USH853H - Slitted hybrid composite design for gun launch applications - Google Patents
Slitted hybrid composite design for gun launch applications Download PDFInfo
- Publication number
- USH853H USH853H US07/527,962 US52796290A USH853H US H853 H USH853 H US H853H US 52796290 A US52796290 A US 52796290A US H853 H USH853 H US H853H
- Authority
- US
- United States
- Prior art keywords
- rocket motor
- motor casing
- slits
- graphite
- aramid fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002131 composite material Substances 0.000 title description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229920006231 aramid fiber Polymers 0.000 claims abstract description 11
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 239000004593 Epoxy Substances 0.000 claims description 3
- 239000000805 composite resin Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 abstract description 10
- 239000011347 resin Substances 0.000 abstract description 10
- 239000003822 epoxy resin Substances 0.000 abstract 1
- 229920000647 polyepoxide Polymers 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/08—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
- F02K9/32—Constructional parts; Details not otherwise provided for
- F02K9/34—Casings; Combustion chambers; Liners thereof
Definitions
- the present invention relates tin general to gun-launched rocket motors, and in particular to a new and useful composite casing for such rocket motors.
- An object of the present invention is to provide a thin-walled composite rocket motor casing which satisfies the various conditions that are required for a gun-lanuched rocket motor. These include axial strength to carry the excessive axial acceleration loads to which the casing is subjected during gun launching and thereafter when the rocket motor is fired. The casing must also have sufficient circumferential softness to prevent failure to excessively high external pressure loads. Further, the motor casing must function as a pressure vessel after it has been launched.
- the present invention forms the rocket motor casing from a tube of helically wound and cured graphite/epoxy.
- a plurality of circumferentially spaced substantially axially extending slots are thereafter cut into the graphite/epoxy structure. This effectively uncouples the transfer of circumferential stress around the casing wall during launch.
- the slotted tube is circumferentially wrapped with a strong somewhat resilient structure, preferably aramid fiber with a rubberized resin system.
- the number and width of the slots cut into the graphite/epoxy structure is determined on the basis of the external pressure condition to which the motor casing is subjected during gun launching.
- Composite helical "beams" are formed between the slots and deflect radially inwardly to a point where the beams almost touch, but do not actually touch.
- aramid fiber/rubberized resin for the external hoop wraps is necessary so that on loading from external pressure, the material can deform and buckle without damage, despite the inward deflection of the graphite/epoxy beams. This deflection must be accommodated by a material which does not fail from circumferential stresses.
- the aramid fibre is used because of its ability to bend and buckle without failure. This is contrasted to graphite or glass fibers which are brittle and cannot accommodate such bending. This allows the aramid fiber to subsequently carry a tinsile load which is required during the motor firing stage, following launch.
- the rubberized resin is used so that a minimum of load is transferred to the aramid fiber during the external pressure loading, and so it to does not fail when deflected.
- FIG. 1 is sectional view showing the first stage of manufacture for the motor casing of the present invention
- FIG. 2 is a view similar to FIG. 1 showing a second phase during manufacture of the motor casing
- FIG. 3 is a view similar to FIG. 1 of a third and final stage of manufacture for the motor casing.
- FIG. 4 is a partial perspective view of a tube used to form a motor casing in accordance with the present invention, with portions cut away to show underline structures.
- the invention embodied in FIG. 4 comprises a motor casing tube 10 having a hybrid composite which includes an inner helically wound and cured graphite/epoxy structure 12 having a plurality of circumferentially spaced and axially extending slits 14 therein.
- Structure 12 is hoop wrapped by an aramid fiber plus rubberized resin system 16 which covers the outer surface of structure 12 and its slits 14.
- an initial step in manufacturing the rocket motor casing 10 is to helically wind and cure a graphite/epoxy structure to form the cylindrical structure 12.
- FIG. 2 illustrates the second step which comprises the cutting of a plurality of circumferentially spaced substantially axially extending slits or slots 14 into the wall of the structure 12.
- FIG. 3 illustrates the last step in the process whereby the hoop wrapped aramid fiber/rubberized resin covering 16 is applied over the outer surface of structure 12.
- the hybrid composite structure of the invention provides sufficient circumferential resiliency and strength during the gun-launched phase to avoid any damage to the motor casing.
- Individual resin beams 13 which are defined between the slits 14, actually move toward each other when the tube is inwardly and circumferentially stressed during the gun launching phase. While the edges of the slits 14 never touch each other, the inward movement of the beams produces bending and buckling of the hoop structure 16 in the area of the slits.
- the aramid fiber/rubberized resin system is not damaged by this deformation however, and returns to its original position and strength after the rocket motor casing has left the gun.
- the casing Upon the firing of the rocket motor, the casing is capable of acting as a pressure vessel and absorbing the outward forces through the hoop wrapped structure 16.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
A rocket motor casing comprises a tube made of helically wound and cured phite/epoxy resin. A plurality of circumferentially spaced axially extending slits are cut into the graphite/epoxy structure which is subsequently covered by an aramid fiber/rubberized resin system which is hoop wrapped around the outer surface of the graphite/epoxy structure. During gun launching, the motor casing is capable of withstanding inwardly directed circumferential forces which tend to reduce the size of the slits and buckle and bend the aramid fiber/rubberized resin system. This system is capable of withstanding such deformation without failure. After launch the rocket motor is fired which requires the casing to act as a pressure vessel to withstand the outwardly directed forces from the rocket motor. These forces are withstood by the strength of the aramid fiber/rubberized resin system. Sufficient axial strength is provided by the cured and helical wound graphite/epoxy structure.
Description
The Government may use this invention for government purposes without payment to the inventor of any royalties thereon. The Government has rights in this invention pursuant to contract No. DAAK-10-84-C-0293, awarded by the Department of the Army.
The present invention relates tin general to gun-launched rocket motors, and in particular to a new and useful composite casing for such rocket motors.
The cases of gun-launched rocket motors must be capable of withstanding both external pressures, when the rocket is being launched from the gun, and internal pressures when the rocket motor is fired after it has left the gun.
Previous thin-walled rocket motors have failed due to circumferential compression during gun launching.
An object of the present invention is to provide a thin-walled composite rocket motor casing which satisfies the various conditions that are required for a gun-lanuched rocket motor. These include axial strength to carry the excessive axial acceleration loads to which the casing is subjected during gun launching and thereafter when the rocket motor is fired. The casing must also have sufficient circumferential softness to prevent failure to excessively high external pressure loads. Further, the motor casing must function as a pressure vessel after it has been launched.
To satisfy these requirements, the present invention forms the rocket motor casing from a tube of helically wound and cured graphite/epoxy. A plurality of circumferentially spaced substantially axially extending slots are thereafter cut into the graphite/epoxy structure. This effectively uncouples the transfer of circumferential stress around the casing wall during launch. To provide sufficient circumferential strength in the motor casing so that it can act as a pressure vessel when the motor is subsequently fired, the slotted tube is circumferentially wrapped with a strong somewhat resilient structure, preferably aramid fiber with a rubberized resin system.
The number and width of the slots cut into the graphite/epoxy structure is determined on the basis of the external pressure condition to which the motor casing is subjected during gun launching. Composite helical "beams" are formed between the slots and deflect radially inwardly to a point where the beams almost touch, but do not actually touch.
Using aramid fiber/rubberized resin for the external hoop wraps is necessary so that on loading from external pressure, the material can deform and buckle without damage, despite the inward deflection of the graphite/epoxy beams. This deflection must be accommodated by a material which does not fail from circumferential stresses. The aramid fibre is used because of its ability to bend and buckle without failure. This is contrasted to graphite or glass fibers which are brittle and cannot accommodate such bending. This allows the aramid fiber to subsequently carry a tinsile load which is required during the motor firing stage, following launch. The rubberized resin is used so that a minimum of load is transferred to the aramid fiber during the external pressure loading, and so it to does not fail when deflected.
In the drawings:
FIG. 1 is sectional view showing the first stage of manufacture for the motor casing of the present invention;
FIG. 2 is a view similar to FIG. 1 showing a second phase during manufacture of the motor casing;
FIG. 3 is a view similar to FIG. 1 of a third and final stage of manufacture for the motor casing; and
FIG. 4 is a partial perspective view of a tube used to form a motor casing in accordance with the present invention, with portions cut away to show underline structures.
Referring the drawings in particular, the invention embodied in FIG. 4 comprises a motor casing tube 10 having a hybrid composite which includes an inner helically wound and cured graphite/epoxy structure 12 having a plurality of circumferentially spaced and axially extending slits 14 therein. Structure 12 is hoop wrapped by an aramid fiber plus rubberized resin system 16 which covers the outer surface of structure 12 and its slits 14.
As shown in FIG. 1, an initial step in manufacturing the rocket motor casing 10 is to helically wind and cure a graphite/epoxy structure to form the cylindrical structure 12.
FIG. 2 illustrates the second step which comprises the cutting of a plurality of circumferentially spaced substantially axially extending slits or slots 14 into the wall of the structure 12.
FIG. 3 illustrates the last step in the process whereby the hoop wrapped aramid fiber/rubberized resin covering 16 is applied over the outer surface of structure 12.
The hybrid composite structure of the invention provides sufficient circumferential resiliency and strength during the gun-launched phase to avoid any damage to the motor casing. Individual resin beams 13 which are defined between the slits 14, actually move toward each other when the tube is inwardly and circumferentially stressed during the gun launching phase. While the edges of the slits 14 never touch each other, the inward movement of the beams produces bending and buckling of the hoop structure 16 in the area of the slits. The aramid fiber/rubberized resin system is not damaged by this deformation however, and returns to its original position and strength after the rocket motor casing has left the gun. Upon the firing of the rocket motor, the casing is capable of acting as a pressure vessel and absorbing the outward forces through the hoop wrapped structure 16.
Sufficient axial strength is provided by the helically wound graphite/epoxy structure 12.
While a specific embodiment of the invention has been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Claims (6)
1. A rocket motor casing for a gun-launched rocket, comprising:
a helically wound and cured graphite/epoxy tubular structure having a plurality of circumferentially spaced substantially axially extending slits therein; and
a hoop wrapped resilient fiber structure wrapped onto at least one surface of said tubular structure, which covers and spans said slits.
2. A rocket motor casing according to claim 1, wherein said hoop wrapped structure comprises an aramid fiber/rubberized resin composite.
3. A rocket motor casing according to claim 2, wherein said hoop wrapped structure is positioned on an outer surface of said tubular structure.
4. A rocket motor casing according to claim 1, wherein said hoop wrapped structure is positioned on an outer surface of said tubular structure.
5. A rocket motor casing according to claim 1, including five circumferentially spaced slits in said tubular structure.
6. A rocket motor casing according to claim 1, wherein said tubular and hoop wrapped structures are cylindrical, said slits extending axially.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/527,962 USH853H (en) | 1990-05-21 | 1990-05-21 | Slitted hybrid composite design for gun launch applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/527,962 USH853H (en) | 1990-05-21 | 1990-05-21 | Slitted hybrid composite design for gun launch applications |
Publications (1)
Publication Number | Publication Date |
---|---|
USH853H true USH853H (en) | 1990-12-04 |
Family
ID=24103695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/527,962 Abandoned USH853H (en) | 1990-05-21 | 1990-05-21 | Slitted hybrid composite design for gun launch applications |
Country Status (1)
Country | Link |
---|---|
US (1) | USH853H (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5827588A (en) * | 1996-11-18 | 1998-10-27 | Ingersoll-Rand Company | Workpiece having a laser heat-treated surface formed by a small diameter bore extending in workpiece |
-
1990
- 1990-05-21 US US07/527,962 patent/USH853H/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5827588A (en) * | 1996-11-18 | 1998-10-27 | Ingersoll-Rand Company | Workpiece having a laser heat-treated surface formed by a small diameter bore extending in workpiece |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5165040A (en) | Pre-stressed cartridge case | |
US4216803A (en) | Self-sealing fuel lines | |
US4777869A (en) | Fluid actuator including a composite piston rod | |
US3228298A (en) | Rifle barrel | |
US3243956A (en) | Flexible support | |
US3481254A (en) | Composite structure | |
US3224191A (en) | Rocket motor construction | |
US6305871B1 (en) | System for the modification of the rigidity and damping properties of structural joints | |
US6386110B1 (en) | Deforming charge assembly and method of making same | |
US4928598A (en) | Propelling charge case | |
USH853H (en) | Slitted hybrid composite design for gun launch applications | |
US5273603A (en) | Method for manufacturing pressure vessels having holes of different diameters | |
US5079999A (en) | Bendable actuator | |
US3098582A (en) | Fiber reinforced plastic vessel and method of making the same | |
US4135741A (en) | Armored piping system | |
US3103887A (en) | Pre-stressed glass fiber attachment ring | |
US5170007A (en) | Tailorable roll-bonded insensitive munitions case | |
US5032201A (en) | Method for the production of a combustion chamber for solid propellant rocket motor | |
US6148606A (en) | Low-vulnerability solid-propellant motor | |
US7484353B1 (en) | Rocket motor case using plank sections and methods of manufacturing | |
US8015923B2 (en) | Large calibre ammunition loaded via rear | |
EP0176212A1 (en) | Fluid actuator including composite cylinder assembly | |
US5220125A (en) | Unitized shock isolation and missile support system | |
KR101818845B1 (en) | Projectile guiding tube | |
US3230981A (en) | Filament wound structure and method of making same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED;ASSIGNOR:AEROJET ORDANANCE COMPANY;REEL/FRAME:005617/0575 Effective date: 19910121 |