USH1576H - Solid polymer electrolyte having an increased conductivity and solid state cell including the electrolyte - Google Patents
Solid polymer electrolyte having an increased conductivity and solid state cell including the electrolyte Download PDFInfo
- Publication number
- USH1576H USH1576H US08/315,213 US31521394A USH1576H US H1576 H USH1576 H US H1576H US 31521394 A US31521394 A US 31521394A US H1576 H USH1576 H US H1576H
- Authority
- US
- United States
- Prior art keywords
- lithium
- solid
- polymer electrolyte
- electrolyte
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000007787 solid Substances 0.000 title claims abstract description 32
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 24
- 239000003792 electrolyte Substances 0.000 title claims abstract description 6
- 229920000642 polymer Polymers 0.000 claims abstract description 11
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 7
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 6
- 159000000002 lithium salts Chemical class 0.000 claims abstract 7
- 239000006185 dispersion Substances 0.000 claims abstract 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 11
- 229910052744 lithium Inorganic materials 0.000 claims description 8
- 239000006104 solid solution Substances 0.000 claims description 8
- -1 lithium tetrafluoroborate Chemical compound 0.000 claims description 7
- 229910012314 Li3.6Ge0.6V0.4O4 Inorganic materials 0.000 claims description 6
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 claims description 5
- JOMFQUQEGVFPCT-UHFFFAOYSA-N dilithium;dioxido(oxo)germane Chemical compound [Li+].[Li+].[O-][Ge]([O-])=O JOMFQUQEGVFPCT-UHFFFAOYSA-N 0.000 claims description 5
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 5
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 claims description 5
- 229910032387 LiCoO2 Inorganic materials 0.000 claims description 4
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 4
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 claims description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims description 3
- 229910016264 Bi2 O3 Inorganic materials 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910021592 Copper(II) chloride Inorganic materials 0.000 claims description 2
- 229910021594 Copper(II) fluoride Inorganic materials 0.000 claims description 2
- 229910013458 LiC6 Inorganic materials 0.000 claims description 2
- 229910002993 LiMnO2 Inorganic materials 0.000 claims description 2
- 229910003005 LiNiO2 Inorganic materials 0.000 claims description 2
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 2
- 229910003092 TiS2 Inorganic materials 0.000 claims description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 2
- GWFAVIIMQDUCRA-UHFFFAOYSA-L copper(ii) fluoride Chemical compound [F-].[F-].[Cu+2] GWFAVIIMQDUCRA-UHFFFAOYSA-L 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910052960 marcasite Inorganic materials 0.000 claims description 2
- 239000002006 petroleum coke Substances 0.000 claims description 2
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 claims description 2
- 229910052683 pyrite Inorganic materials 0.000 claims description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 3
- 229910045601 alloy Inorganic materials 0.000 claims 2
- 239000000956 alloy Substances 0.000 claims 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims 2
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 claims 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims 2
- 229920001197 polyacetylene Polymers 0.000 claims 2
- 229920000767 polyaniline Polymers 0.000 claims 2
- 150000002484 inorganic compounds Chemical class 0.000 claims 1
- 229910010272 inorganic material Inorganic materials 0.000 claims 1
- 238000009830 intercalation Methods 0.000 claims 1
- 125000002827 triflate group Chemical group FC(S(=O)(=O)O*)(F)F 0.000 claims 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910005833 GeO4 Inorganic materials 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/185—Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to solid polymer electrolytes having an increased conductivity for use in solid state polymer electrolyte batteries, and to solid state batteries including the electrolytes.
- Solid polymer electrolytes containing dissolved metal salts have been proposed as alternatives to liquid electrolytes in electrochemical systems.
- SPEs Solid polymer electrolytes
- the polymer electrolyte can act as a mechanical barrier between the anode and cathode thereby eliminating the need for an inert porous separator as well as acting as a binder/adhesive to move and conform to electrode volume changes during cycling.
- the polymer electrolytes also allow and facilitate the fabrication of cells in any geometric shape and also provide an inherent safety advantage over liquid electrolytes since there is no liquid component in the cell to leak out if the integrity of the sealed cell is broken.
- An ionically conducting solid polymer electrolyte can be prepared by dissolving PEO and an appropriate salt such as lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) or lithium hexafluoroarsenate (LiAsF 6 ) in a suitable volatile solvent such as acetonitrile (CH 3 CN).
- acetonitrile is removed by evaporation, leaving a free standing solid, flexible film of good mechanical strength that contains only PEO with dissolved salt.
- Such films are ionic conductors.
- these polymers are not practical as electrolytes for electrochemical cells and particularly, rechargeable cells.
- the general object of this invention is to provide solid polymer electrolytes having an increased conductivity.
- a more particular object of the invention is to improve the ionic conductivity of a typical polymer such as PEO with dissolved salt such as LiClO 4 , LiBF 4 , LiCF 3 SO 3 or LiAsF 6 so that it can be used as an electrolyte in solid state electrochemical cells.
- a solid solution with the composition, Li 3 .6 Ge 0 .6 V 0 .4 O 4 is prepared by firing a 2.3 cm pellet of a mixture of 1.33 gms of lithium carbonate, 0.628 gm of germanium oxide and 0.364 gram of vanadium pentoxide that is pressed to a pressure of 6800 kg and placed on a gold foil in a ceramic crucible.
- the pellet is fired at 600° C. for 20 hours to evolve carbon-dioxide followed by heating to 900° C. for 20 hours.
- the fired pellet is quenched in air at room temperature and ground to a fine powder and stored in an argon filled dry box having a moisture content of less than 0.5 ppm.
- the polymer electrolyte films are prepared by dissolving PEO having an average molecular weight of 4 ⁇ 10 6 , dried at 50° C. under vacuum overnight and LiCF 3 SO 3 that has been dried at 50° C. under vacuum in molar ratio of 20:1 respectively in acetonitrile that has been distilled under a stream of dry argon with stirring in an argon filled dry box having a moisture content of less than 5 ppm.
- Ten weight percent of the lithium ion conducting powdered solid material Li 3 .6 Ge 0 .6 V 0 .4 O 4 is then added to this solution with vigorous stirring. Films are cast by pouring the solution into flat Teflon dishes.
- the conductivity of the PEO-LiCF 3 SO 3 films prepared with only 10 weight percent lithium ion conducting solid ceramic additive, Li 3 .6 Ge 0 .6 V 0 .4 O 4 is found to be 10 times higher than the films prepared without the additive at 40° C.
- the amount of ceramic material additive contained in the polymer electrolyte may be varied between 0 and 100 weight percent.
- the anode of such a cell might be lithium metal, lithium alloy, LiC 6 , lithiated graphite, or lithiated petroleum coke.
- the cathode of such a cell might be LiCoO 2 , Ag 2 CrO 4 , CuO, Bi 2 O 3 , Bi 2 Pb 2 O 5 , Cr 2 O 5 , Cr 3 O 8 , MnO 2 , Ni 3 S 2 , TiS 2 , FeS 2 , VSe 2 , NiS 2 , CoS 2 , V 6 O 13 , V 2 O 5 , LiNiO 2 , LiMnO 2 , CuF 2 ,(CF) n , CuCl 2 , AgCl, Cr x V 1-x S 2 where x has a value from 0 to 1.
- a particular solid state electrochemical cell according to the invention includes lithium as the anode, LiCoO 2 on an aluminum foil current collector as the cathode, and (PEO) 20 (LiCF 3 SO 3 ) containing 10 weight percent Li 3 .6 Ge 0 .6 V 0 .4 O 4 as the solid polymer electrolyte.
- the cycling conditions include a temperature of 66° C. and a charge and discharge at 0.01 mA cm -2 rate between 4.2-2.4 V.
- the capacity for cycle 1 is 85.9 mAhg -1 ; for cycle 2 is 74.5 mAhg -1 ; and for cycle 3 is 53.5 mAhg -1 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
A solid polymer electrolyte having an increased conductivity is provided luding a solution of at least one lithium salt in at least one polymer host, and wherein said solid polymer electrolyte also includes a dispersion of a lithium ion conducting solid ceramic material. A solid state electrochemical cell including the electrolyte is also provided.
Description
The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to us of any royalties thereon.
The invention relates to solid polymer electrolytes having an increased conductivity for use in solid state polymer electrolyte batteries, and to solid state batteries including the electrolytes.
Solid polymer electrolytes (SPEs) containing dissolved metal salts have been proposed as alternatives to liquid electrolytes in electrochemical systems. There are many advantages to using a solid electrolyte, such as the capability for high speed production of thin cells constructed in a bipolar configuration. Further, the polymer electrolyte can act as a mechanical barrier between the anode and cathode thereby eliminating the need for an inert porous separator as well as acting as a binder/adhesive to move and conform to electrode volume changes during cycling. The polymer electrolytes also allow and facilitate the fabrication of cells in any geometric shape and also provide an inherent safety advantage over liquid electrolytes since there is no liquid component in the cell to leak out if the integrity of the sealed cell is broken.
One of the most commonly used polymer electrolytes is based on high molecular weight polyethylene oxide (PEO). An ionically conducting solid polymer electrolyte can be prepared by dissolving PEO and an appropriate salt such as lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium trifluoromethanesulfonate (LiCF3 SO3) or lithium hexafluoroarsenate (LiAsF6) in a suitable volatile solvent such as acetonitrile (CH3 CN). By solution casting, acetonitrile is removed by evaporation, leaving a free standing solid, flexible film of good mechanical strength that contains only PEO with dissolved salt. Such films are ionic conductors.
However, because of the poor ionic conductivity of these polymers of about 10-7 S/cm, these polymers are not practical as electrolytes for electrochemical cells and particularly, rechargeable cells.
The general object of this invention is to provide solid polymer electrolytes having an increased conductivity. A more particular object of the invention is to improve the ionic conductivity of a typical polymer such as PEO with dissolved salt such as LiClO4, LiBF4, LiCF3 SO3 or LiAsF6 so that it can be used as an electrolyte in solid state electrochemical cells.
It has now been found that the aforementioned objects can be attained by incorporating particles of a solid solution of lithium germanium oxide (Li4 GeO4) and lithium vanadium oxide (Li3 VO4) and having the general formula, Li3+x Gex V1-x O4, where 0.2<x<0.8 in the PEO-lithium salt polymer electrolyte.
A solid solution with the composition, Li3.6 Ge0.6 V0.4 O4 is prepared by firing a 2.3 cm pellet of a mixture of 1.33 gms of lithium carbonate, 0.628 gm of germanium oxide and 0.364 gram of vanadium pentoxide that is pressed to a pressure of 6800 kg and placed on a gold foil in a ceramic crucible. The pellet is fired at 600° C. for 20 hours to evolve carbon-dioxide followed by heating to 900° C. for 20 hours. The fired pellet is quenched in air at room temperature and ground to a fine powder and stored in an argon filled dry box having a moisture content of less than 0.5 ppm.
The polymer electrolyte films are prepared by dissolving PEO having an average molecular weight of 4×106, dried at 50° C. under vacuum overnight and LiCF3 SO3 that has been dried at 50° C. under vacuum in molar ratio of 20:1 respectively in acetonitrile that has been distilled under a stream of dry argon with stirring in an argon filled dry box having a moisture content of less than 5 ppm. Ten weight percent of the lithium ion conducting powdered solid material Li3.6 Ge0.6 V0.4 O4 is then added to this solution with vigorous stirring. Films are cast by pouring the solution into flat Teflon dishes. After the solvent is completely evaporated, free-standing films of 50 to 100 μm in thickness are peeled from the dishes. The conductivity of the film is then measured by placing the film between stainless steel blocking electrodes and measuring the conductivities using the AC impedance technique in the 5 Hz to 100 kHz frequency range with an EG&G PAR Model 388 Electrochemical impedance system.
The conductivity of the PEO-LiCF3 SO3 films prepared with only 10 weight percent lithium ion conducting solid ceramic additive, Li3.6 Ge0.6 V0.4 O4 is found to be 10 times higher than the films prepared without the additive at 40° C. The amount of ceramic material additive contained in the polymer electrolyte may be varied between 0 and 100 weight percent.
When the improved solid polymer electrolyte of the invention is included in an electrochemical cell, either primary, or rechargeable, the anode of such a cell might be lithium metal, lithium alloy, LiC6, lithiated graphite, or lithiated petroleum coke. Similarly, the cathode of such a cell might be LiCoO2, Ag2 CrO4, CuO, Bi2 O3, Bi2 Pb2 O5, Cr2 O5, Cr3 O8, MnO2, Ni3 S2, TiS2, FeS2, VSe2, NiS2, CoS2, V6 O13, V2 O5, LiNiO2, LiMnO2, CuF2,(CF)n, CuCl2, AgCl, Crx V1-x S2 where x has a value from 0 to 1.
A particular solid state electrochemical cell according to the invention includes lithium as the anode, LiCoO2 on an aluminum foil current collector as the cathode, and (PEO)20 (LiCF3 SO3) containing 10 weight percent Li3.6 Ge0.6 V0.4 O4 as the solid polymer electrolyte. The cycling conditions include a temperature of 66° C. and a charge and discharge at 0.01 mA cm-2 rate between 4.2-2.4 V. The capacity for cycle 1 is 85.9 mAhg-1 ; for cycle 2 is 74.5 mAhg-1 ; and for cycle 3 is 53.5 mAhg-1.
We wish it to be understood that we do not des0ire to be limited to the exact details of construction shown and described for obvious modifications will occur to a person skilled in the art.
Claims (6)
1. A solid polymer electrolyte for use in an electrochemical cell, said polymer electrolyte including a solution of at least one lithium salt in at least one polymer host and wherein said solid polymer electrolyte also includes a solid solution of lithium germanium oxide and lithium vanadium oxide having the general formula Li3+x Gex V1-x O4 where x has a value between 0.2 and 0.8.
2. A solid polymer electrolyte according to claim 1 wherein said lithium salt is selected from the group consisting of lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and lithium hexafluoroarsenate, wherein said polymer host is at least one polymer selected from the group consisting of polyethylene oxide, polyacetylene, poly (alkylthiophene), polyaniline, phenylene, and phenylsulfide, and said lithium ion conducting solid ceramic material is a solid solution of lithium germanium oxide and lithium vanadium oxide having the general formula Li3+x Gex V1-x O4 where x has a value between 0.2 and 0.8.
3. A solid polymer electrolyte according to claim 2 wherein said polymer host is polyethylene oxide, said lithium salt is lithium trifluoromethanesulfonate, and said lithium ion conducting solid ceramic material is Li3.6 Ge0.6 V0.4 O4.
4. A solid state electrochemical cell including lithium metal, lithium metal alloys, and lithium intercalating compounds as the anode, an electrochemically active metallic inorganic compound as the cathode, and a solid solution of at least one lithium salt in at least one polymer host as the electrolyte wherein said solid polymer electrolyte also includes a solid solution of lithium germanium oxide and lithium vanadium oxide having the general formula Li3+x Gex V1-x O4 where X has a value between 0.2 and 0.8.
5. A solid state electrochemical cell including a compound selected from the group consisting of lithium metal, lithium metal alloy, LiC6, lithiated graphite and lithiated petroleum coke as the anode, a compound selected from the group consisting of LiCoO2, Ag2 CrO4, CuO, Bi2 O3, Bi2 Pb2 O5, Cr2 O5, Cr3 O8, MnO2, Ni3 S2, TiS2, FeS2, VSe2, NiS2, CoS2, V6 O13, V2 O5, LiNiO2, LiMnO2, CuF2,(CF)n, CuCl2, AgCl, and Crx V1-x S2 where x has a value of 0 to 1 as the cathode, and a solid solution of at least one lithium salt selected from the group consisting of lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and lithium hexafluoroarsenate in at least one polymer host selected from the group consisting of polyethylene oxide, polyacetylene poly(alkylthiophene), polyaniline, phenylene, and phenylsulfide as the solid polymer electrolyte and wherein said solid polymer electrolyte also includes a dispersion of a lithium ion conducting solid ceramic material including a solid solution of lithium germanium oxide and lithium vanadium oxide having the general formula Li3+x Gex V1-x O4 where x has a value between 0.2 and 0.8.
6. A solid state electrochemical cell according to claim 5 wherein the anode is lithium, the cathode is LiCoO2, the polymer host is polyethylene oxide, the lithium salt is trifluoromethanesulfonate, and the lithium ion conducting solid ceramic material is Li3.6 Ge0.6 V0.4 O4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/315,213 USH1576H (en) | 1994-03-07 | 1994-03-07 | Solid polymer electrolyte having an increased conductivity and solid state cell including the electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/315,213 USH1576H (en) | 1994-03-07 | 1994-03-07 | Solid polymer electrolyte having an increased conductivity and solid state cell including the electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
USH1576H true USH1576H (en) | 1996-08-06 |
Family
ID=23223395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/315,213 Abandoned USH1576H (en) | 1994-03-07 | 1994-03-07 | Solid polymer electrolyte having an increased conductivity and solid state cell including the electrolyte |
Country Status (1)
Country | Link |
---|---|
US (1) | USH1576H (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5695873A (en) * | 1995-06-05 | 1997-12-09 | The University Of Dayton | Polymer-ceramic composite electrolytes |
WO1999039399A1 (en) * | 1998-01-30 | 1999-08-05 | Valence Technology, Inc. | Polymer electrolytes containing lithiated fillers |
US20160226097A1 (en) * | 2013-09-27 | 2016-08-04 | Robert Bosch Gmbh | Method for manufacturing a lithium cell functional layer |
US9926411B1 (en) | 2017-03-03 | 2018-03-27 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
US9972838B2 (en) | 2016-07-29 | 2018-05-15 | Blue Current, Inc. | Solid-state ionically conductive composite electrodes |
US10457781B2 (en) | 2017-03-03 | 2019-10-29 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
US11394054B2 (en) | 2019-12-20 | 2022-07-19 | Blue Current, Inc. | Polymer microspheres as binders for composite electrolytes |
US11572459B2 (en) | 2019-12-20 | 2023-02-07 | Blue Current, Inc. | Composite electrolytes with binders |
US11581570B2 (en) | 2019-01-07 | 2023-02-14 | Blue Current, Inc. | Polyurethane hybrid solid ion-conductive compositions |
CN116093328A (en) * | 2023-03-02 | 2023-05-09 | 哈尔滨工业大学 | Preparation method of high-magnification silicon-based negative electrode material, preparation method of carbon-free solid-state battery negative electrode piece and application |
US12166239B2 (en) | 2019-12-20 | 2024-12-10 | Blue Current, Inc. | Polymer microspheres as binders for composite electrolytes |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4247499A (en) * | 1979-05-18 | 1981-01-27 | General Electric Company | Methods of forming a solid ion-conductive electrolyte |
US4810599A (en) * | 1987-03-27 | 1989-03-07 | Japan Synthetic Rubber Co., Ltd. | Structure suitable for solid electrochemical elements |
US4990413A (en) * | 1989-01-18 | 1991-02-05 | Mhb Joint Venture | Composite solid electrolytes and electrochemical devices employing the same |
US5011751A (en) * | 1988-06-21 | 1991-04-30 | Ricoh Company, Ltd. | Electrochemical device |
US5085952A (en) * | 1987-02-18 | 1992-02-04 | Gould Inc. | Solid state cell electrolyte |
US5219679A (en) * | 1991-01-17 | 1993-06-15 | Eic Laboratories, Inc. | Solid electrolytes |
US5273847A (en) * | 1993-01-19 | 1993-12-28 | The United States Of America As Represented By The Secretary Of The Army | Solid state electrolyte for use in a high temperature rechargeable lithium electrochemical cell and high temperature rechargeable lithium electrochemical cell including the solid state electrolyte |
US5360686A (en) * | 1993-08-20 | 1994-11-01 | The United States Of America As Represented By The National Aeronautics And Space Administration | Thin composite solid electrolyte film for lithium batteries |
-
1994
- 1994-03-07 US US08/315,213 patent/USH1576H/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4247499A (en) * | 1979-05-18 | 1981-01-27 | General Electric Company | Methods of forming a solid ion-conductive electrolyte |
US5085952A (en) * | 1987-02-18 | 1992-02-04 | Gould Inc. | Solid state cell electrolyte |
US4810599A (en) * | 1987-03-27 | 1989-03-07 | Japan Synthetic Rubber Co., Ltd. | Structure suitable for solid electrochemical elements |
US5011751A (en) * | 1988-06-21 | 1991-04-30 | Ricoh Company, Ltd. | Electrochemical device |
US4990413A (en) * | 1989-01-18 | 1991-02-05 | Mhb Joint Venture | Composite solid electrolytes and electrochemical devices employing the same |
US5219679A (en) * | 1991-01-17 | 1993-06-15 | Eic Laboratories, Inc. | Solid electrolytes |
US5273847A (en) * | 1993-01-19 | 1993-12-28 | The United States Of America As Represented By The Secretary Of The Army | Solid state electrolyte for use in a high temperature rechargeable lithium electrochemical cell and high temperature rechargeable lithium electrochemical cell including the solid state electrolyte |
US5360686A (en) * | 1993-08-20 | 1994-11-01 | The United States Of America As Represented By The National Aeronautics And Space Administration | Thin composite solid electrolyte film for lithium batteries |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5695873A (en) * | 1995-06-05 | 1997-12-09 | The University Of Dayton | Polymer-ceramic composite electrolytes |
WO1999039399A1 (en) * | 1998-01-30 | 1999-08-05 | Valence Technology, Inc. | Polymer electrolytes containing lithiated fillers |
US20160226097A1 (en) * | 2013-09-27 | 2016-08-04 | Robert Bosch Gmbh | Method for manufacturing a lithium cell functional layer |
US11355750B2 (en) | 2016-07-29 | 2022-06-07 | Blue Current, Inc. | Compliant solid-state ionically conductive composite materials and method for making same |
US9972838B2 (en) | 2016-07-29 | 2018-05-15 | Blue Current, Inc. | Solid-state ionically conductive composite electrodes |
US9972863B2 (en) | 2016-07-29 | 2018-05-15 | Blue Current, Inc. | Compliant solid-state ionically conductive composite electrolytes and materials |
US10797314B2 (en) | 2016-07-29 | 2020-10-06 | Blue Current, Inc. | Compliant solid-state ionically conductive composite materials and method for making same |
US10457781B2 (en) | 2017-03-03 | 2019-10-29 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
US10174173B2 (en) | 2017-03-03 | 2019-01-08 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
US10079404B1 (en) | 2017-03-03 | 2018-09-18 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
US9926411B1 (en) | 2017-03-03 | 2018-03-27 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
US12018131B2 (en) | 2017-03-03 | 2024-06-25 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
US11581570B2 (en) | 2019-01-07 | 2023-02-14 | Blue Current, Inc. | Polyurethane hybrid solid ion-conductive compositions |
US11394054B2 (en) | 2019-12-20 | 2022-07-19 | Blue Current, Inc. | Polymer microspheres as binders for composite electrolytes |
US11572459B2 (en) | 2019-12-20 | 2023-02-07 | Blue Current, Inc. | Composite electrolytes with binders |
US11667772B2 (en) | 2019-12-20 | 2023-06-06 | Blue Current, Inc. | Composite electrolytes with binders |
US12166239B2 (en) | 2019-12-20 | 2024-12-10 | Blue Current, Inc. | Polymer microspheres as binders for composite electrolytes |
CN116093328A (en) * | 2023-03-02 | 2023-05-09 | 哈尔滨工业大学 | Preparation method of high-magnification silicon-based negative electrode material, preparation method of carbon-free solid-state battery negative electrode piece and application |
CN116093328B (en) * | 2023-03-02 | 2023-09-22 | 哈尔滨工业大学 | Preparation method of high-magnification silicon-based negative electrode material, preparation method of carbon-free solid-state battery negative electrode piece and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6534218B1 (en) | Electrode for nonaqueous electrolyte battery | |
KR100464746B1 (en) | Positive Electrode Active Material And Lithium Ion Secondary Cell | |
US9263731B2 (en) | High performance lithium or lithium ion cell | |
US5510209A (en) | Solid polymer electrolyte-based oxygen batteries | |
US6511776B1 (en) | Polymer electrolyte battery and polymer electrolyte | |
US5851504A (en) | Carbon based electrodes | |
US9350017B2 (en) | High performance lithium or lithium ion cell | |
EP2161776B1 (en) | Polyvinylpyridine additives for nonaqueous electrolytes | |
CN104078646A (en) | Negative electrode, battery, and method for producing them | |
USH1576H (en) | Solid polymer electrolyte having an increased conductivity and solid state cell including the electrolyte | |
US7052804B2 (en) | Double current collector positive electrode for alkali metal ion electrochemical cells | |
US9509015B2 (en) | Battery | |
US7919208B2 (en) | Anode active material and battery | |
JP2740960B2 (en) | Lithium secondary battery | |
US5667910A (en) | Electrochemical cell having a cathode comprising differing active formulations and method | |
JP4449214B2 (en) | Non-aqueous electrolyte battery | |
JP2734822B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4845245B2 (en) | Lithium battery | |
CA2361031A1 (en) | Double current collector cathode design using the same active material in varying thicknesses for alkali metal or ion electrochemical cells | |
US6051339A (en) | Lithiated polyvanadate cathodes and batteries containing such cathodes | |
US20230207889A1 (en) | Lithium ion secondary battery | |
USH1546H (en) | Solid polymer electrolyte and electrochemical cell including said electrolyte | |
Takehara | Development of lithium rechargeable batteries in Japan | |
JP4538866B2 (en) | Non-aqueous electrolyte electrochemical device | |
USH1462H (en) | Solid state electrochemical lithium/polymer cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |