USRE30885E - Novel diamide and lubricants containing same - Google Patents
Novel diamide and lubricants containing same Download PDFInfo
- Publication number
- USRE30885E USRE30885E US06/243,455 US24345581A USRE30885E US RE30885 E USRE30885 E US RE30885E US 24345581 A US24345581 A US 24345581A US RE30885 E USRE30885 E US RE30885E
- Authority
- US
- United States
- Prior art keywords
- carboxylic acid
- ammonium
- diamide
- organic amine
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 title claims description 131
- 239000000314 lubricant Substances 0.000 title description 8
- -1 amine salts Chemical class 0.000 claims abstract description 133
- 238000005555 metalworking Methods 0.000 claims abstract description 80
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 65
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 58
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 57
- 150000004985 diamines Chemical class 0.000 claims abstract description 47
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 77
- 239000000203 mixture Substances 0.000 claims description 71
- 150000001412 amines Chemical class 0.000 claims description 45
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 18
- 150000003839 salts Chemical class 0.000 claims description 13
- 125000001931 aliphatic group Chemical group 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 12
- 125000002947 alkylene group Chemical group 0.000 claims description 11
- 229920001577 copolymer Polymers 0.000 claims description 11
- 229910052736 halogen Inorganic materials 0.000 claims description 9
- 229920001519 homopolymer Polymers 0.000 claims description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims description 5
- 125000003277 amino group Chemical group 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 125000000446 sulfanediyl group Chemical group *S* 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims 4
- 239000002253 acid Substances 0.000 abstract description 36
- 239000012530 fluid Substances 0.000 abstract description 15
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 150000001470 diamides Chemical class 0.000 abstract description 9
- 150000007513 acids Chemical class 0.000 abstract description 4
- 230000001050 lubricating effect Effects 0.000 abstract description 4
- 150000001735 carboxylic acids Chemical class 0.000 abstract 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 21
- 238000000034 method Methods 0.000 description 18
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 14
- 150000004820 halides Chemical class 0.000 description 14
- 125000004432 carbon atom Chemical group C* 0.000 description 12
- 229920001451 polypropylene glycol Polymers 0.000 description 11
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 10
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 10
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 150000003141 primary amines Chemical class 0.000 description 8
- 239000001361 adipic acid Substances 0.000 description 7
- 235000011037 adipic acid Nutrition 0.000 description 7
- 239000000539 dimer Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 150000003628 tricarboxylic acids Chemical class 0.000 description 7
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000008064 anhydrides Chemical class 0.000 description 6
- 239000012736 aqueous medium Substances 0.000 description 6
- 238000005698 Diels-Alder reaction Methods 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 5
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 150000002367 halogens Chemical group 0.000 description 5
- 125000005702 oxyalkylene group Chemical group 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 150000003863 ammonium salts Chemical class 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 4
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- BHRZNVHARXXAHW-UHFFFAOYSA-N sec-butylamine Chemical compound CCC(C)N BHRZNVHARXXAHW-UHFFFAOYSA-N 0.000 description 3
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 3
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 3
- CFQZKFWQLAHGSL-FNTYJUCDSA-N (3e,5e,7e,9e,11e,13e,15e,17e)-18-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(3e,5e,7e,9e,11e,13e,15e)-octadeca-3,5,7,9,11,13,15,17-octaenoyl]oxyoctadeca-3,5,7,9,11,13,15,17-octaenoyl]oxyoctadeca-3,5,7,9,11,13,15,17-octaenoic acid Chemical compound OC(=O)C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\OC(=O)C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\OC(=O)C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C=C CFQZKFWQLAHGSL-FNTYJUCDSA-N 0.000 description 2
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- LTHNHFOGQMKPOV-UHFFFAOYSA-N 2-ethylhexan-1-amine Chemical compound CCCCC(CC)CN LTHNHFOGQMKPOV-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N N-butylamine Natural products CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 235000011087 fumaric acid Nutrition 0.000 description 2
- 150000002238 fumaric acids Chemical class 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N hydroxymethylethylene Natural products OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000003784 tall oil Substances 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 229960004418 trolamine Drugs 0.000 description 2
- KQIXMZWXFFHRAQ-UHFFFAOYSA-N 1-(2-hydroxybutylamino)butan-2-ol Chemical compound CCC(O)CNCC(O)CC KQIXMZWXFFHRAQ-UHFFFAOYSA-N 0.000 description 1
- BFIAIMMAHAIVFT-UHFFFAOYSA-N 1-[bis(2-hydroxybutyl)amino]butan-2-ol Chemical compound CCC(O)CN(CC(O)CC)CC(O)CC BFIAIMMAHAIVFT-UHFFFAOYSA-N 0.000 description 1
- KODLUXHSIZOKTG-UHFFFAOYSA-N 1-aminobutan-2-ol Chemical compound CCC(O)CN KODLUXHSIZOKTG-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- AXFVIWBTKYFOCY-UHFFFAOYSA-N 1-n,1-n,3-n,3-n-tetramethylbutane-1,3-diamine Chemical compound CN(C)C(C)CCN(C)C AXFVIWBTKYFOCY-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical group CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- GFIWSSUBVYLTRF-UHFFFAOYSA-N 2-[2-(2-hydroxyethylamino)ethylamino]ethanol Chemical compound OCCNCCNCCO GFIWSSUBVYLTRF-UHFFFAOYSA-N 0.000 description 1
- SLWIPPZWFZGHEU-UHFFFAOYSA-N 2-[4-(carboxymethyl)phenyl]acetic acid Chemical compound OC(=O)CC1=CC=C(CC(O)=O)C=C1 SLWIPPZWFZGHEU-UHFFFAOYSA-N 0.000 description 1
- OTKXMOYDLBLHMX-UHFFFAOYSA-N 2-chlorobenzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(Cl)C(C(O)=O)=C1 OTKXMOYDLBLHMX-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- ODJQKYXPKWQWNK-UHFFFAOYSA-N 3,3'-Thiobispropanoic acid Chemical compound OC(=O)CCSCCC(O)=O ODJQKYXPKWQWNK-UHFFFAOYSA-N 0.000 description 1
- FAXDZWQIWUSWJH-UHFFFAOYSA-N 3-methoxypropan-1-amine Chemical compound COCCCN FAXDZWQIWUSWJH-UHFFFAOYSA-N 0.000 description 1
- QVIAMKXOQGCYCV-UHFFFAOYSA-N 4-methylpentan-1-amine Chemical compound CC(C)CCCN QVIAMKXOQGCYCV-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- UXHXSKUOVZUHBJ-UHFFFAOYSA-N 9,10-Dibromo-stearic acid Chemical class CCCCCCCCC(Br)C(Br)CCCCCCCC(O)=O UXHXSKUOVZUHBJ-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- SAIKULLUBZKPDA-UHFFFAOYSA-N Bis(2-ethylhexyl) amine Chemical compound CCCCC(CC)CNCC(CC)CCCC SAIKULLUBZKPDA-UHFFFAOYSA-N 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- AKNUHUCEWALCOI-UHFFFAOYSA-N N-ethyldiethanolamine Chemical compound OCCN(CC)CCO AKNUHUCEWALCOI-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005263 alkylenediamine group Chemical group 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 150000003940 butylamines Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 159000000006 cesium salts Chemical class 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- OVHKECRARPYFQS-UHFFFAOYSA-N cyclohex-2-ene-1,1-dicarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCCC=C1 OVHKECRARPYFQS-UHFFFAOYSA-N 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- DIAIBWNEUYXDNL-UHFFFAOYSA-N n,n-dihexylhexan-1-amine Chemical compound CCCCCCN(CCCCCC)CCCCCC DIAIBWNEUYXDNL-UHFFFAOYSA-N 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- LUMVCLJFHCTMCV-UHFFFAOYSA-M potassium;hydroxide;hydrate Chemical compound O.[OH-].[K+] LUMVCLJFHCTMCV-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 1
- 235000019303 thiodipropionic acid Nutrition 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 229940086542 triethylamine Drugs 0.000 description 1
- RKBCYCFRFCNLTO-UHFFFAOYSA-N triisopropylamine Chemical compound CC(C)N(C(C)C)C(C)C RKBCYCFRFCNLTO-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M173/00—Lubricating compositions containing more than 10% water
- C10M173/02—Lubricating compositions containing more than 10% water not containing mineral or fatty oils
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/331—Polymers modified by chemical after-treatment with organic compounds containing oxygen
- C08G65/332—Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/334—Polymers modified by chemical after-treatment with organic compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/16—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M173/00—Lubricating compositions containing more than 10% water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/02—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/085—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/01—Emulsions, colloids, or micelles
Definitions
- This invention relates to carboxylic acid terminated diamides and the alkali metal, ammonium or organic amine salts thereof. More particularly this invention relates to carboxylic acid terminated diamides and the alkali metal, ammonium or organic amine salts thereof wherein the diamide is obtained by the reaction of an organic polycarboxylic acid and a polyoxalkylene diamine. In certain of its aspects, this invention relates to lubricants and metal working fluids, particularly aqueous metal working fluids.
- carboxylic acid terminated diamides have been described by G. F. D'Alelio (U.S. Pat. No. 3,483,105--Dec. 9, 1969) which were prepared from aliphatic or cycloaliphatic hydrocarbon diamines and then reacted with glycidyl acrylate to form radiation curable polymers.
- Carboxylic acid terminated diamides have also been described by J. Bernstein et al. (U.S. Pat. No. 3,541,141--Nov. 17, 1970), J. H. Ackerman (U.S. Pat. No. 3,542,861--Nov. 24, 1970 and U.S. Pat. No. 3,732,293-- May 8, 1973), E.
- Felder et al. (U.S. Pat. No. 3,557,197--Jan. 19, 1971 and U.S. Pat. No. 3,654,272--Apr. 4, 1972) and G. Buttermann (U.S. Pat. No. 3,939,204--Feb. 17, 1976) which are prepared by reacting the amino group of an amino substituted benzoic acid, optionally having iodine or other substituents on the benzene ring, with a dicarboxylic acid or the acid chloride or acid bromide thereof and which are useful as radiopaque agents.
- metal working fluids which may be aqueous or non-aqueous compositions, are used in such metal working methods as cutting, grinding, forming, rolling, forging, drilling, broaching and milling to increase tool life, increase production rates and achieve quality finished products.
- These metal working fluids must provide a lubricating and cooling action in the working of the metal stock or part. Such lubricating and cooling action tends to decrease tool wear, thereby increasing tool life, aids in providing high quality surface finish and assists in achieving accurately finished parts.
- the cooling and lubricating functions of metal working fluids increase metal removal rates and non chip forming metal processing rates. To achieve such benefits in metal working processes, the metal working fluids and the components thereof should exhibit stability under normal (e.g.
- metal working fluid should not cause or promote corrosion of the metal workpiece and/or tool.
- Many of these properties of stability and corrosion prevention of metal working fluids also apply to lubricants useful in non-metal working situations such as in the lubrication of traveling contacting metallic surfaces to retard or prevent wearing thereof and to reduce the forces associated with moving such metal surfaces relative to each other.
- lubricants and metal working fluids of the prior art have been found to lack or be seriously limited in one or more of these or other properties so as to restrict the usefulness of such lubricants and metal working fluids.
- the art constantly strives to overcome such deficiences and to fill the need for better lubricants and metal working fluids.
- a still further object of this invention is to provide metal working fluids comprising a carboxylic acid terminated diamide or the alkali metal, ammonium or organic amine salts thereof.
- a carboxylic acid group terminated polyoxyalkylene diamide and the alkali metal, ammonium and organic amine salts of said diamide and (2) metal working compositions comprising a carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salts of said diamide.
- a carboxylic acid terminated polyoxyalkylene diamide having at least one terminal carboxylic acid group per molecule or the alkali metal, ammonium or organic amine salt thereof and a metal working composition comprising said carboxylic acid terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof.
- This invention further provides a carboxylic acid terminated polyoxyalkylene diamide having at least 2 terminal carboxylic acid groups per molecule or the alkali metal, ammonium or organic amine salt thereof and a metal working composition comprising a carboxylic acid terminated polyoxyalkylene diamide having at least 2 terminal carboxylic acid groups per molecule or the alkali metal, ammonium or organic amine salt thereof.
- This invention also provides a carboxylic acid terminated polyoxyalkylene diamide having from 2 to 4 terminal carboxylic acid groups per molecule or the alkali metal, ammonium or organic amine salt thereof and a metal working composition comprising a carboxylic acid terminated polyoxyalkylene diamide having from 2 to 4 terminal carboxylic acid groups per molecule of the alkali metal, ammonium or organic amine salt thereof.
- a metal working composition comprising a carboxylic acid terminated polyoxyalkylene diamide having 2 terminal carboxylic acid groups per molecule or the alkali metal, ammonium or organic amine salt thereof.
- the carboxylic acid terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt according to this invention is useful as a lubricant for metals and plastics thereby to reduce or inhibit the deleterious effects of friction on such materials.
- Metal working compositions in accordance with this invention are useful in the working of metals by chip forming and non-chip forming metal working processes as are well known in the art.
- the metal working composition of this invention advantageously can be used in such chip forming and non-chip forming metal working process as milling, turning, drilling, grinding, deep drawing, drawing and ironing, reaming, tapping, punching and spinning.
- a still further and particularly significant advantage of the metal working compositions of this invention lies in the high stability of the compositions.
- the metal working compositions of this invention and particularly the carboxyl terminated diamide and salts thereof are resistant to break down especially upon storage for prolonged periods. This resistance to break down is present in the metal working compositions of this invention which have not been used in a metal working process but simply stored awaiting such use, as well as the metal working compositions of this invention which have been intermittently stored for short intervals, e.g. overnight, upon being used in metal working processes.
- the resistance to break down exhibited by the metal working compositions of this invention prolongs their effective and useful life in metal working processes.
- Such prolonged effective and useful life of the metal working compositions of this invention translates to economics in the metal working processes (e.g. less down time and lower metal working fluid consumption), because of their high precipitation and separation resistance.
- the carboxylic acid group terminated polyoxyalkylene diamide and the alkali metal, ammonium or organic amine salt thereof according to this invention exhibit high lubricity, are highly dispersible or soluble in aqueous media, can have corrosion inhibiting activity and show high stability in aqueous media.
- the carboxylic acid terminated polyoxyalkylene diamide and the alkali metal, ammonium and organic amine salts thereof, according to this invention, may be described by the following general formula ##STR1## wherein R is the divalent radical residue of am amine terminated polyoxyalkylene homopolymer or copolymer diamine absent the terminal amine groups, R 1 and R 2 are the same or different and are selected from aliphatic, aromatic, cycloaliphatic, aryl aliphatic, alkyl aromatic, thiodialiphatic, halogen substituted aliphatic or halogen substituted aromatic radicals having a free valence of a+n+1 and b+m+1 respectively, n is 0 to 3, m is 0 to 3, Z is organic amine cation, ammonium ion or alkali metal ion, a is 0 to 3, b is 0 to 3, a+n is 0 to 3, b+m is 0 to 3 and a+b+m+n
- the above general formula and the definitions pertaining thereto may be substituted for the described carboxylic acid group terminated diamide and alkali metal, ammonium or organic amine salt thereof of this invention.
- a metal working composition comprising a carboxylic acid group terminated diamide or the alkali metal, ammonium or organic amine salt thereof, preferably sodium or potassium salts or alkanol amine salts, in accordance with the above general formula.
- the R 1 and R 2 groups of the above general formula, for the carboxylic acid group terminated diamide and ammonium salts, organic amine salts or alkali metal salts thereof are the same or different hydrocarbon radicals selected from aliphatic, C 6 aromatic, cycloaliphatic, aryl aliphatic having 6 carbons in the aryl group, alkyl C 6 aromatic, halogen substituted aliphatic or halogen substituted C 6 aromatic hydrocarbon radicals and having a free valence of a+n+1 and b+m+1 respectively.
- the carboxylic acid group terminated polyoxyalkylene diamide or alkali metal, ammonium or organic amine salt thereof and (2) the metal working composition comprising said diamide or alkali metal, ammonium or organic amine salt thereof in accordance with this invention wherein the carboxylic acid group terminated diamide and the ammonium, organic amine or alkali metal salt thereof are according to the above general formula include wherein (1) R 1 and R 2 are the same or different thio di-aliphatic hydrocarbon radicals, (2) R 1 and R 2 are the same different monocyclic aromatic hydrocarbon radicals having 6 carbon atoms, optionally halogen substituted, (3) R 1 and R 2 are the same or different aryl aliphatic hydrocarbon radicals wherein the aryl group is a monocyclic aryl group having six carbon atoms, (4) R 1 and R 2 are the same or different alkyl aromatic hydrocarbon radicals wherein the aromatic group is a monocyclic aromatic group having six carbon atoms, (5) R 1
- the (1) organic amine salt of the carboxylic acid group terminated diamide and (2) metal working composition comprising the organic amine salt of the carboxylic acid group terminated diamide of this invention according to the above general formula are alkanol amine salts more preferably alkanol amine salts having 1 to 3 alkanol groups containing from 2 to 6 carbon atoms in each alkanol group.
- the alkali metal salts of the carboxylic acid group terminated diamide according to the above general formula are preferably the sodium or potassium salts.
- R preferably is the amine free residue of an amine terminated polyoxyalkylene homopolymer or copolymer diamine in which the oxyalkylene group of the homopolymer or copolymer diamine is a branched or unbranched oxyalkylene group having 2 to 4 carbon atoms, and is described by the formula ##STR2## where x is 0, 1 or 2, R 3 is hydrogen, methyl or ethyl and R 4 is hydrogen or methyl provided that only one of R 3 and R 4 can be methyl when x is 1 or 2 and when R 3 is ethyl x must be 0 and R 4 must be hydrogen.
- the amine group terminated polyoxyalkylene homopolymers and copolymers that may be used to prepare the carboxylic acid group terminated diamide of this invention include but are not limited to polyoxyethylene diamine, polyoxypropylene diamine, polyoxybutylene diamine, polyoxypropylene/polyoxyethylene/polyoxpropylene block copolymer diamine, polyoxybutylene/polyoxethylene/polyoxybutylene block copolymer diamine, polyoxybutylene/polyoxypropylene/polyoxybutylene block copolymer diamine and polyoxypropylene/polyoxybutylene/polyoxypropylene block copolymer diamine.
- the polyoxybutylene may contain 1,2, oxybutylene, 2,3, oxybutylene or 1,4 oxybutylene units.
- the copolymer may be a block or a random copolymer.
- the length of the polyoxyalkylene blocks, i.e. the number of oxyalkylene groups in the block, may vary widely.
- the terminal polyoxyalkylene blocks may be polyoxyethylene, polyoxypropylene or polyoxybutylene blocks.
- terminal polyoxyethylene, polyoxypropylene or polyoxybutylene blocks may contain as few as 2 oxyethylene units, 2 oxypropylene units or 2 oxybutylene units respectively or there may be present from 3 to 20 oxyethylene, oxypropylene or oxybutylene units.
- the molecular weight of the polyoxyalkylene diamine used to prepare the carboxylic acid group terminated diamide may vary over a wide range. Thus, there may be used polyoxyalkylene diamine whose average molecular weight may vary from about 150 to 4000, preferably from about 300 to 2000. It is also preferred to use liquid polyoxyalkylene diamines.
- R 1 and R 2 in accordance with the above general formula for the carboxylic acid terminated diamide and salt thereof of this invention are the carboxylic acid group free residue of a monocarboxylic, dicarboxylic, or tetracarboxylic acid or the corresponding acid halide or anhydride thereof.
- dicarboxylic acids and tricarboxylic acids usable in the preparation of the carboxylic acid group terminated diamide there includes, but not limited to succinic, isosuccinic, chlorosuccinic, glutaric, pyrotartaric, adipic, chloroadipic, pimelic, suberic, chlorosuberic, azelaic, sebacic, brassylic, octadecanediotic, thapsic, eicosanedioic, maleic, fumaric, citriconic, mesaconic, tricarballylic, aconitic, 1,2-benzene dicarboxylic, 1,3-benzene dicarboxylic, 1,4-benzene dicarboxylic, tetrachlorophthalic, tetrahydrophthalic, chlorendic, hemimellitic, trimellitic, trimesic, 2-chloro-1,3,5-benzene tricarbox
- the carboxylic acid product of a Diels Alder type reaction there may be cited the commercially available Westvaco® Diacid 1525 and Westvaco® Diacid 1550, both being available from the Westvaco Corporation.
- the dicarboxylic acid or tricarboxylic acid there may be used the corresponding anhydride or acid halide, where the acid admits of the formation of the anhydride and acid halide, e.g. acid chloride, in preparing the carboxylic acid terminated diamide.
- monocarboxylic acids include but are not limited to acetic, propionic, butyric, isobutyric, 2-ethyl hexanoic, octanoic, dodecanoic, eicosoic, behenic, acrylic, methacrylic, octadecanoic, oleic, linoleic, linolenic, ⁇ -eleostearic, benzoic, phenyl-ethanoic, phenyl-propionic, 4-methyl-benzoic, 2-methyl-benzoic, 2-ethyl-benzoic, 3-ethyl-benzoic, 4-ethyl-benzoic, 2,4-dimethyl-benzoic, 2,6-dimethyl-benzoic, 3,4-dimethyl-benzoic, 3,5-dimethyl-benzoic, 2-tertiary butyl-benzoic, 4-tertiary butyl-benzoic, 2-bromo-
- the organic amine salt of the carboxylic acid group terminated diamide and metal working composition comprising same according to this invention there may be used the alkyl primary amine, alkyl secondary amine, alkyl tertiary amine and preferably the monalkanol amine, dialkanol amine and trialkanol amine salt.
- Alkyl primary, secondary and tertiary amine salts of the carboxylic acid group terminated diamide, having from 2 to 8 carbon atoms in the alkyl group of the amine, may be used in the practice of this invention.
- the alkanol group contains from 2 to 8 carbon atoms and may be branched or unbranched, in the practice of this invention.
- Organic amines which may be used to form the amine salts of the carboxylic acid group terminated diamide and metal working composition comprising same according to this invention also include C 2 to C 6 alkylene diamines, poly(C 2 to C 4 oxyalkylene) diamines having a molecular weight of from about 200 to about 900, N--C 1 to C 8 alkyl (C 2 to C 6 alkylene) diamine, N,N'-di C 1 to C 8 alkyl(C 2 to C 6 alkylene) diamine, N,N,N'-tri C 1 to C 8 alkyl(C 2 to C 6 alkylene)diamine, N,N,N',N'-tetra C 1 to C 8 alkyl (C 2 to C 6 alkylene) diamine, N-alkanol (C 2 to C 6 alkylene) diamine, N,N'-dialkanol(C 2 to C 6 alkylene) diamine, N,N,N'-trialkanol (C
- alkyl amines which may be used to form the alkyl amine salts of the carboxylic acid group terminated diamide in the practice of this invention, include but are not limited to ethyl amine, butyl amine, propyl amine, isopropyl amine, secondary butyl amine, tertiary butyl amine, hexyl amine, isohexyl amine, n-octyl amine, 2-ethyl hexyl amine, diethyl amine, dipropyl amine, diisopropyl amine, dibutyl amine, ditertiary butyl amine, dihexyl amine, di n-octyl amine, di 2-ethyl hexyl amine, triethyl amine, tripropyl amine, triisopropyl amine, tributyl amine, tri secondary butyl amine, trihexyl amine,
- alkanol amines which may be used to make the alkanol amine salts of the carboxylic acid group terminated diamide in the practice of this invention, there include, but not limited to, monoethanol amine, monobutanol amine, monopropanol amine, monoisopropanol amine, monoisobutanol amine, monohexanol amine, monooctanol amine, diethanol amine, dipropanol amine, diisopropanol amine, dibutanol amine, dihexanol amine, diisohexanol amine, dioctanol amine, triethanol amine, tripropanol amine, triisopropanol amine, tributanol amine, triisobutanol amine, trihexanol amine, triisohexanol amine, trioctanol amine triisooctanol amine.
- Polyoxyalkylene diamines usable in the salts according to the practice of this invention include for example polyoxyethylene diamines and polyoxypropylene diamines having molecular weights of from about 200 to about 900.
- amines such as methoxypropylamine, dimethyl aminopropyl amine, 1,3-propylene diamine, ethylene diamine, 3(B 2-ethoxyethoxy)propyl amine, N,N,N',N'-tetramethyl-1,3-butane diamine, mono ethanol ethylene diamine, N,N'-diethanol ethylene diamine, N,N,N'-tri hydroxymethyl ethylene diamine, N,N-diethyl ethanol amine and N-ethyl diethanol amine.
- the carboxylic acid group terminated diamide according to the previously described general formula may be prepared in accordance with conventional methods well known in the art such as, for example, by reacting 2 moles of a dicarboxylic acid or tricarboxylic acid or mixtures of dicarboxylic acids and tricarboxylic acids with 1 mole of a polyoxyalkylene homopolymer or copolymer diamine. Alternatively there may be reacted one mole of a monocarboxylic acid and one mole of a dicarboxylic or tricarboxylic acid with one mole of a polyoxyalkylene diamine. Where desired a slight excess of the total carboxylic acid (e.g.
- the organic amine salt of the carboxylic acid group terminated diamide may be prepared by methods well known in the art such as, for example, by simply adding the organic amine to the carboxylic acid group terminated diamide in the presence of an aqueous medium or conversely adding the carboxylic acid group terminated diamide to the organic amine in the presence of an aqueous medium. In an alternative method, the aqueous medium may be omitted.
- alkali metal salts of the carboxylic acid group terminated diamide of this invention there are included the lithium, sodium, potassium, rubidium and cesium salts.
- the lithium, sodium and potassium, salts are, however, preferred.
- Formation of the alkali metal salts of the carboxylic acid group terminated diamide may be accomplished by methods well known in the art such as, for example, by adding the carboxylic acid group terminated diamide to the hydroxide of the alkali metal in the presence of an aqueous medium.
- a metal working composition comprising a carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt of said diamide.
- a metal working composition comprising a carboxylic acid group terminated polyoxyalkylene diamide according to the general formula herein before described.
- the metal working composition of this invention there may be a metal working composition comprising water and the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal (preferably sodium or potassium) or organic amine (preferably alkanol amine) salt of said diamide.
- a metal working composition comprising an oil and the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt of said diamide.
- a further embodiment of the metal working composition of this invention comprises water, oil and the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt of said diamide.
- the carboxylic acid group terminated polyoxyalkylene diamide and the alkali metal, ammonium or organic amine salts of said diamide of the above embodiments of the metal working compositions of this invention is the carboxylic acid group terminated polyoxyalkylene diamide and alkali metal ammonium or organic amine salts of said diamide as previously described herein.
- the oil there may be used for example synthetic oils, petroleum oils, vegetable oils, animal oils or soluble oils well known in the art.
- the carboxylic acid group terminated polyoxyalkylene diamide or the ammonium, alkali metal or organic amine salt thereof described herein, particularly the liquid members of said diamides and salts, may, in the absence of oil and/or water, be used as a metal working composition in a metal working method such as, for example, tapping.
- metal working composition of this invention there may be added to the metal working composition of this invention, in conventional amounts well known in the art, various additives such as corrosion inhibitors, biocides, fungicides, bacteriocides, surfactants, extreme pressure agents and antioxidants well known in the art.
- various additives such as corrosion inhibitors, biocides, fungicides, bacteriocides, surfactants, extreme pressure agents and antioxidants well known in the art.
- oil or water may be added to the carboxylic acid group terminated polyoxyalkylene diamide or the ammonium, alkali metal or organic amine salt thereof
- the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof may be added to water or oil
- organic amine, ammonium hydroxide or alkali metal hydroxide may be added to water followed by the carboxylic acid group terminated diamide
- the carboxylic acid group terminated polyoxyalkylene diamide may be added to water followed by the addition or organic amine, ammonium hydroxide or alkali metal hydroxide.
- the concentration of the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof may vary over a wide range.
- the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof may constitute 100% by weight of the metal working composition or, for example, may be present in the metal working composition in an amount of from 0.01% to 99%, preferably 0.01% to 25%, more preferably 0.03% to 5% by weight based on the total weight of the metal working composition.
- Jeffamine® ED 600 is a diamine having an average molecular weight of about 600 available from the Jefferson Chemical Company, Inc. and being a primary amine terminated propylene oxide capped polyoxyethylene.
- Jeffamine® ED900 is a diamine having an average molecular weight of about 900 available from the Jefferson Chemical Company, Inc. and being a primary amine terminated propylene oxide capped polyoxyethylene.
- Jeffamine® ED 2001 is a diamine having an average molecular weight of about 2000 available from the Jefferson Chemical Company, Inc. and being a primary amine terminated propylene oxide capped polyoxyethylene.
- Dow® XA 1332 is a diamine obtained from the Dow Chemical Company and is a primary amine terminated propylene oxide capped 400 molecular weight polyoxyethylene.
- Dow® XA 1333 is a diamine obtained from the Dow Chemical Company and is a primary amine terminated propylene oxide capped 600 molecular weight polyoxyethylene.
- Azelaic acid and Jeffamine® D400 at a mole ratio of 2:1 were reacted together in a toluene medium, under nitrogen, at a temperature in the range of 110° to 187° C. and the water of reaction continuously removed. After completion of the reaction a viscous liquid carboxylic acid group terminated diamide product was isolated from the toluene.
- Example 2 In a manner essentially the same as in Example 1, the following acids and diamines were reacted at a 2:1 mole ratio of acid to diamine to produce a carboxylic acid terminated diamide product in accordance with this invention.
- a 500 gram amount of each of the following identified metal working formulations was diluted with water to 3000 grams and then evaluated for lubricity according to the following procedure.
- a wedge-shaped high-speed steel tool is forced against the end of a rotating (88 surface feet per minute) SAE 1020 steel tube of 1/4 inch wall thickness.
- the feed force of the tool is sufficient to cut a V-groove in the tubing wall, and the chips flow out of the cutting area in two pieces (one piece from each face of the wedge-shaped tool).
- the forces on the tool as a result of workpiece rotation and of tool feed are measured by a tool post dynamo-meter connected to a Sanborn recorder. Any welding of chips to tool build-up is reflected in the interruption of chip-flow (visual) and in increased resistance to workpiece rotation.
- the cutting test is performed with the tool-chip interface flooded throughout the operation with circulating test fluid. Tool and workpiece are in constant dynamic contact during this time, and the test is not begun until full contact is achieved all along each cutting edge. The duration of the test is three minutes.
- the alkanol amine more especially the trialkanol amine salt of the carboxylic acid group terminated polyoxyalkylene diamine of this invention having two terminal carboxylic acid groups, wherein said diamide is the reaction product of an aliphatic dicarboxylic acid or a polymerized fatty acid having two carboxylic acid groups per molecule with a poly(C 2 to C 3 oxyalkylene) homopolymer or copolymer diamine, is preferred.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Lubricants (AREA)
Abstract
Carboxylic acid terminated diamides and alkali metal, ammonium or amine salts thereof are provided which are derived from the reaction of organic polycarboxylic acids and polyoxyalkylene diamines. The diamides have lubricating properties and are especially useful in aqueous metal working fluids.
Description
This invention relates to carboxylic acid terminated diamides and the alkali metal, ammonium or organic amine salts thereof. More particularly this invention relates to carboxylic acid terminated diamides and the alkali metal, ammonium or organic amine salts thereof wherein the diamide is obtained by the reaction of an organic polycarboxylic acid and a polyoxalkylene diamine. In certain of its aspects, this invention relates to lubricants and metal working fluids, particularly aqueous metal working fluids.
In the prior art, carboxylic acid terminated diamides have been described by G. F. D'Alelio (U.S. Pat. No. 3,483,105--Dec. 9, 1969) which were prepared from aliphatic or cycloaliphatic hydrocarbon diamines and then reacted with glycidyl acrylate to form radiation curable polymers. Carboxylic acid terminated diamides have also been described by J. Bernstein et al. (U.S. Pat. No. 3,541,141--Nov. 17, 1970), J. H. Ackerman (U.S. Pat. No. 3,542,861--Nov. 24, 1970 and U.S. Pat. No. 3,732,293--May 8, 1973), E. Felder et al. (U.S. Pat. No. 3,557,197--Jan. 19, 1971 and U.S. Pat. No. 3,654,272--Apr. 4, 1972) and G. Buttermann (U.S. Pat. No. 3,939,204--Feb. 17, 1976) which are prepared by reacting the amino group of an amino substituted benzoic acid, optionally having iodine or other substituents on the benzene ring, with a dicarboxylic acid or the acid chloride or acid bromide thereof and which are useful as radiopaque agents.
Customarily, metal working fluids, which may be aqueous or non-aqueous compositions, are used in such metal working methods as cutting, grinding, forming, rolling, forging, drilling, broaching and milling to increase tool life, increase production rates and achieve quality finished products. These metal working fluids, among other things, must provide a lubricating and cooling action in the working of the metal stock or part. Such lubricating and cooling action tends to decrease tool wear, thereby increasing tool life, aids in providing high quality surface finish and assists in achieving accurately finished parts. Additionally, the cooling and lubricating functions of metal working fluids increase metal removal rates and non chip forming metal processing rates. To achieve such benefits in metal working processes, the metal working fluids and the components thereof should exhibit stability under normal (e.g. room temperature storage) conditions and the physical, chemical and thermal conditions encountered in metal working processes. Additionally, the metal working fluid should not cause or promote corrosion of the metal workpiece and/or tool. Many of these properties of stability and corrosion prevention of metal working fluids also apply to lubricants useful in non-metal working situations such as in the lubrication of traveling contacting metallic surfaces to retard or prevent wearing thereof and to reduce the forces associated with moving such metal surfaces relative to each other. However, lubricants and metal working fluids of the prior art have been found to lack or be seriously limited in one or more of these or other properties so as to restrict the usefulness of such lubricants and metal working fluids. Thus, the art constantly strives to overcome such deficiences and to fill the need for better lubricants and metal working fluids.
It is, therefore, an object of this invention to provide a novel carboxylic acid terminated diamide and the alkali metal, ammonium or organic amine salts thereof.
It is a further object of this invention to provide a stable effective lubricant.
A still further object of this invention is to provide metal working fluids comprising a carboxylic acid terminated diamide or the alkali metal, ammonium or organic amine salts thereof.
These objects and others will become apparent from the following more detailed description of this invention.
There is provided in accordance with this invention (1) a carboxylic acid group terminated polyoxyalkylene diamide and the alkali metal, ammonium and organic amine salts of said diamide and (2) metal working compositions comprising a carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salts of said diamide.
There has now been found, in accordance with this invention novel carboxylic acid group terminated polyoxyalkylene diamides and the alkali metal, ammonium and organic amine salts thereof. Further, there has been discovered useful, effective metal working compositions comprising a compound or mixture of compounds selected from the group consisting of (1) carboxylic acid group terminated polyoxyalkylene diamide, (2) the alkali metal salt of said diamide, (3) ammonium salt of said diamide and (4) the organic amine salt of said diamide. In accordance with this invention there is now provided a carboxylic acid terminated polyoxyalkylene diamide having at least one terminal carboxylic acid group per molecule or the alkali metal, ammonium or organic amine salt thereof and a metal working composition comprising said carboxylic acid terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof. This invention further provides a carboxylic acid terminated polyoxyalkylene diamide having at least 2 terminal carboxylic acid groups per molecule or the alkali metal, ammonium or organic amine salt thereof and a metal working composition comprising a carboxylic acid terminated polyoxyalkylene diamide having at least 2 terminal carboxylic acid groups per molecule or the alkali metal, ammonium or organic amine salt thereof. This invention also provides a carboxylic acid terminated polyoxyalkylene diamide having from 2 to 4 terminal carboxylic acid groups per molecule or the alkali metal, ammonium or organic amine salt thereof and a metal working composition comprising a carboxylic acid terminated polyoxyalkylene diamide having from 2 to 4 terminal carboxylic acid groups per molecule of the alkali metal, ammonium or organic amine salt thereof. Additionally, in accordance with this invention, there is provided a carboxylic acid terminated polyoxyalkylene diamide having 2 terminal carboxylic acid groups per molecule or the alkali metal, ammonium or organic amine salt thereof and a metal working composition comprising a carboxylic acid terminated polyoxyalkylene diamide having 2 terminal carboxylic acid groups per molecule or the alkali metal, ammonium or organic amine salt thereof. Mixtures of carboxylic acid terminated polyoxyalkylene diamides or the alkali metal, or ammonium or organic amine salts thereof according to this invention may be used in the metal working compositions according to this invention. There may be used in the metal working compositions according to this invention a mixture of (1) the carboxylic acid terminated polyoxyalkylene diamide and (2) the alkali metal, ammonium or organic amine salt thereof according to this invention.
The carboxylic acid terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt according to this invention is useful as a lubricant for metals and plastics thereby to reduce or inhibit the deleterious effects of friction on such materials. Metal working compositions in accordance with this invention are useful in the working of metals by chip forming and non-chip forming metal working processes as are well known in the art. The metal working composition of this invention advantageously can be used in such chip forming and non-chip forming metal working process as milling, turning, drilling, grinding, deep drawing, drawing and ironing, reaming, tapping, punching and spinning. Increased tool ife, lower working forces, reduced heat build up and improved surface finish are a few of the advantages realized by the use of the metal working compositions of this invention in metal working processes. A still further and particularly significant advantage of the metal working compositions of this invention lies in the high stability of the compositions. The metal working compositions of this invention and particularly the carboxyl terminated diamide and salts thereof are resistant to break down especially upon storage for prolonged periods. This resistance to break down is present in the metal working compositions of this invention which have not been used in a metal working process but simply stored awaiting such use, as well as the metal working compositions of this invention which have been intermittently stored for short intervals, e.g. overnight, upon being used in metal working processes. The resistance to break down exhibited by the metal working compositions of this invention, particularly the carboxyl terminated diamide and salts thereof, prolongs their effective and useful life in metal working processes. Such prolonged effective and useful life of the metal working compositions of this invention translates to economics in the metal working processes (e.g. less down time and lower metal working fluid consumption), because of their high precipitation and separation resistance.
Advantageously the carboxylic acid group terminated polyoxyalkylene diamide and the alkali metal, ammonium or organic amine salt thereof according to this invention exhibit high lubricity, are highly dispersible or soluble in aqueous media, can have corrosion inhibiting activity and show high stability in aqueous media.
In connection with the uses of the carboxylic acid terminated polyoxyalkylene diamide or alkali metal or ammonium or organic amine salt thereof according to this invention and the metal working composition of this invention, it has been found that the carboxylic acid terminated polyoxyalkylene diamide or alkali metal, ammonium or organic amine salt thereof and the metal working composition importantly and advantageously exhibit high lubricity, high stability and corrosion inhibiting action.
The carboxylic acid terminated polyoxyalkylene diamide and the alkali metal, ammonium and organic amine salts thereof, according to this invention, may be described by the following general formula ##STR1## wherein R is the divalent radical residue of am amine terminated polyoxyalkylene homopolymer or copolymer diamine absent the terminal amine groups, R1 and R2 are the same or different and are selected from aliphatic, aromatic, cycloaliphatic, aryl aliphatic, alkyl aromatic, thiodialiphatic, halogen substituted aliphatic or halogen substituted aromatic radicals having a free valence of a+n+1 and b+m+1 respectively, n is 0 to 3, m is 0 to 3, Z is organic amine cation, ammonium ion or alkali metal ion, a is 0 to 3, b is 0 to 3, a+n is 0 to 3, b+m is 0 to 3 and a+b+m+n is 1 to 6. In a particular aspect of this invention the above general formula and the definitions pertaining thereto may be substituted for the described carboxylic acid group terminated diamide and alkali metal, ammonium or organic amine salt thereof of this invention. In another particular aspect according to this invention, there is provided a metal working composition comprising a carboxylic acid group terminated diamide or the alkali metal, ammonium or organic amine salt thereof, preferably sodium or potassium salts or alkanol amine salts, in accordance with the above general formula.
As a preferred embodiment of (1) the carboxylic acid group terminated polyoxyalkylene diamide or alkali metal, ammonium or organic amine salts thereof and (2) the metal working composition comprising said diamide or alkali metal, ammonium or organic amine salts thereof in accordance with this invention, the R1 and R2 groups of the above general formula, for the carboxylic acid group terminated diamide and ammonium salts, organic amine salts or alkali metal salts thereof, are the same or different hydrocarbon radicals selected from aliphatic, C6 aromatic, cycloaliphatic, aryl aliphatic having 6 carbons in the aryl group, alkyl C6 aromatic, halogen substituted aliphatic or halogen substituted C6 aromatic hydrocarbon radicals and having a free valence of a+n+1 and b+m+1 respectively. In another preferred embodiment of (1) the carboxylic acid group terminated polyoxyalkylene diamide or alkali metal, ammonium or organic amine salts thereof and (2) the metal working composition comprising said diamide or alkali metal, ammonium or organic amine salts thereof in accordance with this invention, wherein the carboxylic acid terminated diamide and the ammonium salts, organic salts or alkali metal salts thereof are according to the above general formula, R1 and R2 are the same or different saturated or unsaturated, branched or unbranched aliphatic hydrocarbon radicals having from 2 to 20 carbon atoms. Among other preferred embodiments of (1) the carboxylic acid group terminated polyoxyalkylene diamide or alkali metal, ammonium or organic amine salt thereof and (2) the metal working composition comprising said diamide or alkali metal, ammonium or organic amine salt thereof in accordance with this invention wherein the carboxylic acid group terminated diamide and the ammonium, organic amine or alkali metal salt thereof are according to the above general formula include wherein (1) R1 and R2 are the same or different thio di-aliphatic hydrocarbon radicals, (2) R1 and R2 are the same different monocyclic aromatic hydrocarbon radicals having 6 carbon atoms, optionally halogen substituted, (3) R1 and R2 are the same or different aryl aliphatic hydrocarbon radicals wherein the aryl group is a monocyclic aryl group having six carbon atoms, (4) R1 and R2 are the same or different alkyl aromatic hydrocarbon radicals wherein the aromatic group is a monocyclic aromatic group having six carbon atoms, (5) R1 and R2 are cycloaliphatic hydrocarbon radicals having six carbon atoms in the cycloaliphatic ring, and (6) n is 1 to 3, or a is 1 to 3, m is 1 to 3 or b is 1 to 3 and a+b+m+n is 2 to 6. Preferably the (1) organic amine salt of the carboxylic acid group terminated diamide and (2) metal working composition comprising the organic amine salt of the carboxylic acid group terminated diamide of this invention according to the above general formula are alkanol amine salts more preferably alkanol amine salts having 1 to 3 alkanol groups containing from 2 to 6 carbon atoms in each alkanol group. The alkali metal salts of the carboxylic acid group terminated diamide according to the above general formula are preferably the sodium or potassium salts.
In accordance with the above general formula for the carboxylic acid group terminated diamide of this invention, as well as the ammonium salts, organic amine salts or alkali metal salts of said diamide, R preferably is the amine free residue of an amine terminated polyoxyalkylene homopolymer or copolymer diamine in which the oxyalkylene group of the homopolymer or copolymer diamine is a branched or unbranched oxyalkylene group having 2 to 4 carbon atoms, and is described by the formula ##STR2## where x is 0, 1 or 2, R3 is hydrogen, methyl or ethyl and R4 is hydrogen or methyl provided that only one of R3 and R4 can be methyl when x is 1 or 2 and when R3 is ethyl x must be 0 and R4 must be hydrogen.
The amine group terminated polyoxyalkylene homopolymers and copolymers that may be used to prepare the carboxylic acid group terminated diamide of this invention, for example include but are not limited to polyoxyethylene diamine, polyoxypropylene diamine, polyoxybutylene diamine, polyoxypropylene/polyoxyethylene/polyoxpropylene block copolymer diamine, polyoxybutylene/polyoxethylene/polyoxybutylene block copolymer diamine, polyoxybutylene/polyoxypropylene/polyoxybutylene block copolymer diamine and polyoxypropylene/polyoxybutylene/polyoxypropylene block copolymer diamine. The polyoxybutylene may contain 1,2, oxybutylene, 2,3, oxybutylene or 1,4 oxybutylene units. In respect to the polyoxyalkylene copolymer diamine the copolymer may be a block or a random copolymer. The length of the polyoxyalkylene blocks, i.e. the number of oxyalkylene groups in the block, may vary widely. Thus, in accordance with this invention, the terminal polyoxyalkylene blocks may be polyoxyethylene, polyoxypropylene or polyoxybutylene blocks. These terminal polyoxyethylene, polyoxypropylene or polyoxybutylene blocks may contain as few as 2 oxyethylene units, 2 oxypropylene units or 2 oxybutylene units respectively or there may be present from 3 to 20 oxyethylene, oxypropylene or oxybutylene units. The molecular weight of the polyoxyalkylene diamine used to prepare the carboxylic acid group terminated diamide may vary over a wide range. Thus, there may be used polyoxyalkylene diamine whose average molecular weight may vary from about 150 to 4000, preferably from about 300 to 2000. It is also preferred to use liquid polyoxyalkylene diamines.
R1 and R2 in accordance with the above general formula for the carboxylic acid terminated diamide and salt thereof of this invention are the carboxylic acid group free residue of a monocarboxylic, dicarboxylic, or tetracarboxylic acid or the corresponding acid halide or anhydride thereof. As examples of dicarboxylic acids and tricarboxylic acids usable in the preparation of the carboxylic acid group terminated diamide there includes, but not limited to succinic, isosuccinic, chlorosuccinic, glutaric, pyrotartaric, adipic, chloroadipic, pimelic, suberic, chlorosuberic, azelaic, sebacic, brassylic, octadecanediotic, thapsic, eicosanedioic, maleic, fumaric, citriconic, mesaconic, tricarballylic, aconitic, 1,2-benzene dicarboxylic, 1,3-benzene dicarboxylic, 1,4-benzene dicarboxylic, tetrachlorophthalic, tetrahydrophthalic, chlorendic, hemimellitic, trimellitic, trimesic, 2-chloro-1,3,5-benzene tricarboxylic, hexahydrophthalic, hexahydroisophthalic, hexahydroterephthalic, phenyl succinic, 2-phenyl pentanedioic, thiodipropionic acids, carboxylic acid products of the dimerization and polymerization of C8 to C26 monomeric unsaturated fatty acids such as described in U.S. Pat. No. 2,482,760 (C. C. Goebel--Sept. 27, 1949), U.S. Pat. No. 2,482,761 (C. C. Goebel--Sept. 27, 1949), U.S. Pat. No. 2,731,481 (S. A. Harrison--Jan. 17, 1956), U.S. Pat. No. 2,793,219 (F. O. Barrett et al.--May 21, 1957), U.S. Pat. No. 2,964,545 (S. A. Harrison--Dec. 13, 1960), U.S. Pat. No. 2,978,468 (B. L. Hampton--Apr. 4, 1961), U.S. Pat. No. 3,157,681 (E. M. Fisher--Nov. 17, 1964) and U.S. Pat. No. 3,256,304 (C. M. Fisher et al.--June 1966), the carboxylic acid products of the Diels Alder type reaction of an unsaturated fatty acid with α,β-ethylenically unsaturated carboxy acid (e.g. arcylic, methacrylic, maleic or fumaric acids) such as are taught in U.S. Pat. No. 2,444,328 (C. M. Blair, Jr.--June 29, 1948), the disclosure of which is incorporated herein by reference, and the Diels Alder adduct of a three to four carbon atom α,β-ethylenically unsaturated alkyl monocarboxylic or dicarboxylic acid (e.g. acrylic and fumaric acids respectively) and pimeric or abietic acids. Examples of the dimerized and polymerized C8 to C26 monomeric unsaturated fatty acids include but are not limited to such products as Empol® 1014 Dimer Acid, Empol® 1016 Dimer Acid and Empol® 1040 Trimer Acid each available from Emery Industries, Inc. As examples of the carboxylic acid product of a Diels Alder type reaction there may be cited the commercially available Westvaco® Diacid 1525 and Westvaco® Diacid 1550, both being available from the Westvaco Corporation. In place of the dicarboxylic acid or tricarboxylic acid there may be used the corresponding anhydride or acid halide, where the acid admits of the formation of the anhydride and acid halide, e.g. acid chloride, in preparing the carboxylic acid terminated diamide. Where there is used the corresponding acid halide of the dicarboxylic and tricarboxylic acid to prepare the carboxylic acid group terminated diamide it is, of course, necessary to convert the terminal acid halide groups of the acid halide terminated diamide product, resulting from the reaction of the acid halide with the amine group terminated polyoxyalkylene homopolymer or copolymer diamine to the corresponding carboxylic acid groups. Such conversion of the terminal acid halide groups to carboxylic acid groups may be accompanied by methods well known in the art. Examples of monocarboxylic acids include but are not limited to acetic, propionic, butyric, isobutyric, 2-ethyl hexanoic, octanoic, dodecanoic, eicosoic, behenic, acrylic, methacrylic, octadecanoic, oleic, linoleic, linolenic, β-eleostearic, benzoic, phenyl-ethanoic, phenyl-propionic, 4-methyl-benzoic, 2-methyl-benzoic, 2-ethyl-benzoic, 3-ethyl-benzoic, 4-ethyl-benzoic, 2,4-dimethyl-benzoic, 2,6-dimethyl-benzoic, 3,4-dimethyl-benzoic, 3,5-dimethyl-benzoic, 2-tertiary butyl-benzoic, 4-tertiary butyl-benzoic, 2-bromo-benzoic, 3-bromo-benzoic, 4-bromo-benzoic, 2-chloro-benzoic, 4-chloro-benzoic, 2-bromo-3-chloro-benzoic, 2,6-dibromo-benzoic, 2,3-dibromo-benzoic, 2,3-dichloro-benzoic, 2,6-dichlorobenzoic, 4-fluoro benzoic, 4-iodo benzoic, hexahydrobenzoic, 2-chloro-propenoic, 3-chloro-propenoic, 2,3-dichloro-propenoic, 3-chloro-propanoic, 3-bromo-propanoic, 2,3-dichloro-propanoic, 2-bromo-octanoic, 8-fluoro octanoic and 9,10-dibromo-octadecanoic acids.
As the organic amine salt of the carboxylic acid group terminated diamide and metal working composition comprising same according to this invention there may be used the alkyl primary amine, alkyl secondary amine, alkyl tertiary amine and preferably the monalkanol amine, dialkanol amine and trialkanol amine salt. Alkyl primary, secondary and tertiary amine salts of the carboxylic acid group terminated diamide, having from 2 to 8 carbon atoms in the alkyl group of the amine, may be used in the practice of this invention. It is, however, preferred to use the monoalkanol amine, dialkanol amine and trialkanol amine salts of the carboxylic acid group terminated diamide, wherein the alkanol group contains from 2 to 8 carbon atoms and may be branched or unbranched, in the practice of this invention. The use of the monoalkanol amine and trialkanol amine salts of the carboxylic acid group terminated diamide, wherein the alkanol group has from 2 to 8 carbon atoms, is still more preferred in the practice of this invention. Organic amines which may be used to form the amine salts of the carboxylic acid group terminated diamide and metal working composition comprising same according to this invention also include C2 to C6 alkylene diamines, poly(C2 to C4 oxyalkylene) diamines having a molecular weight of from about 200 to about 900, N--C1 to C8 alkyl (C2 to C6 alkylene) diamine, N,N'-di C1 to C8 alkyl(C2 to C6 alkylene) diamine, N,N,N'-tri C1 to C8 alkyl(C2 to C6 alkylene)diamine, N,N,N',N'-tetra C1 to C8 alkyl (C2 to C6 alkylene) diamine, N-alkanol (C2 to C6 alkylene) diamine, N,N'-dialkanol(C2 to C6 alkylene) diamine, N,N,N'-trialkanol (C2 to C6 alkylene) diamine, N,N,N',N'-tetraalkanol (C2 to C6 alkylene) diamine and CH3 CH2 O (CH2 CH2 O)n CH2 CH2 CH2 NH2 wherein n is 1 or 2. Alkyl alkanol amines having from 2 to 8 carbon atoms in the alkyl and alkanol groups may also be used as the organic amine in the practice of this invention.
Examples of alkyl amines, which may be used to form the alkyl amine salts of the carboxylic acid group terminated diamide in the practice of this invention, include but are not limited to ethyl amine, butyl amine, propyl amine, isopropyl amine, secondary butyl amine, tertiary butyl amine, hexyl amine, isohexyl amine, n-octyl amine, 2-ethyl hexyl amine, diethyl amine, dipropyl amine, diisopropyl amine, dibutyl amine, ditertiary butyl amine, dihexyl amine, di n-octyl amine, di 2-ethyl hexyl amine, triethyl amine, tripropyl amine, triisopropyl amine, tributyl amine, tri secondary butyl amine, trihexyl amine, tri n-octyl amine and tri 2-ethyl hexyl amine. As examples of alkanol amines, which may be used to make the alkanol amine salts of the carboxylic acid group terminated diamide in the practice of this invention, there include, but not limited to, monoethanol amine, monobutanol amine, monopropanol amine, monoisopropanol amine, monoisobutanol amine, monohexanol amine, monooctanol amine, diethanol amine, dipropanol amine, diisopropanol amine, dibutanol amine, dihexanol amine, diisohexanol amine, dioctanol amine, triethanol amine, tripropanol amine, triisopropanol amine, tributanol amine, triisobutanol amine, trihexanol amine, triisohexanol amine, trioctanol amine triisooctanol amine.
Polyoxyalkylene diamines usable in the salts according to the practice of this invention include for example polyoxyethylene diamines and polyoxypropylene diamines having molecular weights of from about 200 to about 900. There may also be used in the practice of this invention amines such as methoxypropylamine, dimethyl aminopropyl amine, 1,3-propylene diamine, ethylene diamine, 3(B 2-ethoxyethoxy)propyl amine, N,N,N',N'-tetramethyl-1,3-butane diamine, mono ethanol ethylene diamine, N,N'-diethanol ethylene diamine, N,N,N'-tri hydroxymethyl ethylene diamine, N,N-diethyl ethanol amine and N-ethyl diethanol amine.
In the practice of this invention the carboxylic acid group terminated diamide according to the previously described general formula may be prepared in accordance with conventional methods well known in the art such as, for example, by reacting 2 moles of a dicarboxylic acid or tricarboxylic acid or mixtures of dicarboxylic acids and tricarboxylic acids with 1 mole of a polyoxyalkylene homopolymer or copolymer diamine. Alternatively there may be reacted one mole of a monocarboxylic acid and one mole of a dicarboxylic or tricarboxylic acid with one mole of a polyoxyalkylene diamine. Where desired a slight excess of the total carboxylic acid (e.g. 2.05 to 2.1 moles of the carboxylic acid per mole of polyoxyalkylene diamine may be combined with the polyoxyalkaylene diamine to form the carboxylic acid terminated diamide of this invention. The reaction may be carried out at reduced or elevated temperatures, optionally in the presence of a solvent medium and/or an inert atmosphere. Sub or super atmospheric pressure may be used. In preparing the carboxylic acid terminated diamide of this invention, it is well known that there may be substituted for the monocarboxylic acid the corresponding acid halide, for the dicarboxylic acid the corresponding acid halide or anhydride and for the tricarboxylic acid the corresponding acid halide. When the acid halide is employed and the resulting diamide has terminal acid halide groups such acid halide groups may be converted to carboxylic acid groups by methods well known in the art.
The organic amine salt of the carboxylic acid group terminated diamide may be prepared by methods well known in the art such as, for example, by simply adding the organic amine to the carboxylic acid group terminated diamide in the presence of an aqueous medium or conversely adding the carboxylic acid group terminated diamide to the organic amine in the presence of an aqueous medium. In an alternative method, the aqueous medium may be omitted.
As alkali metal salts of the carboxylic acid group terminated diamide of this invention there are included the lithium, sodium, potassium, rubidium and cesium salts. The lithium, sodium and potassium, salts are, however, preferred. Formation of the alkali metal salts of the carboxylic acid group terminated diamide may be accomplished by methods well known in the art such as, for example, by adding the carboxylic acid group terminated diamide to the hydroxide of the alkali metal in the presence of an aqueous medium.
In accordance with this invention there is provided a metal working composition comprising a carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt of said diamide. Further, there is provided in accordance with this invention a metal working composition comprising a carboxylic acid group terminated polyoxyalkylene diamide according to the general formula herein before described. As one embodiment of the metal working composition of this invention there may be a metal working composition comprising water and the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal (preferably sodium or potassium) or organic amine (preferably alkanol amine) salt of said diamide. In another embodiment of the metal working composition of this invention, there is provided a metal working composition comprising an oil and the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt of said diamide. A further embodiment of the metal working composition of this invention comprises water, oil and the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt of said diamide. The carboxylic acid group terminated polyoxyalkylene diamide and the alkali metal, ammonium or organic amine salts of said diamide of the above embodiments of the metal working compositions of this invention is the carboxylic acid group terminated polyoxyalkylene diamide and alkali metal ammonium or organic amine salts of said diamide as previously described herein. As the oil there may be used for example synthetic oils, petroleum oils, vegetable oils, animal oils or soluble oils well known in the art. The carboxylic acid group terminated polyoxyalkylene diamide or the ammonium, alkali metal or organic amine salt thereof described herein, particularly the liquid members of said diamides and salts, may, in the absence of oil and/or water, be used as a metal working composition in a metal working method such as, for example, tapping.
There may be added to the metal working composition of this invention, in conventional amounts well known in the art, various additives such as corrosion inhibitors, biocides, fungicides, bacteriocides, surfactants, extreme pressure agents and antioxidants well known in the art.
Conventional methods and apparatus well known in the art may be used to make the metal working composition of this invention. Thus, for example, in accordance with such methods and apparatus (1) oil or water may be added to the carboxylic acid group terminated polyoxyalkylene diamide or the ammonium, alkali metal or organic amine salt thereof, (2) the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof may be added to water or oil, (3) organic amine, ammonium hydroxide or alkali metal hydroxide may be added to water followed by the carboxylic acid group terminated diamide or (4) the carboxylic acid group terminated polyoxyalkylene diamide may be added to water followed by the addition or organic amine, ammonium hydroxide or alkali metal hydroxide.
In the metal working composition according to this invention the concentration of the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof may vary over a wide range. Thus, for example, the carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof may constitute 100% by weight of the metal working composition or, for example, may be present in the metal working composition in an amount of from 0.01% to 99%, preferably 0.01% to 25%, more preferably 0.03% to 5% by weight based on the total weight of the metal working composition.
This invention, which has been described above with respect to various embodiments thereof, is further described in the following non-limiting examples wherein all amounts and percentages are by weight unless otherwise indicated.
In the following examples:
(a) Jeffamine® D230 is a primary amine terminated polyoxypropylene diamine having an average molecular weight of about 230 and available from the Jefferson Chemical Company, Inc.
(b) Jeffamine® D400 is a primary amine terminated polyoxypropylene diamine having an average molecular weight of about 400 and available from the Jefferson Chemical Company, Inc.
(c) Jeffamine® D2000 is a primary amine terminated polyoxypropylene diamine having an average molecular weight of about 2000 and available from the Jefferson Chemical Company, Inc.
(d) Jeffamine® ED 600 is a diamine having an average molecular weight of about 600 available from the Jefferson Chemical Company, Inc. and being a primary amine terminated propylene oxide capped polyoxyethylene.
(e) Jeffamine® ED900 is a diamine having an average molecular weight of about 900 available from the Jefferson Chemical Company, Inc. and being a primary amine terminated propylene oxide capped polyoxyethylene.
(f) Jeffamine® ED 2001 is a diamine having an average molecular weight of about 2000 available from the Jefferson Chemical Company, Inc. and being a primary amine terminated propylene oxide capped polyoxyethylene.
(g) Dow® XA 1332 is a diamine obtained from the Dow Chemical Company and is a primary amine terminated propylene oxide capped 400 molecular weight polyoxyethylene.
(h) Dow® XA 1333 is a diamine obtained from the Dow Chemical Company and is a primary amine terminated propylene oxide capped 600 molecular weight polyoxyethylene.
Jeffamine is a registered trademark of the Jefferson Chemical Company, Inc. and Dow is a registered trademark of the Dow Chemical Company.
Azelaic acid and Jeffamine® D400 at a mole ratio of 2:1 (azelaic acid to Jeffamine® D400) were reacted together in a toluene medium, under nitrogen, at a temperature in the range of 110° to 187° C. and the water of reaction continuously removed. After completion of the reaction a viscous liquid carboxylic acid group terminated diamide product was isolated from the toluene.
In a manner essentially the same as in Example 1, the following acids and diamines were reacted at a 2:1 mole ratio of acid to diamine to produce a carboxylic acid terminated diamide product in accordance with this invention.
______________________________________ Example No. Acid Diamine ______________________________________ 2 azelaic acid Jeffamine® D230 3 azelaic acid Jeffamine® D400 4 azelaic acid Jeffamine® D2000 5 azelaic acid Jeffamine® ED600 6 azelaic acid Jeffamine® ED900 7 azelaic acid Jeffamine® ED2001 8 azelaic acid Dow® XA1332 9 azelaic acid Dow® XA1333 10 adipic acid Jeffamine® D230 11 adipic acid Jeffamine® D400 12 adipic acid Jeffamine® ED600 13 adipic acid Jeffamine® ED900 14 adipic acid Dow® XA1332 15 adipic acid Dow® XA1333 16 suberic acid Jeffamine® D230 17 suberic acid Jeffamine® D400 18 1,8/1,9 hexadecane Jeffamine® D400 dicarboxylic acid 19 3,3"-thiodipropionic Jeffamine® D400 acid 20 maleic anhydride Jeffamine® ED600 21 cyclohexane dicarboxylic Jeffamine® ED900 anhydride 22 cyclohexene dicarboxylic Jeffamine® D400 anhydride 23 p-phenylene diacetic acid Jeffamine® D400 24 phthalic anhydride Jeffamine® ED900 25 2,5-pyridene dicarboxylic Jeffamine® D230 acid 26 Dimer Acid 1014* Jeffamine® D400 27 Dimer Acid 1014* Dow® XA1332 28 Dimer Acid 1014* Dow® XA1333 29 Diacid 1525** Jeffamine® D400 30 Diacid 1550*** Jeffamine® D400 31 adipic acid Jeffamine® D2000 32 pimelic acid Jeffamine® D400 33 succinic acid Jeffamine® D400 34 sebacic acid Jeffamine® D400 35 dodecanedioic acid Jeffamine® D400 36 glutaric acid Jeffamine® D400 37 3,3'-thiodipropionic acid Jeffamine® D230 ______________________________________ *Dimer Acid 1014 is Empol® 1014 a polymerized fatty acid having a typical composition of 95% dimer acid (C.sub.36 dibasic acid) approx. mol wt. 565.4% trimer acid (C.sub.54 tribasic acid) approx. mol. wt. 845 and 1% monobasic acid (C.sub.18 fatty acid) approx. mol. wt. 282 available from Emery Industries Inc. **Diacid 1525 is Westvaco® Diacid 1525 a Diels Alder reaction product of tall oil and acrylic acid and available from the Westvaco Corp. ***Diacid 1550 is Westvaco® Diacid 1550 A Diels Alder reaction produc of tall oil and acrylic acid, said product refined to contain about 10% mono acids and available from the Westvaco Corp.
The following examples illustrate various formulations according to this invention that were prepared in 500 gram amounts.
__________________________________________________________________________ Example Weight (gms) of No. Diamide of Diamide Water KOH NaOH NH.sub.4 OH TEA* MIA** __________________________________________________________________________ 38 Example 1 0.6 498.8 0.6 39 Example 1 1.5 497.0 1.5 40 Example 1 6.0 488.0 6.0 41 Example 1 15.0 470.0 15.0 42 Example 1 60.0 380.0 60.0 43 Example 1 150.0 200.0 150.0 44 Example 2 15.0 481.5 3.5 45 Example 2 15.0 470.0 15.0 46 Example 3 15.0 481.0 4.0 47 Example 3 15.0 479.4 5.6 48 Example 3 15.0 481.5 3.5 49 Example 3 15.0 470.0 15.0 50 Example 3 15.0 477.5 7.5 51 Example 4 15.0 479.4 5.6 52 Example 4 15.0 470.0 15.0 53 Example 5 15.0 470.0 15.0 54 Example 5 15.0 477.5 7.5 55 Example 6 15.0 470.0 15.0 56 Example 7 15.0 470.0 15.0 57 Example 7 15.0 477.5 7.5 58 Example 8 15.0 479.4 5.6 59 Example 8 15.0 470.0 15.0 60 Example 9 15.0 470.0 15.0 61 Example 9 15.0 481.5 3.5 62 Example 10 15.0 481.0 4.0 63 Example 10 15.0 470.0 15.0 64 Example 11 15.0 470.0 15.0 65 Example 12 15.0 485.0 66 Example 12 15.0 470.0 15.0 67 Example 13 15.0 470.0 15.0 68 Example 13 15.0 481.5 3.5 69 Example 14 15.0 470.0 15.0 70 Example 14 15.0 477.5 7.5 71 Example 15 15.0 481.5 3.5 72 Example 15 15.0 470.0 15.0 73 Example 16 15.0 470.0 15.0 74 Example 1 15.0 481.0 4.0 75 Example 17 15.0 470.0 15.0 76 Example 18 15.0 481.0 4.0 77 Example 18 15.0 470.0 15.0 78 Example 37 15.0 481.0 4.0 79 Example 37 15.0 470.0 15.0 80 Example 19 15.0 481.5 3.5 81 Example 19 15.0 470.0 15.0 82 Example 20 15.0 481.0 4.0 83 Example 20 15.0 470.0 15.0 84 Example 21 15.0 470.0 15.0 85 Example 21 15.0 485.0 86 Example 21 15.0 481.0 4.0 87 Example 22 15.0 481.0 4.0 88 Example 23 15.0 470.0 15.0 89 Example 23 15.0 481.0 4.0 90 Example 24 15.0 485.0 91 Example 24 15.0 470.0 15.0 92 Example 24 15.0 477.5 7.5 93 Example 25 15.0 479.4 5.6 94 Example 25 15.0 470.0 15.0 95 Example 26 15.0 479.4 5.6 96 Example 26 15.0 470.0 15.0 97 Example 27 15.0 470.0 15.0 98 Example 28 15.0 470.0 15.0 99 Example 29 15.0 481.5 3.5 100 Example 29 15.0 470.0 15.0 101 Example 30 15.0 479.4 5.6 102 Example 30 15.0 470.0 15.0 103 Example 13 15.0 484.0 1.0 104 Example 13 15.0 482.5 2.5 105 Example 26 15.0 483.7 1.3 106 Example 26 15.0 484.3 0.7 107 Example 21 15.0 483.4 1.6 108 Example 21 15.0 484.2 0.8 109 Example 31 15.0 470.0 15.0 110 Example 32 15.0 470.0 15.0 111 Example 33 15.0 470.0 15.0 112 Example 34 15.0 470.0 15.0 113 Example 35 15.0 470.0 15.0 114 Example 36 15.0 470.0 15.0 __________________________________________________________________________ *TEA is triethanol amine **MIA is monoisopropanol amine
A 500 gram amount of each of the following identified metal working formulations was diluted with water to 3000 grams and then evaluated for lubricity according to the following procedure.
A wedge-shaped high-speed steel tool is forced against the end of a rotating (88 surface feet per minute) SAE 1020 steel tube of 1/4 inch wall thickness. The feed force of the tool is sufficient to cut a V-groove in the tubing wall, and the chips flow out of the cutting area in two pieces (one piece from each face of the wedge-shaped tool). The forces on the tool as a result of workpiece rotation and of tool feed are measured by a tool post dynamo-meter connected to a Sanborn recorder. Any welding of chips to tool build-up is reflected in the interruption of chip-flow (visual) and in increased resistance to workpiece rotation. The cutting test is performed with the tool-chip interface flooded throughout the operation with circulating test fluid. Tool and workpiece are in constant dynamic contact during this time, and the test is not begun until full contact is achieved all along each cutting edge. The duration of the test is three minutes.
The results obtained in accordance with the above test are given in the following table.
______________________________________ Example No. Composition of Example Force (lbs) ______________________________________ 115 38 464 116 39 458 117 40 401 118 41 369 119 42 351 120 43 319 121 44 363 122 45 380 123 46 503 124 47 489 125 48 395 126 49 369 127 50 386 128 51 510 129 52 360 130 53 472 131 54 502 132 56 451 133 57 466 134 58 504 135 59 380 136 60 391 137 61 441 138 62 518 139 63 441 140 64 446 141 65 502 142 66 509 143 67 477 144 68 492 145 69 487 146 70 487 147 71 519 148 72 516 149 73 374 150 74 532 151 75 376 152 76 497 153 77 367 154 78 490 155 79 452 156 80 374 157 81 397 158 82 505 159 83 489 160 84 479 161 85 480 162 86 500 163 87 522 164 88 487 165 89 606 166 90 492 167 91 487 168 92 489 169 93 509 170 94 467 171 95 507 172 96 460 173 99 437 174 100 406 175 101 541 176 102 409 177 103 490 178 104 498 179 105 530 180 106 437 181 107 509 182 108 502 183 109 350 184 110 389 185 111 476 186 112 363 187 113 396 188 114 439 ______________________________________
In the practice of this invention the alkanol amine, more especially the trialkanol amine salt of the carboxylic acid group terminated polyoxyalkylene diamine of this invention having two terminal carboxylic acid groups, wherein said diamide is the reaction product of an aliphatic dicarboxylic acid or a polymerized fatty acid having two carboxylic acid groups per molecule with a poly(C2 to C3 oxyalkylene) homopolymer or copolymer diamine, is preferred.
While this invention has been described above with respect to various exemplary embodiments, which are intended to be non-limiting on this invention, it is recognized that those skilled in the art may practice further embodiments of this invention without departing from the spirit and scope of the invention as set forth and claimed herein.
Claims (25)
1. A carboxylic acid group terminated polyoxyalkylene diamide and the alkali metal, ammonium or organic amine salt thereof having the following formula ##STR3## wherein R is the divalent polyoxyalkylene chain radical residue of an amine terminated polyoxyalkylene diamine absent the terminal amine groups,
R1 and R2 are the same or different and are selected from the group consisting of aliphatic, aromatic, cycloaliphatic, arylaliphatic, alkyl aromatic, thiodialiphatic.[.,.]. .Iadd.or .Iaddend.halogen substituted aliphatic .[.or halogen substituted aromatic.]. radicals and having a free valence of a+n+1 and b+m+1 respectively,
Z is an organic amine cation, ammonium ion or alkali metal ion,
a is 0 to 3,
b is 0 to 3,
n is 0 to 3,
m is 0 to 3,
a+n is 0 to 3,
b+m is 0 to 3 and
a+b+m+n is 1 to 6.
2. A carboxylic acid group terminated polyoxyalkylene diamide and alkali metal, ammonium or organic amine salt thereof according to claim 1 wherein R1 and R2 are hydrocarbon radicals.
3. A carboxylic acid group terminated polyoxyalkylene diamide and alkali metal, ammonium or organic amine salt thereof according to claim 1 wherein R1 and R2 are selected from the group consisting of aliphatic, aromatic, cycloaliphatic, thiodialiphatic.[.,.]. .Iadd.or .Iaddend.halogen substituted aliphatic .[.or halogen substituted aromatic.]. radicals.
4. A carboxylic acid group terminated polyoxyalkylene diamide and alkali metal, ammonium or organic amine salt thereof according to claim 3 wherein R1 and R2 are selected from the group consisting of C2 to C18 saturated or unsaturated aliphatic, C6 aromatic, C6 cycloaliphatic and thio di (C2 to C3 aliphatic) hydrocarbon radicals.
5. A carboxylic acid group terminated polyoxyalkylene diamide and alkali metal, ammonium or organic amine salt thereof according to claim 1, 2, 3 or 4 wherein R is a divalent poly(oxy C2 C4 alkylene) homopolymer or copolymer chain radical residue.
6. A carboxylic acid group terminated polyoxyalkylene diamide and alkali metal, ammonium or organic amine salt thereof according to claim 5 wherein R is a divalent poly(oxy C2 to C4 alkylene) homopolymer chain radical residue.
7. A carboxylic acid group terminated polyoxyalkylene diamide and alkali metal, ammonium or organic amine salt thereof according to claim 5 wherein R is a divalent poly(oxy C2 to C4 alkylene) copolymer chain radical residue.
8. The alkali metal, ammonium or organic amine salt of the carboxylic acid group terminated polyoxyalkylene diamide according to claim 5.
9. The organic amine salt of the carboxylic acid group terminated polyoxyalkylene diamide according to claim 5.
10. The salt according to claim 9 wherein the organic amine is a monoalkanol amine, dialkanol amine or trialkanol amine.
11. The salt according to claim 10 wherein the organic amine is a trialkanol amine.
12. The salt according to claim 11 wherein the trialkanol amine is a tri(C1 to C3 alkanol) amine.
13. The carboxylic acid group terminated polyoxyalkylene diamide and the alkali metal, ammonium or organic amine salt thereof according to claim 5 wherein a+n is 1 or 2 and b+m is 1 or 2.
14. A metal working composition comprising (a) a substance selected from the group consisting of natural oil, synthetic oil and water and (b) from 0.01% to 99% by weight based on the total weight of the composition of a carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof according to claim 1.
15. A metal working composition comprising (a) a substance selected from the group consisting of natural oil, synthetic oil and water and (b) from 0.01% to 99% by weight based on the total weight of the composition of a carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt in accordance with claim 5.
16. A metal working composition comprising (a) a substance selected from the group consisting of natural oil, synthetic oil and water and (b) from 0.01% to 99% by weight based on the total weight of the composition of a carboxylic acid terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof according to claim 6.
17. A metal working composition comprising (a) a substance selected from the group consisting of natural oil, .[.synthetic oil,.]. synthetic oil and water and (b) from 0.01% to 99% by weight based on the total weight of the composition of a carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof according to claim 7.
18. A metal working composition comprising (a) a substance selected from the group consisting of natural oil, synthetic oil and water and (b) from 0.01% to 99% by weight based on the total weight of the composition of a salt according to claim 10.
19. A metal working composition comprising (a) a substance selected from the group consisting of natural oil, synthetic oil and water and (b) from 0.01% to 99% by weight based on the total weight of the composition of a salt according to claim 12.
20. A metal working composition comprising (a) a substance selected from the group consisting of natural oil, synthetic oil and water and (b) from 0.01% to 99% by weight based on the total weight of the composition of a carboxylic acid group terminated polyoxyalkylene diamide or the alkali metal, ammonium or organic amine salt thereof according to claim 13.
21. A metal working composition according to claim 15 wherein (a) is water.
22. A metal working composition according to claim 18 wherein (a) is water.
23. A metal working composition according to claim 19 wherein (a) is water.
24. A metal working composition according to claim 20 wherein (a) is water.
25. A metal working composition according to claim 21 wherein (b) is present in an amount of from 0.01% to 25% by weight based on the total weight of the composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/243,455 USRE30885E (en) | 1981-03-13 | 1981-03-13 | Novel diamide and lubricants containing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/243,455 USRE30885E (en) | 1981-03-13 | 1981-03-13 | Novel diamide and lubricants containing same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/047,285 Reissue US4239635A (en) | 1979-06-11 | 1979-06-11 | Novel diamide and lubricants containing same |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE30885E true USRE30885E (en) | 1982-03-23 |
Family
ID=22918831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/243,455 Expired - Lifetime USRE30885E (en) | 1981-03-13 | 1981-03-13 | Novel diamide and lubricants containing same |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE30885E (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4659492A (en) | 1984-06-11 | 1987-04-21 | The Lubrizol Corporation | Alkenyl-substituted carboxylic acylating agent/hydroxy terminated polyoxyalkylene reaction products and aqueous systems containing same |
US4661275A (en) | 1985-07-29 | 1987-04-28 | The Lubrizol Corporation | Water-based functional fluid thickening combinations of surfactants and hydrocarbyl-substituted succinic acid and/or anhydride/amine terminated poly(oxyalkylene) reaction products |
US4743387A (en) | 1983-02-17 | 1988-05-10 | Mobil Oil Corporation | Polyoxyalkylene diamides as lubricant additives |
US5174914A (en) * | 1991-01-16 | 1992-12-29 | Ecolab Inc. | Conveyor lubricant composition having superior compatibility with synthetic plastic containers |
US5182035A (en) * | 1991-01-16 | 1993-01-26 | Ecolab Inc. | Antimicrobial lubricant composition containing a diamine acetate |
WO1993002167A1 (en) * | 1991-07-18 | 1993-02-04 | The Lubrizol Corporation | Aqueous functional fluids |
US5246607A (en) * | 1988-11-08 | 1993-09-21 | Th. Goldschmidt Ag | Methylpolysiloxanes with quaternary ammonium groups as corrosion inhibitors for preparations consisting predominantly of water |
US5260268A (en) * | 1991-07-18 | 1993-11-09 | The Lubrizol Corporation | Methods of drilling well boreholes and compositions used therein |
WO1994009056A1 (en) * | 1992-10-14 | 1994-04-28 | Sterling Winthrop Inc. | Chelating polymers |
US5352376A (en) * | 1993-02-19 | 1994-10-04 | Ecolab Inc. | Thermoplastic compatible conveyor lubricant |
US5441654A (en) * | 1988-07-14 | 1995-08-15 | Diversey Corp., A Corp. Of Canada | Composition for inhibiting stress cracks in plastic articles and methods of use therefor |
US5462681A (en) * | 1993-11-12 | 1995-10-31 | Ecolab, Inc. | Particulate suspending antimicrobial additives |
US5599777A (en) * | 1993-10-06 | 1997-02-04 | The Lubrizol Corporation | Methods of using acidizing fluids in wells, and compositions used therein |
US5723418A (en) * | 1996-05-31 | 1998-03-03 | Ecolab Inc. | Alkyl ether amine conveyor lubricants containing corrosion inhibitors |
US5863874A (en) * | 1996-05-31 | 1999-01-26 | Ecolab Inc. | Alkyl ether amine conveyor lubricant |
US5932526A (en) | 1997-06-20 | 1999-08-03 | Ecolab, Inc. | Alkaline ether amine conveyor lubricant |
US6247478B1 (en) | 1996-11-15 | 2001-06-19 | Ecolab Inc. | Cleaning method for polyethylene terephthalate containers |
US6554005B1 (en) | 1996-11-15 | 2003-04-29 | Ecolab Inc. | Cleaning method for polyethylene terephthalate containers |
US6756347B1 (en) | 1998-01-05 | 2004-06-29 | Ecolab Inc. | Antimicrobial, beverage compatible conveyor lubricant |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3024277A (en) * | 1959-03-18 | 1962-03-06 | California Research Corp | Amides of alkylenediamine polyalkylenecarboxylic acids |
US3256196A (en) * | 1963-11-13 | 1966-06-14 | Sinclair Research Inc | Amide load carrying agent |
US3676344A (en) * | 1970-09-02 | 1972-07-11 | Hall Co C P | Ether amides in aqueous lubricants |
US3884947A (en) * | 1970-09-30 | 1975-05-20 | Cities Service Oil Service Com | Hydrocarbon fuel compositions |
US3945931A (en) * | 1973-10-18 | 1976-03-23 | Aquila S.P.A. | Utilization of amido-acids for the production of aqueous fluids for the working of metals |
US4049716A (en) * | 1975-04-18 | 1977-09-20 | Rhone-Poulenc Industries | Compositions based on polyamines with ether groups |
US4098704A (en) * | 1977-02-25 | 1978-07-04 | Pennwalt Corporation | Polyoxyalkylene tetrahalophthalate ester as textile finishing agent |
US4107061A (en) * | 1977-11-07 | 1978-08-15 | Emery Industries, Inc. | Amino-amide lubricants derived from polymeric fatty acids and poly(oxyethylene) diamines |
US4144035A (en) * | 1978-03-27 | 1979-03-13 | Texaco Development Corporation | Detergent and corrosion inhibited motor fuel composition |
US4172802A (en) * | 1978-05-30 | 1979-10-30 | Cincinnati Milacron Inc. | Aqueous metal working fluid containing carboxylic acid group terminated diesters of polyoxyalkylene diols |
-
1981
- 1981-03-13 US US06/243,455 patent/USRE30885E/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3024277A (en) * | 1959-03-18 | 1962-03-06 | California Research Corp | Amides of alkylenediamine polyalkylenecarboxylic acids |
US3256196A (en) * | 1963-11-13 | 1966-06-14 | Sinclair Research Inc | Amide load carrying agent |
US3676344A (en) * | 1970-09-02 | 1972-07-11 | Hall Co C P | Ether amides in aqueous lubricants |
US3884947A (en) * | 1970-09-30 | 1975-05-20 | Cities Service Oil Service Com | Hydrocarbon fuel compositions |
US3945931A (en) * | 1973-10-18 | 1976-03-23 | Aquila S.P.A. | Utilization of amido-acids for the production of aqueous fluids for the working of metals |
US4049716A (en) * | 1975-04-18 | 1977-09-20 | Rhone-Poulenc Industries | Compositions based on polyamines with ether groups |
US4098704A (en) * | 1977-02-25 | 1978-07-04 | Pennwalt Corporation | Polyoxyalkylene tetrahalophthalate ester as textile finishing agent |
DE2759028A1 (en) | 1977-02-25 | 1978-08-31 | Pennwalt Corp | POLYOXYALKYLENE TETRAHALOGEN PHTHALATETERS AND THEIR USE AS A TEXTILE TOOL |
US4107061A (en) * | 1977-11-07 | 1978-08-15 | Emery Industries, Inc. | Amino-amide lubricants derived from polymeric fatty acids and poly(oxyethylene) diamines |
US4144035A (en) * | 1978-03-27 | 1979-03-13 | Texaco Development Corporation | Detergent and corrosion inhibited motor fuel composition |
US4172802A (en) * | 1978-05-30 | 1979-10-30 | Cincinnati Milacron Inc. | Aqueous metal working fluid containing carboxylic acid group terminated diesters of polyoxyalkylene diols |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4743387A (en) | 1983-02-17 | 1988-05-10 | Mobil Oil Corporation | Polyoxyalkylene diamides as lubricant additives |
US4659492A (en) | 1984-06-11 | 1987-04-21 | The Lubrizol Corporation | Alkenyl-substituted carboxylic acylating agent/hydroxy terminated polyoxyalkylene reaction products and aqueous systems containing same |
US4661275A (en) | 1985-07-29 | 1987-04-28 | The Lubrizol Corporation | Water-based functional fluid thickening combinations of surfactants and hydrocarbyl-substituted succinic acid and/or anhydride/amine terminated poly(oxyalkylene) reaction products |
US5441654A (en) * | 1988-07-14 | 1995-08-15 | Diversey Corp., A Corp. Of Canada | Composition for inhibiting stress cracks in plastic articles and methods of use therefor |
US5246607A (en) * | 1988-11-08 | 1993-09-21 | Th. Goldschmidt Ag | Methylpolysiloxanes with quaternary ammonium groups as corrosion inhibitors for preparations consisting predominantly of water |
US5174914A (en) * | 1991-01-16 | 1992-12-29 | Ecolab Inc. | Conveyor lubricant composition having superior compatibility with synthetic plastic containers |
US5182035A (en) * | 1991-01-16 | 1993-01-26 | Ecolab Inc. | Antimicrobial lubricant composition containing a diamine acetate |
WO1993002167A1 (en) * | 1991-07-18 | 1993-02-04 | The Lubrizol Corporation | Aqueous functional fluids |
US5260268A (en) * | 1991-07-18 | 1993-11-09 | The Lubrizol Corporation | Methods of drilling well boreholes and compositions used therein |
WO1994009056A1 (en) * | 1992-10-14 | 1994-04-28 | Sterling Winthrop Inc. | Chelating polymers |
US5583206A (en) * | 1992-10-14 | 1996-12-10 | Sterling Winthrop | Chelating polymers |
US5352376A (en) * | 1993-02-19 | 1994-10-04 | Ecolab Inc. | Thermoplastic compatible conveyor lubricant |
US5599777A (en) * | 1993-10-06 | 1997-02-04 | The Lubrizol Corporation | Methods of using acidizing fluids in wells, and compositions used therein |
US5462681A (en) * | 1993-11-12 | 1995-10-31 | Ecolab, Inc. | Particulate suspending antimicrobial additives |
US5723418A (en) * | 1996-05-31 | 1998-03-03 | Ecolab Inc. | Alkyl ether amine conveyor lubricants containing corrosion inhibitors |
US5863874A (en) * | 1996-05-31 | 1999-01-26 | Ecolab Inc. | Alkyl ether amine conveyor lubricant |
US6247478B1 (en) | 1996-11-15 | 2001-06-19 | Ecolab Inc. | Cleaning method for polyethylene terephthalate containers |
US6554005B1 (en) | 1996-11-15 | 2003-04-29 | Ecolab Inc. | Cleaning method for polyethylene terephthalate containers |
US5932526A (en) | 1997-06-20 | 1999-08-03 | Ecolab, Inc. | Alkaline ether amine conveyor lubricant |
US6756347B1 (en) | 1998-01-05 | 2004-06-29 | Ecolab Inc. | Antimicrobial, beverage compatible conveyor lubricant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4239635A (en) | Novel diamide and lubricants containing same | |
USRE30885E (en) | Novel diamide and lubricants containing same | |
US4374741A (en) | Polyamide and functional fluid containing same | |
US4172802A (en) | Aqueous metal working fluid containing carboxylic acid group terminated diesters of polyoxyalkylene diols | |
CN110452766B (en) | Fully-synthetic environment-friendly cutting fluid for aluminum alloy processing and preparation method thereof | |
US3897351A (en) | Lubricant compositions | |
US3785975A (en) | Vapor space inhibited turbine oil | |
USRE31522E (en) | Salt of a polyamide and functional fluid containing same | |
EP0122528A2 (en) | Thickened, water-based hydraulic fluid with reduced dependence of viscosity on temperature | |
DE3876490T2 (en) | CORROSION-INHIBITING COMPOSITION. | |
US3527726A (en) | Water-soluble ammonium or amine salts of phosphate esters of styrene-maleic anhydride copolymer - polyalkylene glycol esters | |
US4289636A (en) | Aqueous lubricant compositions | |
GB2093478A (en) | Aqueous lubricants metal working and hydraulic fluids | |
US3788988A (en) | Lubricant compositions for the cold shaping of metals | |
KR850001966B1 (en) | Aqueous working fluid compositions | |
JP3301038B2 (en) | Bio-resistant surfactant and cutting oil formulations | |
US4670168A (en) | Aqueous metal removal fluid | |
US3544609A (en) | Zinc complexes | |
CA1146935A (en) | Hot melt metal working lubricants containing phosphorus-containing compositions | |
CN115261107A (en) | Environment-friendly total-synthesis metal cutting fluid and preparation method thereof | |
US2842497A (en) | Phosphorus esters containing diarylamines and polyepoxypolyhydroxy polyethers | |
US4405471A (en) | Aqueous metal-working lubricant | |
US4539128A (en) | Water-soluble lubricant | |
EP0148274B1 (en) | Composition for use in metal working | |
US4552678A (en) | Corrosion inhibitors for aqueous liquids for the working of metals, and a process for their preparation |