US9456272B2 - Button-press detection and filtering - Google Patents
Button-press detection and filtering Download PDFInfo
- Publication number
- US9456272B2 US9456272B2 US13/852,812 US201313852812A US9456272B2 US 9456272 B2 US9456272 B2 US 9456272B2 US 201313852812 A US201313852812 A US 201313852812A US 9456272 B2 US9456272 B2 US 9456272B2
- Authority
- US
- United States
- Prior art keywords
- button
- circuit
- signal
- sampling
- press
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 59
- 238000001914 filtration Methods 0.000 title abstract description 7
- 238000005070 sampling Methods 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000001960 triggered effect Effects 0.000 claims description 18
- 230000005236 sound signal Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/10—Earpieces; Attachments therefor ; Earphones; Monophonic headphones
- H04R1/1041—Mechanical or electronic switches, or control elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2410/00—Microphones
Definitions
- wire control apparatuses can enable users to conveniently operate the electronic devices from an external device, such as a wire control apparatus. For example, users can implement control of music playing, answer a call, control volume, and so on using said external device.
- buttons are generally provided on the wire control apparatuses to implement different control functions, and the electronic devices identify that a certain button is pressed through the detection of a button-press signal.
- the button-press signal generally contains noise interference signals.
- a customized button-press signal transmitting chip are required on the wire control apparatus with a matching button-press signal receiving chip on the electronic device.
- a mobile device such as the iPod® from Apple Inc.
- the wire control handset is includes a dedicated digital signal transmitting chip IC 1 configured to identify a pressed button and generate a corresponding digital signal.
- the mobile device can include a dedicated digital signal receiving chip IC 2 configured to receive the digital signal and transmit the digital signal to an audio codec 32 as a control signal.
- the audio codec 32 can control a left sound channel signal (L_SPKR) and a right sound channel signal (R_SPKR) transmitted to the wire control handset according to a control signal.
- button-press detection due to noise interference signals can be avoided by filtering the button-press signal using software, but the filtering requires complex software codes, which increases the processing capacity of codes of an operating system of the electronic device and is not beneficial to the product design.
- passgates can be employed to pass a signal between two nodes of an electronic device.
- a passgate can be used to pass a signal from an electronic device, such as a portable electronic device, to an accessory device connected to the electronic device.
- Passgates can be used to pass analog signals, such as analog audio signals, between devices.
- Design criteria for passgate control circuits can influence how well a passgate can pass certain analog signals without introducing distortion and how well a passgate can isolate the two nodes when the passgate is not enabled.
- Some analog passgates and corresponding passgate controls are made using high-voltage processes such that the passgate and control circuits can withstand reception of higher voltage signals. Such high-voltage devices and processes to make such devices can add costs to products using such devices.
- buttons-press detection and filtering method a button-press detection and filtering method, a related circuit, and a button-press detection chip for an external device is provided.
- a filter circuit can be configured to digitally sample a button-press signal, to determine a pressed button according to the sampling result, and to output a digital logic signal corresponding to the pressed button.
- a button-press detection chip for an external device can include a filter circuit, a digital logic circuit, and an Inter-Integrated Circuit (I2C) bus.
- the filter circuit can be configured to digitally sample the button-press signal, to determine the pressed button according to the sampling result, and to output the digital logic signal corresponding to the pressed button to the digital logic circuit.
- the digital logic circuit is configured to receive the digital logic signal output by the filter circuit, and to transmit the digital logic signal to an audio codec through the I2C bus.
- a button-press detection circuit can include a button-press detection chip for an external device and an audio codec.
- the button-press detection chip for the external device can be configured to receive a button-press signal from a wire control apparatus, to digitally sample the button-press signal through a filter circuit, and to output a digital logic signal corresponding to a pressed button to the audio codec according to the sampling result.
- the audio codec can be configured to determine a pressed button according to the digital logic signal and to perform a corresponding function.
- a button-press detection method can include coupling a button-press signal of a wire control apparatus to a button-press detection chip for an external device.
- the button-press detection chip for the external device can digitally sample the button-press signal through the filter circuit and can output a digital logic signal corresponding to a button to an audio codec according to the sampling result.
- the audio codec can determine a pressed button according to the digital logic signal and perform a corresponding function.
- a button-press signal filtering method can include digitally sampling a button-press signal from a wire control apparatus to determine the pressed button according to the sampling result and outputting a digital logic signal corresponding to the pressed button.
- a wire control apparatus can be coupled to a button-press detection chip of an electronic device.
- the button-press detection chip can digitally sample a button-press signal through a filter circuit and can output a digital logic signal, corresponding to a button, to an audio codec according to the sampling result.
- the audio codec can determine a pressed button according to the digital logic signal and can perform a corresponding function.
- a filter circuit can be integrated in the button-press detection chip in an external device, which can save spaces on the printed circuit board, reduce the manufacturing cost, and facilitate the product design of the electronic device.
- FIG. 1 is a schematic view of a button-press detection circuit for a wire control handset in the prior art.
- FIG. 2 is a schematic view of a button-press detection circuit implemented by an embodiment of the disclosure.
- FIG. 3 is a schematic view of a filter circuit when there are three buttons which need detection in a wired-controller according to an embodiment of the disclosure.
- FIG. 4 is a flowchart of a button-press detection method implemented by an embodiment of the disclosure.
- a wire control apparatus can be coupled to a button-press detection chip for an external device of an electronic device.
- the button-press detection chip for the external device can digitally sample a button-press signal through a filter circuit and can output a digital logic signal, corresponding to a button, to an audio codec according to the sampling result.
- the audio codec can determine a pressed button according to the digital logic signal and can performing a corresponding function.
- FIG. 2 is a schematic view of a button-press detection circuit implemented by an embodiment of the disclosure including a button-press detection chip 31 for an external device and an audio codec 32 .
- the button-press detection chip 31 for the external device is configured to receive a button-press signal from a wire control apparatus, to digitally sample the button-press signal through a filter circuit, and to output a digital logic signal corresponding to a button to the audio codec 32 according to the sampling result.
- the audio codec 32 in FIG. 2 , is configured to determine a pressed button according to the digital logic signal, and perform a corresponding function.
- the button-press detection chip 31 for the external device includes a filter circuit 311 , a digital logic circuit 312 , and an I2C bus 313 .
- the filter circuit 311 is configured to digitally sample the button-press signal, to determine the pressed button according to the sampling result, and to output the digital logic signal corresponding to the pressed button to the digital logic circuit 312 .
- the digital logic circuit 312 is configured to receive the digital logic signal output by the filter circuit, and to transmit the digital logic signal to the audio codec 32 through the I2C bus 313 .
- the button-press detection chip 31 for the external device further includes a microphone switch (Mic_Switch) 314 , configured to transmit an audio signal to the audio codec 32 when a microphone button is pressed.
- the filter circuit 311 includes a reference voltage providing circuit 3111 , a comparator sampling circuit 3112 , a sampling result register 3113 , and a logic processing circuit 3114 .
- the reference voltage providing circuit 3111 is configured to provide reference voltages of one or more buttons to the comparator sampling circuit 3112 .
- the comparator sampling circuit 3112 is provided with one or more comparators, e.g., of which the number equal to the number of the buttons, wherein each of the comparators compares a reference voltage of a respective button with a voltage of a respective button-press signal, and one or more of the comparators triggered by the respective button-press signals transmit respective trigger signals to the sampling result register 3113 .
- the reference voltage of each of the buttons is coupled to a first signal input of a respective one of the comparators, each of the button-press signals is coupled to a second signal input of a respective one of the comparators, and an output of each of the comparators is coupled to the sampling result register 3113 .
- the sampling result register 3113 in the example of FIG. 2 is configured to receive the respective trigger signals output by the one or more of the comparators in the comparator sampling circuit 3112 , to count, at each of output ports, through a respective pulse counter, according to the triggering of the one or more of the comparators, and to transmit the count result at each of the output ports to the logic processing circuit 3114 .
- the logic processing circuit 3114 is configured to determine the pressed button according to the count result at each of the output ports, and to output the digital logic signal corresponding to the pressed button.
- the logic processing circuit 3114 inquires an output port at which the count result first reaches a preset threshold, determines the button corresponding to the output port as the pressed button, and outputs the digital logic signal corresponding to the pressed button.
- FIG. 3 is a schematic view of a filter circuit when there are three buttons which need detection in a wired-controller according to an embodiment of the disclosure.
- the positive inputs of the three comparators receive reference voltages of the three buttons, respectively.
- a reference voltage Vref 1 of a first button is received at a positive input of a first comparator CP 1
- a reference voltage Vref 2 of a second button is received at a positive input of a second comparator CP 2
- a reference voltage Vref 3 of a third button is received at a positive input of a third comparator CP 3 , assuming that Vref 1 is lower than Vref 2 and Vref 2 is lower than Vref 3 .
- Button-press signals KPS are received at negative inputs of the three comparators. When a voltage of KPS is lower than Vref 1 , all the comparators are triggered and generate trigger signals at a high level to the sampling result register 3113 , which increments the count value of an impulse counter at a first output port Out 1 by 1.
- the first comparator CP 1 When the voltage of KPS is greater than Vref 1 and lower than Vref 2 , the first comparator CP 1 is not triggered, the second and third comparators CP 2 and CP 3 are triggered and generate trigger signals at a high level to the sampling result register 3113 , which increments the count value of an impulse counter at a second output port Out 2 by 1.
- the third comparator CP 3 When the voltage of KPS is greater than Vref 2 and lower than Vref 3 , the first and second comparators CP 1 and CP 2 are not triggered, the third comparator CP 3 is triggered and generates a trigger signal at a high level to the sampling result register 3113 , which increments the count value of an impulse counter at a second output port Out 3 by 1.
- a count result of the pulse counter at the first output port Out 1 first reaches a preset threshold, it is determined that the first button is pressed, and the digital logic circuit 3114 outputs a digital logic signal (for example, 01) corresponding to the first button.
- a count result of the pulse counter at the second output port Out 2 first reaches the preset threshold, it is determined that the second button is pressed, and the digital logic circuit 3114 outputs a digital logic signal (for example, 10) corresponding to the second button.
- a count result of the pulse counter at the third output port Out 3 first reaches the preset threshold, it is determined that the third button is pressed, and the digital logic circuit 3114 outputs a digital logic signal corresponding to the third button.
- the preset threshold can be set according to a sampling rate and sampling time of a chip in which the filter circuit is located. For example, the threshold may be 10, 28 and 30, etc. The larger the threshold is, the higher the precision of the button-press detection is.
- FIG. 4 is a flowchart of a button-press detection method implemented by an embodiment of the disclosure.
- the wire control apparatus is coupled to a button-press detection chip for an external device of an electronic device.
- the button-press detection chip for the external device includes a multi-button detection chip for an audio interface.
- the button-press detection chip for the external device digitally samples the button-press signal through the filter circuit and outputs a digital logic signal corresponding to a button to an audio codec according to the sampling result.
- the filter circuit is integrated in the button-press detection chip for the external device, one or more comparators, of which the number is equal to the number of buttons, are provided in the filter circuit, a reference voltage of each of the buttons is received at a first signal input of a respective one of the comparators, a button-press signal is received at a second signal input of each of the comparators, one or more trigger signals are generated when one or more of the comparators are triggered by their respective button-press signals, each pulse counter counts at a respective output port according to the triggering of the one or more of the comparators and the filter circuit determines the pressed button according to the count result at each of the output ports, and digital logic signals corresponding to the respective buttons are output to the digital logic circuit in the button-press detection chip for the external device.
- the digital logic circuit transmits the digital logic signals to the audio codec through an Inter-Integrated Circuit (I2C).
- I2C Inter-Integrated Circuit
- the filter circuit determines the pressed button according to the count result at each of the output ports specifically by inquiring an output port at which the count result first reaches a preset threshold, and determining the button corresponding to the output port as the pressed button.
- one comparator is provided in the filter circuit, a reference voltage of the button is received at a positive input of the comparator, and a button-press signal is received at a negative input of the comparator, wherein when a voltage of the button-press signal at the negative input is lower than the reference voltage at the positive input, the comparator is triggered and generates a trigger signal at a high level, a pulse counter counts at an output port until a count result reaches a preset threshold, then it is determined that the button is pressed, a digital logic signal (for example, 11) corresponding to the button is output, and the digital logic circuit in the button-press detection chip for the external device transmits the digital logic signal to the audio codec through the I2C bus.
- the preset threshold can be set according to a sampling rate and sampling time of a chip in which the filter circuit is located. For example, the threshold may be 10, 28 and 30, etc. The larger the threshold is, the higher the precision of the button-press detection
- Button-press signals are received at negative inputs of the two comparators, wherein when a voltage of the button-press signal is lower than Vref 1 , both the comparators are triggered and generate trigger signals at a high level, and a pulse counter at a first output port is incremented by 1.
- the first comparator is not triggered, the second comparator is triggered and generates a trigger signal at a high level, and a pulse counter at a second output port is incremented by 1.
- a count result of the pulse counter at the first output port first reaches a preset threshold, it is determined that the first button is pressed, and a digital logic signal (for example, 01) corresponding to the first button is output.
- a count result of the pulse counter at the second output port first reaches the preset threshold, it is determined that the second button is pressed, and a digital logic signal (for example, 10) corresponding to the second button is output.
- the digital logic circuit in the button-press detection chip for the external device transmits the digital logic signal to the audio codec through the I2C bus.
- the preset threshold is usually set according to a sampling rate and sampling time of a chip in which the filter circuit is located. For example, the threshold may be 10, 28 and 30, etc. The larger the threshold is, the higher the precision of the button-press detection is.
- buttons which need detection in a wire control apparatus three comparators are provided in the filter circuit, reference voltages of the three buttons are received at positive inputs of the three comparators, respectively, wherein, a reference voltage Vref 1 of the first button is received at a positive input of the first comparator, a reference voltage Vref 2 of the second button is received at a positive input of the second comparator, a reference voltage Vref 3 of the third button is received at a positive input of the third comparator, and the values of the Vref 1 , Vref 2 and Vref 3 are determined by the resistances serially connected to the first, second and third buttons.
- Vref 1 is lower than Vref 2
- Vref 2 is lower than Vref 3
- Button-press signals are received at negative inputs of the three comparators, wherein when a voltage of the button-press signal is lower than Vref 1 , all the comparators are triggered and generate trigger signals at a high level, and a pulse counter at a first output port is incremented by 1.
- the first comparator is not triggered
- the second and third comparators are triggered and generate trigger signals at a high level
- a pulse counter at a second output port is incremented by 1.
- the first and second comparators are not triggered, the third comparator is triggered and generates a trigger signal at a high level, and a pulse counter at a third output port is incremented by 1.
- a count result of the pulse counter at the first output port first reaches a preset threshold, it is determined that the first button is pressed, and a digital logic signal (for example, 01) corresponding to the first button is output.
- the preset threshold is usually set according to a sampling rate and sampling time of a chip in which the filter circuit is located. For example, the threshold may be 10, 28 and 30, etc. The larger the threshold is, the higher the precision of the button-press detection is.
- the audio codec determines a pressed button according to the digital logic signal and performs a corresponding function.
- the embodiment of the disclosure provides a button-press signal filtering method, including digitally sampling a button-press signal from a wire control apparatus, determining the pressed button according to the sampling result, and outputting a digital logic signal corresponding to the pressed button.
- the method further includes arranging one or more comparators, of which the number is equal to the number of buttons, receiving a reference voltage of each of the buttons at a first signal input of a respective one of the comparators, receiving a button-press signal at a second signal input of each of the comparators, wherein the digitally sampling the button-press signal, determining the pressed button according to the sampling result, and outputting the digital logic signal corresponding to the pressed button includes each of the comparators compares a reference voltage of a respective button with a voltage of a respective button-press signal, wherein one or more of the comparators triggered by their respective button-press signals generate trigger signals; each pulse counter counts at a respective output port according to the triggering of the one or more of the comparators and the pressed button is determined according to the count result at each of the output ports, and the digital logic signal corresponding to the pressed button is output.
- the determining the pressed button according to the count result at each of the output ports includes inquiring an output port at which the count result first reaches a preset threshold and determining the button corresponding to the output port as the pressed button.
- a noise interference signal in a button-press signal may be avoided and a pressed button may be accurately detected, without using a dedicated chip or complex software codes in a wire control apparatus and an electronic device.
- a filter circuit is integrated in the button-press detection chip for the external device, which can save spaces on the printed circuit board, reduce the manufacturing cost, and facilitate the product design.
- the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.”
- the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Input From Keyboards Or The Like (AREA)
Abstract
Description
Claims (17)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210099872.9 | 2012-03-30 | ||
CN201210099872 | 2012-03-30 | ||
CN201210099872.9A CN103364718B (en) | 2012-03-30 | Button detection and filtering method, interlock circuit, external equipment button detection chip |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130259269A1 US20130259269A1 (en) | 2013-10-03 |
US9456272B2 true US9456272B2 (en) | 2016-09-27 |
Family
ID=49235059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/852,812 Expired - Fee Related US9456272B2 (en) | 2012-03-30 | 2013-03-28 | Button-press detection and filtering |
Country Status (1)
Country | Link |
---|---|
US (1) | US9456272B2 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040008129A1 (en) * | 2002-07-12 | 2004-01-15 | Harald Philipp | Keyboard with reduced keying ambiguity |
US20060068771A1 (en) | 2004-09-28 | 2006-03-30 | Wenkwei Lou | Method and apparatus for high performance key detection with key debounce |
CN200956611Y (en) | 2006-10-18 | 2007-10-03 | 青岛海信电器股份有限公司 | Keyboard detecting circuit and television receiver with same |
US20070296712A1 (en) * | 2006-06-27 | 2007-12-27 | Cypress Semiconductor Corporation | Multifunction slider |
CN101102337A (en) | 2006-07-07 | 2008-01-09 | 上海晨兴电子科技有限公司 | A method for realizing multimedia line control earphone function on mobile phone |
US20080059197A1 (en) * | 2006-08-29 | 2008-03-06 | Chartlogic, Inc. | System and method for providing real-time communication of high quality audio |
US20080143671A1 (en) * | 2006-11-20 | 2008-06-19 | Guanghai Li | Discriminating among activation of multiple buttons |
CN101493728A (en) | 2008-01-24 | 2009-07-29 | 中兴通讯股份有限公司 | Line control push-button detecting and recognizing device and method capable of identifying combined key |
US20100081488A1 (en) * | 2008-09-26 | 2010-04-01 | Kim Justin C | Portable wireless communication device |
CN201584957U (en) | 2009-12-29 | 2010-09-15 | 深圳创维-Rgb电子有限公司 | Touch key circuit, touch control device, touch screen and electronic equipment |
CN102053224A (en) | 2010-11-04 | 2011-05-11 | 江苏惠通集团有限责任公司 | Method and device for detecting keystrokes |
CN202600109U (en) | 2012-03-30 | 2012-12-12 | 快捷半导体(苏州)有限公司 | Button detection circuit, filter circuit and external equipment button detection chip |
-
2013
- 2013-03-28 US US13/852,812 patent/US9456272B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040008129A1 (en) * | 2002-07-12 | 2004-01-15 | Harald Philipp | Keyboard with reduced keying ambiguity |
US20060068771A1 (en) | 2004-09-28 | 2006-03-30 | Wenkwei Lou | Method and apparatus for high performance key detection with key debounce |
US20070296712A1 (en) * | 2006-06-27 | 2007-12-27 | Cypress Semiconductor Corporation | Multifunction slider |
CN101102337A (en) | 2006-07-07 | 2008-01-09 | 上海晨兴电子科技有限公司 | A method for realizing multimedia line control earphone function on mobile phone |
US20080059197A1 (en) * | 2006-08-29 | 2008-03-06 | Chartlogic, Inc. | System and method for providing real-time communication of high quality audio |
CN200956611Y (en) | 2006-10-18 | 2007-10-03 | 青岛海信电器股份有限公司 | Keyboard detecting circuit and television receiver with same |
US20080143671A1 (en) * | 2006-11-20 | 2008-06-19 | Guanghai Li | Discriminating among activation of multiple buttons |
CN101493728A (en) | 2008-01-24 | 2009-07-29 | 中兴通讯股份有限公司 | Line control push-button detecting and recognizing device and method capable of identifying combined key |
US20100081488A1 (en) * | 2008-09-26 | 2010-04-01 | Kim Justin C | Portable wireless communication device |
CN201584957U (en) | 2009-12-29 | 2010-09-15 | 深圳创维-Rgb电子有限公司 | Touch key circuit, touch control device, touch screen and electronic equipment |
CN102053224A (en) | 2010-11-04 | 2011-05-11 | 江苏惠通集团有限责任公司 | Method and device for detecting keystrokes |
CN202600109U (en) | 2012-03-30 | 2012-12-12 | 快捷半导体(苏州)有限公司 | Button detection circuit, filter circuit and external equipment button detection chip |
Non-Patent Citations (1)
Title |
---|
"Chinese Application Serial No. 201210099872.9, First Office Action mailed Apr. 29, 2015", w/ English Translation, 10 pgs. |
Also Published As
Publication number | Publication date |
---|---|
US20130259269A1 (en) | 2013-10-03 |
CN103364718A (en) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9294857B2 (en) | Detection and GSM noise filtering | |
CN202600109U (en) | Button detection circuit, filter circuit and external equipment button detection chip | |
JP5714274B2 (en) | Semiconductor devices and electronic devices using them | |
CN102056051B (en) | Electronic device, electronic system and method for processing signals from audio source accessories | |
US9823798B2 (en) | Capacitive sensor device and method of operation | |
EP2312813A1 (en) | Circuit apparatus for recognizing earphone in mobile terminal | |
US9654859B2 (en) | Mobile terminal earphone line control circuit and line control method | |
CN105320353A (en) | Protection circuit applied to touch screen device, and related protection method and electronic device | |
EP4053671A1 (en) | Device opening/closing cover detection method, touch controller, touchpad and electronic device | |
US20170223449A1 (en) | Electronic device, earphone, and electronic device system | |
US9848270B2 (en) | Electronic device, earphone, and electronic device system | |
CN103634723B (en) | Audio input circuit and the electronic equipment with audio input | |
CN102608931B (en) | System and method for controlling electronic equipment | |
US9456272B2 (en) | Button-press detection and filtering | |
TW201508559A (en) | Input device and control unit | |
CN101471970B (en) | Portable electronic device | |
CN217931776U (en) | Key signal detection circuit | |
CN105512067A (en) | Mobile terminal, port reuse circuit thereof and method | |
CN216388040U (en) | Signal detection device, touch pad and electronic equipment | |
CN103364718B (en) | Button detection and filtering method, interlock circuit, external equipment button detection chip | |
CN114003147A (en) | Signal detection device, touch pad and electronic equipment | |
US20200241682A1 (en) | Methods and system for a capacitive touch sensor | |
US9042845B2 (en) | Apparatus and method for detecting radio accessories | |
CN204316455U (en) | A kind of Novel earphone volume control circuit of built-in testing state | |
CN104506982A (en) | Timing type microphone meeting system and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, TONY CHENG HAN;BARDEN, SHAWN KIRK;LI, RICKY;AND OTHERS;SIGNING DATES FROM 20130507 TO 20130923;REEL/FRAME:031431/0486 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:040075/0644 Effective date: 20160916 Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:040075/0644 Effective date: 20160916 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:057694/0374 Effective date: 20210722 |
|
AS | Assignment |
Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:057969/0206 Effective date: 20211027 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC;REEL/FRAME:058871/0799 Effective date: 20211028 |
|
AS | Assignment |
Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 040075, FRAME 0644;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:064070/0536 Effective date: 20230622 Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 040075, FRAME 0644;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:064070/0536 Effective date: 20230622 |
|
AS | Assignment |
Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 058871, FRAME 0799;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065653/0001 Effective date: 20230622 Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 058871, FRAME 0799;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065653/0001 Effective date: 20230622 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240927 |