USRE30748E - Phosphatidyl quaternary ammonium compounds - Google Patents
Phosphatidyl quaternary ammonium compounds Download PDFInfo
- Publication number
- USRE30748E USRE30748E US06/093,631 US9363179A USRE30748E US RE30748 E USRE30748 E US RE30748E US 9363179 A US9363179 A US 9363179A US RE30748 E USRE30748 E US RE30748E
- Authority
- US
- United States
- Prior art keywords
- phosphatidyl
- compound
- ammonium
- radical
- compounds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 Phosphatidyl quaternary ammonium compounds Chemical class 0.000 title claims abstract description 17
- 150000001875 compounds Chemical class 0.000 claims description 51
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical group CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 claims description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 9
- 244000068988 Glycine max Species 0.000 claims description 5
- 235000010469 Glycine max Nutrition 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- 102000002322 Egg Proteins Human genes 0.000 claims description 4
- 108010000912 Egg Proteins Proteins 0.000 claims description 4
- 235000013345 egg yolk Nutrition 0.000 claims description 4
- 210000002969 egg yolk Anatomy 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 235000013601 eggs Nutrition 0.000 claims description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 2
- 125000002669 linoleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 2
- 125000001419 myristoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 2
- 125000002811 oleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 2
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 2
- 125000003696 stearoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 2
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical group CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 claims 1
- 101150108015 STR6 gene Proteins 0.000 claims 1
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 claims 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 abstract description 16
- 239000004094 surface-active agent Substances 0.000 abstract description 11
- 230000002209 hydrophobic effect Effects 0.000 abstract description 6
- 125000001453 quaternary ammonium group Chemical group 0.000 abstract description 5
- 230000004075 alteration Effects 0.000 abstract description 3
- 239000000908 ammonium hydroxide Substances 0.000 description 19
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 18
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical class [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000004809 thin layer chromatography Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 235000012000 cholesterol Nutrition 0.000 description 6
- 229940067606 lecithin Drugs 0.000 description 6
- 239000000787 lecithin Substances 0.000 description 6
- 235000010445 lecithin Nutrition 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- JAPYIBBSTJFDAK-UHFFFAOYSA-N 2,4,6-tri(propan-2-yl)benzenesulfonyl chloride Chemical compound CC(C)C1=CC(C(C)C)=C(S(Cl)(=O)=O)C(C(C)C)=C1 JAPYIBBSTJFDAK-UHFFFAOYSA-N 0.000 description 5
- 239000000693 micelle Substances 0.000 description 5
- 150000003904 phospholipids Chemical class 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 230000003381 solubilizing effect Effects 0.000 description 5
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical group CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- 125000005210 alkyl ammonium group Chemical group 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 230000037230 mobility Effects 0.000 description 4
- 229930014626 natural product Natural products 0.000 description 4
- 150000008105 phosphatidylcholines Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001840 cholesterol esters Chemical class 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 229960004029 silicic acid Drugs 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 2
- PFZASSSBBFZXSE-UHFFFAOYSA-M 4-hydroxybutyl(trimethyl)azanium;acetate Chemical compound CC([O-])=O.C[N+](C)(C)CCCCO PFZASSSBBFZXSE-UHFFFAOYSA-M 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical group CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 2
- 102000011420 Phospholipase D Human genes 0.000 description 2
- 108090000553 Phospholipase D Proteins 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- SVBXPEXMMWJPIE-UHFFFAOYSA-N acetic acid;propan-1-amine Chemical compound CCC[NH3+].CC([O-])=O SVBXPEXMMWJPIE-UHFFFAOYSA-N 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 230000003143 atherosclerotic effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229960002887 deanol Drugs 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012972 dimethylethanolamine Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 150000004665 fatty acids Chemical group 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical group I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 125000001095 phosphatidyl group Chemical group 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000008348 synthetic phosphatidyl choline Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- HRBGUGQWTMBDTR-UHFFFAOYSA-N 2,3,4-tri(propan-2-yl)benzenesulfonyl chloride Chemical compound CC(C)C1=CC=C(S(Cl)(=O)=O)C(C(C)C)=C1C(C)C HRBGUGQWTMBDTR-UHFFFAOYSA-N 0.000 description 1
- AACHVWXCVWWMSI-UHFFFAOYSA-N 3-hydroxypropyl(trimethyl)azanium Chemical class C[N+](C)(C)CCCO AACHVWXCVWWMSI-UHFFFAOYSA-N 0.000 description 1
- WNCIVRKPEQLNCB-UHFFFAOYSA-M 3-hydroxypropyl(trimethyl)azanium;acetate Chemical compound CC([O-])=O.C[N+](C)(C)CCCO WNCIVRKPEQLNCB-UHFFFAOYSA-M 0.000 description 1
- BLFRQYKZFKYQLO-UHFFFAOYSA-N 4-aminobutan-1-ol Chemical compound NCCCCO BLFRQYKZFKYQLO-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-M 9-cis,12-cis-Octadecadienoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC([O-])=O OYHQOLUKZRVURQ-HZJYTTRNSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 159000000021 acetate salts Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 230000000879 anti-atherosclerotic effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 1
- SUHOQUVVVLNYQR-MRVPVSSYSA-N choline alfoscerate Chemical compound C[N+](C)(C)CCOP([O-])(=O)OC[C@H](O)CO SUHOQUVVVLNYQR-MRVPVSSYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- QTCJRZRDLQHBRH-UHFFFAOYSA-N ethyl(dimethyl)azanium;acetate Chemical compound CC([O-])=O.CC[NH+](C)C QTCJRZRDLQHBRH-UHFFFAOYSA-N 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-O ethylaminium Chemical compound CC[NH3+] QUSNBJAOOMFDIB-UHFFFAOYSA-O 0.000 description 1
- 229960004956 glycerylphosphorylcholine Drugs 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 1
- 229940049918 linoleate Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229940105132 myristate Drugs 0.000 description 1
- PVWOIHVRPOBWPI-UHFFFAOYSA-N n-propyl iodide Chemical compound CCCI PVWOIHVRPOBWPI-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229940114926 stearate Drugs 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
- A61K31/683—Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
- A61K31/685—Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols one of the hydroxy compounds having nitrogen atoms, e.g. phosphatidylserine, lecithin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/24—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/10—Phosphatides, e.g. lecithin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/54—Quaternary phosphonium compounds
- C07F9/5407—Acyclic saturated phosphonium compounds
Definitions
- This invention relates to novel chemical compounds structurally related to phosphatidylcholine, to a method of preparing such compounds, and to the use as surfactants of such chemical compounds with or for compounds which have limited or no solubility in aqueous solutions.
- Phospholipids and phosphatidylcholine in particular are amipathic compounds in that they consist of a hydrophobic and hydrophilic group or region within the same molecule.
- Compounds with this amipathic property tend to self-associate in aqueous systems to form micelles which have a hydrophobic interior and a hydrophilic exterior.
- these compounds act as surfactants and can solubilize other relatively aqueous insoluble compounds which have limited or no solubility in water, and can partition such insoluble compounds into the hydrophobic region of the micelle.
- the external polar hydrophilic region of the micelle confers water solubility on the micelle complex or group.
- nonsoluble biological compounds such as cholesterol, cholesterol esters and derivatives, triglycerides and other compounds
- solubilizing power of any surfactant is highly dependent on the ratio of hydrophobic-to-hydrophilic balance within the particular molecule.
- natural phosphatidylcholine that is, lecithin
- lecithin is an excellent emulsifying agent for a number of insoluble biological compounds, such as cholesterol, cholesterol esters and triglycerides, and lecithin is widely used in many industrial applications; for example, the food industry.
- Lecithin is a natural surfactant, and, like other such surfactants, its solubilization properties are derived from its amipathic character; that is, the molecule possesses a region of hydrophobic character (the heterogeneous fatty-acid chain) and a region of hydrophilic character (the polar head group - ethyl-n-trimethyl group).
- lecithin is zwitterionic in the pH range of 2-12, because it possesses a positively charged group (the quarternary ammonium group) and a negatively charged group (the phosphate group). This zwitterionic character stabilizes the ionic structure of the lecithin against any pH fluctuations that would tend to flocculate other natural detergents; that is, other phospholipids or bile salts.
- the natural occurring phospholipids are limited in solubilizing properties.
- solubilizing properties For example, it is known that the maximum amount of cholesterol that phosphatidylcholine can solubilize is in a molar ratio of about one to one, while little, if any, cholesterol ester can be solubilized by phosphatidylcholine.
- novel phospholipid compounds which have modified solubilized properties (particularly those which solubilize a greater amount of both biological and industrial compounds than is possible with the natural compound or have different solubilized properties) would be most desirable and useful.
- My invention relates to novel, synthetic, phosphatidyl ammonium compounds, particularly ammonium hydroxide compounds, which are characterized by enhanced or different solubilizing, surfactant and other properties from the heterogeneous, natural occuring phosphatidylcholine, to the method of preparing such compounds and to the method of using such compounds as surfactants to solubilize and emulsify other compounds, particularly cholesterol and cholesterol-derived compounds and triglyceride compounds.
- solubilizing or surfactant properties of my novel phosphatidyl compounds can be obtained by variation in the separation of the positively and negatively changed groups; that is, by increasing or decreasing the distance between the groups, such as by increasing or decreasing the number of methylene groups between the charge moieties and/or by delocation of the positive charge on and about the quaternary nitrogen atom, such as by replacing one or more of the three methyl groups with other groups, such as with other alkyl groups.
- My new compounds are useful and interesting substitutes for lecithin in solubilizing nonaqueous soluble compounds, and in particular such new compounds may be useful in the regression of atherosclerotic lesions and as antiatherosclerotic agents in blood or other biological fluids, and as stabilizing agents and emulsifiers, particularly in food products.
- novel synthetic phosphatidyl ammonium compounds of my invention are represented by the formula: ##STR1## wherein X is a carbonyl group (C ⁇ O), R is a hydrocarbon radical, preferably a C 14 to C 20 fatty-acid radical; a, b, and c represent whole integers of from 0 to 3; d represents a whole integer of from 1 to 5, except that where a, b and c are zero (0) and d is two (2); and wherein R 1 , R 2 , R 3 and R 4 are hydrocarbon radicals, preferably methylene radicals, either straight or branch-chain radicals.
- phosphatidyl ammonium hydroxide compounds of my invention are represented by: ##STR2##
- Typical compounds include:
- the R radicals may vary and be composed of natural or synthetic fatty radicals, but preferably are C 14 to C 20 fatty acid or alcohol radicals, or combinations and mixtures thereof.
- the fatty radicals useful include both saturated and ethylenically unsaturated hydrocarbon radicals such as those radicals derived from fatty acids or alcohols, such as, for example, myristate, palmitate, oleate, linoleate and stearate radicals and heterogeneous mixtures, such as found in natural products like egg yolk, soybeans and the like.
- the R and X radicals may be the same or different radicals, but preferably are the same X radicals with the same or different R radicals.
- the R radicals will be those radicals of the quaternary ammonium alcohol selected for the reaction.
- desired fatty radicals and the length thereof the hydrophobic character of this portion of the synthetic compound may be altered and modified to a desired defined length, such as by selecting the R radical to be the same or different chain length or degree of saturation or substitution.
- the polar group or quaternary ammonium group of my compounds may be composed of substituent radicals to alter the electropositive character of the quaternary ammonium atom, but particularly are C 1 -C 4 methylene radicals.
- My novel compounds would include, but not be limited to:
- soybean phosphatidyl-(propyl-N-trimethyl)ammonium hydroxide and mixtures thereof.
- dimyristate phosphatidyl-(butyl-N-dipropylmethyl)ammonium hydroxide also may be named as dimystroyl phosphatidyl-(tetramethylene-N-dipropylmethyl) quaternary ammonium.
- My compound may be prepared by a variety of methods.
- the preferred method of preparation is to prepare the synthetic phosphatidyl ammonium hydroxide by reacting and coupling the polar head group moiety to phosphatidic acid, for example, using triisopropylbenzenesulfonyl chloride in pyridine (see R. Anjea and J. S. Chandra, Biochem. Biophys. Acta 248, 455 (1971) and B. Sears, W. C. Hutton, and T. E. Thompson, Biochem. Biophys. Res. Comm. 60, 1141 (1974).
- the phosphatidic acid may be derived from natural or synthetic phosphatidylcholine by the digestion with the enzyme phospholipase D (see R. M. C. Dawson, Biochem J. 102, 76 (1967).
- the modified polar head group compound is then synthesized by the exhaustive alkylation of the derived corresponding hydroxylamine.
- the general reaction method is represented as follows:
- the salt form (for example, the acetate form) of the quaternary ammonium salt is obtained by ion-exchanging the quaternary ammonium halide salt (for example, the iodide form) in an ion-exchange column equilibrated with the acetate ions.
- my method is: to synthesize synthetic phosphatidylcholine or isolate natural phosphatidylcholine; then enzymatically to cleave the phosphatidylcholine to phosphatidic acid; to synthesize a modified quaternary alkyl ammonium hydroxide, convert the quaternary alkyl ammonium hydroxide to the corresponding acetate (the acetate form is more soluble than the hydroxide form in pyridine, the solvent used for coupling) and covalently couple with quaternary alkyl ammonium acetate onto the phosphatidic acid, thereby giving the phospholipid modified in the polar head group.
- the acetate or weak-acid form may also be used with acetonitrile as the solvent or the iodide form used where the coupling solvent is about a one:one mixture of pyridine and acetonitrile.
- My methiod of preparing synthetic phosphatidyl quaternary ammonium compounds comprises covalently reacting or coupling in a common nonaqueous solvent typically an organic polar solvent like pyridine or acetonitrile; for example, a nitrogen-containing solvent, the quaternary ammonium salt preferably the weak acid salt or halo salt of the alkyl ammonium compound, with phosphatidic acid and recovering the phosphatidyl quaternary ammonium hydroxide compound and optionally chromatographically purifying the resulting compound.
- a common nonaqueous solvent typically an organic polar solvent like pyridine or acetonitrile
- the quaternary ammonium salt preferably the weak acid salt or halo salt of the alkyl ammonium compound
- My novel synthetic compounds have altered and modified hydrophobic-to-hydrophilic-balance properties over those of the natural compounds, as is demonstrated, for example, by variations in the migration rates of such compounds in thin-layer chromatography tests in comparison to the natural compounds. Such differences in the hydrophilic-to-hydrophobic balance will effect their surfactant properties.
- Glycerol phosphoryl choline was derived from crude egg yolk phosphatidylcholine using the method of J. S. Chandra, Chem. Phys. Lipids 4 104 (1970). Dipalmitoyl phosphatidylcholine was synthesized according to the method of Cubero Robles, E. and van de Berg, D., Biochem. Biophys. Acta 187 520 (1969). Dipalmitoyl phosphatidic acid was prepared by the enzymatic cleavage of dipalmitoyl phosphatidylcholine by cabbage phospholipase D according to Dawson, R. M. C., Biochem. J. 102 76 (1967).
- the appropriate hydroxy alkyl ammonium acetate was covalently linked to the dipalmitoyl phosphatidic acid using 2,4,6-triisopropylbenzenesulfonyl chloride as a coupling agent as described by Sears et al., Biochem. Biophys. Res. Comm. 60 1141 (1974).
- the phosphatidylcholine analog was then purified by silicic acid chromatography. The detailed synthetic description of the hydroxy alkyl ammonium compounds and the corresponding phosphatidylcholine compounds is described below.
- the (2-hydroxy ethyl)N-diemthyl, ethyl ammonium cation was released from the column by the addition of 300 ml of 0.5 M NH 4 HCO 3 .
- the (2-hydroxy ethyl)N-dimethyl-ethyl ammonium bicarbonate solution was evaporated to dryness and then taken up in distilled water.
- the solution was placed on a 2 ⁇ 40 cm column of Bio Rad AG1-X8 cation-exchange column in the acetate form. The column was eluted with distilled water.
- the (2-hydroxy ethyl)N-dimethyl-ethyl ammonium acetate was concentrated by dryness.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Nanotechnology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
Abstract
Novel synthetic phosphatidyl ammonium hydroxide compounds are prepared which have a hydrophobic/hydrophilic balance different from the natural phosphatidylcholine, which alterations are carried out by changes in the quaternary ammonium polar group to provide different surfactant properties.
Description
This invention relates to novel chemical compounds structurally related to phosphatidylcholine, to a method of preparing such compounds, and to the use as surfactants of such chemical compounds with or for compounds which have limited or no solubility in aqueous solutions.
Phospholipids and phosphatidylcholine in particular are amipathic compounds in that they consist of a hydrophobic and hydrophilic group or region within the same molecule. Compounds with this amipathic property tend to self-associate in aqueous systems to form micelles which have a hydrophobic interior and a hydrophilic exterior. As a result, these compounds act as surfactants and can solubilize other relatively aqueous insoluble compounds which have limited or no solubility in water, and can partition such insoluble compounds into the hydrophobic region of the micelle. The external polar hydrophilic region of the micelle confers water solubility on the micelle complex or group. It has been well known that such nonsoluble biological compounds, such as cholesterol, cholesterol esters and derivatives, triglycerides and other compounds, can be solubilized in phospholipid micelles. However, the extent of solubilizing power of any surfactant is highly dependent on the ratio of hydrophobic-to-hydrophilic balance within the particular molecule.
For example, natural phosphatidylcholine (that is, lecithin) is an excellent emulsifying agent for a number of insoluble biological compounds, such as cholesterol, cholesterol esters and triglycerides, and lecithin is widely used in many industrial applications; for example, the food industry. Lecithin is a natural surfactant, and, like other such surfactants, its solubilization properties are derived from its amipathic character; that is, the molecule possesses a region of hydrophobic character (the heterogeneous fatty-acid chain) and a region of hydrophilic character (the polar head group - ethyl-n-trimethyl group). In addition, lecithin is zwitterionic in the pH range of 2-12, because it possesses a positively charged group (the quarternary ammonium group) and a negatively charged group (the phosphate group). This zwitterionic character stabilizes the ionic structure of the lecithin against any pH fluctuations that would tend to flocculate other natural detergents; that is, other phospholipids or bile salts.
The natural occurring phospholipids are limited in solubilizing properties. For example, it is known that the maximum amount of cholesterol that phosphatidylcholine can solubilize is in a molar ratio of about one to one, while little, if any, cholesterol ester can be solubilized by phosphatidylcholine. Thus, novel phospholipid compounds which have modified solubilized properties (particularly those which solubilize a greater amount of both biological and industrial compounds than is possible with the natural compound or have different solubilized properties) would be most desirable and useful.
My invention relates to novel, synthetic, phosphatidyl ammonium compounds, particularly ammonium hydroxide compounds, which are characterized by enhanced or different solubilizing, surfactant and other properties from the heterogeneous, natural occuring phosphatidylcholine, to the method of preparing such compounds and to the method of using such compounds as surfactants to solubilize and emulsify other compounds, particularly cholesterol and cholesterol-derived compounds and triglyceride compounds.
I have discovered in particular that the solubilizing or surfactant properties of my novel phosphatidyl compounds can be obtained by variation in the separation of the positively and negatively changed groups; that is, by increasing or decreasing the distance between the groups, such as by increasing or decreasing the number of methylene groups between the charge moieties and/or by delocation of the positive charge on and about the quaternary nitrogen atom, such as by replacing one or more of the three methyl groups with other groups, such as with other alkyl groups. Thus, by taking advantage of the zwitterionic nature of natural phosphatidylcholine and changing the structure to produce novel compounds, modified and, in some cases, unexpected surfactant properties are obtained, particularly by the alteration and modification of the polar head group (the quaternary ammonium) and region of the various phosphatidylcholines.
My new compounds are useful and interesting substitutes for lecithin in solubilizing nonaqueous soluble compounds, and in particular such new compounds may be useful in the regression of atherosclerotic lesions and as antiatherosclerotic agents in blood or other biological fluids, and as stabilizing agents and emulsifiers, particularly in food products.
The novel synthetic phosphatidyl ammonium compounds of my invention are represented by the formula: ##STR1## wherein X is a carbonyl group (C═O), R is a hydrocarbon radical, preferably a C14 to C20 fatty-acid radical; a, b, and c represent whole integers of from 0 to 3; d represents a whole integer of from 1 to 5, except that where a, b and c are zero (0) and d is two (2); and wherein R1, R2, R3 and R4 are hydrocarbon radicals, preferably methylene radicals, either straight or branch-chain radicals.
Some preferred phosphatidyl ammonium hydroxide compounds of my invention are represented by: ##STR2##
Typical compounds include:
______________________________________ I: a = b = o c = 1 d = 2 II: a = b = c = o d = 4 III: a = b = c = o d = 3 IV: a = b = o c = 2 d = 2 ______________________________________
In my compounds, the R radicals may vary and be composed of natural or synthetic fatty radicals, but preferably are C14 to C20 fatty acid or alcohol radicals, or combinations and mixtures thereof. The fatty radicals useful include both saturated and ethylenically unsaturated hydrocarbon radicals such as those radicals derived from fatty acids or alcohols, such as, for example, myristate, palmitate, oleate, linoleate and stearate radicals and heterogeneous mixtures, such as found in natural products like egg yolk, soybeans and the like. The R and X radicals may be the same or different radicals, but preferably are the same X radicals with the same or different R radicals. In one method of preparation, as hereinafter described, the R radicals will be those radicals of the quaternary ammonium alcohol selected for the reaction. By the selection of desired fatty radicals and the length thereof, the hydrophobic character of this portion of the synthetic compound may be altered and modified to a desired defined length, such as by selecting the R radical to be the same or different chain length or degree of saturation or substitution.
The polar group or quaternary ammonium group of my compounds may be composed of substituent radicals to alter the electropositive character of the quaternary ammonium atom, but particularly are C1 -C4 methylene radicals.
My novel compounds would include, but not be limited to:
dioleate phosphatidyl-(isopropyl-N-triethyl)ammonium hydroxide;
dipalmitate phosphatidyl-(ethyl-N-dimethyl, ethyl)ammonium hydroxide;
distearyl phosphatidyl-(ethyl-N-dimethylethyl)ammonium hydroxide;
oleate-palmitate phosphatidyl-(ethyl-N-dimethylethyl)ammonium hydroxide;
dimyristate phosphatidyl-(butyl-N-dipropylmethyl)ammonium hydroxide;
dipalmitate phosphatidyl-(propyl-N-trimethyl)ammonium hydroxide;
egg phosphatidyl-(propyl-N-trimethyl)ammonium hydroxide;
soybean phosphatidyl-(propyl-N-trimethyl)ammonium hydroxide; and mixtures thereof.
My compounds have been described employing derived nomenclature. However, for example, dimyristate phosphatidyl-(butyl-N-dipropylmethyl)ammonium hydroxide above also may be named as dimystroyl phosphatidyl-(tetramethylene-N-dipropylmethyl) quaternary ammonium.
My compound may be prepared by a variety of methods. However, the preferred method of preparation is to prepare the synthetic phosphatidyl ammonium hydroxide by reacting and coupling the polar head group moiety to phosphatidic acid, for example, using triisopropylbenzenesulfonyl chloride in pyridine (see R. Anjea and J. S. Chandra, Biochem. Biophys. Acta 248, 455 (1971) and B. Sears, W. C. Hutton, and T. E. Thompson, Biochem. Biophys. Res. Comm. 60, 1141 (1974). The phosphatidic acid may be derived from natural or synthetic phosphatidylcholine by the digestion with the enzyme phospholipase D (see R. M. C. Dawson, Biochem J. 102, 76 (1967). The modified polar head group compound is then synthesized by the exhaustive alkylation of the derived corresponding hydroxylamine. The general reaction method is represented as follows: ##STR3##
The salt form (for example, the acetate form) of the quaternary ammonium salt is obtained by ion-exchanging the quaternary ammonium halide salt (for example, the iodide form) in an ion-exchange column equilibrated with the acetate ions. Thus, my method is: to synthesize synthetic phosphatidylcholine or isolate natural phosphatidylcholine; then enzymatically to cleave the phosphatidylcholine to phosphatidic acid; to synthesize a modified quaternary alkyl ammonium hydroxide, convert the quaternary alkyl ammonium hydroxide to the corresponding acetate (the acetate form is more soluble than the hydroxide form in pyridine, the solvent used for coupling) and covalently couple with quaternary alkyl ammonium acetate onto the phosphatidic acid, thereby giving the phospholipid modified in the polar head group. The acetate or weak-acid form may also be used with acetonitrile as the solvent or the iodide form used where the coupling solvent is about a one:one mixture of pyridine and acetonitrile.
My methiod of preparing synthetic phosphatidyl quaternary ammonium compounds comprises covalently reacting or coupling in a common nonaqueous solvent typically an organic polar solvent like pyridine or acetonitrile; for example, a nitrogen-containing solvent, the quaternary ammonium salt preferably the weak acid salt or halo salt of the alkyl ammonium compound, with phosphatidic acid and recovering the phosphatidyl quaternary ammonium hydroxide compound and optionally chromatographically purifying the resulting compound.
My novel synthetic compounds have altered and modified hydrophobic-to-hydrophilic-balance properties over those of the natural compounds, as is demonstrated, for example, by variations in the migration rates of such compounds in thin-layer chromatography tests in comparison to the natural compounds. Such differences in the hydrophilic-to-hydrophobic balance will effect their surfactant properties.
My invention will be described for the purpose of explanation and illustration only in connection with the preparation of certain preferred compounds. However, it is recognized and is within the scope and intent of my invention and disclosure that other compounds and other methods of preparation can be formulated and used.
Glycerol phosphoryl choline was derived from crude egg yolk phosphatidylcholine using the method of J. S. Chandra, Chem. Phys. Lipids 4 104 (1970). Dipalmitoyl phosphatidylcholine was synthesized according to the method of Cubero Robles, E. and van de Berg, D., Biochem. Biophys. Acta 187 520 (1969). Dipalmitoyl phosphatidic acid was prepared by the enzymatic cleavage of dipalmitoyl phosphatidylcholine by cabbage phospholipase D according to Dawson, R. M. C., Biochem. J. 102 76 (1967). The appropriate hydroxy alkyl ammonium acetate was covalently linked to the dipalmitoyl phosphatidic acid using 2,4,6-triisopropylbenzenesulfonyl chloride as a coupling agent as described by Sears et al., Biochem. Biophys. Res. Comm. 60 1141 (1974). The phosphatidylcholine analog was then purified by silicic acid chromatography. The detailed synthetic description of the hydroxy alkyl ammonium compounds and the corresponding phosphatidylcholine compounds is described below.
A. Dipalmitoyl phosphatidyl-(ethyl-N dimethyl, ethyl) ammonium hydroxide (I).
0.975 g (10.9 millimoles) of dimethyl ethanolamine was placed in a 50-ml round-bottom flask. The flask was cooled to -10° C. and 1.159 g (7.43 millimoles) of ethyl iodine was added with stirring. The reaction mixture was allowed to warm slowly to room temperature and was then kept in the dark for 72 hours. At the end of 72 hours, the mixture was dissolved in 20 ml of 2 M NH4 OH. The solution was applied to a 2×40 cm column of Bio Rad 50W-X8 cation-exchange resin. The column was washed with 500 ml of 2 M NH4 OH. The (2-hydroxy ethyl)N-diemthyl, ethyl ammonium cation was released from the column by the addition of 300 ml of 0.5 M NH4 HCO3. The (2-hydroxy ethyl)N-dimethyl-ethyl ammonium bicarbonate solution was evaporated to dryness and then taken up in distilled water. The solution was placed on a 2×40 cm column of Bio Rad AG1-X8 cation-exchange column in the acetate form. The column was eluted with distilled water. The (2-hydroxy ethyl)N-dimethyl-ethyl ammonium acetate was concentrated by dryness. Thin-layer chromatography in an isopropyl alcohol/water/14 M NH4 OH (7:2:1) system gave only a single spot upon iodine staining. Colormetric analysis for quaternary ammonium salts gave an overall yield of 70% (7.7 millimoles). 375 micromoles of the (2-hydroxy ethyl)N-dimethyl-ethyl ammonium acetate in methanol was mixed with 275 micromoles of dipalmitoyl phosphatidic acid and then taken to dryness. The mixture was dried under high vacuum against P2 O5 overnight. 760 micromoles of 2,4,6-triisopropylbenzenesulfonyl chloride in 5 ml of dry pyridine was added to the dry mixture. The reaction mixture was stoppered and heated and stirred for 1 hour at 65° C. and then stirred for 4 hours at room temperature. At the end of the reaction, the pyridine was evaporated from the reaction. The residue was taken up in 20 ml of chloroform-methanol (2:1) and then 5 ml of distilled water was added. The resulting lower phase was taken to dryness and the residue was taken up in chloroform. The chloroform solution was applied to 2×30 cm silicic acid column and the phosphatidylcholine eluted with increasing amount of methanol in chloroform. The phosphatidylcholine gave only a single spot by thin-layer chromatography. The yield based on colormetric phosphorus analysis was 17% (46.6 micromole). The elemental analysis gave the following results:
Theoretical: C: 64.31, H: 10.98, N: 1.83, P: 4.05;
Experimental: C: 64.12, H: 11.14, N: 1.66, P: 3.93
B. Dipalmitoyl phosphatidyl-(butyl-N-trimethyl)ammonium hydroxide (II).
1.0 g (11.2 millimole) of b 4-amino butanol was placed in a 50-ml flask and precooled to -10° C. 1.6 g (11.3 millimoles) of methyl iodine was added with stirring. The reaction mixture was allowed to warm to room temperature and was kept for 72 hours in the dark. The reaction mixture was purified as described for the (2-hydroxyl ethyl)-N dimethyl ethyl ammonium acetate. The final yield of (4-hydroxy butyl)-trimethyl ammonium acetate was 17% (1.8 millimoles). 750 micromoles of (4-hydroxy butyl)-trimethyl ammonium acetate and 500 micromoles of dipalmitoyl phosphatidic acid were mixed in methanol and taken to dryness. The mixture was dried under high vacuum against P2 O5 overnight. 1250 micromoles of 2,4,6-triisopropylbenzenesulfonyl chloride in 10 ml of pyridine was added. The reaction was heated for 1 hour at 65° C. and then stirred for 4 hours at room temperature. The reaction was then purified as described above. The final yield of dipalmitoyl phosphatidyl-(butyl, N-trimethyl) ammonium hydroxide was 9.7% (48 micromoles) based on phosphorus analysis. Only a single spot was observed by thin-layer chromatography.
Elemental analysis:
Theoretical: C: 64.69, H: 11.0, N: 1.79, P: 3.98;
Experimental: C: 64.93, H: 10.72, N: 1.70, P: 4.12.
C. Dipalmitoyl phosphatidyl-(propyl-N-trimethyl) ammonium hydroxide (III).
2 g (26.6 millimoles) of 3-amino propanol was placed in a 50-ml round-bottom flask and cooled to -10° C. 3.78 g (26.6 millimoles) of methyl iodine was added with stirring. The stoppered reaction mixture was allowed to warm to room temperature. This flask was kept in the dark for 48 hours. The (3-hydroxy propyl)-trimethyl ammonium salt was purified and converted to the acetate salt as previously described. Only a single spot was seen by thin-layer chromatography. The yield by colormetric analysis was 21% (5.5 millimoles). 367 micromoles of (3-hydroxy propyl)-trimethyl ammonium acetate and 245 micromoles of dipalmitoyl phosphatidic acid were mixed in methanol and evaporated to dryness. The residue was dried at high vacuum and against P2 O5 for 12 hours. 612 micromoles of 2,4,6 triisopropylbenzenesulfonyl chloride in 5 ml of pyridine was added. The reaction was heated at 65° C. for 1 hour and then stirred for 4 hours at room temperature. The dipalmitoyl phosphatidyl(propyl-N-trimethyl ammonium hydroxide was purified as previously described. Only a single spot was seen by thin-layer chromatography.
The elemental analysis was as follows:
Theoretical: C: 64.48, H: 10.92, N: 1.70, P: 3.88;
Experimental: C: 64.31, H: 10.98, N: 1.83, P: 4.05.
D. Dipalmitoyl phosphatidyl-(ethyl-N-dimethyl, propyl)ammonium hydroxide (IV).
0.975 g (10.9 millimoles) of dimethyl ethanolamine was placed in a 50-ml round-bottom flask and cooled to -10° C. 5.61 g (33 millimoles) of propyl iodine was added with stirring. The mixture was allowed to warm to room temperature and was then kept in the dark for 72 hours. The (2-hydroxy) N-dimethyl, propyl ammonium acetate was purified as previously described. 750 micromoles of (2-hydroxy)-N-dimethyl, propyl ammonium acetate and 500 micromoles of dipalmitoyl phosphatidic acid were acid in methanol and taken to dryness. The residue was dried under high vacuum and against P2 O5 overnight. 1250 micromoles of 2,4,6 triisopropylbenzenesulfonyl chloride in 15 ml of pyridine was added to the residue. The mixture was heated for 1 hour at 65° C. and then stirred for 4 hours at room temperature. The purification of the dipalmitoyl phosphatidyl-(ethyl-N-dimethyl, propyl) ammonium hydroxide was carried out as previously described. Thin-layer chromatography showed only a single spot.
The elemental analysis gave the following:
Theoretical: C: 64.69, H: 11.00, N: 1.79, P: 3.98;
Experimental: C: 65.16, H: 11.74, N: 1.78, P: 3.96.
I have described the synthesis of a selected number of preferred phosphatidylcholine compounds in which the hydrophilic region of the molecule has been chemically modified. As a result, the hydrophobic-to-hydrophilic balance within the molecule is altered. One criterion of this alteration is the relative mobility of these new compounds on silicic-acid, thin-layer chromatograms. The mobility of the compound is directly related to the molecular structure of the molecule.
By changing the hydrophilic region of the phosphatidylcholine molecule, all of the described compounds now have different migration rates. Three of the compounds (A, B, D) have mobilities greater than the phosphatidyl, whereas one (C) has a mobility less than phophatidylcholine. Therefore, the hydrophobic-to-hydrophilic balance in each of the phosphatidylcholine molecules has been altered. These new compounds have utility as solubilizing agents in food-processing, industrial and biological applications. In addition, because of their close structural relation to phosphatidylcholine, they also find application in clinical medicine, such as the regression of atherosclerotic lesions, via the solubilization of deposited cholesterol.
Claims (9)
1. A synthetic phosphatidyl quaternary ammonium compound represented by the formula: ##STR4## wherein R is a C14 to C20 hydrocarbon radical; a, b and c represent whole integers of from 0 to .Badd..[.3.]..Baddend. .Iadd.2 and a, b and c in total are equal to at least one.Iaddend.; d represents .Iadd.a .Iaddend.whole .[.integers.]. .Iadd.integer .Iaddend.of .[.from 1 to 5, except that in combination a, b and c cannot be zero and d cannot be two.]. .Iadd.2.Iaddend.; and R1, R2, R3 and R4 are methylene radicals.
2. The compound of claim 1 wherein R is an ethylenically unsaturated hydrocarbon radical.
3. The compound of claim 1 wherein R is a fatty radical.
4. The compound of claim 1 wherein the R radicals are different hydrocarbon radicals.
5. The compound of claim 1 wherein a, b and c .[.are zero.]. .Iadd.in total are equal to one.Iaddend.. .[.6. The compound of claim 1 wherein R4 is a tetramethylene radical and a, b and c are zero..]. .[.7. The compound of claim 1 wherein R4 is a trimethylene radical and a, b and c are
one, and R1, R2 and R3 are a methylene radical..]. .[.8.
The compound of claim 6 wherein R is a fatty radical..]. 9. The compound of claim 1 wherein ##STR5## is a myristoyl, palmitoyl, oleoyl, linoleoyl, stearoyl, egg yolk or
soybean radical. 10. The compound of claim 1 selected from the group consisting of:
.[.dioleoyl phosphatidyl-(methylethylene-N-triethyl)ammonium;.].
dipalmitoyl phosphatidyl-(ethylene-N-dimethylethyl)ammonium;
distearoyl phosphatidyl-(ethylene-N-dimethylethyl)ammonium; .Iadd.and .Iaddend.
oleoyl-palmitoyl phosphatidyl-(ethylene-N-dimethylethyl)ammonium.[.;
dimyristoyl phosphatidyl-(tetramethylene-N-dipropylmethyl)ammonium;
dipalmitoyl phosphatidyl-(trimethylene-N-trimethyl)ammonium;
egg phosphatidyl-(trimethylene-N-trimethyl)ammonium;
soybean phosphatidyl-(trimethylene-N-trimethyl)amonium; and
dipalmitoyl phosphatidyl-(tetramethylene-N-trimethylene)ammonium.].. .[.11. The compound of claim 6 wherein ##STR6## is a myristoyl, palmitoyl, oleoyl, linoleoyl, stearoyl, egg yolk or
soybean radical..]. .Iadd.12. The compound of claim 1 wherein R1, R2 and R3 are not the same number of methylene radicals. .Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/093,631 USRE30748E (en) | 1976-10-12 | 1979-11-13 | Phosphatidyl quaternary ammonium compounds |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/731,132 US4086257A (en) | 1976-10-12 | 1976-10-12 | Phosphatidyl quaternary ammonium compounds |
US06/093,631 USRE30748E (en) | 1976-10-12 | 1979-11-13 | Phosphatidyl quaternary ammonium compounds |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/731,132 Reissue US4086257A (en) | 1976-10-12 | 1976-10-12 | Phosphatidyl quaternary ammonium compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE30748E true USRE30748E (en) | 1981-09-22 |
Family
ID=26787749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/093,631 Expired - Lifetime USRE30748E (en) | 1976-10-12 | 1979-11-13 | Phosphatidyl quaternary ammonium compounds |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE30748E (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE31609E (en) | 1976-10-12 | 1984-06-19 | Lipid Specialties, Inc. | Method of preparing a controlled-release pharmaceutical preparation, and resulting composition |
US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
US4560599A (en) | 1984-02-13 | 1985-12-24 | Marquette University | Assembling multilayers of polymerizable surfactant on a surface of a solid material |
EP0178624A2 (en) * | 1984-10-16 | 1986-04-23 | Ciba-Geigy Ag | Liposomes from synthetic lipids |
US5011964A (en) * | 1985-03-07 | 1991-04-30 | Cornell Research Foundation, Inc. | Novel diacylglycerophosphoric acid esters and use thereof as substrates in enzyme assays |
EP0467838A2 (en) * | 1990-07-17 | 1992-01-22 | Ciba-Geigy Ag | Process for preparing an injectable liposome dispersion |
US20110098265A1 (en) * | 2009-10-28 | 2011-04-28 | Neuroscience, Inc. | Methods for reducing cravings and impulses associated with addictive and compulsive behaviors |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2864848A (en) * | 1954-07-19 | 1958-12-16 | Ca Nat Research Council | Method of producing l-alpha-glycerylphosphorylcholine |
US2931818A (en) * | 1957-04-29 | 1960-04-05 | Cutter Lab | Process of treating lecithin for freeing it of its depressor factor |
US3577446A (en) * | 1968-09-09 | 1971-05-04 | American Home Prod | Phosphatidylalkanolamine derivatives |
US4159988A (en) * | 1974-08-06 | 1979-07-03 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Synthetic phospholipids, a process for their manufacture and their use |
-
1979
- 1979-11-13 US US06/093,631 patent/USRE30748E/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2864848A (en) * | 1954-07-19 | 1958-12-16 | Ca Nat Research Council | Method of producing l-alpha-glycerylphosphorylcholine |
US2931818A (en) * | 1957-04-29 | 1960-04-05 | Cutter Lab | Process of treating lecithin for freeing it of its depressor factor |
US3577446A (en) * | 1968-09-09 | 1971-05-04 | American Home Prod | Phosphatidylalkanolamine derivatives |
US4159988A (en) * | 1974-08-06 | 1979-07-03 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Synthetic phospholipids, a process for their manufacture and their use |
Non-Patent Citations (4)
Title |
---|
Anjea, et al., Biochem. Biophys, Acta, 248, 455-457, (1971). * |
Chandra, J., Chem. Phys. Lipids 4 104-108, (1970). * |
Dawson, R., Biochem J. 102, 76, (1967). * |
Sears, B., et al., Biochem. Biophys. Res. Comm. 60, 1141-1147, (1974). * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE31609E (en) | 1976-10-12 | 1984-06-19 | Lipid Specialties, Inc. | Method of preparing a controlled-release pharmaceutical preparation, and resulting composition |
US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
US4560599A (en) | 1984-02-13 | 1985-12-24 | Marquette University | Assembling multilayers of polymerizable surfactant on a surface of a solid material |
EP0178624A2 (en) * | 1984-10-16 | 1986-04-23 | Ciba-Geigy Ag | Liposomes from synthetic lipids |
EP0178624A3 (en) * | 1984-10-16 | 1987-05-27 | Ciba-Geigy Ag | Liposomes from synthetic lipids |
US4971802A (en) * | 1984-10-16 | 1990-11-20 | Ciba-Geigy Corporation | Liposomes of synthetic lipids |
US5011964A (en) * | 1985-03-07 | 1991-04-30 | Cornell Research Foundation, Inc. | Novel diacylglycerophosphoric acid esters and use thereof as substrates in enzyme assays |
EP0467838A2 (en) * | 1990-07-17 | 1992-01-22 | Ciba-Geigy Ag | Process for preparing an injectable liposome dispersion |
EP0467838A3 (en) * | 1990-07-17 | 1992-09-02 | Ciba-Geigy Ag | Process for preparing an injectable liposome dispersion |
US20110098265A1 (en) * | 2009-10-28 | 2011-04-28 | Neuroscience, Inc. | Methods for reducing cravings and impulses associated with addictive and compulsive behaviors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4086257A (en) | Phosphatidyl quaternary ammonium compounds | |
US4320121A (en) | Method of emulsifying cholesterol, cholesterol esters and triglyceride compounds | |
EP0922707B2 (en) | A process for the purification of phosphatidylserine | |
Kates et al. | pH-dissociation characteristics of cardiolipin and its 2′-deoxy analogue | |
Sigler et al. | An X-ray diffraction study of inhibited derivatives of α-chymotrypsin | |
USRE30748E (en) | Phosphatidyl quaternary ammonium compounds | |
US5516662A (en) | Process for the preparation of headgroup-modified phospholipids using phosphatidylhydroxyalkanols as intermediates | |
Bruzik | Synthesis and spectral properties of chemically and stereochemically homogeneous sphingomyelin and its analogues | |
Ramirez et al. | Synthesis of phosphodiesters: the cyclic enediol phosphoryl (CEP) method | |
US4163748A (en) | Propane-1,3-diol phosphatides and method of preparing the same | |
Hermetter et al. | 1-O-Trityl-sn-glycero-3-phosphocholine: a new intermediate for the facile preparation of mixed-acid 1, 2-diacylglycerophosphocholines | |
US4985412A (en) | Phosphoric acid ester, process for preparing the same, and detergent composition containing the same | |
Eibl | An efficient synthesis of mixed acid phospholipids using 1-palmitoyl-sn-glycerol-3-phosphoric acid bromoalkyl esters | |
US5155099A (en) | Alkylphosphonoserines and pharmaceutical compositions useful as cytostatic agents | |
JP3697189B2 (en) | Phospholipid base exchange method | |
US4751320A (en) | Phosphoric ester and process for producing same | |
Stewart et al. | Synthesis and characterization of deoxy analogues of diphytanylglycerol phospholipids | |
GB1585291A (en) | Phosphatidyl compounds and method of preparing same | |
EP0497234A2 (en) | Phosphatidylinositol analogues, inhibitors of phosphatidyl-inositol-specific phospholipase C | |
IE41597B1 (en) | Synthetic phospholipids a process for their manufacture and their use | |
Pisch et al. | Properties of unusual phospholipids IV: Chemoenzymatic synthesis of phospholipids bearing acetylenic fatty acids | |
Roux et al. | Simple preparation of 1, 2-dipalmitoyl-sn-glycero-3-phosphoric acid and deuterated choline derivatives | |
Kordalis et al. | Syntheses of arsinolipids: non‐isosteric analogues of phospholipids | |
US6737536B1 (en) | Inositolphospholipids and analogues | |
JP2701076B2 (en) | Phosphate ester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LIPID SPECIALTIES, INC., 281 ALBANY ST., CAMBRIDGE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SEARS, BARRY D.;REEL/FRAME:004134/0327 Effective date: 19830425 |