[go: up one dir, main page]

US9603912B2 - Cancer therapy - Google Patents

Cancer therapy Download PDF

Info

Publication number
US9603912B2
US9603912B2 US13/392,570 US201013392570A US9603912B2 US 9603912 B2 US9603912 B2 US 9603912B2 US 201013392570 A US201013392570 A US 201013392570A US 9603912 B2 US9603912 B2 US 9603912B2
Authority
US
United States
Prior art keywords
human
viral vector
administering
cancer
transgene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/392,570
Other versions
US20120164172A1 (en
Inventor
Timothy Farries
David Eckland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gliotherapy Ltd
Glrotherapy Ltd
Original Assignee
Glrotherapy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glrotherapy Ltd filed Critical Glrotherapy Ltd
Assigned to ARK THERAPEUTICS, LTD. reassignment ARK THERAPEUTICS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ECKLAND, DAVID, FARRIES, TIMOTHY
Publication of US20120164172A1 publication Critical patent/US20120164172A1/en
Assigned to Gliotherapy Limited reassignment Gliotherapy Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARK THERAPEUTICS LTD.
Application granted granted Critical
Publication of US9603912B2 publication Critical patent/US9603912B2/en
Assigned to Gliotherapy Limited reassignment Gliotherapy Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FINVECTOR VISION THERAPIES LIMITED
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001154Enzymes
    • A61K39/001162Kinases, e.g. Raf or Src
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/235Adenoviridae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0083Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the administration regime
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01021Thymidine kinase (2.7.1.21)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/577Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 tolerising response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10334Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/022Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from an adenovirus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to gene therapies for cancer.
  • Cancers are a major cause of mortality. High grade gliomas are particularly devastating malignant tumours, for which there is currently no effective cure and for which the outcome is normally fatal. Certain treatments can prolong survival, but they do not cure the cancer.
  • Malignant glioma is a cancerous tumour that is confined to the brain and only rarely spreads further.
  • the current standard therapy involves surgically removing the solid tumour mass and initiating radiotherapy and/or chemotherapy. Even when the solid tumour mass is being removed, precancerous or isolated cancerous cells can exist in the brain. In the majority of these patients, a new tumour grows and a repeat operation is frequently required.
  • most available cancer medicines are generally very toxic and many do not readily reach the brain tumour. They often cause severe side effects that can reduce the patient's quality of life significantly.
  • EP1135513 relates to an adenovirus-based gene therapy.
  • the therapy involves the use of adenovirus having a functional thymidine kinase gene, for the treatment of a brain tumour cavity resulting from tumour resection.
  • the adenovirus is injected through the wall of the cavity left behind by the surgical removal of the solid tumour, in to the surrounding healthy brain tissue. This causes the healthy cells in the wall of the cavity to express Herpes simplex virus thymidine kinase (HSV-tk).
  • HSV-tk Herpes simplex virus thymidine kinase
  • the drug ganciclovir is then given to the patient. HSV-tk and ganciclovir react together to produce a substance which destroys cells when they try to divide. This prevents another tumour growing around the site of the removal of the original tumour.
  • the therapy “Cerepro”, developed by the Applicant, is based on the above principal. It has been shown in clinical trials to have therapeutic benefits for patients with high grade glioma.
  • the present invention is based on a study, which shows that locally administered antigens in combination with a pre-existing immunoresponsiveness to those antigens, enhances the efficacy of an adenoviral-based gene therapy treatment for glioma.
  • the present invention is an agent that stimulates antiviral immunity, for the treatment of cancer.
  • the present invention is a product comprising an immunostimulant and a vector comprising a transgene that promotes death of neoplastic cells, for simultaneous, sequential or separate administration in the treatment of cancer.
  • the present invention is a method of selecting patients for treatment with a product as defined above, comprising determining ex vivo the level of immunity against the vector, in a sample taken from a patient, and selecting the patient for treatment if the level of immunity is above a pre-determined level.
  • the present invention is a method of predicting the efficacy of a product as defined above, comprising determining ex vivo the level of immunity against the vector, in a sample taken from a patient, and selecting the patient for treatment if the level of immunity is above a pre-determined level.
  • the present invention is a method of treating cancer, comprising administering a course of a product as defined above, followed by administering a second course of the product after a period of time sufficient for the patient to generate a specified level of immunity to the vector.
  • the vector is a viral vector. More preferably, the viral vector is an adenovirus.
  • stimulation of the immune system is used to increase the immunoresponsiveness of the patient that is to be administered vector antigens to enhance the therapeutic efficacy of the gene therapy adenoviral vector.
  • This immunostimulation may be achieved by either non-specific activation of immune reactions or by stimulation specifically relating to the therapy by the immunogenes (or antigens) of the gene therapy vector, or the tumour.
  • an antigenic component to which the patient has pre-existing immunoresponsiveness is co-administered with an anti-tumour agent such that the consequent immune reactions enhance the efficacy of the anti-tumour therapy.
  • the co-administered antigens may be antigenic components of the viral particles themselves, i.e. they may be integral with the vector. Alternatively, they may be provided separately.
  • the degree of anti-tumour efficacy of a therapeutic agent may be predicted by assessment of the state of immunoresponsiveness of the patients to the antigens in the therapeutic agent, prior to treatment. This criterion might be useful for the management of the patient, including for the selection of the most appropriate course of medication.
  • the immunoresponsiveness of the patient may be determined by determining ex vivo the amount of antibodies against the vector.
  • other methods of measuring immunoresponsiveness against the vector will be known to those skilled in the art and are included within the scope of the invention.
  • immunity could be determined by measuring the level of T-cells in the patient, or by taking a life-history of exposure to the vector.
  • Ad-HSV-tk vector used in the study.
  • other gene therapy vectors may be suitable for use in the invention.
  • the present invention is not limited to the treatment of high grade glioma; it is potentially applicable to all cancers.
  • the agent that stimulates antiviral immunity is selected from:
  • Immunogens may be administered in combination with an adjuvant or other form of general immunostimulation, as described below.
  • an immunostimulant suitable for use of the invention is a general immunostimulant, which may be selected from preparations including microbial components, for example:
  • the immunostimulant is an agent that reduces immunosuppression. Examples include:
  • the immunostimulation may be administered systemically or locally. Further, the timing should be such to ensure that the immunostimulation is effective for the period during exposure to administered antigens.
  • the antigens may be one or both of the following:
  • the antigens are derived from a preparation of adenoviral particles or proteins that are administered to patients with pre-existing immunoresponsiveness to adenoviral antigens.
  • Assessment of the state of immunoresponsiveness of a patient may be achieved from:
  • the clinical Study was entitled “A Controlled, Randomised, Parallel Group, Multicentre Study of the Efficacy and Safety of Herpes simplex Virus-Thymidine Kinase Gene Therapy (CereproTM), with Subsequent Ganciclovir, for the Treatment of Patients with Operable High-Grade Glioma”.
  • This was a Phase III, multicentre, controlled, randomised, parallel group clinical study of the efficacy and safety of Herpes Simplex virus-thymidine kinase gene therapy (Cerepro®) with subsequent GCV for the treatment of patients with operable primary glioblastoma.
  • the study was comprised of two treatment groups: an active group and a control group.
  • the active group received standard care plus a one-time treatment with Cerepro® (which occurred after surgical resection of the tumour) followed by a 14-day treatment with GCV.
  • the control group received standard care after surgical resection of the tumour.
  • the primary objective of this study was to determine if Cerepro/Ganciclovir (GCV) is superior to standard care for the treatment of operable primary glioblastoma based on time to death or re-intervention [reintervention is defined as any kind of treatment (including surgery, radiotherapy or chemotherapy) given to prolong survival when a tumour recurs].
  • reintervention is defined as any kind of treatment (including surgery, radiotherapy or chemotherapy) given to prolong survival when a tumour recurs].
  • Data on all cause mortality (time to death) was also collected.
  • Many patients also received temozolamide and statistical analyses of efficacy have been conducted that included this as a covariate to account for its contribution to the overall efficacy.
  • Ad-HSV-tk anti-tumour treatment when administered to patients with higher immunoresponsiveness to the adenovirus.
  • Administration of an antigenic agent to patient with pre-existing immunity to that agent so that immune reactions enhance the anti-neoplastic efficacy of that agent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Toxicology (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

An agent that stimulates antiviral immunity may be used, for the treatment of cancer. A product comprising an immunostimulant and a vector comprising a transgene that promotes death of neoplastic cells, may also be used for simultaneous, sequential or separate administration in the treatment of cancer.

Description

This application asserts priority from and is a National Stage of PCT Application Ser. No. PCT/GB2010/051595 filed 23 Sept. 2010, which asserts priority from Great Britain provisional patent filing Ser. No. 09/169970 filed 28 Sept. 2009, the contents of which are here incorporated by reference.
FIELD OF THE INVENTION
The present invention relates to gene therapies for cancer.
BACKGROUND OF THE INVENTION
Cancers are a major cause of mortality. High grade gliomas are particularly devastating malignant tumours, for which there is currently no effective cure and for which the outcome is normally fatal. Certain treatments can prolong survival, but they do not cure the cancer.
Malignant glioma is a cancerous tumour that is confined to the brain and only rarely spreads further. The current standard therapy involves surgically removing the solid tumour mass and initiating radiotherapy and/or chemotherapy. Even when the solid tumour mass is being removed, precancerous or isolated cancerous cells can exist in the brain. In the majority of these patients, a new tumour grows and a repeat operation is frequently required. Currently most available cancer medicines are generally very toxic and many do not readily reach the brain tumour. They often cause severe side effects that can reduce the patient's quality of life significantly.
EP1135513 relates to an adenovirus-based gene therapy. The therapy involves the use of adenovirus having a functional thymidine kinase gene, for the treatment of a brain tumour cavity resulting from tumour resection. Following standard surgery to remove the solid tumour mass, the adenovirus is injected through the wall of the cavity left behind by the surgical removal of the solid tumour, in to the surrounding healthy brain tissue. This causes the healthy cells in the wall of the cavity to express Herpes simplex virus thymidine kinase (HSV-tk). The drug ganciclovir is then given to the patient. HSV-tk and ganciclovir react together to produce a substance which destroys cells when they try to divide. This prevents another tumour growing around the site of the removal of the original tumour.
The therapy “Cerepro”, developed by the Applicant, is based on the above principal. It has been shown in clinical trials to have therapeutic benefits for patients with high grade glioma.
Previous evidence and current general expectation is that pre-existing antibodies that have the ability to neutralise adenovirus infectivity, will inhibit the therapeutic activity of medicinal adenoviral gene therapy vectors. This is because it is believed that they will inhibit their ability to infect tissue, and therefore their ability to effect expression of the transgene. Evidence for this may be found in King et al, 2008, which describes treatment with an Ad-HSV-tk vector and ganciclovir, in a rat glioma model. It was found that the treatment induced tumour regression and prolonged survival, but was ineffective in rats that were pre-immunised with the vector. The authors proposed that less immunogenic “gutless” adenoviral vectors would be required for clinical efficacy in patients that had pre-existing immunity to the adenovirus.
Further, in Barcia et al., 2007, it was found that prolonged expression of a marker gene from an adenoviral vector injected into the mouse brain was prevented by pre-immunising the mouse with adenovirus. Prolonged expression could be achieved in pre-immunised mice if a less immunogenic “gutless” adenoviral vector was used. Additionally, in Brouwer E et al., 2007, the authors proposed that adenoviral vectors based on Ad35 would be clinically preferable to Ad5-based vectors for treatment of malignant glioma because of the inhibitory effect of pre-existing immunity to the Ad5 vectors.
Okada et al 2009, propose using cytokines to maximise specific anti-tumour immunity when using an Ad-HSV-tk vector with ganciclovir. When the group tested various immunostimulatory therapies in a rat model of glioma, only fms-like tyrosine kinase ligand (FIt3L) was effective delivered in combination with Ad-HSV-tk, whereas CD40L and IL-12 were not effective. The immunosuppressor cyclosporine A inhibited the efficacy. It is important to realise that the experiments were carried out in a rat model, which is not an accurate indicator of therapeutic effect in humans. Also, the treatment is based on using tumour antigens.
SUMMARY OF THE INVENTION
The present invention is based on a study, which shows that locally administered antigens in combination with a pre-existing immunoresponsiveness to those antigens, enhances the efficacy of an adenoviral-based gene therapy treatment for glioma.
Therefore, according to a first aspect the present invention is an agent that stimulates antiviral immunity, for the treatment of cancer.
According to a second aspect, the present invention is a product comprising an immunostimulant and a vector comprising a transgene that promotes death of neoplastic cells, for simultaneous, sequential or separate administration in the treatment of cancer.
According to a third aspect, the present invention is a method of selecting patients for treatment with a product as defined above, comprising determining ex vivo the level of immunity against the vector, in a sample taken from a patient, and selecting the patient for treatment if the level of immunity is above a pre-determined level.
According to a fourth aspect, the present invention is a method of predicting the efficacy of a product as defined above, comprising determining ex vivo the level of immunity against the vector, in a sample taken from a patient, and selecting the patient for treatment if the level of immunity is above a pre-determined level.
According to a fifth aspect, the present invention is a method of treating cancer, comprising administering a course of a product as defined above, followed by administering a second course of the product after a period of time sufficient for the patient to generate a specified level of immunity to the vector.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Without wishing to be bound by theory, it is proposed that when an immunostimulant is administered with a viral vector-based gene therapy for cancer, reactions between the components create a local environment that is conductive to recruitment of additional anti-neoplastic cell processors, such as the generation of immune responses directed against the neoplastic cells. Therefore, in contrast to the findings of most the prior art cited above, it has been found in the present invention that pre-existing immunoresponsiveness to adenoviral vectors will enhance its sufficiency for the treatment of cancer.
The skilled person will know how to carry out the invention described in the claims. The gene therapy “Cerepro” is in the public domain and suitable dosages, methods of administration etc are known. Information relevant to the present invention is also disclosed in EP1135513, which is incorporated herein by reference.
Suitable dosages and methods of administration for the immunostimulant will be readily apparent to the skilled person.
Preferably, the vector is a viral vector. More preferably, the viral vector is an adenovirus.
In a preferred embodiment, stimulation of the immune system is used to increase the immunoresponsiveness of the patient that is to be administered vector antigens to enhance the therapeutic efficacy of the gene therapy adenoviral vector. This immunostimulation may be achieved by either non-specific activation of immune reactions or by stimulation specifically relating to the therapy by the immunogenes (or antigens) of the gene therapy vector, or the tumour.
In a further preferred embodiment, an antigenic component to which the patient has pre-existing immunoresponsiveness, is co-administered with an anti-tumour agent such that the consequent immune reactions enhance the efficacy of the anti-tumour therapy. In the case of a viral vector, the co-administered antigens may be antigenic components of the viral particles themselves, i.e. they may be integral with the vector. Alternatively, they may be provided separately.
In a further preferred embodiment, the degree of anti-tumour efficacy of a therapeutic agent may be predicted by assessment of the state of immunoresponsiveness of the patients to the antigens in the therapeutic agent, prior to treatment. This criterion might be useful for the management of the patient, including for the selection of the most appropriate course of medication.
The immunoresponsiveness of the patient may be determined by determining ex vivo the amount of antibodies against the vector. However, other methods of measuring immunoresponsiveness against the vector will be known to those skilled in the art and are included within the scope of the invention. For example, immunity could be determined by measuring the level of T-cells in the patient, or by taking a life-history of exposure to the vector.
The results of the study on which the invention is based (shown below), show that the efficacy of an Ad-HSV-tk vector in the treatment of high grade glioma, is enhanced in a state of immunoresponsiveness to the adenoviral vector, as signified by the presence of neutralising anti-adenoviral antibodies.
The study uses an Ad-HSV-tk vector. However, other gene therapy vectors may be suitable for use in the invention. Also, the present invention is not limited to the treatment of high grade glioma; it is potentially applicable to all cancers.
Preferably, the agent that stimulates antiviral immunity is selected from:
  • Adenoviral particles (or derived antigen preparations);
  • Other viral particles (or derived antigen preparations);
  • Other specific immunogens stimulating an immune response against a specific target antigen.
Immunogens may be administered in combination with an adjuvant or other form of general immunostimulation, as described below.
Preferably, an immunostimulant suitable for use of the invention is a general immunostimulant, which may be selected from preparations including microbial components, for example:
  • Bacterial lipopolysaccaharides;
  • BCG (Bacillus Calmette-Guérin);
  • Freund's complete adjuvant;
  • Ribi Adjuvant System (RAS);
  • Preparations that stimulate Toll-like receptors; E.g. CpG DNA
  • Thymomimetic agents such as:
  • thymosin α1;
  • levamisole;
  • methyl inosine monophosphate (MIMP);
  • Antibodies that bind to and stimulate immune responses or inhibit suppressor immune responses, e.g. “superagonistic antibodies” (e.g. Tegenero TGN1412);
  • Virosomes;
    Any other known adjuvant, such as:
  • Freund's incomplete adjuvant;
  • Titermax;
  • Syntex Adjuvant Formulation;
  • ALUM—aluminum hydroxide;
  • Elvax 40W;
  • Montanide;
  • AdjuPrime;
  • Gerbu adjuvant;
    Modifications to the immunogens to provide costimulation of immune cells to enhance the immune response to those immunogens, for example:
  • Coating the immunogen with complement C3d fragment;
  • Protein binding substrates such as “SuperCarrier”, or Nitrocellulose-absorbed protein;
  • Coprecipitation with L-Tyrosine;
  • Immune-stimulating complexes (ISCOMS);
  • Cytokines—administered as protein or an agent that causes their expression or activation;
In a preferred embodiment, the immunostimulant is an agent that reduces immunosuppression. Examples include:
Reduction in steroids such as glucocorticoids given therapeutically for the period of administration of the cytotoxic mediator;
Cessation, reduction or avoidance of other immunosuppressants such as:
  • Agents acting on immunophilins, such as Cyclosporine A;
  • Cytostatice purine analogs;
  • Methotrexate;
  • Immunosuppressive antibodies such as OKT3.
For the period of treatment and its effect, cessation, reduction or avoidance of other medicinal agents or treatments that have immunosuppressive activities, e.g.:
  • Radiation;
The immunostimulation may be administered systemically or locally. Further, the timing should be such to ensure that the immunostimulation is effective for the period during exposure to administered antigens.
The antigens may be one or both of the following:
  • Part of the therapeutic agent's property. In the case of a gene therapy vector, this includes any of the following:
  • The vector has the antigenic properties to react with pre-existing immunoresponsiveness;
  • Antigens expressed by cells infected with the vector, such as a protein expressed from a vector gene product; or
  • Administered as a separate material (which may be mixed and/or co-administered with the therapeutic agent).
In a preferred embodiment the antigens are derived from a preparation of adenoviral particles or proteins that are administered to patients with pre-existing immunoresponsiveness to adenoviral antigens.
Assessment of the state of immunoresponsiveness of a patient may be achieved from:
  • Tests for the presence of antibodies or lymphocytes reacting against the antigens to be administered (such as antibodies against the viral vector);
  • Tests for general immunocompetence, such as tests for other specific antibodies or for lymphocyte numbers or functions;
  • Review of the patient's history for evidence of prior exposure to the antigens to be administered (e.g. from prior infection or immunisation), general immune insufficiency (e.g. as may be signified by a propensity for infections) or immunosuppressive factors (such as other medications).
Use of knowledge of a patient's state of immunoresponsiveness to the antigens to be administered to predict efficacy of the gene therapy in those patients may be used for:
  • Determining if the patient should receive antigen-specific or general immunostimulation before treatment with the gene therapy;
  • Determining if the patient being treated with the gene therapy should discontinue, reduce or avoid treatments with immunosuppressive effects;
  • Determining if the risk-benefit makes it appropriate to treat the patient with the gene therapy.
The invention is illustrated by the following study:
Study
The clinical Study was entitled “A Controlled, Randomised, Parallel Group, Multicentre Study of the Efficacy and Safety of Herpes simplex Virus-Thymidine Kinase Gene Therapy (Cerepro™), with Subsequent Ganciclovir, for the Treatment of Patients with Operable High-Grade Glioma”. This was a Phase III, multicentre, controlled, randomised, parallel group clinical study of the efficacy and safety of Herpes Simplex virus-thymidine kinase gene therapy (Cerepro®) with subsequent GCV for the treatment of patients with operable primary glioblastoma. The study was comprised of two treatment groups: an active group and a control group. The active group received standard care plus a one-time treatment with Cerepro® (which occurred after surgical resection of the tumour) followed by a 14-day treatment with GCV. The control group received standard care after surgical resection of the tumour. The primary objective of this study was to determine if Cerepro/Ganciclovir (GCV) is superior to standard care for the treatment of operable primary glioblastoma based on time to death or re-intervention [reintervention is defined as any kind of treatment (including surgery, radiotherapy or chemotherapy) given to prolong survival when a tumour recurs]. Data on all cause mortality (time to death) was also collected. Many patients also received temozolamide and statistical analyses of efficacy have been conducted that included this as a covariate to account for its contribution to the overall efficacy.
Patient serum samples were tested for titres of neutralising anti-adenovirus antibodies at screening and various time-points thereafter. The titre of neutralising Adv-Abs was assessed by incubating serial dilutions of the subject's serum with adenovirus type 5 (replication deficient). The serum/adenovirus mix was then incubated with HEK293 detector cells. The cytopathic effect of any non-neutralised adenovirus was measured using alamar blue (which stains live cells). The neutralising antibody titer is expressed as the reciprocal of the dilution or dilutions (assessed in multiple replicates) which caused a cytopathic effect in 50% of the detector cells.
When the end-point data were analysed with respect to the pre-treatment (baseline) titre of neutralising anti-adenoviral antibodies it was found that the efficacy of Cerepro was more profound in those patients in which there detectable neutralising antibodies at baseline. As shown in the tables below the median survivals and therapeutic hazard ratios for Cerepro are higher (higher hazard ratios indicate greater efficacy) in patients that have pre-existing antibodies (defined as any neutralising antibody activity in the test), than those that don't and the effect is even more pronounced in patients with higher antibody titres (>100). For the standard care group which did not receive Cerepro the presence of pre-existing antibodies conferred no advantage compared to those patients without detectable pre-existing neutralising anti-adenoviral antibodies, showing that in this indication neither the presence of the antibodies, nor the state of immunocompetence that they are indicative of, has such beneficial effect without combination with Ad.HSV-tk.
TABLE 1
Times to reintervention or death (primary end-point), or to all cause mortality
(death), for patients in study 904 examining the effect of baseline anti adenoviral
antibodies (derived from study data updated as of March 2009).
Cerepro Standard Care
Pre- Pre-
No Pre- Pre- existing No Pre- Pre- existing
existing existing Antibody existing existing Antibody
Antibodies Antibodies titre >100 Antibodies Antibodies titre >100
n = 61 n = 53 n = 29 n = 70 n = 45 n = 18
Time 296 352 373 267 250 236
(days) to (217, 378) (293, 430) (284, 485) (208, 313) (189, 386) (157, 386)
re-
intervention
or death
Median
(95% CI)
Time 387 550 574 497 490 481
(days) to (327, 624) (376, 642) (373, 691) (396, 572) (376, 576) (315, 600)
death
Median
(95% CI)
TABLE 2
Hazard ratios and p values for Cerepro compared with Standard Care in
patients with different titres of anti-adenoviral antibodies at baseline.
Hazard Ratio Hazard Ratio
for primary P-value vs. for all cause P-value vs.
Antibody titre endpoint Standard mortality Standard
(n) (95% CI) care (95% CI) care
  0 (131) 1.29 0.221 1.07 0.778
(0.86, 1.93) (0.68, 1.66)
 >0 (98) 1.55 0.063 1.76 0.025
(0.98, 2.45) (1.07, 2.87)
>100 (47) 2.17 0.047 1.89 0.12
(1.01, 4.64) (0.85, 4.16)
The p-values are calculated from a Cox model including terms for treatment, temozolomide use, age and Karnofsky Performance Scoreat Day 19 (D19KPS) in the various subgroups.
Temozolomide and D19 KPS are fitted as time dependent covariates (derived from study data updated as of March 2009).

This exemplifies the following aspects of the invention:
Enhanced efficacy of the Ad-HSV-tk anti-tumour treatment when administered to patients with higher immunoresponsiveness to the adenovirus. Administration of an antigenic agent to patient with pre-existing immunity to that agent so that immune reactions enhance the anti-neoplastic efficacy of that agent.
Utility of assessment of the immunoresponsiveness of a patient to the administered antigenic component to predict the efficacy of a gene therapy treatment in that patient.
REFERENCES
Barcia C et al., 2007 Mol Ther. 15:2154-63, “One-year expression from high-capacity adenoviral vectors in the brains of animals with pre-existing anti-adenoviral immunity: clinical implications.”
Brouwer E et al, 2007, Cancer Gene Ther. 14:211-9, “Human adenovirus type 35 vector for gene therapy of brain cancer: improved transduction and bypass of pre-existing anti-vector immunity in cancer patients”.
King GD et al., 2008, J Virol. 82:4680-4, “High-capacity adenovirus vector-mediated anti-glioma gene therapy in the presence of systemic antiadenovirus immunity.”
Okada H et al 2009 Crit Rev Immunol 29, 1-42 Immunotherapeutic Approaches for Glioma.

Claims (28)

The invention claimed is:
1. In a method of treating cancer in a human by partial or complete resection of tumor from said human, the improvement comprising:
a. Determining the level of immunity against a viral vector, and then
b. Confirming said human has a measurable level of immunity against said vector, and then
c. Administering to said human said viral vector.
2. The method of claim 1, wherein said administering to said human said viral vector comprises administering to the cavity created by said resection of said tumor.
3. The method of claim 1, wherein said viral vector comprises adenovirus.
4. The method of claim 1, wherein said viral vector comprises a transgene.
5. The method of claim 4, wherein said transgene comprises nucleic acid sequence coding for thymidine kinase enzyme.
6. The method of claim 1, wherein said cancer comprises glioma.
7. The method of claim 1, further comprising administering to said human patient temozolamide.
8. In a method of treating cancer in a human by partial or complete resection of tumor from said human, the improvement comprising:
a. Inducing an immune response against a viral vector, and then
b. Administering to said human said viral vector.
9. The method of claim 8, wherein said administering to said human said viral vector comprises administering to the cavity created by said resection of said tumor.
10. The method of claim 8, wherein said viral vector comprises adenovirus.
11. The method of claim 8, wherein said viral vector comprises a transgene.
12. The method of claim 11, wherein said transgene comprises nucleic acid sequence coding for thymidine kinase enzyme.
13. The method of claim 8, wherein said cancer comprises glioma.
14. The method of claim 8, further comprising administering to said human patient temozolamide.
15. A method comprising:
a. diagnosing cancer in a human, and then
b. in any sequence:
performing a partial or complete resection of tumor from said human, and
determining the level of immunity against a viral vector, and confirming said human has a measurable level of immunity against said vector;
and then
c. Administering to said human said viral vector.
16. The method of claim 15, wherein said administering to said human said viral vector comprises administering to the cavity created by said resection of said tumor.
17. The method of claim 15, wherein said viral vector comprises adenovirus.
18. The method of claim 15, wherein said viral vector comprises a transgene.
19. The method of claim 18, wherein said transgene comprises nucleic acid sequence coding for thymidine kinase enzyme.
20. The method of claim 15, wherein said cancer comprises glioma.
21. The method of claim 15, further comprising administering to said human patient temozolamide.
22. A method of treating cancer in a human comprising:
a. diagnosing cancer in said human,
b. in any sequence:
performing a partial or complete resection of tumor from said human, and
Inducing an immune response against a viral vector, and then administering to said human said viral vector.
23. The method of claim 22, wherein said administering to said human said viral vector comprises administering to the cavity created by said resection of said tumor.
24. The method of claim 22, wherein said viral vector comprises adenovirus.
25. The method of claim 22, wherein said viral vector comprises a transgene.
26. The method of claim 25, wherein said transgene comprises nucleic acid sequence coding for thymidine kinase enzyme.
27. The method of claim 22, wherein said cancer comprises glioma.
28. The method of claim 22, further comprising administering to said human patient temozolamide.
US13/392,570 2009-09-28 2010-09-23 Cancer therapy Active 2033-09-07 US9603912B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB09169970 2009-09-28
GBGB0916997.0A GB0916997D0 (en) 2009-09-28 2009-09-28 Combination therapy
PCT/GB2010/051595 WO2011036487A1 (en) 2009-09-28 2010-09-23 Cancer therapy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2010/051595 A-371-Of-International WO2011036487A1 (en) 2009-09-28 2010-09-23 Cancer therapy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/287,909 Continuation US20170021039A1 (en) 2009-09-28 2016-10-07 Cancer Therapy

Publications (2)

Publication Number Publication Date
US20120164172A1 US20120164172A1 (en) 2012-06-28
US9603912B2 true US9603912B2 (en) 2017-03-28

Family

ID=41350490

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/392,570 Active 2033-09-07 US9603912B2 (en) 2009-09-28 2010-09-23 Cancer therapy
US15/287,909 Abandoned US20170021039A1 (en) 2009-09-28 2016-10-07 Cancer Therapy

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/287,909 Abandoned US20170021039A1 (en) 2009-09-28 2016-10-07 Cancer Therapy

Country Status (4)

Country Link
US (2) US9603912B2 (en)
EP (1) EP2482842A1 (en)
GB (1) GB0916997D0 (en)
WO (1) WO2011036487A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051443A1 (en) 2017-09-11 2019-03-14 Insideoutbio, Inc. Methods and compositions to enhance the immunogenicity of tumors
WO2020092140A2 (en) 2018-11-02 2020-05-07 Insideoutbio, Inc. Methods and compositions to induce or suppress immune responses through the use of membrane bound complement split products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3655531B1 (en) * 2017-07-18 2024-09-04 Exosome Diagnostics, Inc. Sequencing of nucleic acids associated with exosomal isolation from patients with glioblastoma multiforme

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631236A (en) 1993-08-26 1997-05-20 Baylor College Of Medicine Gene therapy for solid tumors, using a DNA sequence encoding HSV-Tk or VZV-Tk
US6579855B1 (en) * 1998-11-06 2003-06-17 Ark Therapeutics, Ltd. Adenovirus-mediated gene therapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631236A (en) 1993-08-26 1997-05-20 Baylor College Of Medicine Gene therapy for solid tumors, using a DNA sequence encoding HSV-Tk or VZV-Tk
US6579855B1 (en) * 1998-11-06 2003-06-17 Ark Therapeutics, Ltd. Adenovirus-mediated gene therapy

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
Barcia, C. et al., "One-year Expression From High-capacity Adenoviral Vectors in the Brains of Animals with Preexisting Anti-adenoviral Immunity: Clinical Implications," Molecular Therapy (2007) 15(12) 2154-2163.
Bramson et al. (1997) Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector expressing IL-12 but inhibits virus dissemination. Gene Therapy, 4:1069-1076. *
Brouwer, E. et al., "Human Adenovirus Type 35 Vector for Gene Therapy of Brain Cancer: Improved Transduction and Bypass of Pre-existing Anti-vector Immunity in Cancer Patients," Cancer Gene Therapy (2007) 14, 211-219.
Chen, Shu-Hsia et al., "Gene Therapy for Brain Tumours: Regression of Experimental Gliomas by Adenovirus-mediated Gene Transfer in vivo," Proc. Natl. Acad. Sci., (1994) 91(8) 3054-3057.
Curtin, J.F., et al., "HMGB1 Mediates Endogenous TLR2 Activation and Brain Tumor Regression," PLoS Medicine (2009) 6(1) 83-104.
King et al. (2008) High-Capacity Adenovirus Vector-Mediated Anti-Glioma Gene Therapy in the Presence of Systemic Antiadenovirus Immunity. Journal of Virology, 82(9):4680-4684. *
King, G.D., et al., "FIt3L and TK Gene Therapy Eradicate Multifocal Glioma in a Syngeneic Glioblastoma Model," Neuro-Oncology (2007) 10, 19-31.
King, G.D., et al., "High-Capacity Adenovirus Vector-Mediated Anti-Glioma Gene Therapy in the Presence of Systemic Antiadenovirus Immunity," J. Virology (2008) 82 (9) 4680-4684.
Maron, A., et al., "Gene Therapy of Rat C6 Glioma Using Adenovirus-mediated Transfer of the Herpes Symplex Virus Thimidine Kinase Gene: Long-term Follow Up by Magnetic Resonance Imaging," Gene Therapy (1996) 3, 315-322.
Okada, H., et al., "Immunotherapeutic Approaches for Glioma," Crit Rev Immunol (2009) 29(1), 1-42.
Perez-Cruet, M.J., et al., "Adenovirus Mediated Gene Therapy of Experimental Gliomas," Journal of Neuroscience, (1994) 39(4) 506-511.
Pulkkanen et al. (2005) Gene Therapy for Malignant Glioma: Current Clinical Status. Molecular Therapy, 12(4):585-598. *
Ulasov et al. (2009) Combination of adenoviral virotherapy and temozolomide chemotherapy eradicates malignant glioma through autophagic and apoptotic cell death in vivo. British Journal of Cancer, 100:1154-1164. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051443A1 (en) 2017-09-11 2019-03-14 Insideoutbio, Inc. Methods and compositions to enhance the immunogenicity of tumors
WO2020092140A2 (en) 2018-11-02 2020-05-07 Insideoutbio, Inc. Methods and compositions to induce or suppress immune responses through the use of membrane bound complement split products

Also Published As

Publication number Publication date
US20120164172A1 (en) 2012-06-28
WO2011036487A1 (en) 2011-03-31
EP2482842A1 (en) 2012-08-08
GB0916997D0 (en) 2009-11-11
US20170021039A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
Crosby et al. Vaccine-induced memory CD8+ T cells provide clinical benefit in HER2 expressing breast cancer: a mouse to human translational study
KR102081567B1 (en) Biomarkers and combination therapies using oncolytic virus and immunomodulation
JP6121910B2 (en) Generation of antibodies against tumor antigens and tumor-specific complement-dependent cytotoxicity by administration of oncolytic vaccinia virus
TW201722477A (en) Methods of treating solid or lymphatic tumors by combination therapy
CN116196401A (en) Consensus neoantigens
TWI845955B (en) Hiv vaccines and methods of making and using
EP3082853A2 (en) Combination therapy with neoantigen vaccine
JP2017504324A (en) Determinants of cancer response to immunotherapy
KR20180093123A (en) Novel peptides, combination of peptides and scaffolds for use in immunotherapeutic treatment of various cancers
Seaman et al. Subsets of memory cytotoxic T lymphocytes elicited by vaccination influence the efficiency of secondary expansion in vivo
JP2019512020A (en) Cancer treatment
AU2016273880A1 (en) Ebv-specific cytotoxic t-lymphocytes for the treatment of locoregional nasopharyngeal carcinoma (npc)
JP2019517508A5 (en)
EP2804624A2 (en) Vaccines against antigens involved in therapy resistance and methods of using same
US20170021039A1 (en) Cancer Therapy
JP2021535730A (en) MVA Vector and Its Use for Expression of Multiple Cytomegalovirus (CMV) Antigens
CN114828869A (en) Methods for treating solid tumors
US20230364225A1 (en) Enhanced immunogenic dna/rna compositions and methods
CN117957015A (en) KRAS neoantigen therapy
US20230210984A1 (en) Adoptive immunotherapy
US20230054656A1 (en) Diagnostic and prognostic utility of exosomes in immunotherapy
Cloughesy et al. ATIM-09. CLINICAL TRIAL IN PROGRESS: A STUDY OF NEOADJUVANT AND ADJUVANT VB-111 FOR TREATMENT OF RECURRENT GBM
Baumgartner et al. Future Perspectives: A Review of Therapeutic Advances in Recurrent Glioblastoma
Novalić et al. Epstein-Barr virus reactivation by modified chemotherapies for EBV-associated gastric carcinoma in cell lines and a mouse tumor model

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARK THERAPEUTICS, LTD., UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FARRIES, TIMOTHY;ECKLAND, DAVID;REEL/FRAME:027841/0539

Effective date: 20120227

AS Assignment

Owner name: GLIOTHERAPY LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARK THERAPEUTICS LTD.;REEL/FRAME:041199/0093

Effective date: 20151231

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: GLIOTHERAPY LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FINVECTOR VISION THERAPIES LIMITED;REEL/FRAME:042268/0774

Effective date: 20151231

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY