US9715939B2 - Low read data storage management - Google Patents
Low read data storage management Download PDFInfo
- Publication number
- US9715939B2 US9715939B2 US14/925,945 US201514925945A US9715939B2 US 9715939 B2 US9715939 B2 US 9715939B2 US 201514925945 A US201514925945 A US 201514925945A US 9715939 B2 US9715939 B2 US 9715939B2
- Authority
- US
- United States
- Prior art keywords
- data
- storage device
- memory
- programming mode
- default
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007726 management method Methods 0.000 title description 25
- 238000013500 data storage Methods 0.000 title description 11
- 238000003860 storage Methods 0.000 claims abstract description 270
- 238000000034 method Methods 0.000 claims abstract description 68
- 230000004044 response Effects 0.000 claims abstract description 31
- 238000013507 mapping Methods 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 11
- 238000012795 verification Methods 0.000 claims description 5
- 238000009826 distribution Methods 0.000 description 17
- 238000012545 processing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000002085 persistent effect Effects 0.000 description 7
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000007667 floating Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000005055 memory storage Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000246 remedial effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3436—Arrangements for verifying correct programming or erasure
- G11C16/3454—Arrangements for verifying correct programming or for detecting overprogrammed cells
- G11C16/3459—Circuits or methods to verify correct programming of nonvolatile memory cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0614—Improving the reliability of storage systems
- G06F3/0619—Improving the reliability of storage systems in relation to data integrity, e.g. data losses, bit errors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/062—Securing storage systems
- G06F3/0622—Securing storage systems in relation to access
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0629—Configuration or reconfiguration of storage systems
- G06F3/0637—Permissions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0646—Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
- G06F3/065—Replication mechanisms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0683—Plurality of storage devices
- G06F3/0685—Hybrid storage combining heterogeneous device types, e.g. hierarchical storage, hybrid arrays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0683—Plurality of storage devices
- G06F3/0688—Non-volatile semiconductor memory arrays
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/349—Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
Definitions
- the disclosed embodiments relate generally to command processing in a storage device (e.g., a device including one or more persistent memory devices, for example flash memory devices), and in particular, to efficiently managing and maintaining data that is rarely read, sometimes called low read data.
- a storage device e.g., a device including one or more persistent memory devices, for example flash memory devices
- Flash memory typically utilize memory cells to store data as an electrical value, such as an electrical charge or voltage.
- a flash memory cell for example, includes a single transistor with a floating gate that is used to store a charge representative of a data value.
- Flash memory is a non-volatile data storage device that can be electrically erased and reprogrammed. More generally, persistent or non-volatile memory (e.g., flash memory, as well as other types of non-volatile memory implemented using any of a variety of technologies) retains stored information even without power, as opposed to volatile memory, which requires power to maintain the stored information.
- persistent or non-volatile memory such as error log data, power fail data, and logical-to-physical mapping tables are read back only a limited number of times (e.g., less than a dozen times).
- persistent or non-volatile memory systems such as flash memory systems, typically store these particular types of data in the same fashion (e.g., with write operations designed for high endurance) as data that is read back repeatedly (e.g., thousands of times).
- the disclosed embodiments write low read data in a way that sacrifices read disturb performance in order to achieve faster write times.
- the embodiments disclosed herein help to ensure that low read data is written quickly (and in a way that requires less power as compared to write operations during normal operation of the storage device) when there is a power failure that affects a flash memory device.
- the embodiments disclosed herein also reduce write times for background write operations (e.g., logical-to-physical mapping table and associated logging data), which helps storage devices meet quality-of-service metrics (e.g., storage devices are able to achieve reduced read latencies because the background write operations execute more quickly and, therefore, do not impact (or have less of an impact on) the time required to perform a read operation).
- quality-of-service metrics e.g., storage devices are able to achieve reduced read latencies because the background write operations execute more quickly and, therefore, do not impact (or have less of an impact on) the time required to perform a read operation.
- storage devices that take advantage of the disclosed embodiments may achieve increased drive endurance as whole, due to the lower programming requirements for a subset of data written to the storage device (e.g., low read data).
- a storage device when a storage device detects occurrence of a first event (e.g., a power fail event), the storage device writes low read data to non-volatile memory of the storage device with a fast SLC programming mode of writing the low read data.
- Writing the low read data with the fast SLC programming mode includes using one or more memory programming parameters to write data faster (e.g., faster on a per page or per block basis) than writing data to the non-volatile memory of the storage device with a default SLC programming mode that uses a default set of memory programming parameters.
- the fast SLC programming mode low read data is written quickly and requires less power than data written using the default SLC programming mode.
- FIG. 1 is a block diagram illustrating an implementation of a data storage system, in accordance with some embodiments.
- FIG. 2 is a block diagram illustrating an implementation of a management module, in accordance with some embodiments.
- FIG. 3A is a simplified, prophetic diagram of voltage distributions 300 a found in a single-level flash memory cell (SLC) over time, in accordance with some embodiments.
- SLC single-level flash memory cell
- FIG. 3B is a simplified, prophetic diagram of voltage distributions 300 b found in a multi-level flash memory cell (MLC) over time, in accordance with some embodiments.
- MLC multi-level flash memory cell
- FIG. 4 illustrates a flowchart representation of a method of low read flash management in a storage device, in accordance with some embodiments.
- FIGS. 5A-5B illustrate a flowchart representation of a method of low read flash management in a storage device, in accordance with some embodiments.
- the various embodiments described herein include systems, methods, and/or devices used to efficiently manage low read data within a storage device that includes persistent or non-volatile memory (“NVM”).
- the method includes using a fast SLC programming mode for writing data having a low read requirement and using a default SLC programming mode for writing data that does not have a low read requirement.
- the fast SLC programming mode takes less time (e.g., 40% less time) per predefined unit of data (e.g., per block) than writing data with the default SLC programming mode.
- some embodiments include a method of managing a storage device that includes non-volatile memory.
- the method includes: detecting occurrence of a first event (e.g., detecting a power failure).
- the method further includes: writing low read data (e.g., data satisfying predefined low read criteria) to the non-volatile memory of the storage device with a fast SLC programming mode, distinct from a default SLC programming mode.
- Writing data with the fast SLC programming mode includes writing the low read data using one or more memory programming parameters distinct from a default set of memory programming parameters used for writing data to the non-volatile memory of the storage device with the default SLC programming mode.
- writing data to the non-volatile memory of the storage device with the fast SLC programming mode takes less time per predefined unit of data than writing data to the non-volatile memory of the storage device with the default SLC programming mode.
- the method further includes: detecting occurrence of a second event (e.g., a host write command or garbage collection write command). In response to detecting the occurrence of the second event, the method includes: writing data corresponding to the second event to the non-volatile memory of the storage device with the default SLC programming mode, wherein writing data with the default SLC programming mode includes writing data using the default set of memory programming parameters.
- a second event e.g., a host write command or garbage collection write command
- memory programming parameters are more broadly referred to as memory operation parameters and the memory operation parameters include both memory programming parameters (e.g., voltages used for electrical pulses used to execute a particular write command) used in conjunction with write commands and memory reading parameters used in conjunction with read commands (e.g., reading thresholds for completing a particular read command).
- memory programming parameters e.g., voltages used for electrical pulses used to execute a particular write command
- read commands e.g., reading thresholds for completing a particular read command
- writing data to the non-volatile memory of the storage device with the fast SLC programming mode takes at least 40% less time per predefined unit of data as compared to writing data to the non-volatile memory of the storage device with the default SLC programming mode.
- writing data with the fast SLC programming mode includes a memory programming operation with a plurality of electrical pulses
- the one or more memory programming parameters used for writing data with the fast SLC programming mode include one or more parameters selected from the group consisting of: a clock rate or programming pulse duration, a maximum number of electrical pulses used in the memory programming operation, a first voltage for a first electrical pulse or first set of electric pulses of the plurality of electrical pulses, a write verification control parameter, and a delta voltage corresponding to a difference between a second voltage, for a second electrical pulse or second set of electrical pulses of the plurality of electrical pulses, and the first voltage.
- the clock rate or programming pulse duration used in the fast SLC programming mode is less than the clock rate or programming pulse duration used in the default SLC programming mode.
- the number of electrical pulses within the plurality of electrical pulses is lower than a default number of electrical pulses within a default plurality of electrical pulses.
- the first voltage for the first electrical pulse or first set of electrical pulses is greater than a default voltage for each electrical pulse within the default plurality of electrical pulses.
- the first event is a power failure event, a scheduled write event for copying at least a portion of a mapping table to the non-volatile memory of the storage device, an event indicating log fullness, or an event requiring dumping of an error log.
- writing data with the fast SLC programming mode includes retrieving the one or more memory programming parameters from volatile memory and adjusting at least one of the one or more memory programming parameters in accordance with an age metric or a performance metric associated with the non-volatile memory of the storage device.
- the method further includes: reserving a portion of the non-volatile memory of the storage device and configuring the reserved portion of the non-volatile memory of the storage device to write data with the fast SLC programming mode.
- the reserving and the configuring occur prior to detecting occurrence of the first event.
- the low read data is data satisfying predefined low read criteria.
- the predefined low read criteria comprise a criterion that an estimated number of read operations for reading the low read data is below a predefined threshold number of read operations and/or a criterion that the low read data can be stored with low endurance.
- a storage device includes non-volatile memory (e.g., one or more non-volatile storage devices, such as flash memory devices), one or more processors, and one or more controller modules.
- the one or more controller modules are configured to detect occurrence of a first event.
- the one or more controller modules are configured to: write low read data (e.g., data satisfying predefined low read criteria) to the non-volatile memory of the storage device with a fast SLC programming mode, distinct from a default SLC programming mode.
- Writing data with the fast SLC programming mode includes writing the low read data using one or more memory programming parameters distinct from a default set of memory programming parameters used for writing data to the non-volatile memory of the storage device with the default SLC programming mode. Also, writing data to the non-volatile memory of the storage device with the fast SLC programming mode takes less time per predefined unit of data than writing data to the non-volatile memory of the storage device with the default SLC programming mode.
- the one or more controller modules are further configured to: detect occurrence of a second event.
- the one or more controller modules are configured to write data to the non-volatile memory of the storage device with the default SLC programming mode, wherein writing data with the default SLC programming mode includes writing data using the default set of memory programming parameters.
- the one or more controller modules include: 1) an event occurrence detection module to detect occurrence of the first and the second events and 2) a data write module to: (a) write data to the non-volatile memory with the fast SLC programming mode in response to detecting the occurrence of the first event and (b) write data corresponding to the second event to the non-volatile memory with the default SLC programming mode, using the default set of memory programming parameters, in response to detecting occurrence of the second event.
- the one or more controller modules are further configured to perform the method of any one of A2 to A12 described above.
- a storage device includes non-volatile memory, one or more processors, and means for performing of the method of any one of A1 to A12 described above.
- a non-transitory computer-readable storage medium stores one or more programs configured for execution by one or more processors of a storage device, the one or more programs including instructions for causing the storage device to perform the method of any one of A1 to A12 described above.
- FIG. 1 is a block diagram illustrating an implementation of a data storage system 100 , in accordance with some embodiments. While some example features are illustrated, various other features have not been illustrated for the sake of brevity and so as not to obscure pertinent aspects of the example embodiments disclosed herein. To that end, as a non-limiting example, data storage system 100 includes a storage device 120 (also sometimes called an information storage device, or a data storage device, or a memory device), which includes a storage controller 124 and a storage medium 132 , and is used in conjunction with or includes a computer system 110 (e.g., a host system or a host computer).
- a storage device 120 also sometimes called an information storage device, or a data storage device, or a memory device
- storage controller 124 includes a storage controller 124 and a storage medium 132
- computer system 110 e.g., a host system or a host computer.
- storage medium 132 is a single flash memory device while in other embodiments storage medium 132 includes a plurality of flash memory devices. In some embodiments, storage medium 132 is NAND-type flash memory or NOR-type flash memory. In some embodiments, storage medium 132 includes one or more three-dimensional (3D) memory devices. Further, in some embodiments, storage controller 124 is a solid-state drive (SSD) controller. However, other types of storage media may be included in accordance with aspects of a wide variety of embodiments (e.g., PCRAM, ReRAM, STT-RAM, etc.). In some embodiments, a flash memory device includes one or more flash memory die, one or more flash memory packages, one or more flash memory channels or the like. In some embodiments, data storage system 100 can contain one or more storage devices 120 .
- SSD solid-state drive
- Computer system 110 is coupled to storage controller 124 through data connections 101 .
- computer system 110 includes storage controller 124 , or a portion of storage controller 124 , as a component and/or as a subsystem.
- some or all of the functionality of storage controller 124 is implemented by software executed on computer system 110 .
- Computer system 110 may be any suitable computer device, such as a computer, a laptop computer, a tablet device, a netbook, an internet kiosk, a personal digital assistant, a mobile phone, a smart phone, a gaming device, a computer server, or any other computing device.
- Computer system 110 is sometimes called a host, host system, client, or client system.
- computer system 110 is a server system, such as a server system in a data center.
- computer system 110 includes one or more processors, one or more types of memory, a display and/or other user interface components such as a keyboard, a touch-screen display, a mouse, a track-pad, a digital camera, and/or any number of supplemental I/O devices to add functionality to computer system 110 .
- computer system 110 does not have a display and other user interface components.
- Storage medium 132 is coupled to storage controller 124 through connections 103 .
- Connections 103 are sometimes called data connections, but typically convey commands in addition to data, and optionally convey metadata, error correction information and/or other information in addition to data values to be stored in storage medium 132 and data values read from storage medium 132 .
- storage controller 124 and storage medium 132 are included in the same device (i.e., an integrated device) as components thereof.
- storage controller 124 and storage medium 132 are embedded in a host device (e.g., computer system 110 ), such as a mobile device, tablet, other computer or computer controlled device, and the methods described herein are performed, at least in part, by the embedded storage controller.
- Storage medium 132 may include any number (i.e., one or more) of memory devices including, without limitation, non-volatile semiconductor memory devices, such as flash memory device(s).
- flash memory device(s) can be configured for enterprise storage suitable for applications such as cloud computing, for database applications, primary and/or secondary storage, or for caching data stored (or to be stored) in secondary storage, such as hard disk drives.
- flash memory device(s) can also be configured for relatively smaller-scale applications such as personal flash drives or hard-disk replacements for personal, laptop, and tablet computers.
- Storage medium 132 is divided into a number of addressable and individually selectable blocks, such as selectable portion 133 .
- the individually selectable blocks are the minimum size erasable units in a flash memory device.
- each block contains the minimum number of memory cells that can be erased without erasing any other memory cells in the same flash memory device.
- all memory cells in the block are erased simultaneously.
- Each block is usually further divided into a plurality of pages and/or word lines, where each page or word line is typically an instance of the smallest individually accessible (readable) portion in a block.
- the smallest individually accessible unit of a data set is a sector, which is a subunit of a page. That is, a block includes a plurality of pages, each page contains a plurality of sectors, and each sector is the minimum unit of data for reading data from the flash memory device.
- each block includes a number of pages, such as 64 pages, 128 pages, 256 pages or another suitable number of pages.
- blocks are grouped into a plurality of zones. Each block zone can be independently managed to some extent, which increases the degree of parallelism for parallel operations and simplifies management of storage medium 132 .
- pages in the storage medium may contain invalid (e.g., stale) data, but those pages cannot be overwritten until the whole block containing those pages is erased.
- the pages (if any) with valid data in that block are read and re-written to a new block and the old block is erased (or put on a queue for erasing).
- This process is called garbage collection.
- the new block contains the pages with valid data and may have free pages that are available for new data to be written, and the old block can be erased so as to be available for new data to be written. Since flash memory can only be programmed and erased a limited number of times, the efficiency of the algorithm used to pick the next block(s) to re-write and erase has a significant impact on the lifetime and reliability of flash-based storage systems.
- reading and programming (also called writing) of the storage medium is performed on a smaller subunit of a block (e.g., on a page basis, word line basis, or sector basis).
- the smaller subunit of a block typically consists of multiple memory cells (e.g., single-level cells or multi-level cells).
- programming is performed on an entire page (i.e., all memory cells of the page are programmed (i.e., written) concurrently).
- a multi-level cell (MLC) NAND flash has four possible states per cell, yielding two bits of information per cell.
- an MLC NAND has two page types: (1) a lower page (sometimes called fast page), and (2) an upper page (sometimes called slow page).
- a triple-level cell (TLC) NAND flash has eight possible states per cell, yielding three bits of information per cell.
- TLC triple-level cell
- the description herein uses TLC, MLC, and SLC as examples, those skilled in the art will appreciate that the embodiments described herein may be extended to memory cells that have more than eight possible states per cell, yielding more than three bits of information per cell.
- the encoding format of the storage media i.e., TLC, MLC, or SLC and/or a chosen data redundancy mechanism
- TLC Transmission Control Protocol
- the storage device keeps track of (i.e., determines and/or maintains) a number of status metrics.
- the status metrics tracked by the storage device include a write amplification metric of the storage device.
- the status metrics tracked by the storage device include an over-provisioning metric (e.g., the percentage of total storage capacity that is in excess of the declared capacity of the storage device).
- over-provisioning refers to the difference between the physical capacity of the storage device (e.g., the physical capacity less capacity set aside for management data structures and metadata) for storing user data (e.g., data stored in the storage system on behalf of a host or host system), and the logical capacity presented as available for use by a host or user. For example, in some embodiments, if a non-volatile memory of a storage device has 12 GB of total storage capacity (e.g., total storage capacity for storing user data) and 10 GB of declared capacity, then the non-volatile memory of the storage device has 2 GB of over-provisioning.
- over-provisioning is used to increase endurance of a storage device (e.g., by distributing the total number of writes and erases across a larger population of blocks and/or pages over time), improve performance, and reduce write amplification.
- Write amplification is a phenomenon where the actual amount of physical data written to a storage medium (e.g., storage medium 132 of storage device 120 ) is a multiple of the logical amount of data written by a host (e.g., computer system 110 , sometimes called a host) to the storage medium.
- a host e.g., computer system 110 , sometimes called a host
- the garbage collection process to perform these operations results in re-writing data one or more times. This multiplying effect increases the number of writes required over the life of a storage medium, which shortens the time it can reliably operate.
- the formula to calculate the write amplification of a storage system is given by equation:
- One of the goals of any flash memory based data storage system architecture is to reduce write amplification as much as possible so that available endurance is used to meet storage medium reliability and warranty specifications. Higher system endurance also results in lower cost as the storage system may need less over-provisioning. By reducing write amplification, the endurance of the storage medium is increased and the overall cost of the storage system is decreased.
- storage controller 124 includes a management module 121 - 1 , a host interface 129 , a storage medium (I/O) interface 128 , and additional module(s) 125 .
- Storage controller 124 may include various additional features that have not been illustrated for the sake of brevity and so as not to obscure pertinent features of the example embodiments disclosed herein, and a different arrangement of features may be possible.
- Host interface 129 provides an interface to computer system 110 through data connections 101 .
- storage medium interface 128 provides an interface to storage medium 132 though connections 103 .
- storage medium interface 128 includes read and write circuitry, including circuitry capable of providing reading signals to storage medium 132 (e.g., reading threshold voltages for NAND-type flash memory, as discussed below).
- connections 101 and connections 103 are implemented as communication media over which commands and data are communicated, using a protocol such as DDR3, SCSI, SATA, SAS, or the like.
- storage controller 124 includes one or more processing units (also sometimes called CPUs, processors, microprocessors, or microcontrollers) configured to execute instructions in one or more programs (e.g., in storage controller 124 ).
- the one or more processors are shared by one or more components within, and in some cases, beyond the function of storage controller 124 .
- management module 121 - 1 includes one or more central processing units (CPUs, also sometimes called processors, hardware processors, microprocessors or microcontrollers) 122 configured to execute instructions in one or more programs (e.g., in management module 121 - 1 ).
- the one or more CPUs 122 are shared by one or more components within, and in some cases, beyond the function of storage controller 124 .
- Management module 121 - 1 is coupled to host interface 129 , additional module(s) 125 , and storage medium interface 128 in order to coordinate the operation of these components.
- one or more modules of management module 121 - 1 are implemented in management module 121 - 2 of computer system 110 .
- one or more processors of computer system 110 are configured to execute instructions in one or more programs (e.g., in management module 121 - 2 ).
- Management module 121 - 2 is coupled to storage device 120 in order to manage the operation of storage device 120 .
- Additional module(s) 125 are coupled to storage medium interface 128 , host interface 129 , and management module 121 - 1 .
- additional module(s) 125 may include an error control module to limit the number of uncorrectable errors inadvertently introduced into data during writes to memory and/or reads from memory.
- additional module(s) 125 are executed in software by the one or more CPUs 122 of management module 121 - 1 , and, in other embodiments, additional module(s) 125 are implemented in whole or in part using special purpose circuitry (e.g., to perform encoding and decoding functions).
- additional module(s) 125 are implemented in whole or in part by software executed on computer system 110 .
- additional module(s) 125 include power failure circuitry 125 - 1 .
- power failure circuitry 125 - 1 is used to detect a power failure condition in storage device 120 and trigger data hardening operations, and provide backup power to one or more components of storage device 120 .
- storage controller 124 coordinates power failure operations within storage device 120 , sending instructions to NVM controllers to store data (e.g., metadata, and data in flight) in volatile memory to non-volatile memory, and optionally providing power failure information to host computer system 110 .
- data e.g., metadata, and data in flight
- error control coding can be utilized to limit the number of uncorrectable errors that are introduced by electrical fluctuations, defects in the storage medium, operating conditions, device history, write-read circuitry, etc., or a combination of these and various other factors.
- an error control module included in additional module(s) 125 , includes an encoder and a decoder.
- the encoder encodes data by applying an error control code (ECC) to produce a codeword, which is subsequently stored in storage medium 132 .
- ECC error control code
- the decoder applies a decoding process to the encoded data to recover the data, and to correct errors in the recovered data within the error correcting capability of the error control code.
- ECC error control code
- each type or family of error control codes may have encoding and decoding algorithms that are particular to the type or family of error control codes.
- some algorithms may be utilized at least to some extent in the decoding of a number of different types or families of error control codes.
- an exhaustive description of the various types of encoding and decoding algorithms generally available and known to those skilled in the art is not provided herein.
- host interface 129 receives data to be stored in storage medium 132 from computer system 110 .
- the data received by host interface 129 is made available to an encoder (e.g., in additional module(s) 125 ), which encodes the data to produce one or more codewords.
- the one or more codewords are made available to storage medium interface 128 , which transfers the one or more codewords to storage medium 132 in a manner dependent on the type of storage medium being utilized.
- a read operation is initiated when computer system (host) 110 sends one or more host read commands (e.g., via data connections 101 , or alternatively a separate control line or bus) to storage controller 124 requesting data from storage medium 132 .
- Storage controller 124 sends one or more read access commands to storage medium 132 , via storage medium interface 128 , to obtain raw read data in accordance with memory locations (or logical addresses, object identifiers, or the like) specified by the one or more host read commands.
- Storage medium interface 128 provides the raw read data (e.g., comprising one or more codewords) to a decoder (e.g., in additional module(s) 125 ).
- the decoded data is provided to host interface 129 , where the decoded data is made available to computer system 110 .
- storage controller 124 may resort to a number of remedial actions or provide an indication of an irresolvable error condition.
- Flash memory devices utilize memory cells (e.g., SLC, MLC, and/or TLC) to store data as electrical values, such as electrical charges or voltages.
- Each flash memory cell typically includes a single transistor with a floating gate that is used to store a charge, which modifies the threshold voltage of the transistor (i.e., the voltage needed to turn the transistor on). The magnitude of the charge, and the corresponding threshold voltage the charge creates, is used to represent one or more data values.
- a reading threshold voltage is applied to the control gate of the transistor and the resulting sensed current or voltage is mapped to a data value.
- cell voltage and “memory cell voltage,” in the context of flash memory cells, mean the threshold voltage of the memory cell, which is the minimum voltage that needs to be applied to the gate of the memory cell's transistor in order for the transistor to conduct current.
- reading threshold voltages sometimes also called reading signals and reading voltages
- flash memory cells are gate voltages applied to the gates of the flash memory cells to determine whether the memory cells conduct current at that gate voltage.
- the raw data value for that read operation is a “1” and otherwise the raw data value is a “0.”
- FIG. 2 is a block diagram illustrating a management module 121 - 1 , in accordance with some embodiments, as shown in FIG. 1 .
- Management module 121 - 1 typically includes one or more processing units (sometimes called CPUs or processors) 122 - 1 for executing modules, programs, and/or instructions stored in memory 206 (and thereby performing processing operations), memory 206 (sometimes called controller memory), and one or more communication buses 208 for interconnecting these components.
- the one or more communication buses 208 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components.
- Management module 121 - 1 is coupled to host interface 129 , additional module(s) 125 , and storage medium I/O 128 by the one or more communication buses 208 .
- Memory 206 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 206 optionally includes one or more storage devices remotely located from the CPU(s) 122 - 1 . Memory 206 , or alternatively the non-volatile memory device(s) within memory 206 , comprises a non-transitory computer readable storage medium.
- memory 206 or the non-transitory computer-readable storage medium of memory 206 stores the following programs, modules, and data structures, or a subset or superset thereof:
- Each of the above-identified elements may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above.
- the above identified modules or programs i.e., sets of instructions
- memory 206 may store a subset of the modules and data structures identified above.
- memory 206 may store additional modules and data structures not described above.
- the programs, modules, and data structures stored in memory 206 , or the non-transitory computer readable storage medium of memory 206 provide instructions for implementing some of the methods described below.
- some or all of these modules may be implemented with specialized hardware circuits that subsume part or all of the module functionality.
- FIG. 2 shows management module 121 - 1 in accordance with some embodiments
- FIG. 2 is intended more as a functional description of the various features which may be present in management module 121 - 1 than as a structural schematic of the embodiments described herein.
- the programs, modules, and data structures shown separately could be combined and some programs, modules, and data structures could be separated.
- FIG. 3A is a simplified, prophetic diagram of voltage distributions 300 a found in a single-level flash memory cell (SLC) over time, in accordance with some embodiments.
- the voltage distributions 300 a shown in FIG. 3A have been simplified for illustrative purposes.
- the SLC's voltage range extends approximately from a voltage, V SS , at a source terminal of an NMOS transistor to a voltage, V DD , at a drain terminal of the NMOS transistor.
- voltage distributions 300 a extend between V SS and V DD .
- Sequential voltage ranges 301 and 302 between source voltage V SS and drain voltage V DD are used to represent corresponding bit values “1” and “0,” respectively.
- Each voltage range 301 , 302 has a respective center voltage V 1 301 b , V 0 302 b .
- the memory cell current sensed in response to an applied reading threshold voltage is indicative of a memory cell voltage different from the respective center voltage V 1 301 b or V 0 302 b corresponding to the respective bit value written into the memory cell.
- Errors in cell voltage, and/or the cell voltage sensed when reading the memory cell can occur during write operations, read operations, or due to “drift” of the cell voltage between the time data is written to the memory cell and the time a read operation is performed to read the data stored in the memory cell. For ease of discussion, these effects are collectively described as “cell voltage drift.”
- Each voltage range 301 , 302 also has a respective voltage distribution 301 a , 302 a that may occur as a result of any number of a combination of error-inducing factors, examples of which are identified above.
- a reading threshold voltage V R is applied between adjacent center voltages (e.g., applied proximate to the halfway region between adjacent center voltages V 1 301 b and V 0 302 b ).
- the reading threshold voltage is located between voltage ranges 301 and 302 .
- reading threshold voltage V R is applied in the region proximate to where the voltage distributions 301 a and 302 a overlap, which is not necessarily proximate to the halfway region between adjacent center voltages V 1 301 b and V 0 302 b.
- low read data is purposefully written so that the center 302 c of the voltage distribution of the memory cells storing “0” data values is, on average, below the center of a voltage distribution of memory cells storing “0” data values written using standard programming parameters.
- the data being written is low read data (discussed in more detail below, in particular, in reference to FIGS. 4 and 5A-5B )
- cell voltage drift and read disturb performance are less of a concern and writing data as quickly as possible is a much greater concern.
- the low read data is written to the flash memory storage device using a fast SLC programming mode that is designed to program the flash memory cells, with a density of one bit per cell, so that the data is available for reading back a small number of times after the device recovers from the power failure.
- the memory cell voltage distribution for cells programmed to store a “0” is narrower than the distribution shown in FIG. 3A , and the distribution is centered at a lower voltage, e.g., voltage 302 c , than the typical target center voltage 302 b .
- memory cells storing “1” values need not be programmed, and thus those cells will have a standard distribution of threshold voltages.
- Exemplary memory programming parameters used with the fast SLC programming mode are discussed in more detail below in reference to operation 512 ( FIG. 5A ).
- flash memory In order to increase storage density in flash memory, flash memory has developed from single-level (SLC) cell flash memory to multi-level cell (MLC) flash memory so that two or more bits can be stored by each memory cell.
- SLC single-level
- MLC multi-level cell
- a MLC flash memory device is used to store multiple bits by using voltage ranges within the total voltage range of the memory cell to represent different bit-tuples.
- a MLC flash memory device is typically more error-prone than a SLC flash memory device created using the same manufacturing process because the effective voltage difference between the voltages used to store different data values is smaller for a MLC flash memory device.
- a typical error includes a stored voltage level in a particular MLC being in a voltage range that is adjacent to the voltage range that would otherwise be representative of the correct storage of a particular bit-tuple.
- the impact of such errors can be reduced by gray-coding the data, such that adjacent voltage ranges represent single-bit changes between bit-tuples.
- FIG. 3B is a simplified, prophetic diagram of voltage distributions 300 b found in a multi-level flash memory cell (MLC) over time, in accordance with some embodiments.
- the voltage distributions 300 b shown in FIG. 3B have been simplified for illustrative purposes.
- the cell voltage of a MLC approximately extends from a voltage, V SS , at the source terminal of a NMOS transistor to a voltage, V DD , at the drain terminal.
- voltage distributions 300 b extend between V SS and V DD .
- Sequential voltage ranges 311 , 312 , 313 , 314 between the source voltage V SS and drain voltages V DD are used to represent corresponding bit-tuples “11,” “01,” “00,” “10,” respectively.
- Each voltage range 311 , 312 , 313 , 314 has a respective center voltage 311 b , 312 b , 313 b , 314 b .
- Each voltage range 311 , 312 , 313 , 314 also has a respective voltage distribution 311 a , 312 a , 313 a , 314 a that may occur as a result of any number of a combination of factors, such as electrical fluctuations, defects in the storage medium, operating conditions, device history (e.g., number of program-erase (P/E) cycles), and/or imperfect performance or design of write-read circuitry.
- P/E program-erase
- the charge on the floating gate of the MLC would be set such that the resultant cell voltage is at the center of one of the ranges 311 , 312 , 313 , 314 in order to write the corresponding bit-tuple to the MLC.
- the resultant cell voltage would be set to one of V 11 311 b , V 01 312 b , V 00 313 b and V 10 314 b in order to write a corresponding one of the bit-tuples “11,” “01,” “00” and “10.”
- the initial cell voltage may differ from the center voltage for the data written to the MLC.
- Reading threshold voltages V RA , V RB and V RC are positioned between adjacent center voltages (e.g., positioned at or near the halfway point between adjacent center voltages) and, thus, define threshold voltages between the voltage ranges 311 , 312 , 313 , 314 .
- one of the reading threshold voltages V RA , V RB and V RC is applied to determine the cell voltage using a comparison process.
- the actual cell voltage, and/or the cell voltage received when reading the MLC may be different from the respective center voltage V 11 311 b , V 01 312 b , V 00 313 b or V 10 314 b corresponding to the data value written into the cell.
- the actual cell voltage may be in an altogether different voltage range, strongly indicating that the MLC is storing a different bit-tuple than was written to the MLC. More commonly, the actual cell voltage may be close to one of the read comparison voltages, making it difficult to determine with certainty which of two adjacent bit-tuples is stored by the MLC.
- Errors in cell voltage, and/or the cell voltage received when reading the MLC can occur during write operations, read operations, or due to “drift” of the cell voltage between the time data is written to the MLC and the time a read operation is performed to read the data stored in the MLC.
- drift sometimes errors in cell voltage, and/or the cell voltage received when reading the MLC, are collectively called “cell voltage drift.”
- Gray-coding the bit-tuples includes constraining the assignment of bit-tuples such that a respective bit-tuple of a particular voltage range is different from a respective bit-tuple of an adjacent voltage range by only one bit. For example, as shown in FIG.
- the corresponding bit-tuples for adjacent ranges 301 and 302 are respectively “11” and “01”
- the corresponding bit-tuples for adjacent ranges 302 and 303 are respectively “01” and “00”
- the corresponding bit-tuples for adjacent ranges 303 and 304 are respectively “00” and “10.”
- gray-coding if the cell voltage drifts close to a read comparison voltage level, the error is typically limited to a single bit within the 2-bit bit-tuple.
- a triple-level memory cell (TLC) has eight possible states per cell, yielding three bits of information per cell.
- a quad-level memory cell has 16 possible states per cell, yielding four bits of information per cell.
- a cell might store only 6 states, yielding approximately 2.5 bits of information per cell, meaning that two cells together would provide 36 possible states, more than sufficient to store 5 bits of information per pair of cells.
- low read data is written using fast programming parameters that enable faster writing than standard programming parameters, but result in the stored data having lower endurance than data written using standard programming parameters.
- more accurate read operations e.g., lower error read operations
- V R reading thresholds
- the default reading thresholds used to read data written to memory cells e.g., in the same flash memory block or same flash memory die
- FIGS. 3A-3B illustrate exemplary voltage ranges for SLC and MLC (e.g., voltage ranges 301 , 302 , FIG. 3A , and voltage ranges 311 , 312 , 313 , and 314 , FIG. 3B ), in some embodiments, the voltage ranges are different for memory cells that are used to store different types of data.
- the voltage ranges will have a narrower and sharper shape than the voltage ranges for memory cells used to store regular data (e.g., data other than low read data), at least in part because low read data is seldom read, and therefore the memory cells storing low read data are exposed to many fewer read disturbs, which cause broadening of the voltage ranges, than the memory cells storing regular data.
- regular data e.g., data other than low read data
- FIG. 4 illustrates a flowchart representation of a method of efficiently managing the writing of data, including low read data, within a storage system, in accordance with some embodiments.
- a method 400 is performed by a storage device (e.g., storage device 120 ) or one or more components of the storage device (e.g., storage controller 124 ).
- the method 400 is governed by instructions that are stored in a non-transitory computer-readable storage medium and that are executed by one or more processors of a device, such as the one or more processing units (CPUs) 122 - 1 of management module 121 - 1 ( FIG. 2 ).
- CPUs processing units
- method 400 is performed at a host system (e.g., computer system 110 ) that is operatively coupled with the storage device and other operations of method 400 are performed at the storage device.
- method 400 is governed, at least in part, by instructions that are stored in a non-transitory computer-readable storage medium and that are executed by one or more processors of the host system (the one or more processors of the host system are not shown in FIG. 1 ).
- the following describes method 400 as performed by the storage device (e.g., by storage controller 124 of storage device 120 , FIG. 1 ).
- the operations of method 400 are performed, at least in part, by a data write module (e.g., data write module 216 , FIG. 2 ), an event occurrence detection module (e.g., event occurrence detection module 222 , FIG. 2 ), a power failure module (e.g., power failure module 224 , FIG. 2 ), a memory programming parameters module (e.g., memory programming parameters module 228 ), a parameter adjusting module (e.g., parameter adjusting module 230 ), and/or a memory programming parameters module (e.g., memory programming parameters module 232 ) of management module 121 - 1 .
- a data write module e.g., data write module 216 , FIG. 2
- an event occurrence detection module e.g., event occurrence detection module 222 , FIG. 2
- a power failure module e.g., power failure module 224 , FIG. 2
- a memory programming parameters module e.g., memory programming parameters module 228
- the method 400 begins, in some embodiments, when the storage device (e.g., storage device 120 , FIG. 1 , or a component thereof such as data write module 216 , FIG. 2 ) receives ( 402 ) a write command and data specified by the write command.
- the storage device optionally determines whether the write command is for an SLC memory portion.
- the storage device writes ( 406 ) the data using an MLC programming mode.
- the MLC programming mode is a programming mode that is used to write data to MLC memory portions and the MLC programming mode is distinct from both a default SLC programming mode and from a fast SLC programming mode.
- three distinct programming modes are provided and they are selectively utilized based on the location to which the data is to be written (e.g., an SLC or MLC memory portion) and/or based on the type of data being written (e.g., low read data).
- the storage device proceeds to conduct a second determination ( 408 ) by determining whether the data satisfies predefined low read criteria.
- the predefined low read criteria include a criterion that an estimated number of read operations for reading the low read data is below a predefined number of read operations and/or a criterion that the low read data can be stored with low endurance (discussed in more detail below with reference to FIGS. 5A-5B ).
- the predefined low read criteria include a criterion that the data is any one of a set of predefined data types (e.g., address translation table updates, update log records, etc.), or is data being written in response to a predefined event (e.g., data being written in response to a power fail event).
- a predefined data types e.g., address translation table updates, update log records, etc.
- the predefined data types corresponding to first types of data (e.g., data, such as log records, used solely for error recovery) that is rarely read, and/or second types of data (e.g., data saved during a power failure and used for power failure recovery) that are typically read only once or twice.
- the storage device writes ( 410 ) the data using the default SLC programming mode.
- the storage device writes ( 412 ) the data using the fast SLC programming mode.
- writing data with the fast SLC programming mode takes less time (e.g., at least forty percent (40%) less time) per predefined unit of data than writing data with the default SLC programming mode.
- writing data with the fast SLC programming mode takes fifty to sixty percent (50-60%) less time per predefined unit of data as compared to writing data with the default SLC programming mode.
- writing data using either the default SLC programming mode or the fast SLC programming mode includes writing data to a lower page of a memory portion within the non-volatile memory of the storage device.
- the programming times i.e., time to complete a write operation
- the fast SLC programming mode is significantly faster than both the MLC and the default SLC programming modes.
- the default SLC programming mode (and the MLC programming mode) is slower than the fast SLC programming mode due in part to the use of a program verify operation that is not used with the fast SLC programming mode.
- writing data with the default SLC programming mode to a particular memory cell includes verifying that the charge of a floating gate is approximately at the center of a respective voltage range for the particular memory cell (this verification is referred to as a program verify operation).
- this verification is referred to as a program verify operation.
- no program verify operations are performed (e.g., either by setting a PVerify count to be zero or by skipping the program verify operation completely).
- the fast SLC programming mode is discussed in more detail below in reference to FIGS. 5A-5B .
- method 400 requires only conducting the second determination after receiving the data specified by the write command ( 402 ), while in other embodiments, the method 400 requires only conducting the first determination after receiving the data specified by the write command.
- the fast SLC programming mode is designed to perform write operations as quickly as possible and, thus, performing the second determination allows the storage device to first decide whether the fast SLC programming mode can be utilized (because the second determination reveals that the data is low read data) and avoids any extra processing time required to conduct the first determination.
- FIGS. 5A-5B illustrate a flowchart representation of a method of efficiently managing low read data within a storage system, in accordance with some embodiments.
- a method 500 is performed by a storage device (e.g., storage device 120 ) or one or more components of the storage device (e.g., storage controller 124 ).
- the method 500 is governed by instructions that are stored in a non-transitory computer-readable storage medium and that are executed by one or more processors of a device, such as the one or more processing units (CPUs) 122 - 1 of management module 121 - 1 ( FIG. 2 ).
- CPUs processing units
- method 500 is performed at a host system (e.g., computer system 110 ) that is operatively coupled with the storage device and other operations of method 500 are performed at the storage device.
- method 500 is governed, at least in part, by instructions that are stored in a non-transitory computer-readable storage medium and that are executed by one or more processors of the host system (the one or more processors of the host system are not shown in FIG. 1 ).
- the following describes method 500 as performed by the storage device (e.g., by storage controller 124 of storage device 120 , FIG. 1 ).
- the operations of method 500 are performed, at least in part, by a data write module (e.g., data write module 216 , FIG. 2 ), an event occurrence detection module (e.g., event occurrence detection module 222 , FIG. 2 ), a power failure module (e.g., power failure module 224 , FIG. 2 ), a memory programming parameters module (e.g., memory programming parameters module 228 ), a parameter adjusting module (e.g., parameter adjusting module 230 ), and/or a memory programming parameters module (e.g., memory programming parameters module 232 ) of management module 121 - 1 .
- a data write module e.g., data write module 216 , FIG. 2
- an event occurrence detection module e.g., event occurrence detection module 222 , FIG. 2
- a power failure module e.g., power failure module 224 , FIG. 2
- a memory programming parameters module e.g., memory programming parameters module 228
- the storage device optionally reserves ( 502 ) a portion of non-volatile memory (“NVM”) of a storage device and configures the reserved portion of the NVM to write data with a fast SLC programming mode, distinct from a default SLC programming mode (as discussed above in reference to FIG. 4 , the fast SLC programming mode is also distinct from an MLC programming mode).
- the reserved portion is a block, super block, die plane, or die memory portion.
- the reserving occurs at a manufacturing time (or factory configuration of the storage device) and prior to shipment of the storage device to a customer.
- the trim registers associated with a reserved NVM die can be set in accordance with the fast SLC programming mode (e.g., configured to execute all write operations directed to the reserved NVM die using one or more memory programming parameters (discussed below in reference to operations 512 and 514 )).
- the manufacturer of the storage device is able to ensure that at least the reserved portion of the storage device will be available for write operations using the fast SLC programming mode.
- a size of the reserved portion is determined in accordance with low read requirements (e.g., data that is reported back to the manufacturer of the storage device and is then used to determine statistics associated with low read data usage on similar storage devices) associated with similar storage devices (e.g., storage devices used in a single data center for the same company).
- the storage device detects ( 504 ) occurrence of a first event.
- the first event is a power failure event (e.g., a PFail event), a scheduled write event for copying at least a portion of a mapping table to the NVM (e.g., a flash translation layer table segment write event), an event indicating log fullness (e.g., a flash translation layer update log fullness event), or an event requiring dumping of an error log (e.g., detecting an error affecting a portion of the storage device and dumping error log data associated with the error for diagnostic purposes) ( 506 ).
- a power failure event e.g., a PFail event
- a scheduled write event for copying at least a portion of a mapping table to the NVM e.g., a flash translation layer table segment write event
- an event indicating log fullness e.g., a flash translation layer update log fullness event
- an event requiring dumping of an error log e.g., detecting an error affecting a portion of the storage device and dumping error log
- the power failure event includes the event requiring dumping of the error log (in other words, the error log data may provide details associated with the power failure event and, thus, in response to detecting a power failure event, the storage device also detects an event requiring dumping of the error log in order to help diagnose the source of the power failure).
- the storage device writes ( 508 ) low read data to the NVM with the fast SLC programming mode.
- writing the low read data includes writing data corresponding to the first event or writing data that is specified by the first event such as data corresponding to a write command.
- the low read data includes power fail data, a mapping table or a portion of a mapping table that maps logical addresses (e.g., LBA) in a logical address space to physical addresses in the non-volatile memory, a log containing data corresponding to write commands and un-map commands, error log data, and/or debug trace dump data.
- low read data is data satisfying predefined low read criteria.
- the predefined low read criteria include ( 510 ) a criterion that an estimated number of read operations for reading the low read data (e.g., estimated based on number of read operations required for data that is similar to the low read data, such as an average number of read operations required for all logical-to-physical mapping table data stored in the NVM) is below a predefined number of read operations and/or a criterion that the low read data can be stored with low endurance.
- an estimated number of read operations for reading the low read data e.g., estimated based on number of read operations required for data that is similar to the low read data, such as an average number of read operations required for all logical-to-physical mapping table data stored in the NVM
- the predefined low read criteria further include a criterion that the low read data is of a predefined type (e.g., mapping table data, error log data, and other data that has low read requirements) and/or a criterion that the low read data has a low erase/program cycle requirement.
- the low read criteria include a single low read criterion (one of the threshold number criterion, the low endurance criterion, the predefined type criterion, or the low erase/program cycle criterion).
- the threshold number of read operations is greater than or equal to one and less than or equal to ten.
- writing the low read data with the fast SLC programming mode includes ( 512 ) writing data using one or more (or, alternatively, two or more) memory programming parameters distinct from a default set of memory programming parameters used for writing data with the default SLC programming mode.
- writing data with the fast SLC mode includes ( 514 ) a memory programming operation including a plurality of electrical pulses
- the one or more memory programming parameters are selected from the group consisting of: (i) a clock rate or programming pulse duration, (ii) a maximum number of electrical pulses used in the memory programming operation, (iii) a first voltage for a first electrical pulse or first set of electrical pulses of the plurality of electrical pulses, (iv) a write verification control parameter, and (v) a delta voltage corresponding to a difference between a second voltage, for a second electrical pulse or second set of electrical pulses of the plurality of electrical pulses, and the first voltage.
- the one or more memory programming parameters are selected by sending a precursor command (e.g., a command that instructs the storage device to use a particular set of the one or more memory programming parameters) to the non-volatile memory prior to writing data to the NVM with a desired programming mode (e.g., writing the low read data with the fast SLC programming mode).
- a precursor command e.g., a command that instructs the storage device to use a particular set of the one or more memory programming parameters
- a desired programming mode e.g., writing the low read data with the fast SLC programming mode.
- the storage device or a portion thereof (such as a reserved NVM die) is configured to write data using the fast SLC programming mode by default and, thus, the precursor command is used only to switch to use either the MLC programming mode or the default SLC programming mode.
- At least one memory programming parameter of the one or more memory programming parameters used with the fast SLC programming mode will be different from the default set of memory programming parameters.
- Three exemplary memory programming parameters are provided below to illustrate how the one or more memory programming parameters used with the fast SLC programming mode are different from the default set of memory programming parameters.
- the clock rate or programming pulse duration used in the fast SLC programming mode is less than the programming pulse duration used in the default SLC programming mode.
- a reduced pulse duration rate is achieved by increasing a clock rate, which reduces a corresponding clock period.
- the clock rate is also referred to as clock frequency and a higher clock rate/frequency allows the storage device to complete more memory programming operations (e.g., more write operations) per unit of time than a lower clock rate.
- the number of electrical pulses used to write data (using memory programming operations) with the fast SLC programming mode is lower than a default number of electrical pulses used to write data (using memory programming operations) performed with the default SLC programming mode.
- the number of electrical pulses is a count of electrical pulses used to write data to the NVM.
- the count of electrical pulses associated with memory programming operations in the fast SLC programming mode is 60%, 70%, or 80% of the default count.
- the one or more memory programming parameters used to write data with the fast SLC programming mode include only the lowered count of electrical pulses and, in other embodiments, the one or more memory programming parameters used to write data with the fast SLC programming mode include both the reduced clock period (as described in the first example above) and the lowered count of electrical pulses. In some embodiments, the lowered number of electrical pulses is used in conjunction with the reduced clock period, in order to ensure that programming operations are completed within the timing constraints imposed by the reduced clock rate.
- a third example of a memory programming parameter used with the fast SLC programming mode that is different, in some embodiments, from the corresponding default memory programming parameter is the first voltage (also called the initial programming voltage) for the first electrical pulse in the set of electric pulses used to write data to the NVM.
- the first voltage used when writing data using the fast SLC programming mode is smaller than the default first voltage used when writing data using the default SLC programming mode.
- a memory programming parameter used with the fast SLC programming mode that is different, in some embodiments, from the corresponding default memory is the delta voltage, which is the amount by which the second voltage for a second electrical pulse or second set of electrical pulses is greater than the first voltage for the first electrical pulse or first set of electrical pulses.
- the delta voltage used when writing data using the fast SLC programming mode is smaller than the delta voltage used when writing data using the default SLC programming mode.
- a number (or count) of program verify operations associated with the fast SLC programming mode is less than a number of program verify operations associated with the default SLC programming mode.
- the number of program verify operations associated with the fast SLC programming mode is zero (in other words, no program verify operations are performed at all with the fast SLC programming mode). Additional details regarding program verify operations are also provided above in reference to FIG. 4 .
- the one or more memory programming parameters are used when writing data with the fast SLC programming mode, resulting in cell voltages that are, on average, lower than the cell voltages that would result if the same data were written using the default SLC programming mode, as explained above with respect to FIGS. 3A and 3B .
- writing data with the fast SLC programming mode includes retrieving the one or more memory programming parameters from volatile memory (e.g., using memory programming parameters module 228 to retrieve the one or more memory programming parameters from memory programming parameters 232 , FIG. 2 ).
- at least one of the retrieved one or more memory programming parameters is adjusted (e.g., by the parameter adjusting module 230 , FIG. 2 ) in accordance with an age metric or a performance metric associated with the non-volatile memory of the storage device.
- writing data to the non-volatile memory of the storage device with the fast SLC programming mode takes at least 40% less time per predefined unit of data (e.g., per page) as compared to writing data to the non-volatile memory of the storage device with the default SLC programming mode ( 516 ). In some embodiments, writing data with the fast SLC programming mode takes 50-60% less time per predefined unit of data as compared to writing data with the default SLC programming mode. Typically, writing data using either the default SLC programming mode or the fast SLC programming mode includes writing data to a lower page of a memory portion within the non-volatile memory of the storage device.
- the storage device detects ( 518 ) occurrence of a second event.
- the second event is a write command from host or a write command associated with garbage collection at the storage device.
- the second event is an event of a different type than the first event.
- the storage device writes ( 520 ) data corresponding to the second event to the NVM of the storage device with the default SLC programming mode, wherein writing data with the default SLC programming mode includes writing data using the default set of memory programming parameters.
- the storage device use the default SLC programming mode to write the data and does not use the fast SLC programming mode.
- the storage device is able to efficiently choose the programming mode utilized for individual write commands based on the type of data specified by the write command and/or based on the memory portion to which the data is being written (discussed in more detail above).
- the storage device after writing the low read data with the fast SLC programming mode, the storage device receives a read command for at least a portion of the low read data. In response to receiving the read command for at least the portion of the low read data, the storage device performs a read operation by using one or more reading thresholds that are lower than default reading thresholds used to read data that is not low read data (as discussed above in reference to FIGS. 3A-3B ).
- first first
- second second
- first transistor first transistor
- first transistor second transistor
- first transistor first transistor
- second transistor second transistor
- the first transistor and the second transistor are both transistors, but they are not the same transistor.
- the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context.
- the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
- Read Only Memory (AREA)
Abstract
Description
-
-
mapping module 212 that is used for mapping (e.g., using a mapping table) logical addresses in a logical address space to physical addresses, and for maintaining and updating one or more address mapping tables and/or related data structures; -
garbage collection module 210 that is used for garbage collection for one or more blocks in a storage medium (e.g.,storage medium 132,FIG. 1 ); - data read
module 214 that is used for reading data from one or more codewords, pages, or blocks in a storage medium (e.g.,storage medium 132,FIG. 1 ); - data write
module 216 that is used for writing data to one or more codewords, pages, or blocks in a storage medium (e.g.,storage medium 132,FIG. 1 ); in some circumstances, the data writemodule 216 uses an appropriate programming mode for writing data based on detection of various events and/or based on the type of data being written (e.g., in response to detecting occurrence of a power failure event, the data writemodule 216 uses a fast SLC programming mode to write low read data to the non-volatile memory of the storage device, as discussed in more detail below in reference toFIGS. 4 and 5A-5B ); - data erase
module 218 that is used for erasing data from one or more blocks in a storage medium (e.g.,storage medium 132,FIG. 1 ); - event
occurrence detection module 222 that is used for detecting occurrence of events at a storage device or events affecting the storage device, optionally including:-
power failure module 224 that is used for detecting occurrence of power failure events that affect the storage device and for instructing the data writemodule 216 to write data to non-volatile memory in response to detecting the occurrence of power failure events. In some embodiments or circumstances, execution ofpower failure module 224 is triggered by a signal or command from storage controller 124 (FIG. 1 ) or from power failure circuitry 125-1 (FIG. 1 );
-
- memory
programming parameters module 228 that is used for retrieving and adjusting memory programming parameters, optionally including:- parameter adjusting module 230 for adjusting memory programming parameters (e.g., communicating with data write
module 214 to adjust one or more memory programming parameters, corresponding to a write command, in accordance with an age metric or a performance metric for a respective erase block corresponding to the write command); and/or -
memory programming parameters 232 for storing a plurality of sets of memory programming parameters (e.g., a first set of memory programming parameters for write commands using a fast SLC programming mode and a different set of memory programming parameters for write commands using a first (or default) SLC mode).
- parameter adjusting module 230 for adjusting memory programming parameters (e.g., communicating with data write
-
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/925,945 US9715939B2 (en) | 2015-08-10 | 2015-10-28 | Low read data storage management |
PCT/US2016/036716 WO2017027092A1 (en) | 2015-08-10 | 2016-06-09 | Low read data storage management |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562203302P | 2015-08-10 | 2015-08-10 | |
US14/925,945 US9715939B2 (en) | 2015-08-10 | 2015-10-28 | Low read data storage management |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170047124A1 US20170047124A1 (en) | 2017-02-16 |
US9715939B2 true US9715939B2 (en) | 2017-07-25 |
Family
ID=56194600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/925,945 Active US9715939B2 (en) | 2015-08-10 | 2015-10-28 | Low read data storage management |
Country Status (2)
Country | Link |
---|---|
US (1) | US9715939B2 (en) |
WO (1) | WO2017027092A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170200492A1 (en) * | 2016-01-08 | 2017-07-13 | Sandisk Technologies Llc | Memory System Temperature Management |
US20180242882A1 (en) * | 2015-11-12 | 2018-08-30 | Olympus Corporation | Server, client, communication system, communication method, and recording medium |
US10078448B2 (en) * | 2015-07-08 | 2018-09-18 | Samsung Electronics Co., Ltd. | Electronic devices and memory management methods thereof |
US10734071B2 (en) | 2018-12-13 | 2020-08-04 | Western Digital Technologies, Inc. | Multi-level cell programming using optimized multiphase mapping with balanced Gray code |
US10902925B1 (en) * | 2019-11-19 | 2021-01-26 | SanDiskTechnologies LLC | Peak and average current reduction for open block condition |
US10971215B1 (en) | 2020-02-24 | 2021-04-06 | Western Digital Technologies, Inc. | Dynamically adjust data transfer speed for non-volatile memory die interfaces |
US11133067B2 (en) | 2019-03-08 | 2021-09-28 | Western Digital Technologies, Inc. | Multi-phased programming with balanced gray coding |
US12079496B2 (en) | 2022-09-01 | 2024-09-03 | Sandisk Technologies Llc | Bundle multiple timing parameters for fast SLC programming |
US12223188B2 (en) | 2022-01-06 | 2025-02-11 | Samsung Electronics Co., Ltd. | Memory interface for initalizing memory and method thereof |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12008266B2 (en) | 2010-09-15 | 2024-06-11 | Pure Storage, Inc. | Efficient read by reconstruction |
US11614893B2 (en) | 2010-09-15 | 2023-03-28 | Pure Storage, Inc. | Optimizing storage device access based on latency |
US9971537B1 (en) * | 2016-10-26 | 2018-05-15 | Pure Storage, Inc. | Hardware support to track and transition flash LUNs into SLC mode |
US10096370B1 (en) * | 2017-08-31 | 2018-10-09 | Micron Technology, Inc. | Voltage degradation aware NAND array management |
JP7030463B2 (en) * | 2017-09-22 | 2022-03-07 | キオクシア株式会社 | Memory system |
US10740026B2 (en) | 2018-05-18 | 2020-08-11 | Micron Technology, Inc. | Time indicator of super block operations |
WO2020180045A1 (en) * | 2019-03-07 | 2020-09-10 | Samsung Electronics Co., Ltd. | Electronic device and method for utilizing memory space thereof |
US11334435B2 (en) * | 2019-04-29 | 2022-05-17 | Micron Technology, Inc. | Safety event detection for a memory device |
US10790031B1 (en) * | 2019-06-05 | 2020-09-29 | Western Digital Technologies, Inc. | System handling for first read read disturb |
CN110471863A (en) * | 2019-08-13 | 2019-11-19 | 深圳忆联信息系统有限公司 | Data write-read method, device and computer equipment based on solid state hard disk |
US11237955B2 (en) | 2019-10-28 | 2022-02-01 | Samsung Electronics Co., Ltd. | Memory device, method of operating memory device, and computer system including memory device |
KR20210050635A (en) * | 2019-10-28 | 2021-05-10 | 삼성전자주식회사 | Memory device, and computer system including the same |
DE102020128785A1 (en) * | 2019-12-03 | 2021-06-10 | Samsung Electronics Co., Ltd. | STORAGE DEVICE AND DATA BACKUP PROCEDURE FOR IT |
KR20210069744A (en) * | 2019-12-03 | 2021-06-14 | 삼성전자주식회사 | Storage device and data backup method thereof |
US12056046B2 (en) * | 2019-12-30 | 2024-08-06 | Micron Technology, Inc. | Corrupted storage portion recovery in a memory device |
US11269707B2 (en) | 2019-12-30 | 2022-03-08 | Micron Technology, Inc. | Real-time trigger to dump an error log |
US11269708B2 (en) | 2019-12-30 | 2022-03-08 | Micron Technology, Inc. | Real-time trigger to dump an error log |
JP2021149547A (en) * | 2020-03-19 | 2021-09-27 | キオクシア株式会社 | Storage device and control method |
WO2022086559A1 (en) * | 2020-10-23 | 2022-04-28 | Hewlett-Packard Development Company, L.P. | Access to volatile memories |
CN112346664B (en) * | 2020-11-30 | 2023-06-09 | 湖南国科微电子股份有限公司 | Data storage method, device, equipment and medium |
US11847324B2 (en) | 2020-12-31 | 2023-12-19 | Pure Storage, Inc. | Optimizing resiliency groups for data regions of a storage system |
US11614880B2 (en) | 2020-12-31 | 2023-03-28 | Pure Storage, Inc. | Storage system with selectable write paths |
US12229437B2 (en) | 2020-12-31 | 2025-02-18 | Pure Storage, Inc. | Dynamic buffer for storage system |
US12093545B2 (en) | 2020-12-31 | 2024-09-17 | Pure Storage, Inc. | Storage system with selectable write modes |
US12067282B2 (en) | 2020-12-31 | 2024-08-20 | Pure Storage, Inc. | Write path selection |
US12183407B2 (en) * | 2021-06-16 | 2024-12-31 | Micron Technology, Inc. | Setting switching for single-level cells |
US20230367486A1 (en) * | 2022-05-10 | 2023-11-16 | Micron Technology, Inc. | Block conversion to preserve memory capacity |
US12019879B2 (en) * | 2022-09-25 | 2024-06-25 | Advanced Micro Devices, Inc. | Multi-level cell memory management |
Citations (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4586167A (en) | 1983-01-24 | 1986-04-29 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
EP0376285A2 (en) | 1988-12-27 | 1990-07-04 | Nec Corporation | Microcomputer having electrically erasable and programmable nonvolatile memory |
US5559988A (en) | 1993-12-30 | 1996-09-24 | Intel Corporation | Method and circuitry for queuing snooping, prioritizing and suspending commands |
US5909559A (en) | 1997-04-04 | 1999-06-01 | Texas Instruments Incorporated | Bus bridge device including data bus of first width for a first processor, memory controller, arbiter circuit and second processor having a different second data width |
US6247136B1 (en) | 1997-05-06 | 2001-06-12 | Intel Corporation | Method and apparatus for capturing data from a non-source synchronous component in a source synchronous environment |
US6292410B1 (en) | 1998-10-28 | 2001-09-18 | Kyundai Electronics Industries Co., Ltd. | Apparatus for buffering data strobe signal in high-speed memory device |
US6401213B1 (en) | 1999-07-09 | 2002-06-04 | Micron Technology, Inc. | Timing circuit for high speed memory |
US6449709B1 (en) | 1998-06-02 | 2002-09-10 | Adaptec, Inc. | Fast stack save and restore system and method |
US20030115403A1 (en) | 2001-12-19 | 2003-06-19 | Bouchard Gregg A. | Dynamic random access memory system with bank conflict avoidance feature |
US20030122834A1 (en) | 2001-12-28 | 2003-07-03 | Mastronarde Josh B. | Memory arbiter with intelligent page gathering logic |
US20040117441A1 (en) | 2002-12-09 | 2004-06-17 | Infabric Technologies, Inc. | Data-aware data flow manager |
US20050144361A1 (en) | 2003-12-30 | 2005-06-30 | Gonzalez Carlos J. | Adaptive mode switching of flash memory address mapping based on host usage characteristics |
US20050248992A1 (en) | 2004-05-06 | 2005-11-10 | Sang-Won Hwang | Method and device for programming control information |
US20070002629A1 (en) | 2005-06-30 | 2007-01-04 | Hynix Semiconductor Inc. | Program Control Circuit of Flash Memory Device Having MLC and Method Thereof |
US20070156998A1 (en) | 2005-12-21 | 2007-07-05 | Gorobets Sergey A | Methods for memory allocation in non-volatile memories with a directly mapped file storage system |
US20070233937A1 (en) | 2006-03-31 | 2007-10-04 | Coulson Richard L | Reliability of write operations to a non-volatile memory |
US20080140914A1 (en) | 2006-12-07 | 2008-06-12 | Tae-Keun Jeon | Memory System and Data Transfer Method Thereof |
US20080147994A1 (en) | 2006-12-18 | 2008-06-19 | Samsung Electronics Co., Ltd. | Command scheduling method and apparatus of virtual file system embodied in nonvolatile data storage device |
US20080235480A1 (en) | 2007-03-21 | 2008-09-25 | Shai Traister | Systems for storing memory operations in a queue |
US20080235466A1 (en) | 2007-03-21 | 2008-09-25 | Shai Traister | Methods for storing memory operations in a queue |
US20080295094A1 (en) | 2007-05-22 | 2008-11-27 | International Business Machines Corporation | Integrated placement planning for heterogenous storage area network data centers |
US20090168525A1 (en) | 2007-12-27 | 2009-07-02 | Pliant Technology, Inc. | Flash memory controller having reduced pinout |
US20090177943A1 (en) | 2008-01-09 | 2009-07-09 | Broadcom Corporation | Error correction coding using soft information and interleaving |
US20090222627A1 (en) | 2008-02-29 | 2009-09-03 | Denali Software, Inc. | Method and apparatus for high speed cache flushing in a non-volatile memory |
US20090282191A1 (en) | 2008-05-08 | 2009-11-12 | Robert Depta | Operating Method for a Memory Subsystem and Devices for Executing the Operating Method |
US20100005217A1 (en) | 2008-07-02 | 2010-01-07 | Micron Technology, Inc | Multi-mode memory device and method |
US20100014364A1 (en) | 2008-07-21 | 2010-01-21 | Micron Technology, Inc. | Memory system and method using stacked memory device dice, and system using the memory system |
US20100082879A1 (en) | 2008-09-26 | 2010-04-01 | Mckean Brian D | Priority command queues for low latency solid state drives |
US20100165730A1 (en) | 2006-10-30 | 2010-07-01 | Anobit Technologies Ltd. | Reading memory cells using multiple thresholds |
US20100174853A1 (en) | 2009-01-08 | 2010-07-08 | Samsung Electronics Co., Ltd. | User device including flash and random write cache and method writing data |
US20100174845A1 (en) | 2009-01-05 | 2010-07-08 | Sergey Anatolievich Gorobets | Wear Leveling for Non-Volatile Memories: Maintenance of Experience Count and Passive Techniques |
US20100220509A1 (en) | 2009-03-01 | 2010-09-02 | Anobit Technologies Ltd | Selective Activation of Programming Schemes in Analog Memory Cell Arrays |
US20100250874A1 (en) | 2009-03-24 | 2010-09-30 | Farrell Todd D | Apparatus and method for buffered write commands in a memory |
US20110113204A1 (en) | 2009-08-14 | 2011-05-12 | Nxp B.V. | Memory controller with external refresh mechanism |
US20110138100A1 (en) | 2009-12-07 | 2011-06-09 | Alan Sinclair | Method and system for concurrent background and foreground operations in a non-volatile memory array |
US7969809B2 (en) | 2008-08-05 | 2011-06-28 | Sandisk Il Ltd. | Power consumption-oriented management of a storage system |
US8010738B1 (en) | 2008-06-27 | 2011-08-30 | Emc Corporation | Techniques for obtaining a specified lifetime for a data storage device |
US20110235434A1 (en) | 2010-03-24 | 2011-09-29 | Apple Inc. | Systems and methods for refreshing non-volatile memory |
US20110252215A1 (en) | 2010-04-09 | 2011-10-13 | International Business Machines Corporation | Computer memory with dynamic cell density |
US20110264851A1 (en) | 2006-12-07 | 2011-10-27 | Tae-Keun Jeon | Memory system and data transmitting method thereof |
US20110302474A1 (en) | 2010-06-03 | 2011-12-08 | Seagate Technology Llc | Ensuring a Most Recent Version of Data is Recovered From a Memory |
US20120030408A1 (en) | 2010-07-28 | 2012-02-02 | Fusion-Io, Inc. | Apparatus, system, and method for atomic storage operations |
US8122202B2 (en) | 2007-02-16 | 2012-02-21 | Peter Gillingham | Reduced pin count interface |
US20120047317A1 (en) | 2010-08-20 | 2012-02-23 | Samsung Electronics Co., Ltd. | Semiconductor storage device and method of throttling performance of the same |
US20120159070A1 (en) | 2010-12-18 | 2012-06-21 | Anant Baderdinni | System and method for handling io to drives in a memory constrained environment |
WO2012083308A2 (en) | 2010-12-17 | 2012-06-21 | Fusion-Io, Inc. | Apparatus, system, and method for persistent data management on a non-volatile storage media |
US8213255B2 (en) | 2010-02-19 | 2012-07-03 | Sandisk Technologies Inc. | Non-volatile storage with temperature compensation based on neighbor state information |
US20120198129A1 (en) | 2011-02-02 | 2012-08-02 | Van Aken Stephen P | At least semi-autonomous modules in a memory system and methods |
US8255618B1 (en) | 2011-10-06 | 2012-08-28 | Google Inc. | Performance isolation in a shared memory device |
US20120224425A1 (en) | 2011-03-02 | 2012-09-06 | Apple Inc. | Using Temperature Sensors with a Memory Device |
US20120278530A1 (en) | 2011-04-28 | 2012-11-01 | Seagate Technology Llc | Enforcing system intentions during memory scheduling |
US8321627B1 (en) | 2011-10-06 | 2012-11-27 | Google Inc. | Memory operation command latency management |
US20120324180A1 (en) | 2009-04-09 | 2012-12-20 | Micron Technology, Inc. | Memory controllers, memory systems, solid state drives and methods for processing a number of commands |
US20130007380A1 (en) | 2011-06-30 | 2013-01-03 | Seagate Technology Llc | Limiting activity rates that impact life of a data storage media |
US20130070507A1 (en) | 2011-09-19 | 2013-03-21 | Tae-Young Yoon | Semiconductor memory device |
US8429498B1 (en) | 2009-03-25 | 2013-04-23 | Apple Inc. | Dual ECC decoder |
US20130111112A1 (en) | 2011-11-02 | 2013-05-02 | Jeonghoon Jeong | Method for adjusting performance of a storage device and a semiconductor storage device therefor |
US20130111289A1 (en) | 2011-10-28 | 2013-05-02 | Lsi Corporation | Systems and methods for dual process data decoding |
US20130111290A1 (en) | 2011-10-28 | 2013-05-02 | Lsi Corporation | Systems and Methods for Ambiguity Based Decode Algorithm Modification |
US20130132650A1 (en) | 2011-11-23 | 2013-05-23 | Samsung Electronics Co., Ltd. | Storage device based on a flash memory and user device including the same |
US8479080B1 (en) | 2009-07-12 | 2013-07-02 | Apple Inc. | Adaptive over-provisioning in memory systems |
US20130182506A1 (en) * | 2012-01-13 | 2013-07-18 | Stec, Inc. | Programming algorithm for improved flash memory endurance and retention |
US20130219106A1 (en) | 2012-02-17 | 2013-08-22 | Apple Inc. | Trim token journaling |
US20130232290A1 (en) | 2012-03-01 | 2013-09-05 | Mark Ish | Reducing write amplification in a flash memory |
US8539139B1 (en) | 2010-12-17 | 2013-09-17 | Teradota Us, Inc. | Managing device wearout using I/O metering |
US20130254498A1 (en) | 2012-03-23 | 2013-09-26 | Sony Corporation | Storage control apparatus, storage apparatus, information processing system and processing method therefor |
US20130262745A1 (en) | 2012-03-30 | 2013-10-03 | Gary Lin | Memory System with Command Queue Reordering |
US20130297894A1 (en) | 2011-08-09 | 2013-11-07 | Lsi Corporation | I/o device and computing host interoperation |
US8595590B1 (en) | 2012-12-03 | 2013-11-26 | Digital PowerRadio, LLC | Systems and methods for encoding and decoding of check-irregular non-systematic IRA codes |
US20130346805A1 (en) | 2012-06-21 | 2013-12-26 | Steven T. Sprouse | Flash memory with targeted read scrub algorithm |
US20140006688A1 (en) | 2012-07-02 | 2014-01-02 | Super Talent Technology, Corp. | Endurance and Retention Flash Controller with Programmable Binary-Levels-Per-Cell Bits Identifying Pages or Blocks as having Triple, Multi, or Single-Level Flash-Memory Cells |
US20140013026A1 (en) | 2012-07-06 | 2014-01-09 | Seagate Technology Llc | Memory access requests in hybrid memory system |
US20140047170A1 (en) | 2012-05-04 | 2014-02-13 | Lsi Corporation | Maintaining ordering via a multi-level map of a solid-state media |
US20140075100A1 (en) | 2012-09-12 | 2014-03-13 | Kabushiki Kaisha Toshiba | Memory system, computer system, and memory management method |
US20140143637A1 (en) | 2012-05-04 | 2014-05-22 | Lsi Corporation | Log-likelihood ratio (llr) dampening in low-density parity-check (ldpc) decoders |
US20140173239A1 (en) | 2012-12-19 | 2014-06-19 | Apple Inc. | Refreshing of memory blocks using adaptive read disturb threshold |
US8775720B1 (en) | 2010-08-31 | 2014-07-08 | Western Digital Technologies, Inc. | Hybrid drive balancing execution times for non-volatile semiconductor memory and disk |
US20140229655A1 (en) | 2013-02-08 | 2014-08-14 | Seagate Technology Llc | Storing Error Correction Code (ECC) Data In a Multi-Tier Memory Structure |
US20140229656A1 (en) | 2013-02-08 | 2014-08-14 | Seagate Technology Llc | Multi-Tiered Memory with Different Metadata Levels |
US20140244899A1 (en) | 2013-02-27 | 2014-08-28 | SMART Storage Systems, Inc. | Storage control system with data management mechanism and method of operation thereof |
US20140241071A1 (en) | 2013-02-26 | 2014-08-28 | Seagate Technology Llc | Fast Power Loss Recovery By Swapping Boot and Recovery Data Sets in a Memory |
US20140244897A1 (en) | 2013-02-26 | 2014-08-28 | Seagate Technology Llc | Metadata Update Management In a Multi-Tiered Memory |
US8825967B2 (en) | 2011-12-08 | 2014-09-02 | Conversant Intellectual Property Management Inc. | Independent write and read control in serially-connected devices |
US20140258598A1 (en) | 2010-06-18 | 2014-09-11 | Lsi Corporation | Scalable storage devices |
US20140281833A1 (en) | 2013-03-15 | 2014-09-18 | Ibiquity Digital Corporation | Method and apparatus for transmission and reception of in-band on-channel radio signals including complementary low density parity check coding |
US20140310241A1 (en) | 2013-04-12 | 2014-10-16 | Alterante, LLC | Virtual file system for automated data replication and review |
US8874836B1 (en) | 2014-07-03 | 2014-10-28 | Pure Storage, Inc. | Scheduling policy for queues in a non-volatile solid-state storage |
US8886872B1 (en) | 2011-10-06 | 2014-11-11 | Google Inc. | Memory command dispatch in a data storage device |
US20140379988A1 (en) | 2013-06-21 | 2014-12-25 | Microsoft Corporation | Cache destaging for virtual storage devices |
US8924661B1 (en) | 2009-01-18 | 2014-12-30 | Apple Inc. | Memory system including a controller and processors associated with memory devices |
US20150067172A1 (en) | 2013-09-04 | 2015-03-05 | Aruba Networks, Inc. | Method and system for dynamically prioritizing user connections on network |
US20150074487A1 (en) | 2013-09-12 | 2015-03-12 | Seagate Technology Llc | Memory Device with Variable Code Rate |
US8984376B1 (en) | 2013-03-14 | 2015-03-17 | Pmc-Sierra Us, Inc. | System and method for avoiding error mechanisms in layered iterative decoding |
US20150095558A1 (en) * | 2013-10-01 | 2015-04-02 | Kyungryun Kim | Storage and programming method thereof |
US20150113206A1 (en) | 2013-10-18 | 2015-04-23 | Sandisk Enterprise Ip Llc | Biasing for Wear Leveling in Storage Systems |
US20150186278A1 (en) | 2013-12-26 | 2015-07-02 | Sarathy Jayakumar | Runtime persistence |
US20150234612A1 (en) | 2013-04-09 | 2015-08-20 | Graphite System, Inc. | Multiprocessor System with Independent Direct Access to Bulk Solid State Memory Resources |
US9128825B1 (en) | 2013-05-17 | 2015-09-08 | Google Inc. | Optimizing allocation of flash memory to file groups |
US20150262632A1 (en) | 2014-03-12 | 2015-09-17 | Fusion-Io, Inc. | Grouping storage ports based on distance |
US20150261473A1 (en) | 2014-03-11 | 2015-09-17 | Kabushiki Kaisha Toshiba | Memory system and method of controlling memory system |
US20150301749A1 (en) | 2014-04-21 | 2015-10-22 | Jung-Min Seo | Storage controller, storage system and method of operating storage controller |
US9170876B1 (en) | 2013-12-31 | 2015-10-27 | Pmc-Sierra Us, Inc. | Method and system for decoding encoded data stored in a non-volatile memory |
US9176971B2 (en) | 2005-12-22 | 2015-11-03 | Alan Joshua Shapiro | Method and apparatus for subtractive installation |
US20150331627A1 (en) * | 2014-05-14 | 2015-11-19 | Donghun Kwak | Nonvolatile memory device and operation method of storage device including the nonvolatile memory device |
US9214965B2 (en) | 2013-02-20 | 2015-12-15 | Sandisk Enterprise Ip Llc | Method and system for improving data integrity in non-volatile storage |
US20160026386A1 (en) | 2014-07-22 | 2016-01-28 | Sandisk Enterprise Ip Llc | Suspending and Resuming Non-Volatile Memory Operations |
US20160034194A1 (en) | 2014-07-30 | 2016-02-04 | Qualcomm Innovation Center, Inc. | Read disturb and data retention handling for nand devices |
US20160062699A1 (en) | 2014-09-02 | 2016-03-03 | Sandisk Technologies Inc. | Notification of Trigger Condition to Reduce Declared Capacity of a Storage Device in a Multi-Storage-Device Storage System |
US20160070493A1 (en) * | 2014-09-04 | 2016-03-10 | Samsung Electronics Co., Ltd. | Data storage device and method of operating the same |
US20160071612A1 (en) | 2014-09-05 | 2016-03-10 | Kabushiki Kaisha Toshiba | Memory system and management method thereof |
US20160117102A1 (en) | 2014-10-27 | 2016-04-28 | Seong Cheol Hong | Method for operating data storage device, mobile computing device having the same, and method of the mobile computing device |
US20160117252A1 (en) | 2014-10-27 | 2016-04-28 | Sandisk Enterprise Ip Llc | Processing of Un-Map Commands to Enhance Performance and Endurance of a Storage Device |
US20160117099A1 (en) | 2014-10-27 | 2016-04-28 | Sandisk Enterprise Ip Llc | Tracking Intermix of Writes and Un-Map Commands Across Power Cycles |
US20160117105A1 (en) | 2014-10-27 | 2016-04-28 | Sandisk Enterprise Ip Llc | Method and System for Throttling Bandwidth Based on Temperature |
US20160170671A1 (en) * | 2014-12-10 | 2016-06-16 | Silicon Motion, Inc. | Data storage device and data writing method thereof |
US20160170831A1 (en) | 2013-07-25 | 2016-06-16 | Hewlett-Packard Development Company, L.P. | Response Control for Memory Modules That Include or Interface With Non-Compliant Memory Technologies |
US20160179403A1 (en) * | 2013-07-17 | 2016-06-23 | Hitachi, Ltd. | Storage controller, storage device, storage system, and semiconductor storage device |
US20160210060A1 (en) | 2015-01-21 | 2016-07-21 | HGST Netherlands B.V. | Dynamic resource allocation within storage devices |
US20160299699A1 (en) | 2015-04-09 | 2016-10-13 | Sandisk Enterprise Ip Llc | Locally Generating and Storing RAID Stripe Parity During Data Transfer to Non-Volatile Memory |
US20160299689A1 (en) | 2015-04-07 | 2016-10-13 | Samsung Electronics Co., Ltd. | Operation method of nonvolatile memory system and operation method of user system including the same |
US20160342344A1 (en) | 2015-05-20 | 2016-11-24 | Sandisk Enterprise Ip Llc | Variable Bit Encoding Per NAND Flash Cell to Extend Life of Flash-Based Storage Devices and Preserve Over-Provisioning |
US20160342345A1 (en) | 2015-05-20 | 2016-11-24 | Sandisk Enterprise Ip Llc | Variable Bit Encoding Per NAND Flash Cell to Improve Device Endurance and Extend Life of Flash-Based Storage Devices |
US20160371394A1 (en) | 2015-06-22 | 2016-12-22 | The Governing Council Of The University Of Toronto | Indoor localization using crowdsourced data |
-
2015
- 2015-10-28 US US14/925,945 patent/US9715939B2/en active Active
-
2016
- 2016-06-09 WO PCT/US2016/036716 patent/WO2017027092A1/en active Application Filing
Patent Citations (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4586167A (en) | 1983-01-24 | 1986-04-29 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
EP0376285A2 (en) | 1988-12-27 | 1990-07-04 | Nec Corporation | Microcomputer having electrically erasable and programmable nonvolatile memory |
US5559988A (en) | 1993-12-30 | 1996-09-24 | Intel Corporation | Method and circuitry for queuing snooping, prioritizing and suspending commands |
US5909559A (en) | 1997-04-04 | 1999-06-01 | Texas Instruments Incorporated | Bus bridge device including data bus of first width for a first processor, memory controller, arbiter circuit and second processor having a different second data width |
US6247136B1 (en) | 1997-05-06 | 2001-06-12 | Intel Corporation | Method and apparatus for capturing data from a non-source synchronous component in a source synchronous environment |
US6449709B1 (en) | 1998-06-02 | 2002-09-10 | Adaptec, Inc. | Fast stack save and restore system and method |
US6292410B1 (en) | 1998-10-28 | 2001-09-18 | Kyundai Electronics Industries Co., Ltd. | Apparatus for buffering data strobe signal in high-speed memory device |
US6401213B1 (en) | 1999-07-09 | 2002-06-04 | Micron Technology, Inc. | Timing circuit for high speed memory |
US20030115403A1 (en) | 2001-12-19 | 2003-06-19 | Bouchard Gregg A. | Dynamic random access memory system with bank conflict avoidance feature |
US20030122834A1 (en) | 2001-12-28 | 2003-07-03 | Mastronarde Josh B. | Memory arbiter with intelligent page gathering logic |
US20040117441A1 (en) | 2002-12-09 | 2004-06-17 | Infabric Technologies, Inc. | Data-aware data flow manager |
US20050144361A1 (en) | 2003-12-30 | 2005-06-30 | Gonzalez Carlos J. | Adaptive mode switching of flash memory address mapping based on host usage characteristics |
US20050248992A1 (en) | 2004-05-06 | 2005-11-10 | Sang-Won Hwang | Method and device for programming control information |
US20070002629A1 (en) | 2005-06-30 | 2007-01-04 | Hynix Semiconductor Inc. | Program Control Circuit of Flash Memory Device Having MLC and Method Thereof |
US20070156998A1 (en) | 2005-12-21 | 2007-07-05 | Gorobets Sergey A | Methods for memory allocation in non-volatile memories with a directly mapped file storage system |
US9176971B2 (en) | 2005-12-22 | 2015-11-03 | Alan Joshua Shapiro | Method and apparatus for subtractive installation |
US20070233937A1 (en) | 2006-03-31 | 2007-10-04 | Coulson Richard L | Reliability of write operations to a non-volatile memory |
US20100165730A1 (en) | 2006-10-30 | 2010-07-01 | Anobit Technologies Ltd. | Reading memory cells using multiple thresholds |
US20080140914A1 (en) | 2006-12-07 | 2008-06-12 | Tae-Keun Jeon | Memory System and Data Transfer Method Thereof |
US20110264851A1 (en) | 2006-12-07 | 2011-10-27 | Tae-Keun Jeon | Memory system and data transmitting method thereof |
US20080147994A1 (en) | 2006-12-18 | 2008-06-19 | Samsung Electronics Co., Ltd. | Command scheduling method and apparatus of virtual file system embodied in nonvolatile data storage device |
US8122202B2 (en) | 2007-02-16 | 2012-02-21 | Peter Gillingham | Reduced pin count interface |
US20080235466A1 (en) | 2007-03-21 | 2008-09-25 | Shai Traister | Methods for storing memory operations in a queue |
US20080235480A1 (en) | 2007-03-21 | 2008-09-25 | Shai Traister | Systems for storing memory operations in a queue |
US20080295094A1 (en) | 2007-05-22 | 2008-11-27 | International Business Machines Corporation | Integrated placement planning for heterogenous storage area network data centers |
US20090168525A1 (en) | 2007-12-27 | 2009-07-02 | Pliant Technology, Inc. | Flash memory controller having reduced pinout |
US20090177943A1 (en) | 2008-01-09 | 2009-07-09 | Broadcom Corporation | Error correction coding using soft information and interleaving |
US20090222627A1 (en) | 2008-02-29 | 2009-09-03 | Denali Software, Inc. | Method and apparatus for high speed cache flushing in a non-volatile memory |
US20090282191A1 (en) | 2008-05-08 | 2009-11-12 | Robert Depta | Operating Method for a Memory Subsystem and Devices for Executing the Operating Method |
US8010738B1 (en) | 2008-06-27 | 2011-08-30 | Emc Corporation | Techniques for obtaining a specified lifetime for a data storage device |
US20100005217A1 (en) | 2008-07-02 | 2010-01-07 | Micron Technology, Inc | Multi-mode memory device and method |
US20100014364A1 (en) | 2008-07-21 | 2010-01-21 | Micron Technology, Inc. | Memory system and method using stacked memory device dice, and system using the memory system |
US7969809B2 (en) | 2008-08-05 | 2011-06-28 | Sandisk Il Ltd. | Power consumption-oriented management of a storage system |
US20100082879A1 (en) | 2008-09-26 | 2010-04-01 | Mckean Brian D | Priority command queues for low latency solid state drives |
US20100174845A1 (en) | 2009-01-05 | 2010-07-08 | Sergey Anatolievich Gorobets | Wear Leveling for Non-Volatile Memories: Maintenance of Experience Count and Passive Techniques |
US20100174853A1 (en) | 2009-01-08 | 2010-07-08 | Samsung Electronics Co., Ltd. | User device including flash and random write cache and method writing data |
US8924661B1 (en) | 2009-01-18 | 2014-12-30 | Apple Inc. | Memory system including a controller and processors associated with memory devices |
US20100220509A1 (en) | 2009-03-01 | 2010-09-02 | Anobit Technologies Ltd | Selective Activation of Programming Schemes in Analog Memory Cell Arrays |
US20100250874A1 (en) | 2009-03-24 | 2010-09-30 | Farrell Todd D | Apparatus and method for buffered write commands in a memory |
US8429498B1 (en) | 2009-03-25 | 2013-04-23 | Apple Inc. | Dual ECC decoder |
US20120324180A1 (en) | 2009-04-09 | 2012-12-20 | Micron Technology, Inc. | Memory controllers, memory systems, solid state drives and methods for processing a number of commands |
US8479080B1 (en) | 2009-07-12 | 2013-07-02 | Apple Inc. | Adaptive over-provisioning in memory systems |
US20110113204A1 (en) | 2009-08-14 | 2011-05-12 | Nxp B.V. | Memory controller with external refresh mechanism |
US20110138100A1 (en) | 2009-12-07 | 2011-06-09 | Alan Sinclair | Method and system for concurrent background and foreground operations in a non-volatile memory array |
US8213255B2 (en) | 2010-02-19 | 2012-07-03 | Sandisk Technologies Inc. | Non-volatile storage with temperature compensation based on neighbor state information |
US20110235434A1 (en) | 2010-03-24 | 2011-09-29 | Apple Inc. | Systems and methods for refreshing non-volatile memory |
US20110252215A1 (en) | 2010-04-09 | 2011-10-13 | International Business Machines Corporation | Computer memory with dynamic cell density |
US20110302474A1 (en) | 2010-06-03 | 2011-12-08 | Seagate Technology Llc | Ensuring a Most Recent Version of Data is Recovered From a Memory |
US20140258598A1 (en) | 2010-06-18 | 2014-09-11 | Lsi Corporation | Scalable storage devices |
US20120030408A1 (en) | 2010-07-28 | 2012-02-02 | Fusion-Io, Inc. | Apparatus, system, and method for atomic storage operations |
US20120047317A1 (en) | 2010-08-20 | 2012-02-23 | Samsung Electronics Co., Ltd. | Semiconductor storage device and method of throttling performance of the same |
US8775720B1 (en) | 2010-08-31 | 2014-07-08 | Western Digital Technologies, Inc. | Hybrid drive balancing execution times for non-volatile semiconductor memory and disk |
WO2012083308A2 (en) | 2010-12-17 | 2012-06-21 | Fusion-Io, Inc. | Apparatus, system, and method for persistent data management on a non-volatile storage media |
US8539139B1 (en) | 2010-12-17 | 2013-09-17 | Teradota Us, Inc. | Managing device wearout using I/O metering |
US20120159070A1 (en) | 2010-12-18 | 2012-06-21 | Anant Baderdinni | System and method for handling io to drives in a memory constrained environment |
US20120198129A1 (en) | 2011-02-02 | 2012-08-02 | Van Aken Stephen P | At least semi-autonomous modules in a memory system and methods |
US20120224425A1 (en) | 2011-03-02 | 2012-09-06 | Apple Inc. | Using Temperature Sensors with a Memory Device |
US20120278530A1 (en) | 2011-04-28 | 2012-11-01 | Seagate Technology Llc | Enforcing system intentions during memory scheduling |
US20130007380A1 (en) | 2011-06-30 | 2013-01-03 | Seagate Technology Llc | Limiting activity rates that impact life of a data storage media |
US20130297894A1 (en) | 2011-08-09 | 2013-11-07 | Lsi Corporation | I/o device and computing host interoperation |
US20130070507A1 (en) | 2011-09-19 | 2013-03-21 | Tae-Young Yoon | Semiconductor memory device |
US8321627B1 (en) | 2011-10-06 | 2012-11-27 | Google Inc. | Memory operation command latency management |
US8886872B1 (en) | 2011-10-06 | 2014-11-11 | Google Inc. | Memory command dispatch in a data storage device |
US8255618B1 (en) | 2011-10-06 | 2012-08-28 | Google Inc. | Performance isolation in a shared memory device |
US20130111290A1 (en) | 2011-10-28 | 2013-05-02 | Lsi Corporation | Systems and Methods for Ambiguity Based Decode Algorithm Modification |
US20130111289A1 (en) | 2011-10-28 | 2013-05-02 | Lsi Corporation | Systems and methods for dual process data decoding |
US20130111112A1 (en) | 2011-11-02 | 2013-05-02 | Jeonghoon Jeong | Method for adjusting performance of a storage device and a semiconductor storage device therefor |
US20130132650A1 (en) | 2011-11-23 | 2013-05-23 | Samsung Electronics Co., Ltd. | Storage device based on a flash memory and user device including the same |
US8825967B2 (en) | 2011-12-08 | 2014-09-02 | Conversant Intellectual Property Management Inc. | Independent write and read control in serially-connected devices |
US20130182506A1 (en) * | 2012-01-13 | 2013-07-18 | Stec, Inc. | Programming algorithm for improved flash memory endurance and retention |
US20130219106A1 (en) | 2012-02-17 | 2013-08-22 | Apple Inc. | Trim token journaling |
US20130232290A1 (en) | 2012-03-01 | 2013-09-05 | Mark Ish | Reducing write amplification in a flash memory |
US20130254498A1 (en) | 2012-03-23 | 2013-09-26 | Sony Corporation | Storage control apparatus, storage apparatus, information processing system and processing method therefor |
US20130262745A1 (en) | 2012-03-30 | 2013-10-03 | Gary Lin | Memory System with Command Queue Reordering |
US20140143637A1 (en) | 2012-05-04 | 2014-05-22 | Lsi Corporation | Log-likelihood ratio (llr) dampening in low-density parity-check (ldpc) decoders |
US20140047170A1 (en) | 2012-05-04 | 2014-02-13 | Lsi Corporation | Maintaining ordering via a multi-level map of a solid-state media |
US20130346805A1 (en) | 2012-06-21 | 2013-12-26 | Steven T. Sprouse | Flash memory with targeted read scrub algorithm |
US20140006688A1 (en) | 2012-07-02 | 2014-01-02 | Super Talent Technology, Corp. | Endurance and Retention Flash Controller with Programmable Binary-Levels-Per-Cell Bits Identifying Pages or Blocks as having Triple, Multi, or Single-Level Flash-Memory Cells |
US20140013026A1 (en) | 2012-07-06 | 2014-01-09 | Seagate Technology Llc | Memory access requests in hybrid memory system |
US20140075100A1 (en) | 2012-09-12 | 2014-03-13 | Kabushiki Kaisha Toshiba | Memory system, computer system, and memory management method |
US8595590B1 (en) | 2012-12-03 | 2013-11-26 | Digital PowerRadio, LLC | Systems and methods for encoding and decoding of check-irregular non-systematic IRA codes |
US20140173239A1 (en) | 2012-12-19 | 2014-06-19 | Apple Inc. | Refreshing of memory blocks using adaptive read disturb threshold |
US20140229656A1 (en) | 2013-02-08 | 2014-08-14 | Seagate Technology Llc | Multi-Tiered Memory with Different Metadata Levels |
US20140229655A1 (en) | 2013-02-08 | 2014-08-14 | Seagate Technology Llc | Storing Error Correction Code (ECC) Data In a Multi-Tier Memory Structure |
US9214965B2 (en) | 2013-02-20 | 2015-12-15 | Sandisk Enterprise Ip Llc | Method and system for improving data integrity in non-volatile storage |
US20140244897A1 (en) | 2013-02-26 | 2014-08-28 | Seagate Technology Llc | Metadata Update Management In a Multi-Tiered Memory |
US20140241071A1 (en) | 2013-02-26 | 2014-08-28 | Seagate Technology Llc | Fast Power Loss Recovery By Swapping Boot and Recovery Data Sets in a Memory |
US20140244899A1 (en) | 2013-02-27 | 2014-08-28 | SMART Storage Systems, Inc. | Storage control system with data management mechanism and method of operation thereof |
US8984376B1 (en) | 2013-03-14 | 2015-03-17 | Pmc-Sierra Us, Inc. | System and method for avoiding error mechanisms in layered iterative decoding |
US20140281833A1 (en) | 2013-03-15 | 2014-09-18 | Ibiquity Digital Corporation | Method and apparatus for transmission and reception of in-band on-channel radio signals including complementary low density parity check coding |
US20150234612A1 (en) | 2013-04-09 | 2015-08-20 | Graphite System, Inc. | Multiprocessor System with Independent Direct Access to Bulk Solid State Memory Resources |
US20140310241A1 (en) | 2013-04-12 | 2014-10-16 | Alterante, LLC | Virtual file system for automated data replication and review |
US9128825B1 (en) | 2013-05-17 | 2015-09-08 | Google Inc. | Optimizing allocation of flash memory to file groups |
US20140379988A1 (en) | 2013-06-21 | 2014-12-25 | Microsoft Corporation | Cache destaging for virtual storage devices |
US20160179403A1 (en) * | 2013-07-17 | 2016-06-23 | Hitachi, Ltd. | Storage controller, storage device, storage system, and semiconductor storage device |
US20160170831A1 (en) | 2013-07-25 | 2016-06-16 | Hewlett-Packard Development Company, L.P. | Response Control for Memory Modules That Include or Interface With Non-Compliant Memory Technologies |
US20150067172A1 (en) | 2013-09-04 | 2015-03-05 | Aruba Networks, Inc. | Method and system for dynamically prioritizing user connections on network |
US20150074487A1 (en) | 2013-09-12 | 2015-03-12 | Seagate Technology Llc | Memory Device with Variable Code Rate |
US20150095558A1 (en) * | 2013-10-01 | 2015-04-02 | Kyungryun Kim | Storage and programming method thereof |
US20150113206A1 (en) | 2013-10-18 | 2015-04-23 | Sandisk Enterprise Ip Llc | Biasing for Wear Leveling in Storage Systems |
US20150186278A1 (en) | 2013-12-26 | 2015-07-02 | Sarathy Jayakumar | Runtime persistence |
US9170876B1 (en) | 2013-12-31 | 2015-10-27 | Pmc-Sierra Us, Inc. | Method and system for decoding encoded data stored in a non-volatile memory |
US20150261473A1 (en) | 2014-03-11 | 2015-09-17 | Kabushiki Kaisha Toshiba | Memory system and method of controlling memory system |
US20150262632A1 (en) | 2014-03-12 | 2015-09-17 | Fusion-Io, Inc. | Grouping storage ports based on distance |
US20150301749A1 (en) | 2014-04-21 | 2015-10-22 | Jung-Min Seo | Storage controller, storage system and method of operating storage controller |
US20150331627A1 (en) * | 2014-05-14 | 2015-11-19 | Donghun Kwak | Nonvolatile memory device and operation method of storage device including the nonvolatile memory device |
US8874836B1 (en) | 2014-07-03 | 2014-10-28 | Pure Storage, Inc. | Scheduling policy for queues in a non-volatile solid-state storage |
US20160026386A1 (en) | 2014-07-22 | 2016-01-28 | Sandisk Enterprise Ip Llc | Suspending and Resuming Non-Volatile Memory Operations |
US20160034194A1 (en) | 2014-07-30 | 2016-02-04 | Qualcomm Innovation Center, Inc. | Read disturb and data retention handling for nand devices |
US20160062699A1 (en) | 2014-09-02 | 2016-03-03 | Sandisk Technologies Inc. | Notification of Trigger Condition to Reduce Declared Capacity of a Storage Device in a Multi-Storage-Device Storage System |
US20160070493A1 (en) * | 2014-09-04 | 2016-03-10 | Samsung Electronics Co., Ltd. | Data storage device and method of operating the same |
US20160071612A1 (en) | 2014-09-05 | 2016-03-10 | Kabushiki Kaisha Toshiba | Memory system and management method thereof |
US20160117099A1 (en) | 2014-10-27 | 2016-04-28 | Sandisk Enterprise Ip Llc | Tracking Intermix of Writes and Un-Map Commands Across Power Cycles |
US20160117105A1 (en) | 2014-10-27 | 2016-04-28 | Sandisk Enterprise Ip Llc | Method and System for Throttling Bandwidth Based on Temperature |
US20160117252A1 (en) | 2014-10-27 | 2016-04-28 | Sandisk Enterprise Ip Llc | Processing of Un-Map Commands to Enhance Performance and Endurance of a Storage Device |
US20160117102A1 (en) | 2014-10-27 | 2016-04-28 | Seong Cheol Hong | Method for operating data storage device, mobile computing device having the same, and method of the mobile computing device |
US20160170671A1 (en) * | 2014-12-10 | 2016-06-16 | Silicon Motion, Inc. | Data storage device and data writing method thereof |
US20160210060A1 (en) | 2015-01-21 | 2016-07-21 | HGST Netherlands B.V. | Dynamic resource allocation within storage devices |
US20160299689A1 (en) | 2015-04-07 | 2016-10-13 | Samsung Electronics Co., Ltd. | Operation method of nonvolatile memory system and operation method of user system including the same |
US20160299704A1 (en) | 2015-04-09 | 2016-10-13 | Sandisk Enterprise Ip Llc | Multi-Package Segmented Data Transfer Protocol for Solid-State Drive Applications |
US20160299724A1 (en) | 2015-04-09 | 2016-10-13 | Sandisk Enterprise Ip Llc | Reading and Writing Data at Non-Volatile Memory Device During Segmented Data Transfer |
US20160299699A1 (en) | 2015-04-09 | 2016-10-13 | Sandisk Enterprise Ip Llc | Locally Generating and Storing RAID Stripe Parity During Data Transfer to Non-Volatile Memory |
US20160342344A1 (en) | 2015-05-20 | 2016-11-24 | Sandisk Enterprise Ip Llc | Variable Bit Encoding Per NAND Flash Cell to Extend Life of Flash-Based Storage Devices and Preserve Over-Provisioning |
US20160342345A1 (en) | 2015-05-20 | 2016-11-24 | Sandisk Enterprise Ip Llc | Variable Bit Encoding Per NAND Flash Cell to Improve Device Endurance and Extend Life of Flash-Based Storage Devices |
US20160371394A1 (en) | 2015-06-22 | 2016-12-22 | The Governing Council Of The University Of Toronto | Indoor localization using crowdsourced data |
Non-Patent Citations (9)
Title |
---|
Atmel Data-sheet, "9-to-bit Selectable, ±0.5° C Accurate Digital Temperature Sensor with Nonvolatile Registers and Serial EEPROM" www.atmel.com/images/Atmel-8854-DTS-AT30TSE752A-754A-758A-Datasheet.pdf, Atmel Data-sheet, Mar 1, 2011,-Atmel-8854-DTS-AT30TSE752A-754A-758A-Datasheet-102014, 57 pages. |
Atmel Data-sheet, "9-to-bit Selectable, ±0.5° C Accurate Digital Temperature Sensor with Nonvolatile Registers and Serial EEPROM" www.atmel.com/images/Atmel-8854-DTS-AT30TSE752A-754A-758A-Datasheet.pdf, Atmel Data-sheet, Mar 1, 2011,—Atmel-8854-DTS-AT30TSE752A-754A-758A-Datasheet—102014, 57 pages. |
International Search Report and Written Opinion dated Jul. 4, 2016, received in International Patent Application No. PCT/US2016/028477, which corresponds to U.S. Appl. No. 14/883,540, 11 pages (Hodgdon). |
International Search Report and Written Opinion dated Nov. 11, 2015, received in International Patent Application No. PCT/US2015/053582, which corresponds to U.S. Appl. No. 14/659,493, 12 pages (Prins). |
International Search Report and Written Opinion dated Nov. 18, 2015, received in International Patent Application No. PCT/US2015/039552 which corresponds to U.S. Appl. No. 14/559,183, 11 pages (Ellis). |
International Search Report and Written Opinion dated Nov. 9, 2015, received in International Patent Application No. PCT/US2015/053551, which corresponds to U.S. Appl. No. 14/668,690, 12 pages (Thangaraj). |
International Search Report and Written Opinion dated Sep. 8, 2016, received in International Patent Application No. PCT/US2016/036716, which corresponds to U.S. Appl. No. 14/925,945, 13 pages (Ellis). |
Seagate Technology, "SSCI Commands Reference Manual, Rev. C", Product Manual dated Apr. 2010, pp. 211-214. |
Tanenbaum, "Structured Computer Organization", 3rd edition 1990, section 1.4, p. 11, 3 pages. |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10078448B2 (en) * | 2015-07-08 | 2018-09-18 | Samsung Electronics Co., Ltd. | Electronic devices and memory management methods thereof |
US20180242882A1 (en) * | 2015-11-12 | 2018-08-30 | Olympus Corporation | Server, client, communication system, communication method, and recording medium |
US10687734B2 (en) * | 2015-11-12 | 2020-06-23 | Olympus Corporation | Server, client, communication system, communication method, and recording medium |
US9837146B2 (en) * | 2016-01-08 | 2017-12-05 | Sandisk Technologies Llc | Memory system temperature management |
US20170200492A1 (en) * | 2016-01-08 | 2017-07-13 | Sandisk Technologies Llc | Memory System Temperature Management |
US11107522B2 (en) | 2018-12-13 | 2021-08-31 | Western Digital Technologies, Inc. | Multi-level cell programming using optimized multiphase mapping with balanced gray code |
US10734071B2 (en) | 2018-12-13 | 2020-08-04 | Western Digital Technologies, Inc. | Multi-level cell programming using optimized multiphase mapping with balanced Gray code |
US11735252B2 (en) | 2018-12-13 | 2023-08-22 | Western Digital Technologies, Inc. | Multi-level cell programming using optimized multiphase mapping with balanced gray code |
US11133067B2 (en) | 2019-03-08 | 2021-09-28 | Western Digital Technologies, Inc. | Multi-phased programming with balanced gray coding |
US11798627B2 (en) | 2019-03-08 | 2023-10-24 | Western Digital Technologies, Inc. | Multi-phased programming with balanced gray coding |
US10902925B1 (en) * | 2019-11-19 | 2021-01-26 | SanDiskTechnologies LLC | Peak and average current reduction for open block condition |
US10971215B1 (en) | 2020-02-24 | 2021-04-06 | Western Digital Technologies, Inc. | Dynamically adjust data transfer speed for non-volatile memory die interfaces |
US12223188B2 (en) | 2022-01-06 | 2025-02-11 | Samsung Electronics Co., Ltd. | Memory interface for initalizing memory and method thereof |
US12079496B2 (en) | 2022-09-01 | 2024-09-03 | Sandisk Technologies Llc | Bundle multiple timing parameters for fast SLC programming |
Also Published As
Publication number | Publication date |
---|---|
WO2017027092A1 (en) | 2017-02-16 |
US20170047124A1 (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9715939B2 (en) | Low read data storage management | |
US9864545B2 (en) | Open erase block read automation | |
US9753653B2 (en) | High-priority NAND operations management | |
US9778878B2 (en) | Method and system for limiting write command execution | |
US9298608B2 (en) | Biasing for wear leveling in storage systems | |
US20160118132A1 (en) | Low Impact Read Disturb Handling | |
US9753649B2 (en) | Tracking intermix of writes and un-map commands across power cycles | |
US9946483B2 (en) | Efficiently managing unmapped blocks to extend life of solid state drive with low over-provisioning | |
US20160232088A1 (en) | Garbage Collection in Storage System with Distributed Processors | |
US9639463B1 (en) | Heuristic aware garbage collection scheme in storage systems | |
US9880605B2 (en) | Method and system for throttling power consumption | |
US9837146B2 (en) | Memory system temperature management | |
US9235509B1 (en) | Write amplification reduction by delaying read access to data written during garbage collection | |
US9946473B2 (en) | Efficiently managing unmapped blocks to extend life of solid state drive | |
US9952978B2 (en) | Method for improving mixed random performance in low queue depth workloads | |
US10642525B2 (en) | Multiple-stage data lifetime management for storage devices | |
CN107924700B (en) | Adaptive multi-stage erase | |
US9779823B2 (en) | Secure erase of non-volatile memory | |
US11163494B2 (en) | Memory system, memory controller and operating method | |
US11966638B2 (en) | Dynamic rain for zoned storage systems | |
US20250069669A1 (en) | Write performance optimization for erase on demand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SANDISK ENTERPRISE IP LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ELLIS, ROBERT W.;HIGGINS, JAMES M.;REEL/FRAME:037250/0513 Effective date: 20151026 |
|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDISK ENTERPRISE IP LLC;REEL/FRAME:038295/0225 Effective date: 20160324 |
|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES LLC, TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:SANDISK TECHNOLOGIES INC;REEL/FRAME:038812/0954 Effective date: 20160516 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDISK TECHNOLOGIES LLC;REEL/FRAME:069796/0423 Effective date: 20241227 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |