USRE30505E - Process and material for manufacturing semiconductor devices - Google Patents
Process and material for manufacturing semiconductor devices Download PDFInfo
- Publication number
- USRE30505E USRE30505E US05/914,540 US91454078A USRE30505E US RE30505 E USRE30505 E US RE30505E US 91454078 A US91454078 A US 91454078A US RE30505 E USRE30505 E US RE30505E
- Authority
- US
- United States
- Prior art keywords
- oxygen
- mixture
- halocarbon
- plasma
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000000463 material Substances 0.000 title claims abstract description 27
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 230000008569 process Effects 0.000 title claims description 29
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 48
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000001301 oxygen Substances 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 238000005530 etching Methods 0.000 claims abstract description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 150000008282 halocarbons Chemical class 0.000 claims abstract description 19
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 14
- 239000007789 gas Substances 0.000 claims abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract 7
- 229920002120 photoresistant polymer Polymers 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000008246 gaseous mixture Substances 0.000 claims description 12
- 125000001153 fluoro group Chemical group F* 0.000 claims description 7
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052753 mercury Inorganic materials 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 3
- 150000001875 compounds Chemical class 0.000 claims 3
- 229910052731 fluorine Inorganic materials 0.000 claims 3
- 239000011737 fluorine Substances 0.000 claims 3
- 239000011343 solid material Substances 0.000 claims 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 abstract description 44
- 239000000377 silicon dioxide Substances 0.000 abstract description 8
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 6
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 5
- 239000003870 refractory metal Substances 0.000 abstract 1
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910007277 Si3 N4 Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000002144 chemical decomposition reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- -1 GaAsP Chemical compound 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- OJCDKHXKHLJDOT-UHFFFAOYSA-N fluoro hypofluorite;silicon Chemical compound [Si].FOF OJCDKHXKHLJDOT-UHFFFAOYSA-N 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- BUGBHKTXTAQXES-DBXDQKISSA-N selenium-70 Chemical compound [70Se] BUGBHKTXTAQXES-DBXDQKISSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F4/00—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
- H01L21/32137—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
Definitions
- This invention relates in general to a process and material useful in analytical procedures, and more particularly to a process and material useful in the manufacture of semiconductor devices, enabling the etching of various metals (molybdenum, tungsten, tantalum, etc.) and common passivation or diffusion barrier materials (e.g., SiO, SiO 2 , Si 3 N 4 ) during the processing of such devices.
- various metals mobdenum, tungsten, tantalum, etc.
- common passivation or diffusion barrier materials e.g., SiO, SiO 2 , Si 3 N 4
- a slice of semiconductor material accepts a relatively thin layer, typically 5,000 to 10,000 A., of an insulating film grown or deposited on one or both of its surfaces.
- a layer of photoresist material is then spun onto the insulating layer of one side, and is subsequently exposed to UV light through a mask having openings corresponding to those areas on the semiconductor slice where it is desired to generate semiconductor junctions.
- the mask is removed and the layer of photoresist is developed and processed by means of a suitable solvent, exposing select areas of the underlying insulating layer.
- a wet acid-based dip is then used to etch the insulating layer from the surface of the semiconductor slice in the exposed areas, the remaining photoresist material serving as an etch-mask for the surface covered by it.
- a water rinse and a drying step are implemented.
- the remainder of the photoresist material is subsequently removed, followed by an acid dip required for the removal of inorganic residues.
- the photoresist material can also be removed by a plasma process utilizing the halocarbon-oxygen gaseous mixtures disclosed by the present inventor in his U.S. Pat. application, Ser. No. 173,537, filed Aug. 20, 1971.
- diffusion of dopant material into the exposed areas of the semiconductor slice is commenced to produce a predetermined junction.
- the general object of the present invention is to provide an improved process and new material that overcome the aforementioned problems and provide uniform etching reactions at a rapid rate.
- a gas discharge flow apparatus adapted to form a gaseous plasma within a reaction chamber. It has been discovered that if the generated plasma comprises reactive species resulting from the decomposition and excitation of a gaseous binary mixture of oxygen and a halocarbon that includes flourine as a major substituent, passivation layers or diffusion barriers (e.g., SiO, SiO 2 , Si 3 N 4 ) can be etched in excess of 3000 A./min. without degradation of an organic photoresist etch mask. Polycrystalline and single crystals of silicon, and a variety of metals (e.g., molybdenum, tantalum, tungsten, etc.) can be etched in excess of 2000 A./min.
- passivation layers or diffusion barriers e.g., SiO, SiO 2 , Si 3 N 4
- FIG. 1 is an illustration in diagrammatic form of a gas discharge flow system useful in the process of this invention.
- FIG. 2 is an illustration in cross-sectional view of a typical semiconductor slice at an intermediate stage of the manufacturing process.
- FIG. 1 depicts diagrammatically an apparatus performing the process described in the invention.
- the apparatus includes a reactor chamber 2, typically made of quartz, having a cover 4 and a gas inlet manifold 6.
- the side of the reactor 2 has been partially broken away in the drawing so as to better illustrate the gas diffusion tubes 7 which are disposed therein and are externally connected to manifold 6.
- Such a reactor is disclosed in U.S. Pat. No. 3,619,403, issued on Nov. 9, 1971, and assigned to LFE Corporation.
- a pressurized supply 8 of a binary gaseous mixture comprised of oxygen and a halocarbon gas described below is connected through a pressure regulating valve 10, a three-way solenoid valve 12, and a flowmeter 14 to manifold 6.
- a vacuum gauge 16 provides an indication of total reaction pressure in reactor 2.
- the corresponding flow lines are constantly evacuated through the three-way solenoid valve 12 leading to the mechanical vacuum pump 18, this being the case also under conditions where air at atmospheric pressure prevails in reactor 2 through the utilization of the three-way isolation valve 20.
- a source of radio frequency power 22 provides exciting energy through a matching network 24 to coil 26 which surrounds reaction chamber 2.
- inductor 26 consists of a multiturn coil having two coil sections whose respective coil turns are wound in opposite directions, as disclosed in U.S. Pat. application Ser. No. 186,739, filed on Oct. 5, 1971, now U.S. Pat. No. 3,705,091, and assigned to LFE Corporation.
- the binary gaseous mixture is preferably premixed and supplied to the reactor from a single container 8, it will be apparent that the oxygen and halocarbon gases may, if desired, be supplied from separate sources via separate flow lines and mixed within either manifold 6 or reactor 2.
- the gaseous mixture is admitted to reaction chamber 2 where the inductively coupled radio frequency energy creates a "cold" plasma.
- Such a reaction system is commercially available from the Process Control Division of LFE Corporation, under the trade designation PDE-301 or PDE-504.
- the RF power employed is between 175 and 225 watts continuous radiation at 13.5 mHz.
- the general process is one in which as many as 25 semi-conductor wafers at an appropriate stage of the manufacturing process are placed in reactor 2 and exposed to the plasma generated by the admission of an appropriate gaseous mixture of oxygen and a halocarbon gas.
- the reaction chamber is evacuated to a residual pressure of 20 to 50 microns mercury prior to the admission of the gaseous etchant.
- the process provides rapid and uniform etching of dielectrics (up to 5000 A./min.) across a typical production batch of semiconductor slices with negligible loss of an organic etch mask.
- FIG. 2 there is shown in cross-sectional view a portion of a typical semiconductor device at a suitable processing stage for the utilization of this invention.
- the semiconductor device consists of a semiconductor material 30, such as silicon (or GaAs, GaAsP, InSb) having a relatively thin (200 to 10,000 A.) layer of a dielectric material 32 (e.g. SiO, SiO 2 , Si 3 N 4 ) either deposited or thermally grown onto it.
- This dielectric layer 32 (sometimes p or n-type doped) is to be etched at the openings 34 and 36 in the overlying photoresist mask 38.
- These openings or windows in the etch mask 38 represent fractional areas of less than 1 percent to 80 percent of the total area of the semiconductor slice, and correspond to positions on the semiconductor slice where it is desired to form a semiconductor junction by a subsequent diffusion of suitable dopants.
- an effective halocarbon should be selected from the group of organohalides no more than two carbon atoms per molecule and in which the carbon atoms are attached to a predominance of fluorine atoms. If a liquid halocarbon is considered, it should have a boiling point between 20° and 120° C. associated with a vapor pressure of at least 50 torr at 25° C.
- the preferred gaseous mixture is produced from a mixture containing 8.5 percent by volume of oxygen and 91.5 percent tetrafluoromethane gas.
- This optimum combination can be supplied from a prepared pressurized mixture maintained in a commercially available metal cylinder. Careful and close control of this dry etching process will permit the manufacture of semiconductor devices with high line-line resolution (0.15 mil.). It also provides a significant reduction in the undercutting of the etch mask, coupled with the option to control the slope of the etched channel. It further provides an efficient and simultaneous means for etching various dielectrics with an insignificant chemical or physical deterioration of over-exposed underlying substrates such as aluminum, gallium arsenide, indium antimonide, garnets, etc.
- the successful operation of this process is believed to include competitive homogeneous and heterogenous reactions in the plasma such that atomic oxygen, generated by the decomposition of molecular oxygen, reacts with solid silicon dioxide layers to form a reduced silicon oxide entity, e.g., silicon monoxide.
- This lower oxide of silicon is further converted by the fluorocarbon-based plasma to either volatile silicon tetrafluoride, SiF 4 , or to volatile silicon oxyfluoride, Si 2 OF 6 , that is removed with the main gas stream to the vacuum pump.
- This reaction path, via the lower oxide of silicon gives rise to thermochemically preferable reaction products as opposed to products that will ensue from the direct attack of either fluorine atoms or fluorinated hydrocarbon radicals on a silicon dioxide solid film.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
__________________________________________________________________________ Etchant Total flow rate pressure RF Percent Etch (micromoles (microns power area No. rate (A Etchant sec..sup.-1) Hg) (watts) Material etched etched wafers min..sup.-1) __________________________________________________________________________ CF.sub.4, 1% O.sub.2 42.6 695 200 Th..sup.1 SiO.sub.2 40 1 300 CF.sub.4, 8.5% O.sub.2 9 220 150 Th..sup.1 SiO.sub.2 5 1 620 CF.sub.4, 8.5% O.sub.2 52 780 200 Th..sup.1 SiO.sub.2 40 25 300 CF.sub.4, 8.5% O.sub.2 55 850 250 Th..sup.1 SiO.sub.2 20 1 1,000 CF.sub.4, 8.5% O.sub.2 22 450 150 Dep..sup.2 SiO.sub.2 on Al 5 1 2,600 CF.sub.4,8.5% O.sub.2 45 600 200 Molybdenum 70 1 1,500 CF.sub.4, 8.5% O.sub.2 15 340 250 Dep. Si.sub.3 N.sub.4 5 20 670 CF.sub.4, 8.5% O.sub.2 55 850 200 Tungsten 70 1 1,000 CF.sub.4,8.5%O.sub.2 55 850 200 Selenium 70 1 1,500 CF.sub.4, 8.5% O.sub.2 15 340 200 Dep. Si.sub.3 N.sub.4 5 1 1,300 CF.sub.4, 15.5% O.sub. 2 55 770 200 Th. SiO.sub.2 40 1 840 CF.sub.4, 23.5% O.sub.2 28 465 125 Th. SiO.sub.2 40 1 800 CF.sub.4, 29% O.sub.2 100 1,343 300 Th. SiO.sub.2 100 1 5,100 CF.sub.4, 50% O.sub.2 110 1,415 150 Th. SiO.sub.2 100 1 1,890 CF.sub.4, 69% O.sub.2 17 275 300 Th. SiO.sub.2 100 1 1,000 CHF.sub.3, 41% O.sub.2 50 1,365 300 Th. SiO.sub.2 100 1 2,000 CHF.sub.3,55% O.sub.2 38 1,005 125 Th. SiO.sub.2 100 1 1,200 CHF.sub.3, 80.5% O.sub.2 133 3,496 400 Th. SiO.sub.2 100 1 2,800 CHF.sub.3, 93.7% O.sub.2 115 2,996 300 Th. SiO.sub.2 100 1 500 C.sub.2 F.sub.6, 50% O.sub.2 108 1,435 300 Th. SiO.sub.2 40 1 500 CF.sub.2 ClCCl.sub.2 F, 75% O.sub.2 53 710 300 Th. SiO.sub.2 40 1 1,000 __________________________________________________________________________ .sup.1 Th = Thermally oxidized. .sup.2 Dep. = Vapor deposited.
Claims (8)
- intermediate low order oxides..]. 2. A process for .Iadd.chemically .Iaddend.etching .Iadd.solid .Iaddend.material in a plasma environment comprising the step of:exposing the material to a gaseous plasma formed from a binary mixture consisting essentially of oxygen and a halocarbon having only one carbon atom per molecule, said carbon atom being linked to a predominance of
- fluorine atoms to produce as an intermediate a low order oxide. 3. A process as in claim 2 wherein the reaction temperature is within the range
- of 25 to 300 degrees centigrade. 4. A process as in claim 2 wherein said
- halocarbon gas includes at least one hydrogen atom. 5. A process as in claim 2 wherein said halocarbon and said oxygen are supplied to a reactor
- from separate sources. 6. A process as in claim 2 wherein said halocarbon and said oxygen are supplied to a reactor from a common premixed source.
- A process as in claim 6 wherein said gaseous binary mixture contains 8.5 percent oxygen and 91.5 percent tetrafluoromethane by volume,said mixture being supplied to said reactor at a total flow rate within the range of 9 to 55 micromoles per second corresponding total pressures of 220 to 850 microns mercury, and having RF energy coupled to said mixture within the range of 20 to 400 watts. .[.8. A composition of matter, useful for chemically converting material in a plasma environment, consisting essentially of a binary gaseous mixture of oxygen and a halocarbon having no more than two carbon atoms per molecule, wherein at least one carbon atom in said molecule is linked to a predominance of fluorine atoms..].
- A composition of matter, useful in a process for .Iadd.chemically .Iaddend.etching .Iadd.a silicon containing .Iaddend.material in the presence of an organic etch mask by forming fluorine-based and oxyfluoride-based compounds volatile in a low pressure-low temperature plasma, consisting essentially of a binary gaseous mixture of oxygen and tetrafluoromethane wherein said mixture contains 1 to 25 percent oxygen by volume. .[.10. A composition of matter, useful in a process for etching material in the absence of an organic etch mask by forming fluorine-based and oxyfluoride-based compounds volatile in a low pressure-low temperature plasma, consisting essentially of a binary gaseous mixture of oxygen and tetrafluoromethane wherein said mixture contains 1 to 75 percent oxygen by volume..]. .[.11. A composition of matter, useful in a process for etching material in the presence of a metal etch mask by forming fluorine-based and oxyfluoride-based compounds volatile in a low pressure-low temperature plasma, consisting essentially of a binary gaseous mixture of oxygen and tetrafluoromethane wherein said mixture contains 1 to 75 percent oxygen by
- volume..]. 12. A composition of matter, useful in a process for .Iadd.etching silicon oxide in the presence of photoresist in .Iaddend.manufacturing semiconductors, comprising a binary gaseous mixture of oxygen and tetrafluoromethane, said oxygen containing 8.5 percent of the mixture by volume. .Iadd. 13. A process for chemically etching solid material in a plasma environment, comprising the step of:exposing the material to a gaseous plasma at a pressure of at least 220 microns formed from a binary mixture consisting essentially of oxygen and a halocarbon having no more than two carbon atoms per molecule, wherein at least one carbon atom in said molecule is linked to a predominance of fluorine atoms to produce as an intermediate low order oxides. .Iaddend. .Iadd. 14. A process for chemically etching solid material in a plasma environment, comprising the step of:exposing the material to a gaseous plasma formed in an RF field from a binary mixture consisting essentially of oxygen and a halocarbon having no more than two carbon atoms per molecule, wherein at least one carbon atom in said molecule is linked to a predominance of fluorine atoms to produce as an intermediate low order oxides. .Iaddend..Iadd. 15. A process for chemically etching solid material in a plasma environment, comprising the step of:exposing the material to a gaseous plasma formed from a binary mixture consisting essentially of oxygen and a halocarbon having no more than two carbon atoms per molecule, wherein at least one carbon atom in said molecule is linked to a predominance of fluorine atoms to produce as an intermediate low order oxides and wherein said mixture contains 1 to 25% oxygen by volume. .Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/914,540 USRE30505E (en) | 1972-05-12 | 1978-06-12 | Process and material for manufacturing semiconductor devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25286372A | 1972-05-12 | 1972-05-12 | |
US05/914,540 USRE30505E (en) | 1972-05-12 | 1978-06-12 | Process and material for manufacturing semiconductor devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US25286372A Reissue | 1972-05-12 | 1972-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE30505E true USRE30505E (en) | 1981-02-03 |
Family
ID=33161828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/914,540 Expired - Lifetime USRE30505E (en) | 1972-05-12 | 1978-06-12 | Process and material for manufacturing semiconductor devices |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE30505E (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4353777A (en) | 1981-04-20 | 1982-10-12 | Lfe Corporation | Selective plasma polysilicon etching |
EP0078161A2 (en) * | 1981-10-26 | 1983-05-04 | Applied Materials, Inc. | Materials and methods for plasma etching of oxides and nitrides of silicon |
US4787957A (en) | 1987-09-25 | 1988-11-29 | Air Products And Chemicals, Inc. | Desmear and etchback using NF3 /O2 gas mixtures |
US4801427A (en) | 1987-02-25 | 1989-01-31 | Adir Jacob | Process and apparatus for dry sterilization of medical devices and materials |
US4818488A (en) | 1987-02-25 | 1989-04-04 | Adir Jacob | Process and apparatus for dry sterilization of medical devices and materials |
US4836886A (en) * | 1987-11-23 | 1989-06-06 | International Business Machines Corporation | Binary chlorofluorocarbon chemistry for plasma etching |
US4877482A (en) * | 1989-03-23 | 1989-10-31 | Motorola Inc. | Nitride removal method |
US4917586A (en) | 1987-02-25 | 1990-04-17 | Adir Jacob | Process for dry sterilization of medical devices and materials |
US4931261A (en) | 1987-02-25 | 1990-06-05 | Adir Jacob | Apparatus for dry sterilization of medical devices and materials |
US4943417A (en) | 1987-02-25 | 1990-07-24 | Adir Jacob | Apparatus for dry sterilization of medical devices and materials |
US4975146A (en) * | 1989-09-08 | 1990-12-04 | Motorola Inc. | Plasma removal of unwanted material |
US4976920A (en) * | 1987-07-14 | 1990-12-11 | Adir Jacob | Process for dry sterilization of medical devices and materials |
US5087418A (en) * | 1987-02-25 | 1992-02-11 | Adir Jacob | Process for dry sterilization of medical devices and materials |
US5171525A (en) * | 1987-02-25 | 1992-12-15 | Adir Jacob | Process and apparatus for dry sterilization of medical devices and materials |
US5200158A (en) * | 1987-02-25 | 1993-04-06 | Adir Jacob | Process and apparatus for dry sterilization of medical devices and materials |
US5362672A (en) * | 1988-06-17 | 1994-11-08 | Tadahiro Ohmi | Method of forming a monocrystalline film having a closed loop step portion on the substrate |
US5861065A (en) * | 1997-01-21 | 1999-01-19 | Air Products And Chemicals, Inc. | Nitrogen trifluoride-oxygen thermal cleaning process |
US5868852A (en) * | 1997-02-18 | 1999-02-09 | Air Products And Chemicals, Inc. | Partial clean fluorine thermal cleaning process |
US5922622A (en) * | 1996-09-03 | 1999-07-13 | Vanguard International Semiconductor Corporation | Pattern formation of silicon nitride |
US5962195A (en) | 1997-09-10 | 1999-10-05 | Vanguard International Semiconductor Corporation | Method for controlling linewidth by etching bottom anti-reflective coating |
WO2000002674A1 (en) * | 1998-07-13 | 2000-01-20 | Mattson Technology, Inc. | Cleaning process for rapid thermal processing system |
US20020003126A1 (en) * | 1999-04-13 | 2002-01-10 | Ajay Kumar | Method of etching silicon nitride |
US20030038112A1 (en) * | 2000-03-30 | 2003-02-27 | Lianjun Liu | Optical monitoring and control system and method for plasma reactors |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3477936A (en) * | 1967-06-29 | 1969-11-11 | Ppg Industries Inc | Sputtering of metals in an atmosphere of fluorine and oxygen |
US3615956A (en) * | 1969-03-27 | 1971-10-26 | Signetics Corp | Gas plasma vapor etching process |
US3654108A (en) * | 1969-09-23 | 1972-04-04 | Air Reduction | Method for glow cleaning |
-
1978
- 1978-06-12 US US05/914,540 patent/USRE30505E/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3477936A (en) * | 1967-06-29 | 1969-11-11 | Ppg Industries Inc | Sputtering of metals in an atmosphere of fluorine and oxygen |
US3615956A (en) * | 1969-03-27 | 1971-10-26 | Signetics Corp | Gas plasma vapor etching process |
US3654108A (en) * | 1969-09-23 | 1972-04-04 | Air Reduction | Method for glow cleaning |
Non-Patent Citations (1)
Title |
---|
The Merck Index of Chemicals and Drugs, Seventh Edition, published by Merck & Co., Inc. in 1960, p. 212. * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4353777A (en) | 1981-04-20 | 1982-10-12 | Lfe Corporation | Selective plasma polysilicon etching |
EP0078161A2 (en) * | 1981-10-26 | 1983-05-04 | Applied Materials, Inc. | Materials and methods for plasma etching of oxides and nitrides of silicon |
EP0078161A3 (en) * | 1981-10-26 | 1985-05-15 | Applied Materials, Inc. | Materials and methods for plasma etching of oxides and nitrides of silicon |
US4917586A (en) | 1987-02-25 | 1990-04-17 | Adir Jacob | Process for dry sterilization of medical devices and materials |
US4801427A (en) | 1987-02-25 | 1989-01-31 | Adir Jacob | Process and apparatus for dry sterilization of medical devices and materials |
US4818488A (en) | 1987-02-25 | 1989-04-04 | Adir Jacob | Process and apparatus for dry sterilization of medical devices and materials |
US5200158A (en) * | 1987-02-25 | 1993-04-06 | Adir Jacob | Process and apparatus for dry sterilization of medical devices and materials |
US4931261A (en) | 1987-02-25 | 1990-06-05 | Adir Jacob | Apparatus for dry sterilization of medical devices and materials |
US4943417A (en) | 1987-02-25 | 1990-07-24 | Adir Jacob | Apparatus for dry sterilization of medical devices and materials |
EP0596862A2 (en) | 1987-02-25 | 1994-05-11 | JACOB, Adir | Process and apparatus for dry sterilization of medical devices and materials |
US5087418A (en) * | 1987-02-25 | 1992-02-11 | Adir Jacob | Process for dry sterilization of medical devices and materials |
US5171525A (en) * | 1987-02-25 | 1992-12-15 | Adir Jacob | Process and apparatus for dry sterilization of medical devices and materials |
US4976920A (en) * | 1987-07-14 | 1990-12-11 | Adir Jacob | Process for dry sterilization of medical devices and materials |
US4787957A (en) | 1987-09-25 | 1988-11-29 | Air Products And Chemicals, Inc. | Desmear and etchback using NF3 /O2 gas mixtures |
US4836886A (en) * | 1987-11-23 | 1989-06-06 | International Business Machines Corporation | Binary chlorofluorocarbon chemistry for plasma etching |
US5362672A (en) * | 1988-06-17 | 1994-11-08 | Tadahiro Ohmi | Method of forming a monocrystalline film having a closed loop step portion on the substrate |
US4877482A (en) * | 1989-03-23 | 1989-10-31 | Motorola Inc. | Nitride removal method |
EP0388749A1 (en) * | 1989-03-23 | 1990-09-26 | Motorola Inc. | Titanium nitride removal method |
US4975146A (en) * | 1989-09-08 | 1990-12-04 | Motorola Inc. | Plasma removal of unwanted material |
US5922622A (en) * | 1996-09-03 | 1999-07-13 | Vanguard International Semiconductor Corporation | Pattern formation of silicon nitride |
US5861065A (en) * | 1997-01-21 | 1999-01-19 | Air Products And Chemicals, Inc. | Nitrogen trifluoride-oxygen thermal cleaning process |
US5868852A (en) * | 1997-02-18 | 1999-02-09 | Air Products And Chemicals, Inc. | Partial clean fluorine thermal cleaning process |
US5962195A (en) | 1997-09-10 | 1999-10-05 | Vanguard International Semiconductor Corporation | Method for controlling linewidth by etching bottom anti-reflective coating |
WO2000002674A1 (en) * | 1998-07-13 | 2000-01-20 | Mattson Technology, Inc. | Cleaning process for rapid thermal processing system |
US6236023B1 (en) | 1998-07-13 | 2001-05-22 | Mattson Technology, Inc. | Cleaning process for rapid thermal processing system |
US20020003126A1 (en) * | 1999-04-13 | 2002-01-10 | Ajay Kumar | Method of etching silicon nitride |
US20030038112A1 (en) * | 2000-03-30 | 2003-02-27 | Lianjun Liu | Optical monitoring and control system and method for plasma reactors |
US20030201162A1 (en) * | 2000-03-30 | 2003-10-30 | Lianjun Liu | Optical monitoring and control system and method for plasma reactors |
US7018553B2 (en) | 2000-03-30 | 2006-03-28 | Tokyo Electron Limited | Optical monitoring and control system and method for plasma reactors |
US7462335B2 (en) | 2000-03-30 | 2008-12-09 | Tokyo Electron Limited | Optical monitoring and control system and method for plasma reactors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3867216A (en) | Process and material for manufacturing semiconductor devices | |
USRE30505E (en) | Process and material for manufacturing semiconductor devices | |
US3795557A (en) | Process and material for manufacturing semiconductor devices | |
US4028155A (en) | Process and material for manufacturing thin film integrated circuits | |
US3951709A (en) | Process and material for semiconductor photomask fabrication | |
US4213818A (en) | Selective plasma vapor etching process | |
US4431477A (en) | Plasma etching with nitrous oxide and fluoro compound gas mixture | |
US6110838A (en) | Isotropic polysilicon plus nitride stripping | |
US4484979A (en) | Two-step anisotropic etching process for patterning a layer without penetrating through an underlying thinner layer | |
US5534107A (en) | UV-enhanced dry stripping of silicon nitride films | |
KR970000417B1 (en) | Dry etching method and dry etching device | |
US5294568A (en) | Method of selective etching native oxide | |
KR101056199B1 (en) | Plasma oxidation treatment method | |
US5741396A (en) | Isotropic nitride stripping | |
US4717447A (en) | Method of manufacturing a semiconductor device by means of plasma etching | |
US4069096A (en) | Silicon etching process | |
US4174251A (en) | Method of selective gas etching on a silicon nitride layer | |
JPH02114525A (en) | Removal of organic compound film and its removing device | |
US6855643B2 (en) | Method for fabricating a gate structure | |
US5437765A (en) | Semiconductor processing | |
US6037270A (en) | Method of manufacturing semiconductor device and methods of processing, analyzing and manufacturing its substrate | |
KR100500908B1 (en) | Uv/halogen treatment for dry oxide etching | |
US5387312A (en) | High selective nitride etch | |
KR100193874B1 (en) | Dry etching method | |
US5332653A (en) | Process for forming a conductive region without photoresist-related reflective notching damage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MANUFACTURERS HANOVER TRUST COMPANY, A NY BANKING Free format text: SECURITY INTEREST;ASSIGNOR:MATHESON GAS PRODUCTS, INC.;REEL/FRAME:004168/0548 Effective date: 19830713 |
|
AS | Assignment |
Owner name: MARINE MIDLAND BANK, N.A., ONE MIDLAND CENTER, BUF Free format text: SECURITY INTEREST;ASSIGNOR:LFE CORPORATION, A CORP. OF DE.;REEL/FRAME:004526/0096 Effective date: 19860214 |
|
AS | Assignment |
Owner name: MARINE MIDLAND BANK, N.A., ONE MARINE MIDLAND CENT Free format text: SECURITY INTEREST;ASSIGNOR:LFE CORPORATION, A CORP. OF DE.;REEL/FRAME:004804/0379 Effective date: 19870416 Owner name: MARINE MIDLAND BANK, N.A.,NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:LFE CORPORATION, A CORP. OF DE.;REEL/FRAME:004804/0379 Effective date: 19870416 |
|
AS | Assignment |
Owner name: PARKWAY HOLDINGS INC. Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035 Effective date: 19871231 Owner name: PARKWAY INDUSTRIES INC. Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035 Effective date: 19871231 Owner name: MARK IV INDUSTRIES, INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PARKWAY ENTERPRISES INC.;REEL/FRAME:005020/0046 Effective date: 19871231 Owner name: MARK IV VENTURES INC. Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035 Effective date: 19871231 Owner name: MARK IV INDUSTRIES, INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MARK IV VENTURES INC.;REEL/FRAME:005020/0082 Effective date: 19871231 Owner name: MARK IV INDUSTRIES, INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PARKWAY INDUSTRIES INC.;REEL/FRAME:005020/0064 Effective date: 19871231 Owner name: MARK IV INDUSTRIES, INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MARK IV HOLDINGS INC.;REEL/FRAME:005020/0073 Effective date: 19871231 Owner name: AUDUBON ENTERPRISES INC. Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035 Effective date: 19871231 Owner name: MARK IV INDUSTRIES INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AUDUBON ENTERPRISES INC.;REEL/FRAME:005020/0091 Effective date: 19871231 Owner name: AUDUBON INDUSTRIES INC. Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035 Effective date: 19871231 Owner name: MARK IV HOLDINGS INC. Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035 Effective date: 19871231 Owner name: MARK IV INDUSTRIES, INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AUDUBON VENTURES INC.;REEL/FRAME:005020/0055 Effective date: 19871231 Owner name: AUDUBON HOLDINGS INC. Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035 Effective date: 19871231 Owner name: MARK IV INDUSTRIES, INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PARKWAY VENTURES INC.;REEL/FRAME:005020/0109 Effective date: 19871231 Owner name: AUDUBON VENTURES INC. Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035 Effective date: 19871231 Owner name: PARKWAY VENTURES INC. Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035 Effective date: 19871231 Owner name: MARK IV INDUSTRIES, INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AUDUBON INDUSTRIES, INC.;REEL/FRAME:005020/0100 Effective date: 19881231 Owner name: MARK IV INDUSTRIES, INC., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AUDUBORN HOLDINGS INC., A DE. CORP.;REEL/FRAME:005020/0118 Effective date: 19871231 Owner name: CODE-A-PHONE CORPORATION Free format text: MERGER;ASSIGNOR:LFE CORPORATION, (MERGED INTO);REEL/FRAME:005020/0027 Effective date: 19870930 Owner name: MARK IV INDUSTRIES, INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PARKWAY HOLDINGS INC.;REEL/FRAME:005044/0710 Effective date: 19871231 Owner name: PARKWAY ENTERPRISES INC. Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035 Effective date: 19871231 |
|
AS | Assignment |
Owner name: LFE CORPORATION Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MARINE MIDLAND BANK, N.A.;REEL/FRAME:005041/0045 Effective date: 19880223 |
|
AS | Assignment |
Owner name: CONRAC CORPORATION (80%) Free format text: ASSIGNS TO EACH ASSIGNEE THE PERCENTAGES OPPOSITE THEIR RESPECTIVE NAME;ASSIGNOR:CODE-A-PHONE CORPORATION, A CORP. DE;REEL/FRAME:005136/0610 Effective date: 19871231 Owner name: MARK IV INDUSTRIES, INC., (20%) Free format text: ASSIGNS TO EACH ASSIGNEE THE PERCENTAGES OPPOSITE THEIR RESPECTIVE NAME;ASSIGNOR:CODE-A-PHONE CORPORATION, A CORP. DE;REEL/FRAME:005136/0610 Effective date: 19871231 |
|
AS | Assignment |
Owner name: LFE CORPORATION, A CORP. OF DE., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MARK IV INDUSTRIES, INC.;REEL/FRAME:005201/0429 Effective date: 19891120 |