US9319220B2 - Method and apparatus for secure network enclaves - Google Patents
Method and apparatus for secure network enclaves Download PDFInfo
- Publication number
- US9319220B2 US9319220B2 US12/032,618 US3261808A US9319220B2 US 9319220 B2 US9319220 B2 US 9319220B2 US 3261808 A US3261808 A US 3261808A US 9319220 B2 US9319220 B2 US 9319220B2
- Authority
- US
- United States
- Prior art keywords
- client
- key
- server
- authorization
- communication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/06—Network architectures or network communication protocols for network security for supporting key management in a packet data network
- H04L63/061—Network architectures or network communication protocols for network security for supporting key management in a packet data network for key exchange, e.g. in peer-to-peer networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0819—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
- H04L9/083—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/321—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3247—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
Definitions
- This disclosure relates generally to the field of networking.
- the disclosure relates to protecting confidentiality and integrity of network communications through secure encrypted transfers within a network enclave.
- High performance networks (gigabit and beyond) to support new usage models and services such as voice, video and data, present new challenges in the area of security.
- the need to protect data in transit for confidentiality and integrity is important, but supporting high speed cryptographic operations for all secured connections terminating at a server is expensive on high performance links.
- the storage required to maintain all of the security associations and cryptographic keys adds to the expense.
- Secure connection setup overhead degrades user experience and creates Denial-of-Service (DoS) opportunities, especially where computationally expensive asymmetric cryptographic operations are employed (e.g. RSA or Diffie-Hellman).
- DoS Denial-of-Service
- end-to-end security prevents IT (Information Technology) monitoring devices and IDS/IPS (Intrusion Detection Systems/Intrusion Prevention Systems) from performing their respective functions, as the encrypted data is inaccessible to the monitoring devices.
- IT Information Technology
- IDS/IPS Intrusion Detection Systems/Intrusion Prevention Systems
- IPsec Internet Protocol Security
- TLS Transport Layer Security
- FIG. 1 illustrates one embodiment of a network enclave for protecting confidentiality and integrity of network communications through secure transfers within the enclave.
- FIG. 2 illustrates one embodiment of a network device to support confidentiality and integrity of network communications through secure transfers within a network enclave.
- FIG. 3 illustrates a flow diagram for one embodiment of a process to protect confidentiality and integrity of network communications through secure transfers within a network enclave.
- authentication logic initiates authentication with a central network authority.
- Packet processing logic receives a token including a key and an identifier and may include some additional information from the central network authority.
- Security protocol logic then establishes a client-server security association through a communication that includes a client identifier and an encrypted portion and/or an authorization signature, wherein a client authorization key allocated by the central network authority can be reproduced by a server, other than the central network authority, using the client identifier and a derivation key provided to the server by the central network authority to decrypt the encrypted portion and/or to validate the communication using the authorization signature.
- the server may also provide the client with a new session key and a new client session identifier if desired, protecting these with the client authorization key.
- the client-server security association can be established/maintained, and new session keys can be distributed using a light-weight protocol and without requiring further intervention from the central network authority.
- a derivation key refers to a master key used to derive a set of unique client or session keys used for data authenticity/confidentiality within a network enclave or domain of use.
- a client or session identifier refers to a unique identifier within a network enclave or domain of use to identify a particular session and/or client and the identifier may be conveyed with transmitted packets to identify the relevant security association.
- a client or session key refers to a symmetric cryptographic key that is unique per session and is used for data authenticity/confidentiality within that session. Given a pseudo random function, psf (e.g.
- Client/session key prf (Derivation key,Client/session identifier,[other]).
- a resynchronization involves partial authentication between peers.
- mutual authentication e.g as performed in Phase 1 of IPsec
- the peers would either need to negotiate a new session key or request a new session key from a central network authority such as a key distribution center.
- new session keys may be distributed using a light-weight protocol and without requiring further intervention from the central network authority, thus removing a potential bottleneck.
- disclosed methods and apparatus may be used in accordance with but are not limited to standard protocols such as IPsec or TLS.
- FIG. 1 illustrates one embodiment of a network enclave 101 for protecting confidentiality and integrity of network communications through secure transfers within the network enclave 101 .
- Network enclave 101 includes central network authority 120 , and may include an authorized network appliance 118 , authorized clients (e.g. clients 111 - 113 ) and authorized servers (e.g. server 116 ).
- Authentication with central network authority 120 is initiated by client 111 via initiation-response communication 121 .
- a central authority 120 may be an AAA (Authentication Authorization and Auditing) server, a key distribution server, a policy server or in some network access control framework such as 802.1X Cisco network Access Control (NAC) or Microsoft Network Access Protocol (MS NAP) or some other Trusted Network Connect (TNC) protocol.
- NAC Cisco network Access Control
- MS NAP Microsoft Network Access Protocol
- TNC Trusted Network Connect
- a central authority 120 may be some authorizing entity on the Internet (e.g. Paypal) for facilitating authorized transactions for clients.
- initiation-response communication 121 Upon successful authentication, an authorization key and a unique client identifier for the domain being accessed by the client, network enclave 101 , are received via the initiation-response communication 121 from central network authority 120 . It will be appreciated that embodiments of initiation-response communication 121 may also include additional information such as lifetimes, access rights and/or other attributes.
- Authentication with central network authority 120 is initiated by server 116 via initiation-response communication 126 .
- a derivation key for network enclave 101 is received via the initiation-response communication 126 from central network authority 120 .
- initiation-response communication 126 may also include additional information such as a partial identifier for the key, multiple derivation keys, protocol information and/or other attributes.
- the derivation key for network enclave 101 may similarly be provided to network appliance 118 for example by central network authority 120 via an initiation-response communication 128 or by the server 116 via communication 168 .
- a client-server security association is initiated by client 111 via initiation-response communication 161 , which includes a client identifier and an encrypted portion and/or an authorization signature.
- the client identifier and the derivation key provided by the central network authority 120 to server 116 are used by server 116 to reproduce the client authorization key to decrypt the encrypted portion and/or to validate the initiation communication 161 using the authorization signature.
- the client-server security association may be established by server 116 transmitting a response communication 161 , which may also provide client 111 with a new session key and a new session identifier if desired, these being protected by encrypting them using the client 111 's authorization key.
- network appliance 118 may decrypt packets at wire speed, for example to perform monitoring, IDS or IPS functions, etc.
- FIG. 2 illustrates one embodiment of a network device 220 to support confidentiality and integrity of network communications through secure transfers 201 within a network enclave.
- Network device 220 includes authentication/security protocol logic 208 , cryptographic engine 210 , bridge 212 , direct memory access (DMA) module 214 , MAC processing unit 216 and a buffer 218 .
- Cryptographic engine 210 is coupled to bridge 212 .
- the bridge 212 is coupled to DMA module 214 , which in turn is coupled to MAC processing unit 216 .
- Authentication/security protocol logic 208 includes authentication logic to initiate authentication with a central network authority 120 within a network enclave 101 .
- Embodiments of network device 220 may be part of a network interface card (NIC) or part of an integrated MAC within a processor chip/set, providing for wire speed end-to-end security and seamless deployment of security solutions within a network enclave.
- MAC processing unit 216 communicates with incoming and outgoing packets 221 through buffer 218 and includes packet processing logic to receive from said central network authority a key and an identifier.
- IPsec may be employed using the frame format of IPsec frames to piggyback the client identifier (CID) 222 on the security parameter index (SPI) field of an IPsec header.
- CID client identifier
- SPI security parameter index
- a sequence number may also be piggybacked in the IPsec header, and the frame otherwise conforming to a standard IPsec frame.
- embodiments of the disclosed exchanges are not limited to conforming to a standard IPsec frame, but could also be wrapped in an alternative protocol/UDP port, etc.
- Authentication/security protocol logic 208 also includes security protocol logic to establish a client-server security association using a communication including a client identifier (CID) 222 and an encrypted portion and/or an authorization signature, wherein a client authorization key allocated by the central network authority can be produced by a server, other than said central network authority, from CID 222 and a derivation key provided to the server by the central network authority to decrypt the encrypted portion or to validate the communication using the authorization signature.
- CID client identifier
- employing derived client/session keys may reduce the storage required for storing multiple session keys and their security associations.
- Embodiments of the disclosed light-weight protocol between client and server may reduce security association setup overhead by eliminating mutual authentication between peers, expensive asymmetric key exchanges and potential synchronization bottlenecks associated with access to the central network authority.
- FIG. 3 illustrates a flow diagram for one embodiment of a process 301 to protect confidentiality and integrity of network communications through secure transfers within a network enclave.
- Process 301 and other processes herein disclosed are performed by processing blocks that may comprise dedicated hardware or software or firmware operation codes executable by general purpose machines or by special purpose machines or by a combination of both.
- a central authority may be an AAA server, a key distribution server, a policy server or in some network access control framework such as 802.1X NAC or MS NAP or network authentication protocol such as Kerberos or some other TNC (trusted network connect) protocol.
- a central authority may be some authenticating/authorizing entity on the Internet for facilitating authenticated/authorized transactions for clients.
- a key and an identifier are received from said central network authority. For example, where the key and identifier are received by a client device the key may be a client authorization key and the identifier may be a unique client identifier for the domain being accessed by the client.
- a server may receive a derivation key used to generate client authorization keys.
- a client-server security association is initiated using a communication including a client identifier and an encrypted portion and/or an authorization signature.
- the client identifier and a derivation key provided by the central network authority to the server are used to reproduce the client authorization key to decrypt the encrypted portion or to validate the communication using the authorization signature.
- the client-server security association is then established in processing block 315 . It will be appreciated that in some embodiments the central network authority and the server may be logically different network entities without necessarily residing in physically different machines.
- new session keys may be distributed without reauthorization and without requiring further intervention from the central network authority, thus removing a potential bottleneck. It will also be appreciated that derivation keys (and/or subsequent session derivation keys) may be provided to network appliances through similar light-weight exchanges. Network appliances may thus be enabled to decrypt packets at wire speed to perform IT monitoring, IDS or IPS functions.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Computer And Data Communications (AREA)
Abstract
Description
Client/session key=prf(Derivation key,Client/session identifier,[other]).
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/032,618 US9319220B2 (en) | 2007-03-30 | 2008-02-15 | Method and apparatus for secure network enclaves |
US15/085,114 US10079813B2 (en) | 2007-03-30 | 2016-03-30 | Method and apparatus for secure network enclaves |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/731,562 US20080244268A1 (en) | 2007-03-30 | 2007-03-30 | End-to-end network security with traffic visibility |
US11/935,783 US20090119510A1 (en) | 2007-11-06 | 2007-11-06 | End-to-end network security with traffic visibility |
US12/032,618 US9319220B2 (en) | 2007-03-30 | 2008-02-15 | Method and apparatus for secure network enclaves |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/085,114 Continuation US10079813B2 (en) | 2007-03-30 | 2016-03-30 | Method and apparatus for secure network enclaves |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090210699A1 US20090210699A1 (en) | 2009-08-20 |
US9319220B2 true US9319220B2 (en) | 2016-04-19 |
Family
ID=40956235
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/032,618 Expired - Fee Related US9319220B2 (en) | 2007-03-30 | 2008-02-15 | Method and apparatus for secure network enclaves |
US15/085,114 Active 2028-04-27 US10079813B2 (en) | 2007-03-30 | 2016-03-30 | Method and apparatus for secure network enclaves |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/085,114 Active 2028-04-27 US10079813B2 (en) | 2007-03-30 | 2016-03-30 | Method and apparatus for secure network enclaves |
Country Status (1)
Country | Link |
---|---|
US (2) | US9319220B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150078550A1 (en) * | 2013-09-13 | 2015-03-19 | Microsoft Corporation | Security processing unit with configurable access control |
US20170012778A1 (en) * | 2014-10-31 | 2017-01-12 | Convida Wireless, Llc | End-To-End Service Layer Authentication |
US9979699B1 (en) * | 2015-09-08 | 2018-05-22 | Sprint Communications Company L.P. | System and method of establishing trusted operability between networks in a network functions virtualization environment |
US10044572B1 (en) | 2015-11-02 | 2018-08-07 | Sprint Communications Company L.P. | Dynamic addition of network function services |
US10097513B2 (en) | 2014-09-14 | 2018-10-09 | Microsoft Technology Licensing, Llc | Trusted execution environment extensible computing device interface |
US10110595B2 (en) | 2015-03-16 | 2018-10-23 | Convida Wireless, Llc | End-to-end authentication at the service layer using public keying mechanisms |
US20180332011A1 (en) | 2017-05-11 | 2018-11-15 | Microsoft Technology Licensing, Llc | Secure cryptlet tunnel |
US20180330078A1 (en) | 2017-05-11 | 2018-11-15 | Microsoft Technology Licensing, Llc | Enclave pool shared key |
US20190037380A1 (en) * | 2015-07-02 | 2019-01-31 | Gn Hearing A/S | Hearing device and method of hearing device communication |
US10238288B2 (en) | 2017-06-15 | 2019-03-26 | Microsoft Technology Licensing, Llc | Direct frequency modulating radio-frequency sensors |
US10250498B1 (en) | 2016-10-03 | 2019-04-02 | Sprint Communications Company L.P. | Session aggregator brokering of data stream communication |
US10348488B1 (en) | 2017-08-25 | 2019-07-09 | Sprint Communications Company L.P. | Tiered distributed ledger technology (DLT) in a network function virtualization (NFV) core network |
US10419216B2 (en) | 2013-09-13 | 2019-09-17 | Microsoft Technology Licensing, Llc | Keying infrastructure |
US10542115B1 (en) | 2015-10-01 | 2020-01-21 | Sprint Communications Company L.P. | Securing communications in a network function virtualization (NFV) core network |
US10637645B2 (en) | 2017-05-11 | 2020-04-28 | Microsoft Technology Licensing, Llc | Cryptlet identity |
US10664591B2 (en) | 2017-05-11 | 2020-05-26 | Microsoft Technology Licensing, Llc | Enclave pools |
US10740455B2 (en) | 2017-05-11 | 2020-08-11 | Microsoft Technology Licensing, Llc | Encave pool management |
US10747905B2 (en) | 2017-05-11 | 2020-08-18 | Microsoft Technology Licensing, Llc | Enclave ring and pair topologies |
US11488121B2 (en) | 2017-05-11 | 2022-11-01 | Microsoft Technology Licensing, Llc | Cryptlet smart contract |
US20230164124A1 (en) * | 2021-11-24 | 2023-05-25 | Intertrust Technologies Corporation | Data management systems and methods using explict private networking techniques |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8467527B2 (en) * | 2008-12-03 | 2013-06-18 | Intel Corporation | Efficient key derivation for end-to-end network security with traffic visibility |
DE102010018286A1 (en) * | 2010-04-26 | 2011-10-27 | Siemens Enterprise Communications Gmbh & Co. Kg | Key distribution node for a network |
US8887279B2 (en) | 2011-03-31 | 2014-11-11 | International Business Machines Corporation | Distributed real-time network protection for authentication systems |
US9176838B2 (en) | 2012-10-19 | 2015-11-03 | Intel Corporation | Encrypted data inspection in a network environment |
US9838367B2 (en) * | 2015-06-26 | 2017-12-05 | Intel Corporation | Binding a trusted input session to a trusted output session |
US10158955B2 (en) | 2015-07-02 | 2018-12-18 | Gn Hearing A/S | Rights management in a hearing device |
US10158953B2 (en) | 2015-07-02 | 2018-12-18 | Gn Hearing A/S | Hearing device and method of updating a hearing device |
US9877123B2 (en) | 2015-07-02 | 2018-01-23 | Gn Hearing A/S | Method of manufacturing a hearing device and hearing device with certificate |
US10318720B2 (en) | 2015-07-02 | 2019-06-11 | Gn Hearing A/S | Hearing device with communication logging and related method |
DK201570434A1 (en) * | 2015-07-02 | 2017-01-30 | Gn Hearing As | Hearing device and method of hearing device communication |
DK201570433A1 (en) | 2015-07-02 | 2017-01-30 | Gn Hearing As | Hearing device with model control and associated methods |
US9887848B2 (en) | 2015-07-02 | 2018-02-06 | Gn Hearing A/S | Client device with certificate and related method |
CN105429962B (en) * | 2015-11-03 | 2018-10-19 | 清华大学 | A kind of general go-between service construction method and system towards encryption data |
US20170300673A1 (en) * | 2016-04-19 | 2017-10-19 | Brillio LLC | Information apparatus and method for authorizing user of augment reality apparatus |
CN106790183A (en) * | 2016-12-30 | 2017-05-31 | 广州华多网络科技有限公司 | Logging on authentication method of calibration, device |
US11784813B2 (en) * | 2021-07-30 | 2023-10-10 | Whitestar Communications, Inc. | Crypto tunnelling between two-way trusted network devices in a secure peer-to-peer data network |
CN114268507B (en) * | 2021-12-30 | 2023-12-05 | 天翼物联科技有限公司 | SGX-based network cloud security optimization method, system and related medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040098609A1 (en) * | 2002-11-20 | 2004-05-20 | Bracewell Shawn Derek | Securely processing client credentials used for Web-based access to resources |
US20050025091A1 (en) * | 2002-11-22 | 2005-02-03 | Cisco Technology, Inc. | Methods and apparatus for dynamic session key generation and rekeying in mobile IP |
US20050154873A1 (en) * | 2004-01-12 | 2005-07-14 | Nancy Cam-Winget | Enabling stateless server-based pre-shared secrets |
US20070220598A1 (en) * | 2006-03-06 | 2007-09-20 | Cisco Systems, Inc. | Proactive credential distribution |
US20070288997A1 (en) * | 2002-11-26 | 2007-12-13 | Robert Meier | Roaming using reassociation |
US20080065884A1 (en) * | 2006-09-07 | 2008-03-13 | Motorola, Inc. | Method and apparatus for establishing security association between nodes of an ad hoc wireless network |
US20080115199A1 (en) * | 2001-12-06 | 2008-05-15 | Albert Young | Scheme for device and user authentication with key distribution in a wireless network |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7602918B2 (en) * | 2005-06-30 | 2009-10-13 | Alcatel-Lucent Usa Inc. | Method for distributing security keys during hand-off in a wireless communication system |
US8576882B2 (en) * | 2006-05-11 | 2013-11-05 | Blackberry Limited | Media access control protocol for multi-hop network systems and method therefore |
-
2008
- 2008-02-15 US US12/032,618 patent/US9319220B2/en not_active Expired - Fee Related
-
2016
- 2016-03-30 US US15/085,114 patent/US10079813B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080115199A1 (en) * | 2001-12-06 | 2008-05-15 | Albert Young | Scheme for device and user authentication with key distribution in a wireless network |
US20040098609A1 (en) * | 2002-11-20 | 2004-05-20 | Bracewell Shawn Derek | Securely processing client credentials used for Web-based access to resources |
US20050025091A1 (en) * | 2002-11-22 | 2005-02-03 | Cisco Technology, Inc. | Methods and apparatus for dynamic session key generation and rekeying in mobile IP |
US20070288997A1 (en) * | 2002-11-26 | 2007-12-13 | Robert Meier | Roaming using reassociation |
US20050154873A1 (en) * | 2004-01-12 | 2005-07-14 | Nancy Cam-Winget | Enabling stateless server-based pre-shared secrets |
US20070220598A1 (en) * | 2006-03-06 | 2007-09-20 | Cisco Systems, Inc. | Proactive credential distribution |
US20080065884A1 (en) * | 2006-09-07 | 2008-03-13 | Motorola, Inc. | Method and apparatus for establishing security association between nodes of an ad hoc wireless network |
Non-Patent Citations (2)
Title |
---|
Droms, Ralph, and William Arbaugh. Authentication for DHCP messages. RFC 3118, Jun. 2001. * |
McGrew, David, and John Viega. "The Galois/Counter mode of operation (GCM)." (2005). * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150078550A1 (en) * | 2013-09-13 | 2015-03-19 | Microsoft Corporation | Security processing unit with configurable access control |
US10419216B2 (en) | 2013-09-13 | 2019-09-17 | Microsoft Technology Licensing, Llc | Keying infrastructure |
US10097513B2 (en) | 2014-09-14 | 2018-10-09 | Microsoft Technology Licensing, Llc | Trusted execution environment extensible computing device interface |
US20170012778A1 (en) * | 2014-10-31 | 2017-01-12 | Convida Wireless, Llc | End-To-End Service Layer Authentication |
US10129031B2 (en) * | 2014-10-31 | 2018-11-13 | Convida Wireless, Llc | End-to-end service layer authentication |
US10601594B2 (en) | 2014-10-31 | 2020-03-24 | Convida Wireless, Llc | End-to-end service layer authentication |
US10880294B2 (en) | 2015-03-16 | 2020-12-29 | Convida Wireless, Llc | End-to-end authentication at the service layer using public keying mechanisms |
US10110595B2 (en) | 2015-03-16 | 2018-10-23 | Convida Wireless, Llc | End-to-end authentication at the service layer using public keying mechanisms |
US10694360B2 (en) * | 2015-07-02 | 2020-06-23 | Oracle International Corporation | Hearing device and method of hearing device communication |
US20190037380A1 (en) * | 2015-07-02 | 2019-01-31 | Gn Hearing A/S | Hearing device and method of hearing device communication |
US9979699B1 (en) * | 2015-09-08 | 2018-05-22 | Sprint Communications Company L.P. | System and method of establishing trusted operability between networks in a network functions virtualization environment |
US11363114B1 (en) | 2015-10-01 | 2022-06-14 | Sprint Communications Company L.P. | Securing communications in a network function virtualization (NFV) core network |
US12015687B2 (en) | 2015-10-01 | 2024-06-18 | T-Mobile Innovations Llc | Securing communications in a network function virtualization (NFV) core network |
US10542115B1 (en) | 2015-10-01 | 2020-01-21 | Sprint Communications Company L.P. | Securing communications in a network function virtualization (NFV) core network |
US10044572B1 (en) | 2015-11-02 | 2018-08-07 | Sprint Communications Company L.P. | Dynamic addition of network function services |
US10250498B1 (en) | 2016-10-03 | 2019-04-02 | Sprint Communications Company L.P. | Session aggregator brokering of data stream communication |
US10536373B1 (en) | 2016-10-03 | 2020-01-14 | Sprint Communications Company L.P. | Session aggregator brokering of data stream communication |
US10528722B2 (en) | 2017-05-11 | 2020-01-07 | Microsoft Technology Licensing, Llc | Enclave pool shared key |
US10637645B2 (en) | 2017-05-11 | 2020-04-28 | Microsoft Technology Licensing, Llc | Cryptlet identity |
US10664591B2 (en) | 2017-05-11 | 2020-05-26 | Microsoft Technology Licensing, Llc | Enclave pools |
US10740455B2 (en) | 2017-05-11 | 2020-08-11 | Microsoft Technology Licensing, Llc | Encave pool management |
US10747905B2 (en) | 2017-05-11 | 2020-08-18 | Microsoft Technology Licensing, Llc | Enclave ring and pair topologies |
US10833858B2 (en) | 2017-05-11 | 2020-11-10 | Microsoft Technology Licensing, Llc | Secure cryptlet tunnel |
US20180330078A1 (en) | 2017-05-11 | 2018-11-15 | Microsoft Technology Licensing, Llc | Enclave pool shared key |
US11488121B2 (en) | 2017-05-11 | 2022-11-01 | Microsoft Technology Licensing, Llc | Cryptlet smart contract |
US20180332011A1 (en) | 2017-05-11 | 2018-11-15 | Microsoft Technology Licensing, Llc | Secure cryptlet tunnel |
US10238288B2 (en) | 2017-06-15 | 2019-03-26 | Microsoft Technology Licensing, Llc | Direct frequency modulating radio-frequency sensors |
US10348488B1 (en) | 2017-08-25 | 2019-07-09 | Sprint Communications Company L.P. | Tiered distributed ledger technology (DLT) in a network function virtualization (NFV) core network |
US10790965B1 (en) | 2017-08-25 | 2020-09-29 | Sprint Communications Company L.P. | Tiered distributed ledger technology (DLT) in a network function virtualization (NFV) core network |
US20230164124A1 (en) * | 2021-11-24 | 2023-05-25 | Intertrust Technologies Corporation | Data management systems and methods using explict private networking techniques |
Also Published As
Publication number | Publication date |
---|---|
US10079813B2 (en) | 2018-09-18 |
US20160261570A1 (en) | 2016-09-08 |
US20090210699A1 (en) | 2009-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10079813B2 (en) | Method and apparatus for secure network enclaves | |
US11477037B2 (en) | Providing forward secrecy in a terminating SSL/TLS connection proxy using ephemeral Diffie-Hellman key exchange | |
US7856655B2 (en) | System and method for improved network security | |
US8468347B2 (en) | Secure network communications | |
CA2543096C (en) | Protected dynamic provisioning of credentials | |
US8201233B2 (en) | Secure extended authentication bypass | |
US8417949B2 (en) | Total exchange session security | |
US20050149732A1 (en) | Use of static Diffie-Hellman key with IPSec for authentication | |
CN110020524B (en) | A Two-way Authentication Method Based on Smart Card | |
KR20080089500A (en) | Methods, systems, and authentication centers for authentication in end-to-end communications based on mobile networks | |
US20220263811A1 (en) | Methods and Systems for Internet Key Exchange Re-Authentication Optimization | |
CN111935213B (en) | Distributed trusted authentication-based virtual networking system and method | |
US10277576B1 (en) | Diameter end-to-end security with a multiway handshake | |
KR100948604B1 (en) | Security Method in Server-based Mobile Internet Protocol System | |
WO2009082950A1 (en) | Key distribution method, device and system | |
WO2015180399A1 (en) | Authentication method, device, and system | |
CN105591748B (en) | A kind of authentication method and device | |
WO2021032304A1 (en) | Gateway devices and methods for performing a site-to-site communication | |
CN116405264A (en) | A method and system for single package authorization | |
US20240064012A1 (en) | Authentication cryptography operations, exchanges and signatures | |
Badra et al. | Flexible and fast security solution for wireless LAN | |
Pagliusi et al. | PANA/IKEv2: an Internet authentication protocol for heterogeneous access | |
Gurbani et al. | A secure and lightweight scheme for media keying in the session initiation protocol (SIP) work in progress | |
Cremers | Security Protocols II | |
Roepke et al. | A Survey on Protocols securing the Internet of Things: DTLS, IPSec and IEEE 802.11 i |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTEL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GREWAL, KARANVIR;LONG, MEN;DEWAN, PRASHANT;REEL/FRAME:022736/0227 Effective date: 20090525 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240419 |