US9270304B2 - Method and apparatus for nonlinear-channel identification and estimation of nonlinear-distorted signals - Google Patents
Method and apparatus for nonlinear-channel identification and estimation of nonlinear-distorted signals Download PDFInfo
- Publication number
- US9270304B2 US9270304B2 US14/073,247 US201314073247A US9270304B2 US 9270304 B2 US9270304 B2 US 9270304B2 US 201314073247 A US201314073247 A US 201314073247A US 9270304 B2 US9270304 B2 US 9270304B2
- Authority
- US
- United States
- Prior art keywords
- signal
- signals
- estimator
- source
- constellation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000005540 biological transmission Effects 0.000 claims abstract description 26
- 239000011159 matrix material Substances 0.000 claims abstract description 18
- 239000013598 vector Substances 0.000 claims description 48
- 239000000047 product Substances 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 12
- 239000013066 combination product Substances 0.000 claims description 3
- 229940127555 combination product Drugs 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 17
- 230000006978 adaptation Effects 0.000 description 15
- 230000004044 response Effects 0.000 description 14
- 230000003044 adaptive effect Effects 0.000 description 10
- 230000005039 memory span Effects 0.000 description 10
- 238000001914 filtration Methods 0.000 description 8
- 108010076504 Protein Sorting Signals Proteins 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000012512 characterization method Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000005311 autocorrelation function Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0475—Circuits with means for limiting noise, interference or distortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
Definitions
- the present invention relates to digital data modulation systems that include signals traversing a dispersive nonlinear channel that produces noisy distorted signals and that employ techniques for nonlinear channel identification and estimation of the distorted signals.
- a digital-data transmission system transmits digital data over a transmission media where recovery of the digital data is accomplished.
- the digital data is conventionally converted to discrete-time constellation signals that are selected from a finite M-ary constellation alphabet. These constellation signals are subsequently converted to continuous-time transmission signals. Prior to, or during, transmission these signals may be distorted by nonlinear elements, for example a nonlinear power amplifier in the transmitter of a radio system.
- continuous-time received signals are converted to discrete-time receiver signals by frequency conversion from transmission frequencies to baseband, filtering, and periodic signal sampling.
- the receiver signals contain distorted-constellation signals and noise signals.
- the nonlinear element has a zero-memory nonlinearity but linear filtering prior to and after the nonlinear element produces dispersive nonlinear distortions. Consequently, a distorted-constellation signal depends in a nonlinear functional relationship on multiple successive constellation signals. Accordingly, the channel producing the receiver signals from the constellation signals can he represented as a discrete-time dispersive nonlinear channel.
- the noise signal contains a desired signal.
- a SIC receiver can be used to cancel nonlinear-distorted interference, that is associated with a previously-demodulated stronger user, in order to demodulate the next weaker user.
- These cancellation systems conventionally include a copy of the constellation signal sequence that is either reproduced from a known source or estimated in an earlier demodulation operation.
- the distorted-constellation signal estimate is found by characterizing the discrete-time dispersive nonlinear channel using the constellation signal copies as channel inputs. A best characterization minimizes the mean square difference between the receiver signals and the channel outputs. For this best characterization, the estimates of the distorted-constellation signals are the channel outputs.
- Demodulation systems obtain the digital data from the receiver signals and the demodulation can be improved with estimates of the distorted-constellation signals. To obtain these estimates, one can use past binary-data decisions and hypotheses to generate source signals that are associated with the unknown constellation signals. The estimates are then found as described above in the cancellation system using the source signals as channel inputs,
- Distortions produced by a signal that traverses a nonlinear channel are often characterized by a Volterra series expansion.
- the Volterra series is a generalization of the classical Taylor series. See “Nonlinear System Modeling Based on the Wiener Theory”, Proceeding of the IEEE, vol. 69, no. 12, pp. 1557-1573, December 1981.
- U.S. Pat. No. 3,600,681 discloses a nonlinear equalizer based on a Volterra series expansion of nonlinear intersignal interference (NISI) in a data communication system.
- NISI nonlinear intersignal interference
- a decision feedback equalizer uses a nonlinear structure that is a good approximation to the general Volterra filter but with reduced complexity.
- the nonlinear structure is based on an equivalent lowpass model of a 3 rd order bandpass nonlinearity. Because this Volterra series approximation provided better improvements at higher signal-to-noise ratio, it is concluded in Frank that the Volterra approximation DFE is better suited to the voiceband telephone channel than radio communications.
- the lookup memory encoder outperforms the Volterra inverse predistortion.
- Karam does not describe a technique for initializing and adapting the lookup memory encoder in the presence of additive noise.
- the preamble length for initialization of a predistortion lookup memory encoder can be excessively large.
- the preamble length is on the order of AM K ⁇ 1 discrete-time signals where A is the averaging time to make the additive noise small compared to an acceptable level of residual distortion.
- An adaptive Least Means Squares algorithm is used to adapt and track parameters in the linear filter and the zero-memory nonlinearily to minimize the mean square error between the sampled data output of the nonlinear power amplifier and the simplified Wiener-model. This minimization is over the signal bandwidth rather than the smaller discrete-signal bandwidth and the minimization does not include receiver filtering contributions to the nonlinear intersignal interference. As a result interference cancellation with the Aschbacher identification model would not be as effective as a technique that is receiver based and minimizes a mean square error die received discrete-time signal values.
- the foregoing and other objects are achieved in a method at a receiver and in a receiver estimator apparatus that employs an amplitude-based nonlinear series expansion for purposes of estimating received nonlinear-distorted signals.
- the series expansion exploits the characteristics of a dispersive nonlinear channel that contains a zero-memory amplitude-dependent nonlinearity surrounded by linear filters.
- a method for use with discrete-time signals, selected from a finite, complex constellation, that are used in a discrete-time nonlinear channel with an input signal sequence and an output source sequence, where each output signal in the output signal sequence includes a noise signal and a distorted signal, that has an unknown nonlinear functional relationship that depends on a block of K successive source signals, one of which is sequence aligned with the output signal, for estimating the distorted signal from the output signal and the block source signals, including the steps of: phase-rotating the source signals in the block by a rotation value, that is a function of the phase of the sequence-aligned source signal in the block; producing estimator signals that include signals that arc products of one or more real values of products of phase-rotated signals in the block; multiplying each of the estimator signals by an associated estimator weight, and summing the products to produce a rotated estimate; and subtracting the phase of the rotation value from the phase of the rotated estimate to produce the distorted-signal
- a signal estimator for use with discrete-time signals, selected from a finite, complex constellation, that are used in a discrete-time nonlinear channel with a source signal sequence and an output signal sequence, where each output signal in the output signal sequence includes a noise signal and a distorted signal, that has an unknown nonlinear functional relationship that depends on a block of K successive source signals, one of which is sequence aligned with the output signal, for producing a distorted-signal estimate from the output signal and the block source signals
- the signal estimator including at least: a block generator for phase-rotating the source signals in the block by a rotation value, that is a function of the phase of the sequence-aligned source signal in the block; an estimator signal generator for producing estimator signals that are products of one or more real values of products of phase-rotated signals in the block; an estimator weight calculator for calculation of estimator weights; and a dot-product multiplier for multiplying each of the estimator signals by an associated estimator weight and
- FIG. 1 is a block diagram of a discrete-time nonlinear system for transmission of digital data
- FIG. 2 is a graph of the amplitude and phase outputs as a function of input power for a typical power amplifier that defines the nonlinear channel of FIG. 1 ;
- FIG. 3 is a block diagram of the distorted-signal estimator of FIG. 1 ;
- FIG. 4 is a block diagram of an example signal estimator device.
- a digital-data transmission system transmits digital data, generally binary data, over a transmission media where recovery of the digital data is accomplished.
- the transmission system includes modulation at a transmitter and demodulation at a receiver.
- the modulation is conventionally accomplished in two steps.
- a binary/M-ary converter 101 produces binary data that are converted to a constellation sequence 101 A that includes discrete-time constellation signals that are selected from a finite M-ary constellation alphabet.
- digital/analog converter 102 converts the constellation sequence 101 A to a modulation signal 102 A that include a carrier frequency appropriate for the transmission medium, e.g. radio, optical, etc.
- the constellation signals and modulation signal are realized with cosine and sine carrier components that allow for a complex representation. Conventionally, the real (imaginary) part of a signal is associated with the cosine (sine) carrier component.
- the constellation alphabet for the constellation sequence 101 A is complex.
- Constellation examples include: Quadrature Phase-Shift Keying (QPSK), M-ary Phase-Shift Keying (MPSK), Quadrature Amplitude Modulation (M-QAM), etc.
- Examples of constellation alphabets, unity-magnitude normalized, are given in Table 1.
- the present invention includes any digital-data modulation technique with a constellation alphabet with a finite set of complex numbers.
- the digital/analog converter 102 employs a waveform filter to convert the constellation sequence to a continuous-time modulation signal 102 A with appropriate spectral limitations for subsequent medium transmission.
- a waveform filter is characterized by its filter impulse response, f T (t).
- Consecutive discrete-time constellation signals in the constellation sequence 101 A are applied in the form of an impulse train to the waveform filter to produce a series of successive waveforms that forms a continuous-time baseband signal.
- the baseband signal is upconverted to the modulation signal 102 A at a radian carrier frequency, ⁇ 0 .
- Each successive waveform has an associated constellation signal value from the selected constellation alphabet.
- the bandwidth of modulation signals is determined by the waveform filter.
- Typical values for roll-off factors are 0.3 to 0.6.
- nonlinear channel 103 In a transmitter and/or in a transmission media the modulation signal 102 A traverses a nonlinear channel 103 that produces a distorted-modulation signal 103 A.
- An important example of nonlinear channel 103 is a power amplifier in the transmitter of a radio system.
- power amplifiers are linear for smaller input signals but produce amplitude and phase distortions for larger input signals until a saturation level is reached where no further output amplitude increase is possible.
- This nonlinear effect can be accurately modeled by a zero-memory nonlinear function between the input signal amplitude and the output amplitude and phase. In this amplitude-phase model as described by A. L. Berman and C. H.
- the power amplifier nonlinearity has zero memory, i.e., the amplitude and phase distortion depend only on the amplitude a(t) at any instant of time
- linear filters prior to and after the power amplifier, result in a dispersive nonlinear characterization that depends on the constellation signal sequence i n and the linear filters.
- a transmission-noise signal is produced in a noise generator 104 and is combined in an adder 105 with the distorted-modulation signal 103 A to produce at a receiver a received signal 105 A.
- the first step in digital-data demodulation at a receiver converts the received signal 105 A in an analog/digital converter 106 to produce a receiver sequence 106 A that includes discrete-time receiver signals.
- Analog/digital converter 106 includes a down-converter for converting the received signal 105 A to baseband, a receiver filter for reducing out-of-band signals and noise, and a periodic sampler to produce the receiver sequence 106 A with period-T receiver signals denoted as r n , n integer.
- the receiver filter is assumed to have a memory span of LT seconds and this span is at least as long as the duration of the waveform filter impulse response. It is also assumed here for this digital-data transmission nonlinear channel system that gain-control results in a unity gain transmission.
- the optimum receiver filter is a matched filter that is matched to the combination of the waveform filter in the transmitter and a channel filter that includes the linear distortions produced in the transmission medium.
- the channel filtering effects are small but also unknown so the receiver filter is conventionally matched to the waveform filter.
- a matched filter is mathematically defined as an anticausal filter with impulse response f*( ⁇ t) where f(t) is the waveform filter impulse response that is defined as zero for t ⁇ 0.
- the receiver filter is anticausal
- a practical implementation requires the introduction of an implementation delay.
- the implementation delay must be at least as long as the duration of the receiver filter impulse response.
- the distorted-constellation signal is equal to the constellation signal, i n for a channel with no distortion.
- a representation, by sin( ⁇ t)/ ⁇ t interpolation, of the continuous-time distorted-constellation prior to the receiver sampling can be produced from a periodic succession of any two discrete-time distorted constellation signals, Eq. (6), that are separated by T/2.
- estimation techniques are described that apply in general for any value of synchronizing delay ⁇ .
- the second step of demodulation in a digital-data transmission system uses the receiver sequence 106 A to produce estimates of the transmitted binary data.
- the present invention is concerned with the first step of demodulation, i.e., producing estimates of the distorted-constellation signals , n integer. These estimates may be used either in cancellation of the distorted-constellation signals or in the second step of demodulation for the binary data estimates.
- Equations (5,7, and 8) define a discrete-time dispersive nonlinear channel with the constellation sequence as the input and the receiver sequence as the output.
- the present invention provides a technique to estimate the distorted-constellation signals in the receiver sequence and provides a characterization of this discrete-time dispersive nonlinear channel.
- an M-ary source generator 107 in FIG. 1 generates a source sequence 107 A that is associated with the constellation sequence. 101 A containing the constellation signals. This association may result either from a connection to the output of binary/M-ary converter 101 in the transmitter for obtaining the constellation signals or from receiver decisions and/or hypotheses for the constellation signals.
- a Distorted-Signal Estimator (DSE) 108 uses the source sequence 107 A and the receiver sequence 106 A to produce estimates of the distorted-constellation signals.
- DSE Distorted-Signal Estimator
- the DSE 108 computes estimator weights that represent a nonlinear characterization of the discrete-time dispersive nonlinear channel g( i n ) of Eq. 7 that produces the distorted-constellation signal ( ⁇ ) from the constellation vector i n .
- DSE Distorted Signal Estimator
- a block generator 301 receives source signals on link 107 A from the M-ary source generator 107 .
- the block generator 301 at index time n, periodically produces the block of K source signals as a source vector, i n , corresponding to Eq. (8).
- the source signal i n is centered and is designated as the center signal in the block.
- These center designations will be used subsequently to define symmetry conditions that result in adaptive weights with better estimation.
- the block generator 301 also exploits a phase-rotation symmetry that depends on the fact that the norlinearity in the continuous system depends only on the amplitude of the signal input to the nonlinearily and not its phase.
- phase-rotation symmetry technique all the source signals in the block are multiplied by a rotation value that depends on the phase of the center signal or on the phase of one of the two center signals.
- the rotation value has a unit magnitude and a phase such that the multiplication results in phase rotation.
- This rotation multiplication results in a source-signal block with rotated-source signals in which the rotated-center signal always has phase in the first quadrant of the complex plane, i.e., a phase between zero and 90 degrees.
- the rotation value is equal to (1, ⁇ j, ⁇ 1, j) if the center signal is located in respective quadrants (1, 2, 3, 4).
- a sot of W real estimator signals are derived in an estimator signal generator 302 .
- Each estimator signal contains products of one or more real values of products of rotated-source signals in the block.
- the product combinations of p rotated-source signals is less than or equal to P, the maximum nonlinear combination in the series expansion.
- a set of W complex estimator weights are computed, using a Least Means Square (LMS) direct solution to be described subsequently, in an estimator weight calculator 303 that uses as inputs N previous received signals r k , k ⁇ n. 106 A, and their associated estimator signals 302 A.
- LMS Least Means Square
- estimator weights 303 A are provided to a dot-product multiplier 304 where they multiply the associated real estimator signals 302 A.
- these estimator weights and estimator signals are represented by W-vectors from which a scalar output can be calculated as the vector dot product.
- the rotation value is provided on a link 301 A to the dot-product multiplier 304 where the complex conjugate of the rotation value multiplies the vector dot product to produce the distorted-constellation signal estimate 108 A of the distorted-constellation signs ⁇ circumflex over (t) ⁇ n .
- the receiver filter is selected as a matched filter to the waveform filter resulting in a Hermetian-sequence symmetry in the source signal block.
- the source signal block length, K has the center signal i n exactly centered within the block for K odd.
- the center signal is selected, in a manner to be described subsequently, between the two center signals, i n and i n+1 .
- K 2L ⁇ 1 source signals i n+i with index times n+i, ⁇ L+1 ⁇ i ⁇ L ⁇ 1.
- K 2L source signals i n+i with index times n+i, ⁇ L+1 ⁇ i ⁇ L.
- the selection L has been determined as the effective length LT of the receiver filter impulse response.
- the Hermetian-sequence symmetry results because the response of the discrete-time dispersive nonlinear channel is a function of the autocorrelation of the waveform filter impulse response.
- This autocorrelation is Hermetian—sequence symmetric that results in sequence symmetry for the K odd and K even examples.
- This sequence symmetry is exploited in the definition of the estimator signals such as to give the estimator greater flexibility in the estimator weight optimization.
- K odd there is symmetry with respect to an early (relative to the rotated center signal) subblock of rotated source signals and a late (relative to the rotated center signal) subblock of rotated source signals.
- the early and late subblocks in the source signal block are assigned respective early and late words equal to a number between 1 and M L by M-ary conversion of the L signals in each subblock.
- a sequence symmetry criterion is defined as the lower word weight, i.e., the word number, for the early subblock must be less than or equal to the word weight for the late subblock.
- the subblocks are complex-conjugate reversed if the sequence symmetry criterion is not satisfied. Simulation tests with and without this sequence symmetry criterion showed significantly superior estimation with sequence symmetry.
- the nonlinear complex term G 2 is seen from Eq. (4) to depend only on the amplitude of i(t). Because of this amplitude dependence, it follows that an amplitude-based series expansion should provide better convergence properties than a general Volterra series expansion that ignores this amplitude dependence. Because of the monotonic relationship of the amplitude-squared to the amplitude, the nonlinear term can also be expressed as a function of the amplitude-squared.
- (12a) includes an intersignal interference (ISI) vector g 1 .
- ISI intersignal interference
- ,k ⁇ 0 result in K ⁇ 1 linear intersignal interferers when ⁇ 0 and K ⁇ 1 nonlinear intersignal interferers (for any value of ⁇ ) as a result of the n G 2 joint operation.
- the nonlinear functional dependence of Eq. (12b) can then be completely expressed in terms of the source vector.
- the memory span K is equal to the number of signals in the source vector and represents an important parameter of the estimator in terms of performance vs. complexity.
- a rotation value multiplies all the source signals in the block to produce rotated signals with a rotated-center signal with phase in the first quadrant of the complex plane.
- the rotated signals are used in the generation of the estimator signals which then requires unrotation at the estimator output. Accordingly, the estimator output is multiplied by the complex conjugate of the rotation value to produce the distorted-constellation signal estimate.
- this phase-rotation symmetry technique can be realized by a rotation value equal to the complex conjugate of the center signal.
- the rotated center signal is always unity (in the first quadrant) and the unrotation is realized by multiplying the estimator output by the center signal.
- the center rotated-source signal is unity for any K set of source signals. Since the center rotated-source signal is always unity, this rotation principle reduces the nonlinear functional dependence from the memory span of K to the number of nonlinear intersignal interferers, K ⁇ 1, For non-constant digital modulations such as 16 QAM, the rotated-center symbol is always in the first quadrant but its amplitude and phase relative to the ISI must be included in any power series expansion. In the analysis to follow, the equations are for a constant-envelope modulation, which in a straight-forward manner can be extended to the more complicated equations for non-constant modulations.
- ⁇ tilde over ( ⁇ ) ⁇ n ⁇ tilde over ( ⁇ ) ⁇ n ⁇ L+1 . . . ⁇ tilde over ( ⁇ ) ⁇ m ⁇ 1 , ⁇ tilde over ( ⁇ ) ⁇ m+1 , . . . ⁇ tilde over ( ⁇ ) ⁇ n+L ⁇ , K even (15b)
- G 2 ( 2 ) ⁇ i ⁇ C n ⁇ b i ⁇ R ⁇ ⁇ e ⁇ ( i ⁇ i ) + ⁇ i ⁇ C n ⁇ ⁇ j ⁇ F n i ⁇ b ij ( 1 ) ⁇ R ⁇ ⁇ e ⁇ ( i ⁇ i * ⁇ i ⁇ j ) + ⁇ i ⁇ C n ⁇ ⁇ j ⁇ E ni ⁇ b ij ( 2 ) ⁇ R ⁇ ⁇ e ⁇ ( i ⁇ i ) ⁇ R ⁇ ⁇ e ⁇ ( i ⁇ j ) .
- estimator coefficients b i , b ij (1) , b ij (2) are complex and multiply associated estimator signals that arc first or second-order real combinations of the rotated-source signals.
- the terms in Eq. (19a) take into account the unity magnitude of the constant-envelope source signals and the unit value of the rotated center signal.
- G 2 (3) ⁇ t ⁇ C n ⁇ j ⁇ C n ⁇ k ⁇ F nj b ijk (1) e ( ⁇ tilde over ( ⁇ ) ⁇ i ) e( ⁇ tilde over ( ⁇ ) ⁇ j ⁇ tilde over ( ⁇ ) ⁇ k )+ ⁇ i ⁇ C n ⁇ j ⁇ E ni ⁇ k ⁇ E nj b ijk (2) e ( ⁇ tilde over ( ⁇ ) ⁇ i ) e ( ⁇ tilde over ( ⁇ ) ⁇ j ) e ( ⁇ tilde over ( ⁇ ) ⁇ k ) (19b)
- G 2 ( 4 ) ⁇ i ⁇ C n ⁇ ⁇ j ⁇ F ni ⁇ ⁇ k ⁇ C n ⁇ ⁇ l ⁇ F nk ⁇ l ⁇ E nj ⁇ b ijkl ( 1 ) ⁇ R ⁇ ⁇ e ⁇ ( i ⁇ i * ⁇ i ⁇ j ) ⁇ R ⁇ ⁇ e ⁇ ( i ⁇ k * ⁇ i ⁇ l ) + ⁇ i ⁇ C n ⁇ ⁇ j ⁇ E ni ⁇ ⁇ k ⁇ E nj ⁇ ⁇ l ⁇ E nk ⁇ l ⁇ F ni ⁇ b ijkl ( 2 ) ⁇ R ⁇ ⁇ e ⁇ ( i ⁇ i ) ⁇ R ⁇ ⁇ e ⁇ ( i ⁇ j ) ⁇ R ⁇ ⁇ e ⁇ ( i ⁇ k
- the nonlinear distortion component y n the receiver signal is well approximated by the Pth order, 2 ⁇ P ⁇ 4, expansion, Eq. (20).
- the linear ISI component if present, due to the ISI vector in Eq. (9a) can be estimated with a linear-estimator vector w 1 multiplying the rotated-source vector, Eq. (15b).
- the amplitude-based series expansion depends only on real parts of combinations of the rotated-source signals resulting in a real signal expansion. This difference is a factor in the improved convergence of the amplitude-based series expansion.
- the total number of weights W in the estimator is equal to K, corresponding to the linear estimator signals, plus the number of coefficients in Eq. (19) corresponding to the nonlinear estimator signals. Additionally for the antisynchronized selection with K even, it was found useful to add additional linear weights symmetrically so as to produce K+Linear Delta weights in the linear portion of the estimator. Table 2 summaries the total number of estimator weights for some important examples.
- the number of weights for QPSK is generally less for 8 PSK because the smaller signal set of QPSK requires some terms to be eliminated in the series expansion such that the number of weights is always less than the number of estimator signals. When this requirement is not met, the correlation matrix in the LMS direct solution can be singular.
- the distorted-signal estimator 108 requires calculation of complex estimator weights in the estimator weight calculator 303 . These estimator weights correspond to the linear weight vector w 1 in Eq. (21) and complex weights corresponding to the b coefficients in Eq. (19).
- the weight calculation is required for purposes of initialization and for subsequent adaptation in order to track changes, primarily due to temperature, in a nonlinear power amplifier that is a typical realization of the nonlinear channel 103 .
- the common solution to adaptation is to minimize the mean squared value of a residual, i.e., error, signal.
- the mean squared value of the residual signal can be shown to be convex, i.e. bowl shape, with respect to the weights, so that a unique minimum exists.
- This minimum can be found with Least-Mean Squares (LMS) techniques through either an estimated-gradient algorithm or a direct solution.
- LMS Least-Mean Squares
- the estimated-gradient algorithm finds an approximation to the minimum by adjusting the weights so as to move in the opposite direction of an estimated gradient. Since the mean of the estimated gradient is zero at the minimum corresponding to the bottom of the bowl, such an estimated-gradient algorithm must converge to the neighborhood of the optimum set of weights.
- the LMS estimated-gradient algorithm is widely used in adaptation systems because it can conveniently use receiver decisions when the source signals are unknown and additionally the algorithm avoids the complexity of a real-time matrix inversion.
- the Hermetian-sequence symmetry described above, is used to improve the estimation, there exists a large eigenvalue span in an LMS correlation matrix that controls the adaptation. A large eigenvalue span dramatically slows the estimated-gradient adaptation.
- the LMS correlation matrix that is required in the direct solution, depends only on the rotated-source signals and not on receiver signal values. As a result a direct solution with faster adaptation is possible. Since in Eq.
- Eq. (21) is rewritten in terms of a single adaptive weight vector times an estimator signal vector that is a function of the rotated-source signals. Accordingly, Eq. (21) is rewritten in terms of an adaptive weight vector w 1 that provides linear estimation and an adaptive weight w 2 that provides nonlinear estimation.
- each of the h vector components is a product of one or more real values of a signal combination product selected from the rotated-source signals given in Eq. (19).
- the adaptive weight w 2 correspond to the b coefficients in Eq. (19).
- the LMS direct solution has been widely used in adaptive systems.
- the mathematical basis and the solution is described in “Least Square Estimation with Applications to Digital Signal Processing” A. A. Giordano and F. M. Hsu, John Wiley & Sons, New York N.Y., 1985, Section 23,3, pgs 28-30, [Giordano].
- the LMS direct solution for practical examples in this application can be interpreted as Giordano, Case 2, where a solution is desired to a linear set of equations where there are more equations than unknowns.
- the matrix H H′ is the LMS correlation matrix.
- Some components may be repeated in the random N-sequence and these repeat values are averaged and inserted in the N C order receiver vector, in this manner, a corresponding N C order receiver vector for the precomputed W ⁇ N C projection matrix is produced from a random N-sequence of receiver signal values.
- the weight vector Eq. (27) is computed by multiplying the N C order receiver-signal vector by the W ⁇ N C projection matrix equal to (H H′) ⁇ 1 H.
- each unique estimator signal vector is a function of K ⁇ 1 rotated-source signals, With M constellation values and K ⁇ 1 different rotated-source signals, there are M K ⁇ 1 possible vectors with an N-sequence at least as large.
- the waveform filter used for both transmitting and matched filtering results in a discrete-time dispersive nonlinear channel response that is a function of the Hermetian autocorrelation of the waveform filter impulse response.
- FIG. 4 is a block diagram of an example device 400 that may be used with one or more embodiments described herein, e.g., as a discrete-time nonlinear system for transmission of digital data, as shown in FIG. 1 above.
- the device 400 may comprise one or more network interfaces 410 (e.g., wired, wireless, etc.), at least one processor 420 , and a memory 440 interconnected by a system bus 450 , as well as a power supply 460 .
- the network interface(s) 410 contain the signaling circuitry for communicating data to/from the device 400 .
- the network interfaces may be configured to transmit and/or receive data using a variety of different communication protocols.
- the memory 440 comprises a plurality of storage locations that are addressable by the processor 420 and the network interfaces 410 for storing software programs and data associated with the embodiments described herein.
- the processor 420 may comprise hardware elements/logic adapted to execute the software programs and manipulate the data 445 .
- An operating system 442 portions of which are typically resident in memory 440 and executed by the processor, functionally organizes the device by invoking operations in support of software processes and/or services executing on the device. These software processes and/or services may comprise phase-rotating process, estimator process, etc., as described above.
- control logic of the present invention may be embodied as non-transitory computer readable media on a computer readable medium containing executable program instructions executed by a processor, controller or the like.
- the computer readable mediums include, but are not limited to, ROM, RAM, compact disc (CD)-ROMs, magnetic tapes, floppy disks, flash drives, smart cards and optical data storage devices.
- the computer readable recording medium can also be distributed in network coupled computer systems an that the computer readable media is stored and executed in a distributed fashion.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
TABLE 1 |
Example Constellation Alphabets |
Modulation | Alphabet | |
QPSK | (±1 ± j)/{square root over (2)} | |
8-PSK | ejnπ/4, n = 0, 1, 2, . . . , 7 | |
16-QAM | (±1 ± j)/{square root over (2)} | |
(±1 ± j/3)/{square root over (2)} | ||
(±1/3 ± j)/{square root over (2)} | ||
(±1/3 ± j/3)/{square root over (2)} | ||
i(t)=Σn=−∞ ∞ i n f T(t−nT). (1)
where the constellation signal i is selected from an M-ary alphabet, α(q), q=0,1,2 . . . , M-1. The
i B(t)=Re{i(t)e jω
The bandwidth of modulation signals is determined by the waveform filter. If the waveform impulse response fr(t) has a roll-off factor of η, 0<η<1, the bandpass (two-sided) bandwidth of the modulation signal is approximately B=(1+η)/T. Typical values for roll-off factors are 0.3 to 0.6.
i(t)=a(t)e jθ(t), (3)
where a(t) and θ (t) are the signal amplitude and phase, respectively. The corresponding distorted-modulation signal for this amplitude-phase model is
î(t)=A[a(t)}e jθ(t)+jΦ(a(t)), (4)
where A(a) is a nonlinear function of a, with a leading linear term, representing amplitude distortion and Φ (a) is a nonlinear function of a, representing phase distortion.
τn= {circumflex over (t)} n +u n, (5)
where the distorted-constellation signal is produced from the receiver filtering and periodic sampling in analog/
(τ)=∫nT−τ nT+LT+τ f*(t+τ−nT){circumflex over (t)}(t)dt. (6)
where τ is the synchronization delay. For τ=0 the distorted-constellation signal is equal to the constellation signal, in for a channel with no distortion. Because of a bandpass bandwidth limit B<2/T of the receiver filter, a representation, by sin(πt)/πt interpolation, of the continuous-time distorted-constellation prior to the receiver sampling can be produced from a periodic succession of any two discrete-time distorted constellation signals, Eq. (6), that are separated by T/2. In this invention, estimation techniques are described that apply in general for any value of synchronizing delay τ. In particular, special considerations are provided for the synchronized selection, τ=0, and for an antisynchronization selection at τ=T/2. Accordingly, estimates of the distorted-constellation signals can be used in cancellation systems for cancellation of the discrete-time signals at an arbitrary delay r or cancellation of a continuous-time signal using interpolation of pairs of T/2-spaced estimates,
(τ)=g( i n ) (7)
where the constellation vector contains the constellation signal in and L1-1 previous and L2-1 future constellation signals;
i n =[i n−L1+1 i n−L1+2 . . . i n . . . i n+L−2 i n+L2−1] (8)
where K=L1+L2−1 and L1,L2 are selected to include the set of significant constellation signals. Since the receiver filter memory span of LT seconds is at least as long as the waveform filter memory span, the selection L1=L2=L includes all the constellation signals that contribute to distortion for τ=0,
-
- T=constellation signal period;
- τ=synchronization delay
- M=number of signal modulation values in the constellation alphabet;
- L=effective time duration of the receiver filter impulse response;
- K=memory span of source signals;
- P=maximum number of source signals in a nonlinear combination
- W=number of estimator weights; and
- N=number of receiver signals used in adaptation,
(τ)= n(G(i)). (9)
where {circumflex over (t)}(t)=G(i(t) and G represents the zero-memory nonlinearity of Eq. (4). The nonlinear function G has a Taylor series expansion with a linear and nonlinear term
G(i)=G 1 i+G 2 nT≦t+τ<nT+LT, (10)
where G1 is the complex coefficient of the linear term. The nonlinear complex term G2 is seen from Eq. (4) to depend only on the amplitude of i(t). Because of this amplitude dependence, it follows that an amplitude-based series expansion should provide better convergence properties than a general Volterra series expansion that ignores this amplitude dependence. Because of the monotonic relationship of the amplitude-squared to the amplitude, the nonlinear term can also be expressed as a function of the amplitude-squared. This choice leads to a simpler nonlinear expansion because the amplitude-squared can be expressed as a closed-form function of i(t). This amplitude-squared dependence of G2 on i(t) is then written as
G 2 =G 2(|i(t)|2), nT≦t+τ<nT+LT. (11)
The functional relationship of Eq. (8) can be decomposed into a linear term with vector component g1 and a nonlinear component, giving
= g′ 1 i n +yn, (12a)
where the nonlinear distortion component is given by
y n n G 2(|i(t)|2), nT≦t+τ<nT+LT. (12b)
Note the linear term in Eq. (12a) includes an intersignal interference (ISI) vector g1 . Conventionally, the impulse response f(t) of the waveform filter is selected such that its autocorrelation function satisfies the Nyquist zero-ISI criterion, (see John Proakis, Digital Communications, McGraw-Hill, New York, N.Y., 1983, sec. 6.2.1), with the result that for the synchronization condition, τ=0, the ISI vector g is zero for all coefficients except for the coefficient of the center signal in the source vector in . The adjacent source signals in+|k|,k≠0 result in K−1 linear intersignal interferers when τ≠0 and K−1 nonlinear intersignal interferers (for any value of τ) as a result of the n G2 joint operation. The nonlinear functional dependence of Eq. (12b) can then be completely expressed in terms of the source vector. The memory span K is equal to the number of signals in the source vector and represents an important parameter of the estimator in terms of performance vs. complexity.
{tilde over (ι)}n+k=conj(i m)*i n+k , kεC n, (13a)
where the rotation index set is
C n ={n+k,|k|<L, i≠o}, K odd
C n ={n+k,−L+1≦k≦L,i≠m}, K even (13b)
and the selected center signal index m is zero for K odd and a function of the alphabet number q(im), for im=α(q), q=0,1,2 . . . , M−1 for the center signals for K even, viz.,
The nonlinear distortion component can then be written as
y n =i m n [G 2(|{tilde over (ι)}(t)|2)], (14)
where {tilde over (ι)}(t) is given by Eq. (1) with the phase-rotation substitution of Eq. (13a), Note that the center rotated-source signal is unity for any K set of source signals. Since the center rotated-source signal is always unity, this rotation principle reduces the nonlinear functional dependence from the memory span of K to the number of nonlinear intersignal interferers, K−1, For non-constant digital modulations such as 16 QAM, the rotated-center symbol is always in the first quadrant but its amplitude and phase relative to the ISI must be included in any power series expansion. In the analysis to follow, the equations are for a constant-envelope modulation, which in a straight-forward manner can be extended to the more complicated equations for non-constant modulations.
y n =y n({tilde over (ι)} n), (15a)
where the rotated-source vector is
{tilde over (ι)} n={{tilde over (ι)}n−L+1 . . . {tilde over (ι)}n−1, {tilde over (ι)}n+1, . . . {tilde over (ι)}n+L−1 }, K odd.
{tilde over (ι)} n={{tilde over (ι)}n−L+1 . . . {tilde over (ι)}m−1, {tilde over (ι)}m+1, . . . {tilde over (ι)}n+L }, K even (15b)
G 2=Σk=1 ∞ a k l k , l k=|{tilde over (ι)}(t)|2k, nT≦t+τ<nT+LT, (16)
where the ak coefficients are complex because G2 is complex. The k=1 square term in Eq. (16) can be written m terms of the K−1 rotated-source signals with the simplifying notation:
f it =f*(t+τ−iT), (17)
l 1=|{tilde over (ι)}(t)|=|f mt+ΣiεC
for the previously defined index set Cn. Define the time dependent variable
v t =v t(n)=ΣiεC
so that the k=1 term can be written as
l 1 =|f mt|2+2 e(f mt v t*)+|v t|2. (18c)
In the expansion of terms to follow, it is convenient to define additional subsets that depend on Cn, namely for iεCn, let
Eni={jεCn, f≧i}
Fni={jεCn, j>i}
The linear filtering of Eq. (7a) has the integral form for the k=1 term of Eq. (16):
a l (l 1)=i m∫NT nT+LT f mt l 1 dt.
In a similar manner, higher-order terms for k>1 Eq.(16) can be written as integral products. After integration, combining of terms, and omitting the terms that do not depend on the rotated-source signals, one has a second-order term
where the estimator coefficients bi, bij (1), bij (2) are complex and multiply associated estimator signals that arc first or second-order real combinations of the rotated-source signals. The terms in Eq. (19a) take into account the unity magnitude of the constant-envelope source signals and the unit value of the rotated center signal. A third-order term derived from Eq. (16), again with complex estimator coefficients multiplying third order products, is
G 2 (3)=ΣtεC
The nonlinear distortion component to Pth order in the rotated-source signals is the sum of Eqs. (19a,19b,19c), viz.,
y n =i mΣp=2 p G 2 (p) , P=2,3,4 (20)
=i m *w′{tilde over (ι)} n+yn({tilde over (ι)} n). (21)
TABLE 2 |
Total Number of Estimator Weights |
Nonlinear | Signal Memory | QPSK | ||
Order | Span | Linear Delta | Weights | 8PSK Weights |
P | K | Δ | W4 | W8 |
2 | 3 | 0 | 7 | 9 |
4 | 4 | 17 | 20 | |
5 | 0 | 25 | 25 | |
6 | 2 | 33 | 38 | |
3 | 3 | 0 | 8 | 15 |
4 | 4 | 21 | 39 | |
5 | 0 | 35 | 69 | |
6 | 2 | 53 | 123 | |
4 | 3 | 0 | 9 | 19 |
4 | 4 | 27 | 57 | |
5 | 0 | — | 120 | |
z n =r n− (22)
{circumflex over (e)}n=i m( w 1′{tilde over (ι)} n+w 2 ′h ({tilde over (ι)} n))], (23a)
where each of the h vector components is a product of one or more real values of a signal combination product selected from the rotated-source signals given in Eq. (19). The adaptive weight w 2 correspond to the b coefficients in Eq. (19). The signal components associated with the weight components in Eq. (21) can be conveniently arranged in the estimator signal vector
h n=( h pk (n) ,p=1,2, . . . P,k=1, . . . K p), (24)
where the ordering follows do-loop notation with the do-loop executing from left to right, i.e. p is the outer loop of signal nonlinearity and k is the inner loop of estimator signal vectors of order p. The estimator weight vector is defined as a compound vector w ′=[w 1′w 2′]that forms the dot product with the estimator signal vector Eq. (24) so that Eq.(23a) can be written to give the estimate of the rotated distorted-constellation signal as
im*ên=w′h n. (23b)
The number of estimator weights W is equal to the number of estimator signal components sum(Kp), p=1,2, . . . P, in Eq. 24 (see Table 2 above for examples). The linear term corresponding to the adaptive weight vector component w 1 has K1=1 with linear subvector
h 11 (n)={tilde over (ι)} n.
Comparing with Eq. (19), the nonlinear subvectors in Eq. (24) are from Eq. (19a) with K2=3:
h 21 (n) = e({tilde over (ι)} n),
h 22 (n) ={ e({tilde over (ι)}j*{tilde over (ι)}j), iεC n ,jεF ni},
h 23 (n) ={ e({tilde over (ι)}i) e({tilde over (ι)}j), iεC n ,jεE ni},
and from Eq. (19b) with K3=2:
h 31 (n) ={ e({tilde over (ι)}i) e{tilde over (ι)}j*{tilde over (ι)}k), iεC n ,jεC n ,kεF nj},
h 32 (n) ={ e({tilde over (ι)}i) e({tilde over (ι)}j)Re({tilde over (ι)}k), iεC n ,jεE ni ,kεE nj},
and from Eq. (19c) with K4=2:
h 41 (n) ={ e({tilde over (ι)}j*{tilde over (ι)}j) e({tilde over (ι)}k*{tilde over (ι)}j), iεC n ,jεF ni ,kεC n ,lεF nk ,lεE nj},
h 42 (n) ={ e({tilde over (ι)}j) e({tilde over (ι)}j) e({tilde over (ι)}k) e({tilde over (ι)}j), iεC n ,jεE ni ,kεE nj ,lεE nk lεF ni}.
=i n *z n n=1,2, . . . N. (25)
For adaptation without a test or preamble sequence, the N received signals are random. Setting the rotated-residual signals, Eq. (25), to zero gives a set of N equations in W unknowns. The rotated-residual signal is a noisy value of the rotated distorted-constellation signal. From Eq. (22) and Eq. (23b) above, one has
=i n *r n −w′h n=0 n=1,2, . . . N. (26a )
Let the matrix H be a matrix containing the estimator-signal column vectors hn, n=1,2, . . . N. The N equations in W unknowns is then
H′ w ={tilde over (r)}={rn *i n , n=1,2, . . . N}. (26b)
where the receiver-signal vector {tilde over (r)} is the complex conjugate of previous rotated-receiver signals in the N rotated-residual signals. Eq. (26b) corresponds to the
w =(H H′)−1 H{tilde over (r)} (27)
where the matrix (H H′)−1 H is the projection matrix that projects the receiver-signal vector into the Wth-order weight space. The matrix H H′ is the LMS correlation matrix. There is a maximum of allowable real signal combinations NC in Eq. (19). The projection matrix can be precomputed for the NC allowable combinations. The calculation of the weight vector in Eq. (27) then requires an NC order receiver vector wherein each component is associated with an allowable combination. Some components may not be in the random N-sequence and are then assigned a zero value in the NC order receiver vector. Some components may be repeated in the random N-sequence and these repeat values are averaged and inserted in the NC order receiver vector, in this manner, a corresponding NC order receiver vector for the precomputed W×NC projection matrix is produced from a random N-sequence of receiver signal values.
E=(M+1)M K−2/2, K odd
E=(M/2+1)M K−2 , K even (28a)
Thus, the desired N-sequence length is approximately halved as a result of the Hermetian-sequence symmetry. For initialization during modem power-up where a test sequence is used to include all NC combinations, construction of sequences that satisfy Eq. (28) generally requires a length of about twice E.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/073,247 US9270304B2 (en) | 2012-11-07 | 2013-11-06 | Method and apparatus for nonlinear-channel identification and estimation of nonlinear-distorted signals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261723564P | 2012-11-07 | 2012-11-07 | |
US14/073,247 US9270304B2 (en) | 2012-11-07 | 2013-11-06 | Method and apparatus for nonlinear-channel identification and estimation of nonlinear-distorted signals |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140126670A1 US20140126670A1 (en) | 2014-05-08 |
US9270304B2 true US9270304B2 (en) | 2016-02-23 |
Family
ID=50622380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/073,247 Active 2033-11-07 US9270304B2 (en) | 2012-11-07 | 2013-11-06 | Method and apparatus for nonlinear-channel identification and estimation of nonlinear-distorted signals |
Country Status (1)
Country | Link |
---|---|
US (1) | US9270304B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11451419B2 (en) | 2019-03-15 | 2022-09-20 | The Research Foundation for the State University | Integrating volterra series model and deep neural networks to equalize nonlinear power amplifiers |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108846843A (en) * | 2018-04-03 | 2018-11-20 | 南昌奇眸科技有限公司 | A kind of image characteristic extracting method |
CN113066102A (en) * | 2020-01-02 | 2021-07-02 | 四川大学 | A Correlation Filter Tracking Method Combining Adaptive Spatial Weights and Distortion Suppression |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5388124A (en) * | 1992-06-12 | 1995-02-07 | University Of Maryland | Precoding scheme for transmitting data using optimally-shaped constellations over intersymbol-interference channels |
US6363104B1 (en) * | 1998-10-02 | 2002-03-26 | Ericsson Inc. | Method and apparatus for interference cancellation in a rake receiver |
US6442154B1 (en) * | 1999-04-15 | 2002-08-27 | Ericsson Inc. | Method and apparatus for successive cancellation using multiple signal timings |
US20030147456A1 (en) * | 2000-08-29 | 2003-08-07 | Takahiro Kumura | Frequency offset estimator |
US6614840B1 (en) * | 1999-03-16 | 2003-09-02 | Nec Corporation | Equalizer with phase-locked loop |
US20050195922A1 (en) * | 2004-02-03 | 2005-09-08 | Ntt Docomo, Inc. | Signal separator |
US20100008679A1 (en) * | 2008-07-10 | 2010-01-14 | Finisar Corporation | Phase Shift Keyed Modulation of Optical Signal Using Chirp Managed Laser |
US20130259113A1 (en) * | 2012-03-29 | 2013-10-03 | Rajendra Kumar | Systems and methods for adaptive blind mode equalization |
-
2013
- 2013-11-06 US US14/073,247 patent/US9270304B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5388124A (en) * | 1992-06-12 | 1995-02-07 | University Of Maryland | Precoding scheme for transmitting data using optimally-shaped constellations over intersymbol-interference channels |
US6363104B1 (en) * | 1998-10-02 | 2002-03-26 | Ericsson Inc. | Method and apparatus for interference cancellation in a rake receiver |
US6614840B1 (en) * | 1999-03-16 | 2003-09-02 | Nec Corporation | Equalizer with phase-locked loop |
US6442154B1 (en) * | 1999-04-15 | 2002-08-27 | Ericsson Inc. | Method and apparatus for successive cancellation using multiple signal timings |
US20030147456A1 (en) * | 2000-08-29 | 2003-08-07 | Takahiro Kumura | Frequency offset estimator |
US20050195922A1 (en) * | 2004-02-03 | 2005-09-08 | Ntt Docomo, Inc. | Signal separator |
US20100008679A1 (en) * | 2008-07-10 | 2010-01-14 | Finisar Corporation | Phase Shift Keyed Modulation of Optical Signal Using Chirp Managed Laser |
US20130259113A1 (en) * | 2012-03-29 | 2013-10-03 | Rajendra Kumar | Systems and methods for adaptive blind mode equalization |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11451419B2 (en) | 2019-03-15 | 2022-09-20 | The Research Foundation for the State University | Integrating volterra series model and deep neural networks to equalize nonlinear power amplifiers |
US11855813B2 (en) | 2019-03-15 | 2023-12-26 | The Research Foundation For Suny | Integrating volterra series model and deep neural networks to equalize nonlinear power amplifiers |
Also Published As
Publication number | Publication date |
---|---|
US20140126670A1 (en) | 2014-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9071313B2 (en) | Method and apparatus for demodulation of a desired signal in the presence of nonlinear-distorted interference | |
US9608718B2 (en) | Method and apparatus for demodulation of a desired signal by constellation-independent cancellation of nonlinear-distorted interference | |
CA2493106C (en) | Method and apparatus for hybrid decision feedback equalization | |
US20070133672A1 (en) | Apparatus and method for stable DEF using selective FBF | |
US20150098521A1 (en) | System and method for pre distortion and iterative compensation for nonlinear distortion in system employing ftn symbol transmission rates | |
Beidas et al. | Multicarrier successive predistortion for nonlinear satellite systems | |
US20070211829A1 (en) | Method and apparatus for pulse optimization for non-linear filtering | |
WO2015033232A2 (en) | Adaptive nonlinear model learning | |
Deleu et al. | Iterative predistortion of the nonlinear satellite channel | |
Beidas et al. | OFDM-like signaling for broadband satellite applications: Analysis and advanced compensation | |
Bauduin et al. | Equalization of the non-linear satellite communication channel with an echo state network | |
US9270304B2 (en) | Method and apparatus for nonlinear-channel identification and estimation of nonlinear-distorted signals | |
JP2000022659A (en) | OFDM modulator | |
JP7278364B2 (en) | Multirate Iterative Memory Polynomial-Based Modeling and Predistortion of High-Bandwidth Power Amplifiers | |
TWI603603B (en) | In the downlink transmission system to solve the imperfect joint estimation of pre-compensation method | |
EP2954612A1 (en) | Signal predistortion by addition of a correction term depending on a predefined constellation symbol, a transmission model and a target constellation symbol | |
Thompson et al. | Integrating volterra series model and deep neural networks to equalize nonlinear power amplifiers | |
Layton et al. | Predistortion for wideband nonlinear satellite downlinks | |
US8842720B2 (en) | Pre-equalizer for a digitally modulated RF signal and method | |
JP2002280941A (en) | Adaptive equalizer, receiver and tap coefficient calculation method | |
Alibert et al. | Comparison of signal predistortion schemes based on the contraction mapping for satellite communications with channel identification | |
Uehashi et al. | An Adaptive Nonlinear Equalizer Utilizing Memory Polynomial for Wideband Satellite Communications | |
Dimitrov | Estimation and cancellation of transponder distortions in satellite forward links using memory polynomials | |
Stark et al. | Combining decision-feedback equalization and carrier recovery for two-dimensional signal constellations | |
Koike et al. | Pre-compensation of transmitter nonlinearity with memory effects in digital QAM systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2555); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |