US9444617B2 - Single-wire transmission interface and single-wire transmission method and power supply system adopting single-wire transmission method - Google Patents
Single-wire transmission interface and single-wire transmission method and power supply system adopting single-wire transmission method Download PDFInfo
- Publication number
- US9444617B2 US9444617B2 US14/690,383 US201514690383A US9444617B2 US 9444617 B2 US9444617 B2 US 9444617B2 US 201514690383 A US201514690383 A US 201514690383A US 9444617 B2 US9444617 B2 US 9444617B2
- Authority
- US
- United States
- Prior art keywords
- time
- content
- voltage
- node
- wire transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000003990 capacitor Substances 0.000 claims description 15
- 238000010586 diagram Methods 0.000 description 11
- 239000008186 active pharmaceutical agent Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 229910002056 binary alloy Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/04—Speed or phase control by synchronisation signals
- H04L7/041—Speed or phase control by synchronisation signals using special codes as synchronising signal
- H04L7/044—Speed or phase control by synchronisation signals using special codes as synchronising signal using a single bit, e.g. start stop bit
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
- H04B3/542—Systems for transmission via power distribution lines the information being in digital form
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
- H04L25/4902—Pulse width modulation; Pulse position modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
- H04L25/4906—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
Definitions
- the present invention relates to a single-wire transmission interface, a single-wire transmission method, and a power supply system adopting the single-wire transmission method; particularly, it relates to such single-wire transmission interface and single-wire transmission method applicable to a power supply cable for use in a power supply system.
- a power supply system comprises a power converter and a power supply cable (referred as “cable” hereinafter), for supplying power to an electronic device.
- the cable includes positive and negative power lines (i.e., Vbus and GND) and positive and negative data lines (i.e., D+ and D ⁇ ).
- the positive and negative power lines are for delivering power
- the positive and negative data lines are for transmitting data between the power converter and the electronic device.
- one of the positive and negative data lines has to be maintained at a constant voltage level, and thus only the other one of the positive and negative data lines can be employed to transmit data. Under such circumstance, because it is unable to transmit the clock, the time length for transmitting one bit can not be defined, and the receiving side receiving the transmitted data has to decode the data without knowing the clock of the transmitting side transmitting the transmitted data.
- the present invention proposes a single-wire transmission interface, a single-wire transmission method, and a power supply system adopting the single-wire transmission method, wherein single-wire transmission is achieved and the receiving side is capable of decoding the transmitted data.
- the present invention provides a single-wire transmission method, comprising: providing a transmission signal including alternating high and low levels through a single-wire, wherein a time period of one of the high and low levels defines a reference time and a time period of the other of the high and low levels defines a content time; and determining a relative relationship between the reference time and the content time; when the content time is shorter than a first proportion of the reference time, defining the content time to express a first meaning; and when the content time is longer than the first proportion of the reference time, defining the content time to express a second meaning.
- the first meaning is a binary “0” and the second meaning is a binary “1”, or the first meaning is a binary “1” and the second meaning is a binary “0”.
- the single-wire transmission method further comprises: when the content time is larger than a second proportion of the reference time, defining the content time to express a third meaning.
- the third meaning represents a “timeout”, or one digit in a base-3 or higher numeral system.
- the single-wire transmission method further comprises: defining an arrangement of a plurality of the first meanings and/or the second meanings to express a command combination set, wherein the plurality is a predetermined number and the command combination set includes two or more commands; and defining one of the commands as an extension command, wherein the extension command indicates to increase the predetermined number.
- the single-wire is a positive data line or a negative data line (D+ or D ⁇ ) of a power supply cable.
- the present invention provides a single-wire transmission interface, comprising: a decoder for receiving and decoding a transmission signal to generating a corresponding decoded signal, wherein the transmission signal includes alternating high and low levels, and wherein a time period of one of the high and low levels defines a reference time and a time period of the other of the high and low levels defines a content time; the decoder including: a first time calculation circuit for calculating the reference time to generate a reference time indication signal; a second time calculation circuit for calculating the content time to generate a content time indication signal; and a comparison circuit for comparing the reference time indication signal with the content time indication signal, to generate the decoded signal.
- the first time calculation circuit includes a first counter; the second time calculation circuit includes a second counter; and the comparison circuit includes a numerical comparator.
- the first time calculation circuit receives a first clock; the second time calculation circuit receives a second clock; and the second clock is faster than the first clock.
- the first time calculation circuit includes a first time-to-voltage converter, for generating a reference voltage according to the reference time;
- the second time calculation circuit includes a second time-to-voltage converter, for generating a content voltage according to the content time;
- the comparison circuit includes a comparator, for comparing the reference voltage with the content voltage, to generate the decoded signal.
- the first time-to-voltage converter converts a proportion of the reference time into the reference voltage.
- the content time when the content voltage is smaller than the reference voltage, the content time expresses a first meaning; and when the content voltage is larger than the reference voltage, the content time expresses a second meaning.
- the first time-to-voltage converter generates a plurality of reference voltages according to the reference time; and the comparison circuit compares the plurality of reference voltages with the content voltage, to generate the decoded signal.
- the first time-to-voltage converter includes: a first current source; a first switch coupled between the first current source and a node, wherein the first switch is controlled by the reference time; a capacitor having one end coupled to the node and having another end coupled to a ground; a second switch coupled between the node and the ground, for resetting a voltage level of the node; a peak detector coupled to the node, for outputting a peak voltage; and a divider coupled to the peak detector, for generating a proportion of the peak voltage; and the second time-to-voltage converter includes: a second current source having one end coupled to ground; a third switch coupled between the node and the second current source, wherein the third switch is controlled by the content time; the second switch; and the capacitor; wherein the first time-to-voltage converter and the second time-to-voltage converter share the second switch and the capacitor.
- the first time-to-voltage converter includes: a first current source; a first switch coupled between the first current source and a first node, wherein the first switch is controlled by the reference time; a first capacitor having one end coupled to the first node and having another end coupled to a ground; a second switch coupled between the first node and the ground, for resetting a voltage level of the first node; a first peak detector coupled to the first node, for outputting a first peak voltage as the reference voltage; and the second time-to-voltage converter includes: a second current source; a third switch coupled between the second current source and a second node, wherein the third switch is controlled by the content time; a second capacitor having one end coupled to the second node and having another end coupled to the ground; a fourth switch coupled between the second node and the ground, for resetting a voltage level of the second node; and a second peak detector coupled to the second node, for outputting a second peak voltage as the reference voltage.
- the single-wire transmission interface of claim 7 the single-wire is a positive data line or a negative data line (D+ or D ⁇ ) of a power supply cable.
- the present invention provides a power supply system adopting the single-wire transmission method, the power supply system comprising: a power converter for converting an input voltage to an output voltage; and a cable, wherein the cable includes a power line, a grounding line and positive and negative data lines; wherein when an electronic device is coupled via the cable to the power converter, the power converter provides the output voltage to the electronic device through the cable, and wherein one of the positive and negative data lines acts as the single-wire for transmitting the transmission signal including alternating high and low levels.
- FIG. 1 shows a block diagram of a hardware configuration performing a single-wire transmission method of the present invention.
- FIG. 2 shows an embodiment of the single-wire transmission interface of the present invention.
- FIG. 3 shows an illustrative waveform of the transmission signal of the present invention.
- FIG. 4 shows a block diagram of an embodiment of the decoder.
- FIGS. 5-7 show several specific embodiments of the decoder.
- FIGS. 8A-8C respectively show three voltage-time relationship diagrams corresponding to three definitions.
- FIGS. 9-10 show two specific embodiments of the decoder.
- FIG. 11A shows a block diagram of a power supply system according to an embodiment of the present invention.
- FIG. 11B shows a block diagram of a power supply system according to a more specific embodiment of the present invention.
- FIG. 12 shows a block diagram of a power supply system according to another more specific embodiment of the present invention.
- FIG. 13 explains how the present invention generates an extension command.
- FIG. 1 shows a block diagram of a hardware configuration performing a single-wire transmission method of the present invention.
- a transmitting side Tx transmits a signal (“the transmission signal”) to a receiving side Rx through a single-wire 241 .
- the receiving side Rx includes a single-wire transmission interface 24 , which is capable of decoding the received signal.
- the transmitting side Tx transmits the signal to the receiving side Rx, it is required to comply with a predefined transmission protocol between the transmitting side Tx and the receiving side Rx.
- the present invention provides a novel transmission protocol and a hardware circuit capable of decoding the transmission signal according to such novel transmission protocol.
- the single-wire transmission interface 24 of this embodiment includes a decoder 25 .
- the decoder 25 can receive and decode a transmission signal EN/SET transmitted through a single-wire 241 to the single-wire transmission interface 24 and generating a corresponding decoded signal DS.
- FIG. 3 shows an illustrative wave form of the transmission signal of the present invention, to explain the single-wire transmission method of the present invention.
- the transmitting side Tx transmits the transmission signal EN/SET to the receiving side Rx through the single-wire 241 .
- This transmission signal EN/SET includes alternating high and low levels (H/L).
- a time period of one of the high and low levels (H/L) is defined as a reference time, while a time period of the other of the high and low levels (H/L) is defined as a content time.
- the term “content” as described herein is the message that the transmitting side Tx intends to transmit to the receiving side Rx, which can include, for example but not limited to, commands and data.
- the time period of the high level (H) is defined as the reference time
- the time period of the low level (L) is defined as the content time.
- the single-wire transmission method of the present invention can be used to transmit bits in a binary system or base-3 or higher numerical systems.
- This embodiment takes a binary system as an example.
- the time period of the high level H of the transmission signal EN/SET defines a reference time.
- An immediately following low level L of the transmission signal EN/SET has a time period, which is the content time.
- a relative relationship between the content time and its immediately preceding reference time defines whether the transmitted content is a binary “0” or “1”.
- the content time is shorter than a predetermined proportion of the reference time, it is defined that the content time expresses a first meaning (e.g., the binary “0”).
- the content time is longer than the predetermined proportion of the reference time, it is defined that the content time expresses a second meaning (e.g., the binary “1”).
- the definitions of the binary “0” and “1” are interchangeable.
- the above-mentioned proportion is one half (1 ⁇ 2).
- the scope of the present invention is not limited by this number. It is also practicable and within the scope of the present invention that the above-mentioned proportion can be any positive real number, smaller than, equal to, or even larger than 1. More specifically, in this embodiment:
- the content time expresses the binary “1”. Namely, when a relative relationship between the content time (e.g., t_ 1 ) and the reference time (e.g., T 2 ) meets the following equation: (1 ⁇ 2) T 2 ⁇ t _1 ⁇ T 2, it is defined that the content time expresses the binary “1”.
- the receiving side Rx When the receiving side Rx already knows the length of the transmission signal EN/SET (i.e., the total number of bits of the transmission signal EN/SET), it is not required for the transmission signal EN/SET to include an end signal. In this case, after the decoder 25 has received a signal having a correct length (i.e., a transmission signal EN/SET having a correct number of bits), the decoder 25 can automatically stop receiving any more bit from the transmitting side Tx.
- the decoder 25 after the decoder 25 has received a signal having a correct length (i.e., a transmission signal EN/SET having a correct number of bits), the decoder 25 can automatically stop receiving any more bit from the transmitting side Tx.
- the transmission signal EN/SET can preferably, but not necessarily, include an end signal, to accelerate the transmission speed or in case the receiving side Rx does not know the total number of bits of the transmission signal EN/SET in advance.
- the high level time periods T 1 , T 2 and T 3 can be the same as one another or different from one another, which is one of the advantages of the present invention. More specifically: because the clock signal upon which the transmitting side Tx operates might have certain frequency variations, and because the transmission line between the transmitting side Tx and the receiving side Rx might cause a delay which might lead to a variation of the signal length, even though the transmitting side Tx intends to generate the high level time period T 1 , T 2 and T 3 with the same time length, the actual time length received at the receiving side Rx might not be the same.
- each bit transmitted during each content time is defined according to the time length of the immediately preceding reference time, different time lengths of the time periods T 1 , T 2 and T 3 would not hinder the present invention from generating a correct decoded signal DS. That is, the time lengths of the time periods T 1 , T 2 and T 3 are very flexible.
- the predetermined proportion “one half” in the above embodiment to differentiate the binary “0” and “1” is only a non-limiting example.
- the predetermined proportion can be any positive real number which is smaller than one, equal to one, or greater than one.
- the time length of the reference time is fixed, to adopt a proportion having a number smaller than one is preferred, because it requires less time to transmit the content, and thus this reduces the time for transmission.
- the predetermined proportion “one” to differentiate whether an end signal is being transmitted is only a non-limiting example, and it can be changed to any other value.
- the end signal is not necessarily longer than the length of one bit in the content (i.e., t_Timeout is not necessarily greater than t_ 1 or t_ 0 ).
- the transmission signal can carry contents expressed by a higher (base-3 or above) numerical system.
- a higher (base-3 or above) numerical system For example, when the content time is shorter than one third of the reference time, it is defined that the content time expresses a ternary digit “0”; when the content time is longer than one third of the reference time but shorter than two thirds of the reference time, it is defined that the content time expresses a ternary digit “1”; when the content time is longer than two thirds of the reference time but shorter than the reference time, it is defined that the content time expresses a ternary digit “2”.
- the decoder 25 of this embodiment includes: a first time calculation circuit 251 , a second time calculation circuit 252 , and a comparison circuit 254 .
- the first time calculation circuit 251 calculates the reference time, to generate a reference time indication signal.
- the second time calculation circuit 252 calculates the content time, to generate a content time indication signal.
- the comparison circuit 254 compares the reference time indication signal with the content time indication signal, to generate the decoded signal DS.
- the first time calculation circuit 251 , the second time calculation circuit 252 and the comparison circuit 254 can be implemented by analog circuits or digital circuits.
- FIG. 5 shows a more specific embodiment of the decoder.
- the first time calculation circuit 251 is implemented as a counter 251 a ;
- the second time calculation circuit 252 is implemented as a counter 252 a ;
- the comparison circuit 254 is implemented as a numerical comparator 254 a .
- the counter 251 a calculates a time period of the high level H (the reference time) of the transmission signal EN/SET according to a first clock.
- the counter 252 a calculates a time period of the low level L (the content time) of the transmission signal EN/SET according to a second clock.
- the frequency of the first clock and the frequency of the second clock can be the same or different.
- the numerical comparator 254 a compares the output of the counter 251 a with the output of the counter 252 a , to generate the decoded signal DS.
- FIG. 6 shows another more specific embodiment of the decoder.
- the first time calculation circuit 251 is implemented as a first time-to-voltage converter 251 b ;
- the second time calculation circuit 252 is implemented as a second time-to-voltage converter 252 b ;
- the comparison circuit 254 is implemented as a comparator 254 b .
- the embodiment converts the comparison between times into the comparison between voltages.
- the first time-to-voltage converter 251 b generates a reference voltage Vref according to the reference time;
- the second time-to-voltage converter 251 b generates a content voltage Va according to the content time;
- the comparator 254 b compares the reference voltage Vref with the content voltage Va, to generate the decoded signal DS.
- FIG. 7 shows a more specific embodiment of FIG. 6 .
- the first time-to-voltage converter 251 b includes: a current source CS 1 ; a switch SW 1 coupled between the current source CS 1 and a node N, wherein the switch SW 1 is controlled by a time period of the high level H (the reference time) of the transmission signal EN/SET; a capacitor C 1 having one end coupled to the node N and having another end coupled to ground; a switch SW 2 coupled between the node N and ground, for resetting a voltage level of the node N; a peak detector 2511 coupled to the node N, for outputting a peak voltage; and a divider 2512 coupled to the peak detector 2511 , for generating a proportion of the peak voltage, which is the reference voltage Vref (note that if the proportion is “1”, the divider 2512 can be omitted).
- the second time-to-voltage converter 252 b includes: a current source CS 2 having one end coupled to ground; a switch SW 3 coupled between the node N and the current source CS 2 , wherein the switch SW 3 is controlled by a time period of the low level L (the content time) of the transmission signal EN/SET; the switch SW 2 ; and the capacitor C 1 . Note that the first time-to-voltage converter 251 b and the second time-to-voltage converter 252 b share the same switch SW 2 and the same capacitor C 1 .
- the input terminals of the comparator 254 are coupled to the first time-to-voltage converter 251 b and the second time-to-voltage converter 252 b .
- the comparator 254 compares the reference voltage Vref with the content voltage Va, to generate the decoded signal DS.
- FIGS. 8A-8C respectively show three voltage-time relationships corresponding to three definitions.
- the switch SW 1 when the transmission signal EN/SET remains at its high level H, the switch SW 1 is ON, while the switch SW 3 is controlled by a complementary signal EN/SET b of the transmission signal EN/SET and is OFF.
- the content voltage Va keeps increasing, to a peak voltage.
- the peak detector 2511 detects this peak voltage and generates a corresponding output.
- the divider 2512 generates a proportion of this peak voltage, which is used as the reference voltage Vref.
- the switch SW 1 when the transmission signal EN/SET switches to its low level L, the switch SW 1 is OFF and the switch SW 3 is ON, and the content voltage Va begins to drop from the peak voltage for a time period t_ 0 (the content time). Hence, a comparison between the content voltage Va and the reference voltage Vref shows that the content voltage Va is greater than the reference voltage Vref.
- the switch SW 2 receives a pulse signal SP and is turned ON for a short moment, to reset the voltage of the node N to a predetermined voltage level (e.g., a ground level). The voltage drops to zero (as shown by the stage II in FIG. 8A ). Thereafter, the transmission signal EN/SET can start transmitting the next bit.
- a predetermined voltage level e.g., a ground level
- FIG. 8A shows a relative relationship between the content voltage Va and the reference voltage Vref as the following: Va>V ref (which corresponds to: t _0 ⁇ (1 ⁇ 2) T 1), and it is defined that this expresses the first meaning (e.g., the binary “0”).
- the content voltage Va and the reference voltage Vref have the following relative relationship: 0 ⁇ Va ⁇ V ref (which corresponds to: (1 ⁇ 2) T 2 ⁇ t _1 ⁇ T 2), and it is defined that this expresses the second meaning (e.g., the binary “1”).
- the first time-to-voltage converter 251 b and the second time-to-voltage converter 252 b can be implemented in various ways and is not limited to the embodiment shown in FIG. 7 .
- the first time-to-voltage converter 251 b includes: a current source CS 1 ; a first switch SW 1 coupled between the current source CS 1 and a first node N 1 , wherein the first switch sw 1 is controlled by a time period of the high level H (the reference time) of the transmission signal EN/SET; a capacitor C 1 having one end coupled to the first node N 1 and having another end coupled to ground; a second switch SW 2 coupled between the first node N 1 and ground, for resetting a voltage level of the first node N 1 ; a first peak detector 2511 coupled to the first node N 1 , for outputting a first peak voltage as the reference voltage Vref.
- the second time-to-voltage converter 252 b includes: a current source CS 2 ; a third switch SW 3 coupled between the current source CS 2 and a second node N 2 , wherein the third switch SW 3 is controlled by a time period of the low level L (the content time) of the transmission signal EN/SET; a capacitor C 2 having one end coupled to the second node N 2 and having another end coupled to ground; a fourth switch SW 4 coupled between the second node N 2 and ground, for resetting a voltage level of the second node N 2 ; and a second peak detector 2521 coupled to the second node N 2 , for outputting a second peak voltage as the reference voltage Va.
- FIG. 9 also shows that the divider in the previous embodiment is not necessarily required.
- the above-mentioned predetermined proportion can be “1”; second, even if the predetermined proportion is not “1”, the same effect can be achieved by adjusting the current of the current source CS 1 and/or the current of the current source CS 2 .
- the first time-to-voltage converter 251 b can generate plural reference voltages Vref 1 , Vref 2 , . . . and VrefN
- the comparison circuit 254 can include plural comparators 254 - 1 , 254 - 2 , . . . and 254 -N.
- the content voltage Va can be compared with plural reference voltages Vref 1 , Vref 2 . . . and VrefN.
- These reference voltages Vref 1 , Vref 2 , . . . and VrefN can be, for example but not limited to, corresponding to different proportions of the above-mentioned peak voltage.
- the decoded signal DS can include a bit expressing a base-3 or higher digit.
- the above-mentioned end signal can be generated by a similar approach.
- FIG. 11A shows a block diagram of a power supply system according to an embodiment of the present invention.
- FIG. 11B shows a block diagram of a power supply system according to a specific embodiment of the present invention.
- FIG. 12 shows a block diagram of a power supply system according to another specific embodiment of the present invention.
- the power supply system 20 of FIG. 11 comprises: a power converter 21 and a cable 22 , for providing power to an electronic device 23 .
- the power converter 21 , the cable 22 and the electronic device 23 are connected to one another in series.
- the cable 22 has one end coupled to the connection port 212 of the power converter 21 and has another end coupled to the connection port 232 of the electronic device 23 .
- the cable 22 includes a power line Vbus, a grounding line GND, a positive data line D+ and a negative data line D ⁇ .
- the power line Vbus and the grounding line GND deliver power from the power converter 21 to the electronic device 23 .
- the above-mentioned transmission signal EN/SET can be transmitted bi-directionally between the power converter 21 and the electronic device 23 , through the positive line D+ or the negative line D ⁇ . Because the transmission requires only one of the positive line D+ and the negative line D ⁇ , it does not matter whether the other one of the positive line D+ and the negative line D ⁇ is required to be fixed at a constant voltage level; a bi-directional communication can still be conveniently achieved.
- the power converter 21 includes a power supply circuit 2151 and a control circuit 2152 .
- the electronic device 23 includes: a voltage sensing circuit 233 , a current sensing circuit 234 , analog-to-digital converters 2351 and 2352 and a control circuit 236 .
- the power supply circuit 2151 receives power from an external power source (for example but not limited to public electricity), and delivers power from the power line Vbus to the electronic device 23 .
- the voltage sensing circuit 233 senses the received voltage to generate a voltage sensing signal Vp.
- the current sensing circuit 234 senses the received current to generate a current sensing signal Ip.
- the analog-to-digital converter 2351 and the analog-to-digital converter 2352 convert the voltage sensing signal Vp and the current sensing signal Ip into corresponding digital signals, respectively, which are inputted into the control circuit 236 .
- the control circuit 236 can, through one of the positive line D+ and the negative line D ⁇ , transmit the transmission signal EN/SET to the control circuit 2152 of the power converter 21 .
- the content of the transmission signal EN/SET can include, for example but not limited to, a commands which instructs the power converter 21 to increase the output voltage and the output current, or, informs the power converter 21 what the actual received voltage and the actual received current are (accordingly, the power converter 21 can determine the power consumption by the cable 22 ).
- the power supply system 20 adopting the single-wire transmission method of the present invention can shorten the charging time, or check out the power consumption by the cable 22 .
- the decoded signal DS expresses a command, and the command is expressed for example but not limited by 4 binary bits. That is, there will be a command combination including a total of sixteen commands.
- Another feature of the present invention is that: among all the commands, one of the commands can be defined as an extension command. That is, one of the commands, for example but not limited to the command 1111 , can be defined as an extension command.
- This extension command is a command which expresses that: new commands are to be added by more bits (for example but not limited to adding new sixteen more commands).
- the extension command can enlarge the number of the commands, thereby increasing the flexibility in defining commands.
- the present invention can reduce the number of bits to be transmitted, thus speeding up the transmission time.
- a device or a circuit which does not substantially influence the primary function of a signal can be inserted between any two devices or any two circuits in the shown embodiments, such as a switch.
- the cable 22 and the power converter 21 can be integrated into a single device; or, the cable 22 and the electronic device 23 can be integrated into a single device, and the method and the interface of the present invention can still be applied.
- the spirit of the present invention should cover all such and other modifications and variations, which should be interpreted to fall within the scope of the following claims and their equivalents.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Power Engineering (AREA)
- Dc Digital Transmission (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
Description
t_0<(½)T1,
it is defined that the content time expresses the binary “0”.
(2) When the content time (e.g., t_1 in
(½)T2<t_1<T2,
it is defined that the content time expresses the binary “1”.
t_Timeout>T3,
it is defined to mean “timeout”. Thus, when the receiving side Rx receives this end signal, the
Va>Vref (which corresponds to: t_0<(½)T1),
and it is defined that this expresses the first meaning (e.g., the binary “0”).
0<Va<Vref (which corresponds to: (½)T2<t_1<T2),
and it is defined that this expresses the second meaning (e.g., the binary “1”).
Va=0 (which corresponds to: t_Timeout>T3),
and it is defined that this expresses “timeout”.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/690,383 US9444617B2 (en) | 2014-04-29 | 2015-04-18 | Single-wire transmission interface and single-wire transmission method and power supply system adopting single-wire transmission method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461985862P | 2014-04-29 | 2014-04-29 | |
US14/690,383 US9444617B2 (en) | 2014-04-29 | 2015-04-18 | Single-wire transmission interface and single-wire transmission method and power supply system adopting single-wire transmission method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150312025A1 US20150312025A1 (en) | 2015-10-29 |
US9444617B2 true US9444617B2 (en) | 2016-09-13 |
Family
ID=54335784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/690,383 Expired - Fee Related US9444617B2 (en) | 2014-04-29 | 2015-04-18 | Single-wire transmission interface and single-wire transmission method and power supply system adopting single-wire transmission method |
Country Status (3)
Country | Link |
---|---|
US (1) | US9444617B2 (en) |
CN (1) | CN105045749B (en) |
TW (1) | TWI572153B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI674744B (en) * | 2018-05-18 | 2019-10-11 | 應廣科技股份有限公司 | Four-External-Wire Motor Control System and Data Setting Method and Wirings Therefor |
CN108897712B (en) * | 2018-07-09 | 2021-04-09 | 北京集创北方科技股份有限公司 | Single-wire transmission method, chip and communication system |
CN110708137B (en) * | 2018-07-09 | 2022-05-20 | 北京集创北方科技股份有限公司 | Single wire transmission method |
TWI678627B (en) * | 2018-07-09 | 2019-12-01 | 大陸商北京集創北方科技股份有限公司 | Efficient single-line communication data transmission method and communication system using the same |
EP4099175B1 (en) * | 2021-06-02 | 2023-12-13 | Infineon Technologies AG | Adaptive host bus power control |
TWI780004B (en) * | 2022-02-17 | 2022-10-01 | 瑞昱半導體股份有限公司 | Signal detector circuit and signal detection method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090237213A1 (en) * | 2008-02-29 | 2009-09-24 | Ellis Michael G | Communication system with antenna box amplifier |
US7606955B1 (en) * | 2003-09-15 | 2009-10-20 | National Semiconductor Corporation | Single wire bus for connecting devices and methods of operating the same |
US7672393B2 (en) | 2006-08-02 | 2010-03-02 | Richtek Technology Corporation | Single-wire asynchronous serial interface |
US20100163631A1 (en) * | 2008-12-25 | 2010-07-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor Device, Electronic Appliance Using Semiconductor Device, and Document Using Semiconductor Device |
US7903501B2 (en) * | 2007-07-10 | 2011-03-08 | Seiko Epson Corporation | Radio-controlled timepiece and control method for a radio-controlled timepiece |
US8140726B2 (en) | 2009-10-23 | 2012-03-20 | Richtek Technology Corporation, R.O.C. | Single wire transmission interface and method for the same |
US20120139768A1 (en) * | 2010-12-01 | 2012-06-07 | Dialog Semiconductor Gmbh | Device and method for the transmission and reception of high fidelity audio using a single wire |
US20130120036A1 (en) * | 2011-11-16 | 2013-05-16 | Qualcomm Incorporated | Apparatus and method for recovering burst-mode pulse width modulation (pwm) and non-return-to-zero (nrz) data |
US8762763B2 (en) | 2008-09-02 | 2014-06-24 | Richtek Technology Corporation | Single-wire transmission interface and method of transmission through single-wire |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449168A (en) * | 2003-05-08 | 2003-10-15 | 尹启凤 | Single line serial interface protocol |
CN101707042B (en) * | 2009-07-20 | 2012-09-26 | 深圳市天微电子有限公司 | Coding and data storing, regenerating and forwarding technology used for single-wire cascade data communication |
TWI463329B (en) * | 2012-05-11 | 2014-12-01 | Richtek Technology Corp | Method of transmission through single wire |
CN103605626B (en) * | 2013-10-17 | 2016-08-10 | 陕西万达信息工程有限公司 | A kind of Single wire Serial Bus agreement and change-over circuit |
-
2015
- 2015-04-09 TW TW104111443A patent/TWI572153B/en active
- 2015-04-16 CN CN201510180448.0A patent/CN105045749B/en not_active Expired - Fee Related
- 2015-04-18 US US14/690,383 patent/US9444617B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7606955B1 (en) * | 2003-09-15 | 2009-10-20 | National Semiconductor Corporation | Single wire bus for connecting devices and methods of operating the same |
US7672393B2 (en) | 2006-08-02 | 2010-03-02 | Richtek Technology Corporation | Single-wire asynchronous serial interface |
US7903501B2 (en) * | 2007-07-10 | 2011-03-08 | Seiko Epson Corporation | Radio-controlled timepiece and control method for a radio-controlled timepiece |
US20090237213A1 (en) * | 2008-02-29 | 2009-09-24 | Ellis Michael G | Communication system with antenna box amplifier |
US8762763B2 (en) | 2008-09-02 | 2014-06-24 | Richtek Technology Corporation | Single-wire transmission interface and method of transmission through single-wire |
US20100163631A1 (en) * | 2008-12-25 | 2010-07-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor Device, Electronic Appliance Using Semiconductor Device, and Document Using Semiconductor Device |
US8140726B2 (en) | 2009-10-23 | 2012-03-20 | Richtek Technology Corporation, R.O.C. | Single wire transmission interface and method for the same |
US20120139768A1 (en) * | 2010-12-01 | 2012-06-07 | Dialog Semiconductor Gmbh | Device and method for the transmission and reception of high fidelity audio using a single wire |
US20130120036A1 (en) * | 2011-11-16 | 2013-05-16 | Qualcomm Incorporated | Apparatus and method for recovering burst-mode pulse width modulation (pwm) and non-return-to-zero (nrz) data |
Also Published As
Publication number | Publication date |
---|---|
US20150312025A1 (en) | 2015-10-29 |
CN105045749B (en) | 2018-02-02 |
TW201541885A (en) | 2015-11-01 |
TWI572153B (en) | 2017-02-21 |
CN105045749A (en) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9444617B2 (en) | Single-wire transmission interface and single-wire transmission method and power supply system adopting single-wire transmission method | |
US11515797B2 (en) | Apparatus for dynamic learning of voltage source capabilities | |
CN107977037B (en) | Low dropout regulator and control method thereof | |
CN106294244B (en) | USB Type-C interface circuit | |
US10804883B2 (en) | Power supply apparatus and master power supply circuit, slave power supply circuit and control method thereof | |
CN109976498B (en) | Electronic device, method, and computer-readable medium | |
US9929671B2 (en) | Power converter in powered device of power-over-ethernet system and control method thereof | |
US10135625B2 (en) | Method of communication over a two-wire bus | |
CN107852099B (en) | Power converter with adaptive output voltage | |
US20160164432A1 (en) | Power-over-ethernet powered inverter | |
US20190294227A1 (en) | Slew rate controlled power supply and associated control method | |
TW201640368A (en) | Data transmission system and transmission method thereof | |
US10601573B2 (en) | Asynchronous digital communication module | |
US10298119B2 (en) | Scalable protection voltage generation | |
TWI532332B (en) | Data transmission system base on power line | |
US20160226293A1 (en) | Demodulation circuit and wireless charging device having the same | |
KR20100116363A (en) | The single wire serial interface utilizing and method of the same | |
US9882738B2 (en) | Single-wire communications using iterative baud learning | |
US20180006637A1 (en) | Demodulation circuit and wireless charging device having the same | |
US9991700B2 (en) | Power bank, power bank system and method thereof | |
JP6167290B2 (en) | Transmission device, reception device, transmission apparatus, transmission method, and reception method | |
TW201606739A (en) | Electronic paper apparatus and driving method thereof | |
US9755695B2 (en) | Input/output signal processing circuit and input/output signal processing method | |
KR102679564B1 (en) | Transmitter circuit, method of data transmission and electronic system | |
US20240364344A1 (en) | Programmable logic devices with multi-level input/output signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RICHTEK TECHNOLOGY CORPORATION, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, ISAAC Y.;REEL/FRAME:035442/0796 Effective date: 20150410 |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240913 |