US9620475B2 - Array based fabrication of power semiconductor package with integrated heat spreader - Google Patents
Array based fabrication of power semiconductor package with integrated heat spreader Download PDFInfo
- Publication number
- US9620475B2 US9620475B2 US14/546,854 US201414546854A US9620475B2 US 9620475 B2 US9620475 B2 US 9620475B2 US 201414546854 A US201414546854 A US 201414546854A US 9620475 B2 US9620475 B2 US 9620475B2
- Authority
- US
- United States
- Prior art keywords
- transistor
- sync
- gate
- control
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000000853 adhesive Substances 0.000 claims description 71
- 230000001070 adhesive effect Effects 0.000 claims description 71
- 230000008878 coupling Effects 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 description 17
- 230000009471 action Effects 0.000 description 11
- 239000010949 copper Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910002601 GaN Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- MSNOMDLPLDYDME-UHFFFAOYSA-N gold nickel Chemical compound [Ni].[Au] MSNOMDLPLDYDME-UHFFFAOYSA-N 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3121—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
- H01L23/4334—Auxiliary members in encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49517—Additional leads
- H01L23/49524—Additional leads the additional leads being a tape carrier or flat leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49541—Geometry of the lead-frame
- H01L23/49562—Geometry of the lead-frame for individual devices of subclass H10D
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49575—Assemblies of semiconductor devices on lead frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
- H01L24/92—Specific sequence of method steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
- H01L2224/273—Manufacturing methods by local deposition of the material of the layer connector
- H01L2224/2731—Manufacturing methods by local deposition of the material of the layer connector in liquid form
- H01L2224/2732—Screen printing, i.e. using a stencil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
- H01L2224/273—Manufacturing methods by local deposition of the material of the layer connector
- H01L2224/2733—Manufacturing methods by local deposition of the material of the layer connector in solid form
- H01L2224/27334—Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
- H01L2224/274—Manufacturing methods by blanket deposition of the material of the layer connector
- H01L2224/2743—Manufacturing methods by blanket deposition of the material of the layer connector in solid form
- H01L2224/27436—Lamination of a preform, e.g. foil, sheet or layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/2929—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/29294—Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/29295—Material of the matrix with a principal constituent of the material being a gas not provided for in groups H01L2224/292 - H01L2224/29291
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
- H01L2224/331—Disposition
- H01L2224/3318—Disposition being disposed on at least two different sides of the body, e.g. dual array
- H01L2224/33181—On opposite sides of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/37001—Core members of the connector
- H01L2224/37099—Material
- H01L2224/371—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/37117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/37124—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/37001—Core members of the connector
- H01L2224/37099—Material
- H01L2224/371—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/37138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/37144—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/37001—Core members of the connector
- H01L2224/37099—Material
- H01L2224/371—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/37138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/37147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/40221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/40245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45147—Copper (Cu) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73213—Layer and strap connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73215—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73263—Layer and strap connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83191—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83417—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/83424—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83444—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83447—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8384—Sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8385—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8385—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
- H01L2224/83851—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/8438—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/84399—Material
- H01L2224/844—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/84417—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/84424—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/8438—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/84399—Material
- H01L2224/844—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/84438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/84444—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/8438—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/84399—Material
- H01L2224/844—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/84438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/84447—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/848—Bonding techniques
- H01L2224/84801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/848—Bonding techniques
- H01L2224/8484—Sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/848—Bonding techniques
- H01L2224/8485—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8538—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/85399—Material
- H01L2224/854—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/85417—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/85424—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8538—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/85399—Material
- H01L2224/854—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/85438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/85444—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8538—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/85399—Material
- H01L2224/854—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/85438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/85447—Copper (Cu) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/922—Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
- H01L2224/9222—Sequential connecting processes
- H01L2224/92242—Sequential connecting processes the first connecting process involving a layer connector
- H01L2224/92246—Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/922—Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
- H01L2224/9222—Sequential connecting processes
- H01L2224/92242—Sequential connecting processes the first connecting process involving a layer connector
- H01L2224/92247—Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/27—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L24/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L24/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00012—Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13064—High Electron Mobility Transistor [HEMT, HFET [heterostructure FET], MODFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present application claims the benefit of and priority to a provisional application entitled “Array Based Fabrication of Recessed Lead Frame Semiconductor Package with Integrated Heat Spreader,” Ser. No. 61/913,517, filed on Dec. 9, 2013. The disclosure in this provisional application is hereby incorporated fully by reference into the present application.
- the present application is also a continuation-in-part of, and claims the benefit of and priority to parent patent application entitled “Compact Single-Die Power Semiconductor Package,” Ser. No. 14/515,720, filed on Oct. 16, 2014. The disclosure in this parent application is hereby incorporated fully by reference into the present application.
- Various high power semiconductor package designs use at least one conductive clip and a separate heat spreader for coupling transistors to a substrate, undesirably increasing electrical resistance and reducing current carrying capability.
- package design rules to successfully accommodate multiple leadframes, a separate heat spreader, and a conductive clip require a large degree of tolerance (i.e. a large clearance space) for manufacturing, thus undesirably increasing package form factor and complexity.
- package height and width have to be increased to provide sufficient space for the multiple leadframes, the separate heat spreader, and the conductive clip, and additional area on the package may be reserved for necessary electrical connections.
- the increased package complexity resulting from the use of multiple leadframes, the separate heat spreader and the conductive clip may negatively affect manufacturing time, cost, and package yields.
- the present disclosure is directed to array based fabrication of power semiconductor package with integrated heat spreader, substantially as shown in and/or described in connection with at least one of the figures, and as set forth more completely in the claims.
- FIG. 1 illustrates a diagram of an exemplary circuit suitable for use as a voltage converter.
- FIG. 2 shows a flowchart illustrating actions taken according to one implementation of the present disclosure.
- FIG. 3B illustrates a cross-sectional view of another power transistor for use in a power semiconductor package.
- FIG. 4A illustrates a top view of a conductive carrier array according to one implementation of the present disclosure, corresponding to an initial step in the flowchart in FIG. 2 .
- FIG. 4B illustrates one exemplary cross-sectional view of the implementation of the present disclosure shown in FIG. 4A .
- FIG. 4C illustrates a top view of a heat spreader array, corresponding to an intermediate step in the flowchart in FIG. 2 .
- FIG. 4D illustrates a top view of a conductive carrier array according to one implementation of the present disclosure, corresponding to an intermediate step in the flowchart in FIG. 2 .
- FIG. 4E illustrates a top view of one implementation of the present disclosure, corresponding to an intermediate step in the flowchart in FIG. 2 .
- FIG. 4F illustrates one exemplary cross-sectional view of the implementation of the present disclosure shown in FIG. 4E .
- FIG. 4G illustrates a cross-sectional view of one implementation of the present disclosure, corresponding to a final step in the flowchart in FIG. 2 .
- FIG. 4H illustrates a cross-sectional view of another implementation of the present disclosure.
- Power transistors used in voltage conversion applications are capable of generating substantial heat during operation.
- the potentially damaging heat can be diverted away from the power transistors using a heat spreader, which in conventional implementations is often relatively large.
- packaging solutions for power transistors must typically be sized to accommodate not only the power transistor but also a large heat spreader providing thermal protection for the power transistor.
- connection to one of the power electrodes is typically implemented using a conductive clip formed from a conductive body typically merged with and supported at one end by a downward pointing conductive leg. Due to the high current that must be accommodated by the conductive clip, it is generally desirable that the conductive body and its conductive support leg have a relatively large cross-sectional area. Moreover, because a power transistor can be highly sensitive to electrical resistance, the cross-sectional area of the conductive clip can have a significant effect on device performance.
- the permissible thickness of the conductive body portion of a conductive clip can be limited by the height of its support leg.
- the conductive clip support leg requires a reduced height to properly position the conductive body of the conductive clip for contact with a power electrode at a surface of the thinner power transistor. Consequently, the limitation on the thickness of the conductive body of the conductive clip imposed by the reduction in height of the conductive leg of the conductive clip results in a reduction of the effective cross-sectional area of the conductive clip, which can undesirably impair performance.
- the present application discloses a packaging solution enabling omission of the aforementioned conductive clip, by integrating its functionality with a heat spreader.
- the disclosed implementations utilize a conductive carrier, such as a semiconductor package lead frame, having at least one partially etched conductive carrier segment to enable use of a heat spreader to provide a reliable, low resistance, and substantially parasitic free electrical connection.
- the heat spreader is implemented to provide an electrical coupling of power electrodes of the power transistors to the conductive carrier while concurrently providing thermal protection for the power transistors.
- the packaging solution disclosed in the present application includes an array based fabrication technique enabling increased packaging efficiency and reduced packaging cost.
- the power transistor package of the present application may be implemented within a voltage converter, for example.
- Voltage converters are used in a variety of electronic circuits and systems. For example, various applications may require conversion of a direct current (DC) input to a lower, or higher, DC output.
- DC direct current
- a buck converter may be implemented as a voltage regulator to convert a higher voltage DC input to a lower voltage DC output for use in low voltage applications.
- FIG. 1 illustrates a diagram of an exemplary circuit suitable for use as a voltage converter.
- Voltage converter 100 includes voltage converter multi-chip module (MCM) 102 , output inductor 104 , and output capacitor 106 .
- MCM 102 includes power switching stage 101 of voltage converter 100 , and driver IC 170 implemented to provide drive signals to power switching stage 101 .
- voltage converter 100 is configured to receive an input voltage V IN , and to provide a converted voltage, e.g., a rectified and/or stepped down voltage, as V OUT at output 105 .
- Respective control and sync transistors 140 and 130 may be implemented as field-effect transistors (FETs), insulated gate bipolar transistors (IGBTs), or high electron mobility transistors (HEMTs), for example. More specifically, respective control and sync transistors 140 and 130 may be implemented as silicon FETs or gallium nitride (GaN) FETs. In general, control transistor 140 and sync transistor 130 may be implemented as group IV power transistors, such as silicon power transistors, or as group III-V power transistors, such as GaN power transistors. Voltage converter 100 may be advantageously used, for example as a buck converter, in a variety of automotive, industrial, appliance, and lighting applications.
- each sync transistor 430 may correspond to sync transistor 130 of FIG. 1 and each control transistor 440 may correspond to control transistor 140 of FIG. 1 .
- sync and control transistors shown in various power semiconductor packages referred to above may be electrically coupled to a driver IC, an output inductor, and an output capacitor, such as driver IC 170 , output inductor 104 , and output capacitor 106 of FIG. 1 , according to the exemplary voltage converter 100 of FIG. 1 .
- group III-V refers to a compound semiconductor including at least one group III element and at least one group V element.
- a group III-V semiconductor may take the form of a III-Nitride semiconductor that includes nitrogen and at least one group III element.
- a III-Nitride power transistor may be fabricated using gallium nitride (GaN), in which the group III element or elements include some or a substantial amount of gallium, but may also include other group III elements in addition to gallium.
- GaN gallium nitride
- FIG. 2 shows a flowchart illustrating the actions taken according to one implementation of the present disclosure. It is noted that the method described by flowchart 200 is performed on a portion of a conductive carrier structure, which may be a semiconductor package lead frame, or may take the form of a conductive sheet or plate, for example.
- a conductive carrier structure which may be a semiconductor package lead frame, or may take the form of a conductive sheet or plate, for example.
- FIGS. 4A, 4C, 4D, 4E, and 4G the structures shown in those figures illustrate the results of performing various actions according to the method of flowchart 200 .
- FIG. 4A shows a top view after performance of action 210 in providing a conductive carrier array including a plurality of power modules held together with connecting bars, each power module including a control transistor, a sync transistor, and a IC driver
- FIG. 4C shows a top view after performance of action 212 in providing a heat spreader array including a plurality of power electrode heat spreaders, and so forth.
- FIG. 3A illustrates a simplified cross-sectional view of a power transistor for use in a power semiconductor package.
- Sync transistor 330 of FIG. 3A includes drain electrode 332 , source electrode 334 , and gate electrode 336 .
- Drain electrode 332 is a power electrode situated on a top surface of sync transistor 330 .
- Source electrode 334 is a power electrode situated on a bottom surface of sync transistor 330 .
- Gate electrode 336 is a gate electrode situated on the bottom surface of sync transistor 330 .
- 4H discussed below has the same drain electrode, source electrode, and gate electrode configuration as sync transistor 330 of FIG. 3A .
- the present disclosure is not limited to the implementation of FIG. 3A .
- the configuration of source electrode 334 and gate electrode 336 of sync transistor 330 may be reversed.
- FIG. 3B illustrates a simplified cross-sectional view of another power transistor for use in a power semiconductor package.
- Control transistor 340 of FIG. 3B includes drain electrode 342 , source electrode 344 , and gate electrode 346 .
- Drain electrode 342 is a power electrode situated on a bottom surface of control transistor 340 .
- Source electrode 344 is a power electrode situated on a top surface of control transistor 340 .
- Gate electrode 346 is a gate electrode situated on the top surface of control transistor 340 .
- control transistor 440 of FIG. 4A , FIG. 4B , FIG. 4C , FIG. 4D , FIG. 4E , FIG. 4F , FIG. 4G , and FIG. 4H discussed below has the same drain electrode, source electrode, and gate electrode configuration as control transistor 340 of FIG. 3B .
- flowchart 200 begins at action 210 with providing a conductive carrier array including a plurality of power modules held together with connecting bars, each power module including a control transistor, a sync transistor, and a IC driver.
- conductive carrier array 410 A of FIG. 4A is provided having power module 420 , power module 470 , power module 480 , and power module 490 held together by connecting bars, such as connecting bars 481 , 482 , and 483 .
- Each power module 420 , power module 470 , power module 480 , and power module 490 includes sync transistor 430 , control transistor 440 , and driver IC 470 .
- conductive carrier array 410 A of FIG. 4A includes power module 420 , power module 470 , power module 480 , power module 490 , connecting bar 481 , connecting bar 482 , and connecting bar 483 .
- Each of power module 420 , power module 470 , power module 480 , and power module 490 include sync transistor 430 , control transistor 440 , driver IC 470 , power electrode carrier segment 420 a , sync source carrier segment 420 b , sync gate carrier segment 420 c , control drain carrier segment 420 d , control gate carrier segment 420 e , and driver IC carrier segment 489 .
- sync transistor 430 and control transistor 440 are implemented using the configurations of sync transistor 330 of FIG. 3A and control transistor 340 of FIG. 3B , respectively.
- conductive carrier array 410 A in FIG. 4A is shown as a 2-by-2 array including four power modules merely as an aid in conceptual clarity. In some implementations, conductive carrier array 410 A may includes tens, hundreds, or thousands of power modules, including power module 420 , power module 470 , power module 480 , and power module 490 . Moreover, although conductive carrier array 410 A of FIG. 4A is illustrated with a square geometry, other implementations may utilize other geometries, including a rectangular geometry, for example.
- each collection of power electrode carrier segment 420 a , sync source carrier segment 420 b , sync gate carrier segment 420 c , control drain carrier segment 420 d , control gate carrier segment 420 e , and driver IC carrier segment 489 form a conductive carrier for each power module 420 , power module 470 , power module 480 , and power module 490 .
- the conductive carrier may be a semiconductor package lead frame, or may take the form of a conductive sheet or plate, for example.
- the conductive carrier may be a fully patterned conductive carrier formed of any conductive material having a suitably low electrical resistance.
- the conductive carrier is configured to sink heat from sync transistor 430 and control transistor 440 into a substrate, for example.
- Each of power electrode carrier segment 420 a , sync source carrier segment 420 b , sync gate carrier segment 420 c , control drain carrier segment 420 d , control gate carrier segment 420 e , and driver IC carrier segment 489 may include copper (Cu), aluminum (Al), or a conductive alloy, for example.
- Each of power module 420 , power module 470 , power module 480 , and power module 490 further include driver IC 470 .
- driver IC 470 may correspond to driver IC 170 of FIG. 1 .
- each of power module 420 , power module 470 , power module 480 , and power module 490 may be configured according to multi-chip module (MCM) 102 of voltage converter 100 of FIG.
- MCM multi-chip module
- each power module 420 , power module 470 , power module 480 , and power module 490 includes driver IC 470 , sync transistor 430 , control transistor 440 , and a switch node corresponding to driver IC 170 , sync transistor 130 , control transistor 140 , and switch node 149 of FIG. 1 .
- driver IC 470 may not be included in each of power module 420 , power module 470 , power module 480 , and power module 490 .
- each of power module 420 , power module 470 , power module 480 , and power module 490 may be configured according to power switching stage 101 of voltage converter circuit 100 of FIG. 1 such that each power module 420 , power module 470 , power module 480 , and power module 490 includes sync transistor 430 , control transistor 440 , and a switch node corresponding to sync transistor 130 , control transistor 140 , and switch node 149 of FIG. 1 .
- the connecting bars of conductive carrier array 410 A including connecting bars 481 , 482 , and 483 are configured to hold together each power module 420 , power module 470 , power module 480 , and power module 490 .
- connecting bar 482 holds together control sync transistor 430 of power module 420 and power module 470 .
- connecting bar 482 is cut along the line dividing power module 420 and power module 470 , for example.
- the connecting bars may provide electrical connections for each power module 420 , power module 470 , power module 480 , and power module 490 .
- connecting bar 482 may provide electrical connection for the source of sync transistor 430
- connecting bar 481 may provide electrical connection for driver IC 470
- connecting bar 483 may provide electrical connection for the drain of control transistor 440 .
- Each of the connecting bars, including connecting bar 481 , connecting bar 482 , and connecting bar 483 may include copper (Cu), aluminum (Al), or a conductive alloy, for example.
- FIG. 4B illustrates a cross-sectional view of a power module according to one implementation of the present disclosure. More specifically, power module 410 B of FIG. 4B illustrates a cross-sectional view of power module 420 along dashed lines 4 B- 4 B of FIG. 4A .
- Power module 410 B of FIG. 4B includes sync transistor 430 , control transistor 440 , power electrode carrier segment 420 a , sync source carrier segment 420 b , sync gate carrier segment 420 c , control drain carrier segment 420 d , control gate carrier segment 420 e , conductive adhesive 419 , conductive adhesive 421 , and conductive adhesive 423 .
- sync transistor 430 and control transistor 440 are implemented using the configurations of sync transistor 330 of FIG. 3A and control transistor 340 of FIG. 3B , respectively.
- Sync transistor 430 of power module 410 B is configured to be coupled to sync source carrier segment 420 b and sync gate carrier segment 420 c . More specifically, sync transistor 430 is configured to be electrically and mechanically coupled to sync source carrier segment 420 b using conductive adhesive 419 and electrically and mechanically coupled to sync gate carrier segment 420 c using conductive adhesive 421 .
- sync transistor 430 may take the form of group IV material based FET, such as a silicon metal-oxide-semiconductor FET (MOSFET), for example. However, in other implementations, sync transistor 430 may take the form of group III-V based power FET, such as a GaN or other III-Nitride based FET. As discussed above in reference to FIG. 1 , sync transistor 430 may be implemented as sync transistor 130 according to voltage converter 100 of FIG. 1 .
- Control transistor 440 of power module 410 B is configured to be coupled to control drain carrier segment 420 d . More specifically, control transistor 440 is configured to be electrically and mechanically coupled to control drain carrier segment 420 d using conductive adhesive 423 .
- control transistor 440 may take the form of group IV material based FET, such as a silicon metal-oxide-semiconductor FET (MOSFET), for example.
- MOSFET silicon metal-oxide-semiconductor FET
- control transistor 440 may take the form of group III-V based power FET, such as a GaN or other III-Nitride based FET.
- control transistor 440 may be implemented as control transistor 140 according to voltage converter 100 of FIG. 1 .
- Sync source carrier segment 420 b of power module 410 B is configured to be electrically and mechanically coupled to sync transistor 430 using conductive adhesive 419 . More specifically, in an implementation where sync transistor 430 has the configuration of sync transistor 330 of FIG. 3A , sync source carrier segment 420 b is configured to be electrically and mechanically coupled to the source electrode of sync transistor 430 , such as source electrode 334 of FIG. 3A .
- Sync gate carrier segment 420 c of power module 410 B is configured to be electrically and mechanically coupled to sync transistor 430 using conductive adhesive 421 . More specifically, in an implementation where sync transistor 430 has the configuration of sync transistor 330 of FIG. 3A , sync gate carrier segment 420 c is configured to be electrically and mechanically coupled to the gate electrode of sync transistor 430 , such as gate electrode 336 of FIG. 3A .
- Control drain carrier segment 420 d of power module 410 B is configured to be electrically and mechanically coupled to control transistor 440 using conductive adhesive 423 . More specifically, in an implementation where control transistor 440 has the configuration of control transistor 340 of FIG. 3B , control drain carrier segment 420 d is configured to be electrically and mechanically coupled to the drain electrode of control transistor 440 , such as drain electrode 342 of FIG. 3B .
- Sync source carrier segment 420 b , sync gate carrier segment 420 c , and control drain carrier segment 420 d may be fabricated using a partial etch performed on a top and/or a bottom surface of sync source carrier segment 420 b , sync gate carrier segment 420 c , and control drain carrier segment 420 d , for example.
- sync source carrier segment 420 b , sync gate carrier segment 420 c , and control drain carrier segment 420 d may be fabricated by performing a half-etch, for example.
- sync source carrier segment 420 b , sync gate carrier segment 420 c , and control drain carrier segment 420 d may be half the thickness of power electrode carrier segment 420 a and control gate carrier segment 420 e.
- power electrode carrier segment 420 a , sync source carrier segment 420 b , sync gate carrier segment 420 c , control drain carrier segment 420 d , and control gate carrier segment 420 e may include a barrier metal layer formed on a top and/or a bottom surface.
- the barrier metal layer may include nickel-gold (NiAu) or nickel-palladium-gold (NiPdAu), for example.
- the barrier metal layer may serve as an etching mask during patterning of power electrode carrier segment 420 a , sync source carrier segment 420 b , sync gate carrier segment 420 c , control drain carrier segment 420 d , and control gate carrier segment 420 e , for example.
- heat spreader array 412 of FIG. 4C is provided including power electrode heat spreaders 450 .
- heat spreader array 412 of FIG. 4C includes power electrode heat spreaders 450 , connecting bar 484 , connecting bar 485 , and connecting bar 486 .
- Power electrode heat spreaders 450 are each configured for attachment to a respective power module 420 , power module 470 , power module 480 , and power module 490 of FIG. 4A .
- power electrode heat spreader 450 in the upper right of heat spreader array 412 including connecting bar 486 is configured for attachment to power module 420
- power electrode heat spreader 450 in the lower right of heat spreader array 412 including connecting bar 485 is configured for attachment to power module 490
- Power electrode heat spreaders 450 may include Cu or Al, for example, or may include a conductive alloy.
- the connecting bars of heat spreader array 412 are configured to hold together heat spreader array 412 and may be configured for electrical connection of power electrode heat spreaders 450 , similar to connecting bar 481 , connecting bar 482 , and connecting bar 483 of FIG. 4A .
- Each of the connecting bars, including connecting bar 484 , connecting bar 485 , and connecting bar 486 may include Cu, aluminum Al, or a conductive alloy, for example.
- conductive carrier array 414 of FIG. 4D includes conductive carrier array 410 A of FIG. 4A after selectively applying conductive adhesive 429 to power electrode carrier segment 420 a , conductive adhesive 427 to the drain of sync transistor 430 , and conductive adhesive 425 to the source of control transistor 440 .
- Each of conductive adhesive 425 , conductive adhesive 427 , and conductive adhesive 429 are configured to electrically and mechanically couple each of power electrode heat spreaders 450 of FIG. 4C to its respective power module 420 , power module 470 , power module 480 , and power module 490 of FIG. 4A .
- each of conductive adhesive 425 , conductive adhesive 427 , and conductive adhesive 429 may be applied in a single processing step.
- each of conductive adhesive 425 , conductive adhesive 427 , and conductive adhesive 429 may be applied substantially concurrently, by using a screen printing technique, for example.
- conductive adhesive 425 , conductive adhesive 427 , and conductive adhesive 429 may be selected based on their suitability for application in a screen printing or other substantially concurrent application process.
- Conductive adhesive 425 , conductive adhesive 427 , and conductive adhesive 429 may include a conductive adhesive material, a solder paste, solder tape, solder, a silver filled adhesive such as QMI 529HT, a conductive sintered material, a diffusion bonded material, or another suitable attachment means.
- Conductive adhesive 425 , conductive adhesive 427 , and conductive adhesive 429 may be formed to a thickness of at least 10 ⁇ m, for example.
- flowchart 200 continues at action 216 with overlying the heat spreader array on the conductive carrier array such that each of the plurality of power electrode heat spreaders couples the drain of the sync transistor to the source of the control transistor in each power module.
- power semiconductor package array 416 E of FIG. 4E includes conductive carrier array 414 of FIG. 4D after overlying heat spreader array 412 of FIG. 4C such that each of power electrode heat spreaders 450 couples the drain of sync transistor 430 to the source of control transistor 440 in each power module 420 , power module 470 , power module 480 , and power module 490 .
- Power electrode heat spreader 450 may have an “L” shape, as illustrated in FIG. 4C and FIG. 4E , or power electrode heat spreader 450 may have a different shape to cover more or less space on control transistor 440 and sync transistor 430 depending on the current carrying capability and thermal dissipation requirements of power electrode heat spreader 450 .
- Power electrode heat spreader 450 is configured to be situated over and couple the drain electrode of sync transistor 430 to the source electrode of control transistor 440 . As such, power electrode heat spreader 450 is configured to provide switch node contact 149 according to voltage converter 100 of FIG. 1 . Power electrode heat spreader 450 is further configured to be situated over and coupled to power electrode carrier segment 420 a . More specifically, power electrode heat spreader 450 is configured to be electrically and mechanically coupled to the source electrode of control transistor 440 using conductive adhesive 425 , the drain electrode of sync transistor 430 using conductive adhesive 427 , and power electrode carrier segment 420 a using conductive adhesive 429 .
- Power electrode heat spreader 450 may be a flat, electrically and thermally conductive body, having a substantially planar bottom for attachment to sync transistor 430 , control transistor 440 , and power electrode carrier segment 420 a .
- Power electrode heat spreader 450 may include Cu, Al, a conductive alloy, or another suitable conductive material, for example.
- power electrode heat spreader 450 is configured to provide integrated heat spreading functionality for dissipation of heat generated by sync transistor 430 and control transistor 440 .
- Power electrode heat spreader 450 provides the above functions without the need for a conductive clip including a leg portion, and without the need for a separate heat spreader.
- Power electrode carrier segment 420 a is configured to be electrically and mechanically coupled to power electrode heat spreader 450 using conductive adhesive 429 .
- Power electrode carrier segment 420 a is further configured to electrically couple the drain electrode of sync transistor 430 and the source electrode of control transistor 440 to a substrate, for example.
- flowchart 200 continues at action 218 with coupling a gate of the control transistor to a control gate carrier segment.
- power semiconductor package 418 of FIG. 4G includes power semiconductor package 416 F of FIG. 4F after coupling gate electrode heat spreader 454 to control gate carrier segment 420 e.
- power semiconductor package 418 of FIG. 4G includes power electrode heat spreader 450 , gate electrode heat spreader 454 , sync transistor 430 , control transistor 440 , power electrode carrier segment 420 a , sync source carrier segment 420 b , sync gate carrier segment 420 c , control drain carrier segment 420 d , control gate carrier segment 420 e , conductive adhesive 419 , conductive adhesive 421 , and conductive adhesive 423 , conductive adhesive 425 , conductive adhesive 427 , conductive adhesive 429 , conductive adhesive 431 , and conductive adhesive 433 .
- sync transistor 430 and control transistor 440 are implemented using the configurations of sync transistor 330 of FIG. 3A and control transistor 340 of FIG. 3B , respectively.
- Gate electrode heat spreader 454 is configured to be situated over and couple the gate electrode of control transistor 440 to control gate carrier segment 420 e . More specifically, gate electrode heat spreader 454 is configured to be electrically and mechanically coupled to the gate electrode of control transistor 440 using conductive adhesive 431 and to control gate carrier segment 420 e using conductive adhesive 433 .
- Gate electrode heat spreader 454 may be a flat, electrically and thermally conductive body, having a substantially planar bottom for attachment to control transistor 440 and control gate carrier segment 420 e . Gate electrode heat spreader 454 may be substantially the same thickness as power electrode heat spreader 450 . Gate electrode heat spreader 454 may include Cu, Al, a conductive alloy, or another suitable conductive material, for example.
- gate electrode heat spreader 454 is configured to provide integrated heat spreading functionality for dissipation of heat generated by control transistor 440 .
- Gate electrode heat spreader 454 provides the above functions without the need for a conductive clip including a leg portion, and without the need for a separate heat spreader.
- gate electrode heat spreader 454 may be included within heat spreader array 412 of FIG. 4C .
- gate electrode heat spreader 454 may be held together with power electrode heat spreader 450 using additional connecting bars.
- gate electrode heat spreader 454 may be overlaid on conductive carrier array 414 of FIG. 4D substantially concurrently with power electrode heat spreader 450 such that gate electrode heat spreader 454 couples the gate electrode of control transistor 440 to control gate carrier segment 420 e .
- conductive adhesive 431 may be selectively applied to the gate of control transistor 440 and conductive adhesive 433 may be selectively applied to control gate carrier segment 420 e during action 214 of FIG. 2 .
- gate electrode heat spreader 454 may be replaced with a wire bond, specifically if the current carrying capability and thermal dissipation requirements of gate electrode heat spreader 454 are low.
- the wire bond may include gold (Au) or Cu, for example.
- the wire bond may be replaced by conductive ribbons or other connectors formed form conductive materials such as Al, Au, Cu, and/or other metals or composite materials.
- Control gate carrier segment 420 e is configured to be electrically and mechanically coupled to gate electrode heat spreader 454 using conductive adhesive 433 .
- Control gate carrier segment 420 e is further configured to electrically couple the gate electrode of control transistor 440 to a substrate, for example.
- Conductive adhesive 419 , 421 , 423 , 425 , 427 , 429 , 431 , and 433 may include a conductive adhesive material, a solder paste, solder tape, solder, a silver filled adhesive such as QMI 529HT, a conductive sintered material, a diffusion bonded material, or another suitable attachment means.
- Conductive adhesive 419 , 421 , 423 , 425 , 427 , 429 , 431 , and 433 may be formed to a thickness of at least 10 ⁇ m, for example.
- power semiconductor package 401 includes power semiconductor package 418 of FIG. 4G after encapsulating power semiconductor package 418 in molding compound 492 and coupling power semiconductor package 418 to substrate 495 .
- Power semiconductor package 401 of FIG. 4H includes power electrode heat spreader 450 , gate electrode heat spreader 454 , sync transistor 430 , control transistor 440 , power electrode carrier segment 420 a , sync source carrier segment 420 b , sync gate carrier segment 420 c , control drain carrier segment 420 d , control gate carrier segment 420 e , conductive adhesive 419 , conductive adhesive 421 , and conductive adhesive 423 , conductive adhesive 425 , conductive adhesive 427 , conductive adhesive 429 , conductive adhesive 431 , conductive adhesive 433 , molding compound 492 , and substrate 495 .
- sync transistor 430 and control transistor 440 are implemented using the configurations of sync transistor 330 of FIG. 3A and
- Substrate 495 includes a plurality of portions configured to electrically couple to the power electrodes and gate electrodes of power semiconductor package 401 .
- Power electrode carrier segment 410 a , sync source carrier segment 410 b , sync gate carrier segment 420 c , control drain carrier segment 420 d , and control gate carrier segment 420 e are electrically and mechanically coupled to substrate 495 using conductive pads, solder bodies, a conductive adhesive, or another suitable attachment means, for example.
- Substrate 495 may be a circuit board, for example a printed circuit board (PCB), or another suitable substrate.
- PCB printed circuit board
- Substrate 495 uses conductive traces or other conductive means to electrically couple the required components of power semiconductor package 401 .
- substrate 495 may include conductive traces to electrically couple each of the source electrodes, the gate electrodes, and the drain electrodes of sync transistor 330 and control transistor 440 according to voltage converter 100 of FIG. 1 , for example.
- Molding compound 492 is configured to encapsulate power semiconductor package 401 to provide protection for power semiconductor package 401 . Molding compound 492 may include any suitable molding compound or a plastic case.
- sync transistor 430 has the configuration of sync transistor 330 of FIG. 3A
- control transistor 440 has the configuration of control transistor 340 of FIG. 3B
- the combination of power electrode heat spreader 450 and power electrode carrier segment 420 a couples the drain electrode of sync transistor 430 and the source electrode of control transistor 440 to substrate 495
- sync source carrier segment 420 b couples the source electrode of sync transistor 430 to substrate 495
- sync gate carrier segment 420 c couples the gate electrode of sync transistor 430 to substrate 495
- control drain carrier segment 420 d couples the drain electrode of control transistor 440 to substrate 495
- the combination of gate electrode heat spreader 454 and control gate carrier segment 420 e couples the gate electrode of control transistor 440 to substrate 495 .
- a power electrode heat spreader implemented as a switch node and a gate electrode heat spreader to provide integrated heat spreading enables a highly compact MCM design, while concurrently providing thermal protection.
- a power semiconductor package height, or thickness, resulting from the implementations disclosed in the present application may be less than approximately 0.5 mm, such as a power semiconductor package height or thickness of approximately 0.45 mm.
- use of the power electrode heat spreader to provide the switch node and the gate electrode heat spreader advantageously enables omission of a conductive clip having a support leg, or any other feature implemented solely as a switch node electrical connector, from the MCM.
- use of the array based fabrication approach of the present disclosure advantageously enables increased package fabrication efficiency and reduced package fabrication cost for MCM packages, while concurrently resulting in reduced parasitics and improved thermal performance.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/546,854 US9620475B2 (en) | 2013-12-09 | 2014-11-18 | Array based fabrication of power semiconductor package with integrated heat spreader |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361913517P | 2013-12-09 | 2013-12-09 | |
US14/515,720 US9704787B2 (en) | 2014-10-16 | 2014-10-16 | Compact single-die power semiconductor package |
US14/515,860 US9653386B2 (en) | 2014-10-16 | 2014-10-16 | Compact multi-die power semiconductor package |
US14/546,854 US9620475B2 (en) | 2013-12-09 | 2014-11-18 | Array based fabrication of power semiconductor package with integrated heat spreader |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/515,720 Continuation-In-Part US9704787B2 (en) | 2013-12-09 | 2014-10-16 | Compact single-die power semiconductor package |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150162303A1 US20150162303A1 (en) | 2015-06-11 |
US9620475B2 true US9620475B2 (en) | 2017-04-11 |
Family
ID=53271953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/546,854 Active US9620475B2 (en) | 2013-12-09 | 2014-11-18 | Array based fabrication of power semiconductor package with integrated heat spreader |
Country Status (1)
Country | Link |
---|---|
US (1) | US9620475B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180342438A1 (en) * | 2017-05-25 | 2018-11-29 | Infineon Technologies Ag | Semiconductor Chip Package Having a Cooling Surface and Method of Manufacturing a Semiconductor Package |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160172279A1 (en) * | 2014-12-10 | 2016-06-16 | Infineon Technologies Americas Corp. | Integrated Power Assembly with Reduced Form Factor and Enhanced Thermal Dissipation |
US20160172284A1 (en) * | 2014-12-11 | 2016-06-16 | Infineon Technologies Americas Corp. | Integrated Power Assembly with Stacked Individually Packaged Power Devices |
US9780018B2 (en) * | 2014-12-16 | 2017-10-03 | Infineon Technologies Americas Corp. | Power semiconductor package having reduced form factor and increased current carrying capability |
CN106531711B (en) * | 2016-12-07 | 2019-03-05 | 华进半导体封装先导技术研发中心有限公司 | A kind of the Board level packaging structure and production method of chip |
US10714418B2 (en) * | 2018-03-26 | 2020-07-14 | Texas Instruments Incorporated | Electronic device having inverted lead pins |
US10680069B2 (en) * | 2018-08-03 | 2020-06-09 | Infineon Technologies Austria Ag | System and method for a GaN-based start-up circuit |
US10861766B1 (en) * | 2019-09-18 | 2020-12-08 | Delta Electronics, Inc. | Package structures |
US12199004B2 (en) * | 2021-03-24 | 2025-01-14 | Navitas Semiconductor Limited | Electronic packages with integral heat spreaders |
TWI791382B (en) * | 2021-10-25 | 2023-02-01 | 立錡科技股份有限公司 | Heat dissipation structure and high thermal conductive element |
US11750089B2 (en) | 2021-10-28 | 2023-09-05 | Alpha And Omega Semiconductor International Lp | Power converter for high power density |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6624522B2 (en) | 2000-04-04 | 2003-09-23 | International Rectifier Corporation | Chip scale surface mounted device and process of manufacture |
US20040061221A1 (en) | 2002-07-15 | 2004-04-01 | International Rectifier Corporation | High power MCM package |
US20060017174A1 (en) | 2004-06-22 | 2006-01-26 | Ralf Otremba | Semiconductor device |
US20060151861A1 (en) | 2005-01-13 | 2006-07-13 | Noquil Jonathan A | Method to manufacture a universal footprint for a package with exposed chip |
US7125747B2 (en) * | 2004-06-23 | 2006-10-24 | Advanced Semiconductor Engineering, Inc. | Process for manufacturing leadless semiconductor packages including an electrical test in a matrix of a leadless leadframe |
US20070090523A1 (en) | 2005-10-20 | 2007-04-26 | Ralf Otremba | Semiconductor component and methods to produce a semiconductor component |
US20070114352A1 (en) | 2005-11-18 | 2007-05-24 | Victor R Cruz Erwin | Semiconductor die package using leadframe and clip and method of manufacturing |
US7271470B1 (en) | 2006-05-31 | 2007-09-18 | Infineon Technologies Ag | Electronic component having at least two semiconductor power devices |
US7301235B2 (en) | 2004-06-03 | 2007-11-27 | International Rectifier Corporation | Semiconductor device module with flip chip devices on a common lead frame |
US20090224383A1 (en) | 2008-03-07 | 2009-09-10 | Erwin Victor Cruz | Semiconductor die package including exposed connections |
US7663212B2 (en) | 2006-03-21 | 2010-02-16 | Infineon Technologies Ag | Electronic component having exposed surfaces |
US20100133670A1 (en) | 2008-12-01 | 2010-06-03 | Kai Liu | Top-side Cooled Semiconductor Package with Stacked Interconnection Plates and Method |
US7800217B2 (en) | 2006-05-10 | 2010-09-21 | Infineon Technologies Ag | Power semiconductor device connected in distinct layers of plastic |
US7804131B2 (en) | 2006-04-28 | 2010-09-28 | International Rectifier Corporation | Multi-chip module |
US20110049690A1 (en) * | 2009-08-28 | 2011-03-03 | International Rectifier Corporation | Direct contract leadless package for high current devices |
US20120015483A1 (en) | 2009-01-12 | 2012-01-19 | Texas Instruments Incorporated | Semiconductor Device Package and Method of Assembly Thereof |
US8138585B2 (en) * | 2008-05-28 | 2012-03-20 | Fairchild Semiconductor Corporation | Four mosfet full bridge module |
US20120181674A1 (en) | 2011-01-14 | 2012-07-19 | International Rectifier Corporation | Stacked Half-Bridge Package with a Common Conductive Leadframe |
US20120241926A1 (en) | 2011-03-23 | 2012-09-27 | Zigmund Ramirez Camacho | Integrated circuit packaging system with leveling standoff and method of manufacture thereof |
US20120248521A1 (en) | 2011-04-01 | 2012-10-04 | Texas Instruments Incorporated | Power Converter Having Integrated Capacitor |
US8304903B2 (en) | 2006-08-14 | 2012-11-06 | Texas Instruments Incorporated | Wirebond-less semiconductor package |
US20120280308A1 (en) | 2011-05-02 | 2012-11-08 | Disney Donald R | Vertical power transistor die packages and associated methods of manufacturing |
US20120292753A1 (en) | 2011-05-19 | 2012-11-22 | International Rectifier Corporation | Multi-transistor exposed conductive clip for high power semiconductor packages |
US20120292752A1 (en) * | 2011-05-19 | 2012-11-22 | International Rectifier Corporation | Thermally Enhanced Semiconductor Package with Exposed Parallel Conductive Clip |
US20130161801A1 (en) | 2011-12-23 | 2013-06-27 | Infineon Technologies Ag | Module Including a Discrete Device Mounted on a DCB Substrate |
US8680656B1 (en) | 2009-01-05 | 2014-03-25 | Amkor Technology, Inc. | Leadframe structure for concentrated photovoltaic receiver package |
US8884420B1 (en) | 2013-07-12 | 2014-11-11 | Infineon Technologies Austria Ag | Multichip device |
US20150162261A1 (en) | 2013-12-09 | 2015-06-11 | International Rectifier Corporation | Power Semiconductor Package with Integrated Heat Spreader and Partially Etched Conductive Carrier |
-
2014
- 2014-11-18 US US14/546,854 patent/US9620475B2/en active Active
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6624522B2 (en) | 2000-04-04 | 2003-09-23 | International Rectifier Corporation | Chip scale surface mounted device and process of manufacture |
US20040061221A1 (en) | 2002-07-15 | 2004-04-01 | International Rectifier Corporation | High power MCM package |
US7301235B2 (en) | 2004-06-03 | 2007-11-27 | International Rectifier Corporation | Semiconductor device module with flip chip devices on a common lead frame |
US20060017174A1 (en) | 2004-06-22 | 2006-01-26 | Ralf Otremba | Semiconductor device |
US7125747B2 (en) * | 2004-06-23 | 2006-10-24 | Advanced Semiconductor Engineering, Inc. | Process for manufacturing leadless semiconductor packages including an electrical test in a matrix of a leadless leadframe |
US20060151861A1 (en) | 2005-01-13 | 2006-07-13 | Noquil Jonathan A | Method to manufacture a universal footprint for a package with exposed chip |
US20070090523A1 (en) | 2005-10-20 | 2007-04-26 | Ralf Otremba | Semiconductor component and methods to produce a semiconductor component |
US20070114352A1 (en) | 2005-11-18 | 2007-05-24 | Victor R Cruz Erwin | Semiconductor die package using leadframe and clip and method of manufacturing |
US7285849B2 (en) | 2005-11-18 | 2007-10-23 | Fairchild Semiconductor Corporation | Semiconductor die package using leadframe and clip and method of manufacturing |
US7663212B2 (en) | 2006-03-21 | 2010-02-16 | Infineon Technologies Ag | Electronic component having exposed surfaces |
US7804131B2 (en) | 2006-04-28 | 2010-09-28 | International Rectifier Corporation | Multi-chip module |
US7800217B2 (en) | 2006-05-10 | 2010-09-21 | Infineon Technologies Ag | Power semiconductor device connected in distinct layers of plastic |
US7271470B1 (en) | 2006-05-31 | 2007-09-18 | Infineon Technologies Ag | Electronic component having at least two semiconductor power devices |
US8304903B2 (en) | 2006-08-14 | 2012-11-06 | Texas Instruments Incorporated | Wirebond-less semiconductor package |
US20090224383A1 (en) | 2008-03-07 | 2009-09-10 | Erwin Victor Cruz | Semiconductor die package including exposed connections |
US8138585B2 (en) * | 2008-05-28 | 2012-03-20 | Fairchild Semiconductor Corporation | Four mosfet full bridge module |
US20100133670A1 (en) | 2008-12-01 | 2010-06-03 | Kai Liu | Top-side Cooled Semiconductor Package with Stacked Interconnection Plates and Method |
US8680656B1 (en) | 2009-01-05 | 2014-03-25 | Amkor Technology, Inc. | Leadframe structure for concentrated photovoltaic receiver package |
US20120015483A1 (en) | 2009-01-12 | 2012-01-19 | Texas Instruments Incorporated | Semiconductor Device Package and Method of Assembly Thereof |
US20110049690A1 (en) * | 2009-08-28 | 2011-03-03 | International Rectifier Corporation | Direct contract leadless package for high current devices |
US20120181674A1 (en) | 2011-01-14 | 2012-07-19 | International Rectifier Corporation | Stacked Half-Bridge Package with a Common Conductive Leadframe |
US20120241926A1 (en) | 2011-03-23 | 2012-09-27 | Zigmund Ramirez Camacho | Integrated circuit packaging system with leveling standoff and method of manufacture thereof |
US20120248521A1 (en) | 2011-04-01 | 2012-10-04 | Texas Instruments Incorporated | Power Converter Having Integrated Capacitor |
US20120280308A1 (en) | 2011-05-02 | 2012-11-08 | Disney Donald R | Vertical power transistor die packages and associated methods of manufacturing |
US20120292752A1 (en) * | 2011-05-19 | 2012-11-22 | International Rectifier Corporation | Thermally Enhanced Semiconductor Package with Exposed Parallel Conductive Clip |
US20120292753A1 (en) | 2011-05-19 | 2012-11-22 | International Rectifier Corporation | Multi-transistor exposed conductive clip for high power semiconductor packages |
US20130161801A1 (en) | 2011-12-23 | 2013-06-27 | Infineon Technologies Ag | Module Including a Discrete Device Mounted on a DCB Substrate |
US8884420B1 (en) | 2013-07-12 | 2014-11-11 | Infineon Technologies Austria Ag | Multichip device |
US20150162261A1 (en) | 2013-12-09 | 2015-06-11 | International Rectifier Corporation | Power Semiconductor Package with Integrated Heat Spreader and Partially Etched Conductive Carrier |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180342438A1 (en) * | 2017-05-25 | 2018-11-29 | Infineon Technologies Ag | Semiconductor Chip Package Having a Cooling Surface and Method of Manufacturing a Semiconductor Package |
US10727151B2 (en) * | 2017-05-25 | 2020-07-28 | Infineon Technologies Ag | Semiconductor chip package having a cooling surface and method of manufacturing a semiconductor package |
Also Published As
Publication number | Publication date |
---|---|
US20150162303A1 (en) | 2015-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9620475B2 (en) | Array based fabrication of power semiconductor package with integrated heat spreader | |
US9214415B2 (en) | Integrating multi-output power converters having vertically stacked semiconductor chips | |
US8749034B2 (en) | High power semiconductor package with conductive clip and flip chip driver IC with integrated control transistor | |
US9502395B2 (en) | Power semiconductor package having vertically stacked driver IC | |
US9653386B2 (en) | Compact multi-die power semiconductor package | |
US9397212B2 (en) | Power converter package including top-drain configured power FET | |
US9762137B2 (en) | Power converter package with integrated output inductor | |
US9496168B2 (en) | Semiconductor package with via-coupled power transistors | |
US9502338B2 (en) | Semiconductor package with switch node integrated heat spreader | |
US9620441B2 (en) | Semiconductor package with multi-section conductive carrier | |
US20130337611A1 (en) | Thermally Enhanced Semiconductor Package with Conductive Clip | |
US9570379B2 (en) | Power semiconductor package with integrated heat spreader and partially etched conductive carrier | |
US9111921B2 (en) | Semiconductor package with conductive carrier integrated heat spreader | |
US9780018B2 (en) | Power semiconductor package having reduced form factor and increased current carrying capability | |
US20170117213A1 (en) | Semiconductor package with integrated die paddles for power stage | |
CN106024764A (en) | Semiconductor Package with Integrated Output Inductor on a Printed Circuit Board | |
US9704787B2 (en) | Compact single-die power semiconductor package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL RECTIFIER CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHO, EUNG SAN;REEL/FRAME:034201/0933 Effective date: 20141117 |
|
AS | Assignment |
Owner name: INFINEON TECHNOLOGIES AMERICAS CORP., CALIFORNIA Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:INFINEON TECHNOLOGIES NORTH AMERICA CORP.;INTERNATIONAL RECTIFIER CORPORATION;REEL/FRAME:038463/0859 Effective date: 20150929 Owner name: INFINEON TECHNOLOGIES AMERICAS CORP., CALIFORNIA Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:INFINEON TECHNOLOGIES NORTH AMERICA CORP.;INTERNATIONAL RECTIFIER CORPORATION;INTERNATIONAL RECTIFIER CORPORATION;REEL/FRAME:038463/0859 Effective date: 20150929 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |