Chemical Company | Process for preparing a vanadium/titanium catalyst and use in olefin polymerization |
US6696380B2 (en) | 2000-01-12 | 2004-02-24 | Darryl Stephen Williams | Procatalysts, catalyst systems, and use in olefin polymerization |
US6825293B1 (en) | 2001-08-20 | 2004-11-30 | Nova Chemicals (International) S.A. | Polymer control through co-catalyst |
US6828395B1 (en) | 2003-10-15 | 2004-12-07 | Univation Technologies, Llc | Polymerization process and control of polymer composition properties |
US20050085600A1 (en) * | 2003-10-15 | 2005-04-21 | Ehrman Fred D. | Polymerization process and control of polymer composition properties |
US6987152B1 (en) | 2005-01-11 | 2006-01-17 | Univation Technologies, Llc | Feed purification at ambient temperature |
US20060036041A1 (en) * | 2004-08-13 | 2006-02-16 | Kwalk Tae H | High strength bimodal polyethylene compositions |
EP1652863A1 (en) | 2004-10-29 | 2006-05-03 | Nova Chemicals Corporation | Enhanced polyolefin catalyst |
US20060178482A1 (en) * | 2005-02-07 | 2006-08-10 | Kwalk Tae H | Polyethylene blend compositions |
US20070109911A1 (en) * | 2005-11-16 | 2007-05-17 | Neubauer Anthony C | High speed and direct driven rotating equipment for polyolefin manufacturing |
EP2103633A1 (en) | 2005-09-14 | 2009-09-23 | Univation Technologies, LLC | Method for operating a gas-phase reactor while controlling polymer stickiness |
WO2010080870A2 (en) | 2009-01-08 | 2010-07-15 | Univation Technologies,Llc | Additive for polyolefin polymerization processes |
WO2010080871A1 (en) | 2009-01-08 | 2010-07-15 | Univation Technologies, Llc | Additive for gas phase polymerization processes |
US20100261856A1 (en) * | 2007-11-15 | 2010-10-14 | Univation Technologies, Llc | Methods for the removal of impurities from polymerization feed streams |
WO2011071900A2 (en) | 2009-12-07 | 2011-06-16 | Univation Technologies, Llc | Methods for reducing static charge of a catalyst and methods for using the catalyst to produce polyolefins |
WO2011103402A1 (en) | 2010-02-22 | 2011-08-25 | Univation Technologies, Llc | Catalyst systems and methods for using same to produce polyolefin products |
WO2011103280A1 (en) | 2010-02-18 | 2011-08-25 | Univation Technologies, Llc | Methods for operating a polymerization reactor |
WO2011129956A1 (en) | 2010-04-13 | 2011-10-20 | Univation Technologies, Llc | Polymer blends and films made therefrom |
WO2012009215A1 (en) | 2010-07-16 | 2012-01-19 | Univation Technologies, Llc | Systems and methods for measuring static charge on particulates |
WO2012009216A1 (en) | 2010-07-16 | 2012-01-19 | Univation Technologies, Llc | Systems and methods for measuring particle accumulation on reactor surfaces |
WO2012015898A1 (en) | 2010-07-28 | 2012-02-02 | Univation Technologies, Llc | Systems and methods for measuring velocity of a particle/fluid mixture |
WO2012082674A1 (en) | 2010-12-17 | 2012-06-21 | Univation Technologies, Llc | Systems and methods for recovering hydrocarbons from a polyolefin purge gas product |
WO2012087560A1 (en) | 2010-12-22 | 2012-06-28 | Univation Technologies, Llc | Additive for polyolefin polymerization processes |
WO2013028283A1 (en) | 2011-08-19 | 2013-02-28 | Univation Technologies, Llc | Catalyst systems and methods for using same to produce polyolefin products |
WO2013070601A2 (en) | 2011-11-08 | 2013-05-16 | Univation Technologies, Llc | Methods of preparing a catalyst system |
WO2014106143A1 (en) | 2012-12-28 | 2014-07-03 | Univation Technologies, Llc | Supported catalyst with improved flowability |
WO2016118566A1 (en) | 2015-01-21 | 2016-07-28 | Univation Technologies, Llc | Methods for gel reduction in polyolefins |
WO2016118599A1 (en) | 2015-01-21 | 2016-07-28 | Univation Technologies, Llc | Methods for controlling polymer chain scission |
WO2017029579A1 (en) | 2015-08-20 | 2017-02-23 | Nova Chemicals (International) S.A. | Method for altering melt flow ratio of ethylene polymers |
WO2018048472A1 (en) | 2016-09-09 | 2018-03-15 | Exxonmobil Chemical Patents Inc. | Pilot plant scale semi-condensing operation |
WO2018118258A1 (en) | 2016-12-20 | 2018-06-28 | Exxonmobil Chemical Patents Inc. | Methods for controlling start up conditions in polymerization processes |
WO2018147931A1 (en) | 2017-02-07 | 2018-08-16 | Exxonmobil Chemical Patents Inc. | Processes for reducing the loss of catalyst activity of a ziegler-natta catalyst |
WO2018220458A1 (en) | 2017-05-30 | 2018-12-06 | Nova Chemicals (International) S.A. | Ethylene copolymer having enhanced film properties |
EP3467077A1 (en) | 2006-10-03 | 2019-04-10 | Univation Technologies, LLC | System for olefin polymerization |
WO2022020025A1 (en) | 2020-07-22 | 2022-01-27 | Exxonmobil Chemical Patents Inc. | Polyolefin compositions and articles thereof |
Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2827446A (en) * | 1955-09-27 | 1958-03-18 | Hercules Powder Co Ltd | Polymerization of ethylene |
DE1056616B (en) * | 1957-02-28 | 1959-05-06 | Spofa Spojene Farmaceuticke Zd | Process for the preparation of 6-azauracil riboside |
DE1065616B (en) * | 1959-09-17 | Hercules Powder Company, Wilmington, Del (V St A) | Process for the polymerization of ethylene | |
US2905645A (en) * | 1954-08-16 | 1959-09-22 | Du Pont | Polymerization catalysts |
US2912419A (en) * | 1955-03-08 | 1959-11-10 | Standard Oil Co | Hydrocarbon polymerization (group 5a metal oxide and air3 initiator) |
US2924594A (en) * | 1956-08-23 | 1960-02-09 | Hercules Powder Co Ltd | Polymerization of ethylene using as catalyst the product formed by mixing a bis(cyclopentadienyl) vanadium salt with an alkyl metallic compound |
US2924593A (en) * | 1956-08-23 | 1960-02-09 | Hercules Powder Co Ltd | Polymerization of ethylene using as a catalyst the product formed by mixing a bis(cyclopentadienyl) zirconium salt with an alkyl metallic compound |
US2936291A (en) * | 1957-09-05 | 1960-05-10 | Standard Oil Co | Catalysts and catalytic preparations |
US3052660A (en) * | 1960-04-27 | 1962-09-04 | Hercules Powder Co Ltd | Polymerization of olefins with catalysts of metal alkyls and cyclopentadienyl vanadium oxydihalides |
US3574138A (en) * | 1953-11-17 | 1971-04-06 | Ziegler Karl | Catalysts |
US3787384A (en) * | 1970-03-05 | 1974-01-22 | Solvay | Catalysts and process for the polymerization of olefins |
US3917575A (en) * | 1972-11-11 | 1975-11-04 | Nippon Oil Co Ltd | Process for production of polyolefins |
JPS52122079A (en) * | 1976-04-07 | 1977-10-13 | Toshiba Corp | Forming method of ohmic electrodes |
US4110523A (en) * | 1976-02-03 | 1978-08-29 | Basf Aktiengesellschaft | Manufacture of homopolymers and copolymers of α-monoolefins |
US4148754A (en) * | 1975-11-27 | 1979-04-10 | Hoechst Aktiengesellschaft | Process for the preparation of a catalyst and catalyst used in olefin polymerization |
US4173547A (en) * | 1977-03-04 | 1979-11-06 | Stamicarbon, B.V. | Catalyst for preparing polyalkenes |
US4212961A (en) * | 1977-10-11 | 1980-07-15 | Sumitomo Chemical Company, Limited | Process for producing soft resins |
US4243619A (en) * | 1978-03-31 | 1981-01-06 | Union Carbide Corporation | Process for making film from low density ethylene hydrocarbon copolymer |
US4258159A (en) * | 1972-11-24 | 1981-03-24 | Solvay & Cie | Process for the polymerization of olefins |
US4296223A (en) * | 1972-06-22 | 1981-10-20 | Solvay & Cie | Polymerization of olefins |
US4302565A (en) * | 1978-03-31 | 1981-11-24 | Union Carbide Corporation | Impregnated polymerization catalyst, process for preparing, and use for ethylene copolymerization |
US4302566A (en) * | 1978-03-31 | 1981-11-24 | Union Carbide Corporation | Preparation of ethylene copolymers in fluid bed reactor |
US4359561A (en) * | 1979-06-18 | 1982-11-16 | Union Carbide Corporation | High tear strength polymers |
US4387200A (en) * | 1980-10-01 | 1983-06-07 | The Dow Chemical Company | Process for polymerizing olefins employing a catalyst prepared from organomagnesium compound; oxygen- or nitrogen- containing compound; halide source; transition metal compound and reducing agent |
EP0120503A1 (en) * | 1983-03-29 | 1984-10-03 | Union Carbide Corporation | Preparation of low density, low modulus ethylene copolymers in a fluidized bed |
US4481301A (en) * | 1981-12-04 | 1984-11-06 | Mobil Oil Corporation | Highly active catalyst composition for polymerizing alpha-olefins |
US4542199A (en) * | 1981-07-09 | 1985-09-17 | Hoechst Aktiengesellschaft | Process for the preparation of polyolefins |
US4634752A (en) * | 1984-10-04 | 1987-01-06 | Mobil Oil Corporation | Process for preparing alpha-olefin polymers |
US4670413A (en) * | 1985-12-06 | 1987-06-02 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4675369A (en) * | 1984-09-05 | 1987-06-23 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins at low reactants partial pressures |
US4760121A (en) * | 1986-01-03 | 1988-07-26 | Mobil Oil Corporation | Preparation of alpha-olefin polymers of relatively narrow molecular weight distrbution |
US4888318A (en) * | 1986-01-24 | 1989-12-19 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
-
1989
- 1989-05-26 US US07/357,249 patent/USRE33683E/en not_active Expired - Lifetime
Patent Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1065616B (en) * | 1959-09-17 | Hercules Powder Company, Wilmington, Del (V St A) | Process for the polymerization of ethylene | |
US3574138A (en) * | 1953-11-17 | 1971-04-06 | Ziegler Karl | Catalysts |
US2905645A (en) * | 1954-08-16 | 1959-09-22 | Du Pont | Polymerization catalysts |
US2912419A (en) * | 1955-03-08 | 1959-11-10 | Standard Oil Co | Hydrocarbon polymerization (group 5a metal oxide and air3 initiator) |
US2827446A (en) * | 1955-09-27 | 1958-03-18 | Hercules Powder Co Ltd | Polymerization of ethylene |
US2924594A (en) * | 1956-08-23 | 1960-02-09 | Hercules Powder Co Ltd | Polymerization of ethylene using as catalyst the product formed by mixing a bis(cyclopentadienyl) vanadium salt with an alkyl metallic compound |
US2924593A (en) * | 1956-08-23 | 1960-02-09 | Hercules Powder Co Ltd | Polymerization of ethylene using as a catalyst the product formed by mixing a bis(cyclopentadienyl) zirconium salt with an alkyl metallic compound |
DE1056616B (en) * | 1957-02-28 | 1959-05-06 | Spofa Spojene Farmaceuticke Zd | Process for the preparation of 6-azauracil riboside |
US2936291A (en) * | 1957-09-05 | 1960-05-10 | Standard Oil Co | Catalysts and catalytic preparations |
US3052660A (en) * | 1960-04-27 | 1962-09-04 | Hercules Powder Co Ltd | Polymerization of olefins with catalysts of metal alkyls and cyclopentadienyl vanadium oxydihalides |
US3787384A (en) * | 1970-03-05 | 1974-01-22 | Solvay | Catalysts and process for the polymerization of olefins |
US4296223A (en) * | 1972-06-22 | 1981-10-20 | Solvay & Cie | Polymerization of olefins |
US3917575A (en) * | 1972-11-11 | 1975-11-04 | Nippon Oil Co Ltd | Process for production of polyolefins |
US4258159A (en) * | 1972-11-24 | 1981-03-24 | Solvay & Cie | Process for the polymerization of olefins |
US4148754A (en) * | 1975-11-27 | 1979-04-10 | Hoechst Aktiengesellschaft | Process for the preparation of a catalyst and catalyst used in olefin polymerization |
US4110523A (en) * | 1976-02-03 | 1978-08-29 | Basf Aktiengesellschaft | Manufacture of homopolymers and copolymers of α-monoolefins |
JPS52122079A (en) * | 1976-04-07 | 1977-10-13 | Toshiba Corp | Forming method of ohmic electrodes |
US4173547A (en) * | 1977-03-04 | 1979-11-06 | Stamicarbon, B.V. | Catalyst for preparing polyalkenes |
US4212961A (en) * | 1977-10-11 | 1980-07-15 | Sumitomo Chemical Company, Limited | Process for producing soft resins |
US4243619A (en) * | 1978-03-31 | 1981-01-06 | Union Carbide Corporation | Process for making film from low density ethylene hydrocarbon copolymer |
US4302565A (en) * | 1978-03-31 | 1981-11-24 | Union Carbide Corporation | Impregnated polymerization catalyst, process for preparing, and use for ethylene copolymerization |
US4302566A (en) * | 1978-03-31 | 1981-11-24 | Union Carbide Corporation | Preparation of ethylene copolymers in fluid bed reactor |
US4359561A (en) * | 1979-06-18 | 1982-11-16 | Union Carbide Corporation | High tear strength polymers |
US4387200A (en) * | 1980-10-01 | 1983-06-07 | The Dow Chemical Company | Process for polymerizing olefins employing a catalyst prepared from organomagnesium compound; oxygen- or nitrogen- containing compound; halide source; transition metal compound and reducing agent |
US4542199A (en) * | 1981-07-09 | 1985-09-17 | Hoechst Aktiengesellschaft | Process for the preparation of polyolefins |
US4481301A (en) * | 1981-12-04 | 1984-11-06 | Mobil Oil Corporation | Highly active catalyst composition for polymerizing alpha-olefins |
EP0120503A1 (en) * | 1983-03-29 | 1984-10-03 | Union Carbide Corporation | Preparation of low density, low modulus ethylene copolymers in a fluidized bed |
US4675369A (en) * | 1984-09-05 | 1987-06-23 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins at low reactants partial pressures |
US4634752A (en) * | 1984-10-04 | 1987-01-06 | Mobil Oil Corporation | Process for preparing alpha-olefin polymers |
US4670413A (en) * | 1985-12-06 | 1987-06-02 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4760121A (en) * | 1986-01-03 | 1988-07-26 | Mobil Oil Corporation | Preparation of alpha-olefin polymers of relatively narrow molecular weight distrbution |
US4888318A (en) * | 1986-01-24 | 1989-12-19 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
Non-Patent Citations (1)
Title |
---|
Allen et al., U.S. patent application Ser. No. 037,680, filed 04/13/87. * |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6025448A (en) | 1989-08-31 | 2000-02-15 | The Dow Chemical Company | Gas phase polymerization of olefins |
US6538080B1 (en) | 1990-07-03 | 2003-03-25 | Bp Chemicals Limited | Gas phase polymerization of olefins |
US6737484B2 (en) | 1991-10-15 | 2004-05-18 | Dow Global Technologies Inc. | Elastic substantially linear olefin polymers |
US5395471A (en) * | 1991-10-15 | 1995-03-07 | The Dow Chemical Company | High drawdown extrusion process with greater resistance to draw resonance |
US6534612B1 (en) | 1991-10-15 | 2003-03-18 | The Dow Chemical Company | Elastic substantially linear ethylene polymers |
US6548611B2 (en) | 1991-10-15 | 2003-04-15 | Dow Global Technologies Inc. | Elastic substantially linear olefin polymers |
US5986028A (en) | 1991-10-15 | 1999-11-16 | The Dow Chemical Company | Elastic substantially linear ethlene polymers |
US5674342A (en) | 1991-10-15 | 1997-10-07 | The Dow Chemical Company | High drawdown extrusion composition and process |
US6136937A (en) | 1991-10-15 | 2000-10-24 | The Dow Chemical Company | Elastic substantially linear ethylene polymers |
US6506867B1 (en) | 1991-10-15 | 2003-01-14 | The Dow Chemical Company | Elastic substantially linear ethylene polymers |
US6780954B2 (en) | 1991-10-15 | 2004-08-24 | Dow Global Technologies, Inc. | Elastic substantially linear ethylene polymers |
US5582923A (en) * | 1991-10-15 | 1996-12-10 | The Dow Chemical Company | Extrusion compositions having high drawdown and substantially reduced neck-in |
US6849704B2 (en) | 1991-10-15 | 2005-02-01 | Dow Global Technologies Inc. | Elastic substantially linear olefin polymers |
US5792534A (en) * | 1994-10-21 | 1998-08-11 | The Dow Chemical Company | Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus |
US5747594A (en) | 1994-10-21 | 1998-05-05 | The Dow Chemical Company | Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus |
US5773106A (en) * | 1994-10-21 | 1998-06-30 | The Dow Chemical Company | Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus |
US6271321B1 (en) | 1998-02-18 | 2001-08-07 | Eastman Chemical Company | Process for producing polyethylene |
US6534613B2 (en) | 1998-02-18 | 2003-03-18 | Eastman Chemical Company | Process for producing polyethylene |
US6191239B1 (en) | 1998-02-18 | 2001-02-20 | Eastman Chemical Company | Process for producing polyethylene |
US6228957B1 (en) | 1998-02-18 | 2001-05-08 | Eastman Chemical Company | Process for producing polyethlene |
US6140264A (en) | 1998-05-12 | 2000-10-31 | Nova Chemicals Ltd. | Split aluminum addition process for making catalyst |
EP2287211A1 (en) | 1998-10-27 | 2011-02-23 | Westlake Longview Corporation | Process for the polymerization of olefins; polyethylenes, and films and articles produced therefrom |
US6291613B1 (en) | 1998-10-27 | 2001-09-18 | Eastman Chemical Company | Process for the polymerization of olefins |
US6608152B2 (en) | 1998-10-27 | 2003-08-19 | Eastman Chemical Company | Process for the polymerization of olefins; novel polyethylenes, and films and articles produced therefrom |
EP2275456A1 (en) | 1998-10-27 | 2011-01-19 | Westlake Longview Corporation | Process for the polymerization of olefins; polyethylenes, and films and articles produced therefrom |
EP2277923A1 (en) | 1998-10-27 | 2011-01-26 | Westlake Longview Corporation | Process for the polymerization of olefins; polyethylenes, and films and articles produced therefrom |
US7652113B2 (en) | 1998-10-27 | 2010-01-26 | Westlake Longview Corporation | Polyethylene copolymers having low n-hexane extractable |
US7893180B2 (en) | 1998-10-27 | 2011-02-22 | Westlake Longview Corp. | Process for the polymerization of olefins; novel polyethylenes, and films and articles produced therefrom |
EP2277924A1 (en) | 1998-10-27 | 2011-01-26 | Westlake Longview Corporation | Process for the polymerization of olefins; polyethylenes, and films and articles produced therefrom |
EP2277922A1 (en) | 1998-10-27 | 2011-01-26 | Westlake Longview Corporation | Process for the polymerization of olefins; polyethylenes, and films and articles produced therefrom |
EP2277925A1 (en) | 1998-10-27 | 2011-01-26 | Westlake Longview Corporation | Process for the polymerization of olefins; polyethylenes, and films and articles produced therefrom |
EP2275455A1 (en) | 1998-10-27 | 2011-01-19 | Westlake Longview Corporation | Process for the polymerization of olefins; polyethylenes, and films and articles produced therefrom |
US20080146760A1 (en) * | 1998-10-27 | 2008-06-19 | Randal Ray Ford | Process for the polymerization of olefins; novel polyethylenes, and films and articles produced therefrom |
US6300432B1 (en) | 1999-03-30 | 2001-10-09 | Eastman Chemical Company | Process for producing polyolefins |
US6417296B2 (en) | 1999-03-30 | 2002-07-09 | Eastman Chemical Company | Process for producing polyolefins |
US6191238B1 (en) | 1999-08-31 | 2001-02-20 | Eastman Chemical Company | Process for producing polyolefins |
US6677410B2 (en) | 2000-01-12 | 2004-01-13 | Eastman Chemical Company | Procatalysts, catalyst systems, and use in olefin polymerization |
US6465383B2 (en) | 2000-01-12 | 2002-10-15 | Eastman Chemical Company | Procatalysts, catalyst systems, and use in olefin polymerization |
US6696380B2 (en) | 2000-01-12 | 2004-02-24 | Darryl Stephen Williams | Procatalysts, catalyst systems, and use in olefin polymerization |
US6825293B1 (en) | 2001-08-20 | 2004-11-30 | Nova Chemicals (International) S.A. | Polymer control through co-catalyst |
US6677266B1 (en) | 2002-07-09 | 2004-01-13 | Eastman Chemical Company | Process for preparing a vanadium/titanium catalyst and use in olefin polymerization |
US7238756B2 (en) | 2003-10-15 | 2007-07-03 | Univation Technologies, Llc | Polymerization process and control of polymer composition properties |
US20050085600A1 (en) * | 2003-10-15 | 2005-04-21 | Ehrman Fred D. | Polymerization process and control of polymer composition properties |
US6828395B1 (en) | 2003-10-15 | 2004-12-07 | Univation Technologies, Llc | Polymerization process and control of polymer composition properties |
US7193017B2 (en) | 2004-08-13 | 2007-03-20 | Univation Technologies, Llc | High strength biomodal polyethylene compositions |
US20060036041A1 (en) * | 2004-08-13 | 2006-02-16 | Kwalk Tae H | High strength bimodal polyethylene compositions |
EP1652863A1 (en) | 2004-10-29 | 2006-05-03 | Nova Chemicals Corporation | Enhanced polyolefin catalyst |
US20060094838A1 (en) * | 2004-10-29 | 2006-05-04 | Nova Chemicals Corporation | Enhanced polyolefin catalyst |
US7211535B2 (en) | 2004-10-29 | 2007-05-01 | Nova Chemicals Corporation | Enhanced polyolefin catalyst |
US6987152B1 (en) | 2005-01-11 | 2006-01-17 | Univation Technologies, Llc | Feed purification at ambient temperature |
US20080064817A1 (en) * | 2005-02-07 | 2008-03-13 | Univation Technologies, Llc | Polyethylene blend compositions |
US7504055B2 (en) | 2005-02-07 | 2009-03-17 | Univation Technologies, Llc | Polyethylene blend compositions |
US20060178482A1 (en) * | 2005-02-07 | 2006-08-10 | Kwalk Tae H | Polyethylene blend compositions |
US7312279B2 (en) | 2005-02-07 | 2007-12-25 | Univation Technologies, Llc | Polyethylene blend compositions |
EP2103633A1 (en) | 2005-09-14 | 2009-09-23 | Univation Technologies, LLC | Method for operating a gas-phase reactor while controlling polymer stickiness |
US20070109911A1 (en) * | 2005-11-16 | 2007-05-17 | Neubauer Anthony C | High speed and direct driven rotating equipment for polyolefin manufacturing |
US20110085408A1 (en) * | 2005-11-16 | 2011-04-14 | Univation Technologies, Llc | High Speed and Direct Driven Rotating Equipment for Polyolefin Manufacturing |
US8066423B2 (en) | 2005-11-16 | 2011-11-29 | Univation Technologies, Llc | High speed and direct driven rotating equipment for polyolefin manufacturing |
EP3467077A1 (en) | 2006-10-03 | 2019-04-10 | Univation Technologies, LLC | System for olefin polymerization |
US20100261856A1 (en) * | 2007-11-15 | 2010-10-14 | Univation Technologies, Llc | Methods for the removal of impurities from polymerization feed streams |
US9133081B2 (en) | 2007-11-15 | 2015-09-15 | Univation Technologies, Llc | Methods for the removal of impurities from polymerization feed streams |
WO2010080870A2 (en) | 2009-01-08 | 2010-07-15 | Univation Technologies,Llc | Additive for polyolefin polymerization processes |
WO2010080871A1 (en) | 2009-01-08 | 2010-07-15 | Univation Technologies, Llc | Additive for gas phase polymerization processes |
WO2011071900A2 (en) | 2009-12-07 | 2011-06-16 | Univation Technologies, Llc | Methods for reducing static charge of a catalyst and methods for using the catalyst to produce polyolefins |
WO2011103280A1 (en) | 2010-02-18 | 2011-08-25 | Univation Technologies, Llc | Methods for operating a polymerization reactor |
WO2011103402A1 (en) | 2010-02-22 | 2011-08-25 | Univation Technologies, Llc | Catalyst systems and methods for using same to produce polyolefin products |
WO2011129956A1 (en) | 2010-04-13 | 2011-10-20 | Univation Technologies, Llc | Polymer blends and films made therefrom |
WO2012009216A1 (en) | 2010-07-16 | 2012-01-19 | Univation Technologies, Llc | Systems and methods for measuring particle accumulation on reactor surfaces |
WO2012009215A1 (en) | 2010-07-16 | 2012-01-19 | Univation Technologies, Llc | Systems and methods for measuring static charge on particulates |
WO2012015898A1 (en) | 2010-07-28 | 2012-02-02 | Univation Technologies, Llc | Systems and methods for measuring velocity of a particle/fluid mixture |
WO2012082674A1 (en) | 2010-12-17 | 2012-06-21 | Univation Technologies, Llc | Systems and methods for recovering hydrocarbons from a polyolefin purge gas product |
WO2012087560A1 (en) | 2010-12-22 | 2012-06-28 | Univation Technologies, Llc | Additive for polyolefin polymerization processes |
WO2013028283A1 (en) | 2011-08-19 | 2013-02-28 | Univation Technologies, Llc | Catalyst systems and methods for using same to produce polyolefin products |
WO2013070601A2 (en) | 2011-11-08 | 2013-05-16 | Univation Technologies, Llc | Methods of preparing a catalyst system |
US9234060B2 (en) | 2011-11-08 | 2016-01-12 | Univation Technologies, Llc | Methods of preparing a catalyst system |
WO2014106143A1 (en) | 2012-12-28 | 2014-07-03 | Univation Technologies, Llc | Supported catalyst with improved flowability |
EP4039366A1 (en) | 2012-12-28 | 2022-08-10 | Univation Technologies, LLC | Supported catalyst with improved flowability |
WO2016118566A1 (en) | 2015-01-21 | 2016-07-28 | Univation Technologies, Llc | Methods for gel reduction in polyolefins |
WO2016118599A1 (en) | 2015-01-21 | 2016-07-28 | Univation Technologies, Llc | Methods for controlling polymer chain scission |
US10836851B2 (en) | 2015-08-20 | 2020-11-17 | Nova Chemicals (International) S.A. | Method for altering melt flow ratio of ethylene polymers |
WO2017029579A1 (en) | 2015-08-20 | 2017-02-23 | Nova Chemicals (International) S.A. | Method for altering melt flow ratio of ethylene polymers |
US10087267B2 (en) | 2015-08-20 | 2018-10-02 | Nova Chemicals (International) S.A. | Method for altering melt flow ratio of ethylene polymers |
WO2018048472A1 (en) | 2016-09-09 | 2018-03-15 | Exxonmobil Chemical Patents Inc. | Pilot plant scale semi-condensing operation |
WO2018118258A1 (en) | 2016-12-20 | 2018-06-28 | Exxonmobil Chemical Patents Inc. | Methods for controlling start up conditions in polymerization processes |
WO2018147931A1 (en) | 2017-02-07 | 2018-08-16 | Exxonmobil Chemical Patents Inc. | Processes for reducing the loss of catalyst activity of a ziegler-natta catalyst |
US10676552B2 (en) | 2017-05-30 | 2020-06-09 | Nova Chemicals (International) S.A. | Ethylene copolymer having enhanced film properties |
US11142599B2 (en) | 2017-05-30 | 2021-10-12 | Nova Chemicals (International) S.A. | Ethylene copolymer having enhanced film properties |
WO2018220458A1 (en) | 2017-05-30 | 2018-12-06 | Nova Chemicals (International) S.A. | Ethylene copolymer having enhanced film properties |
WO2022020025A1 (en) | 2020-07-22 | 2022-01-27 | Exxonmobil Chemical Patents Inc. | Polyolefin compositions and articles thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE33683E (en) | Catalyst composition for polymerizing alpha-olefins | |
US4732882A (en) | Catalyst composition for polymerizing alpha-olefins | |
US4888318A (en) | Catalyst composition for polymerizing alpha-olefins | |
US4378304A (en) | Catalyst and methods | |
US5539076A (en) | Bimodal molecular weight distribution polyolefins | |
US4263171A (en) | Polymerization catalyst | |
US5470812A (en) | High activity polyethylene catalysts prepared with alkoxysilane reagents | |
US4458058A (en) | Polymerization method | |
US4831000A (en) | Catalyst composition for preparing high density or linear low density olefin polymers of controlled molecular weight distribution | |
AU617404B2 (en) | Catalyst composition for polymerizing alpha-olefin polymers of narrow molecular weight distribution | |
US5968862A (en) | Transition metal-magnesium catalyst precursors for the polymerization of olefins | |
EP0435557B1 (en) | Dimethylaluminum chloride-activated olefin polymerisation catalyst composition | |
AU723865B2 (en) | Ziegler-natta catalyst for ethylene polymerization or copolymerization | |
US4668650A (en) | Catalyst composition for polymerizing alpha-olefin polymers of relatively narrow molecular weight distribution | |
EP0324588A2 (en) | Catalyst composition for polymerizing alpha-olefin polymers of narrow molecular weight distribution | |
EP0729478A1 (en) | A catalyst composition for the copolymerization of ethylene | |
US5055533A (en) | Process for polymerizing alpha-olefins with trimethylaluminum-activated catalyst | |
US5442018A (en) | Ethylene polymerization using a titanium and vanadium catalyst system in staged reactors | |
US4876321A (en) | Preparation of alpha-olefin polymers of relatively narrow molecular weight distribution | |
US5139986A (en) | Catalyst composition for production of linear low-density ethylene-hexene copolymers and films thereof | |
US4446288A (en) | Polymerization method | |
JPH0721005B2 (en) | Catalyst composition for (co) polymerization of ethylene | |
US4972033A (en) | Olefin polymerization process for preparing high density or linear low density polymers of controlled molecular weight distribution | |
US4455386A (en) | Polymerization catalyst | |
US6569964B2 (en) | Alumoxane-enhanced, supported Ziegler-Natta catalysts, methods of making same, processes of using same and polymers produced therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: UNIVATION TECHNOLOGIES, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EXXONMOBIL OIL CORPORATION (FORMERLY MOBIL OIL CORPORATION);REEL/FRAME:015428/0719 Effective date: 20041116 |