US9123369B2 - Method and apparatus for determining position of multiple drive heads - Google Patents
Method and apparatus for determining position of multiple drive heads Download PDFInfo
- Publication number
- US9123369B2 US9123369B2 US14/482,124 US201414482124A US9123369B2 US 9123369 B2 US9123369 B2 US 9123369B2 US 201414482124 A US201414482124 A US 201414482124A US 9123369 B2 US9123369 B2 US 9123369B2
- Authority
- US
- United States
- Prior art keywords
- error signal
- read head
- read
- position error
- estimate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/58—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B5/596—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
- G11B5/59627—Aligning for runout, eccentricity or offset compensation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/488—Disposition of heads
- G11B5/4886—Disposition of heads relative to rotating disc
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/54—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head into or out of its operative position or across tracks
- G11B5/55—Track change, selection or acquisition by displacement of the head
- G11B5/5521—Track change, selection or acquisition by displacement of the head across disk tracks
- G11B5/5526—Control therefor; circuits, track configurations or relative disposition of servo-information transducers and servo-information tracks for control thereof
- G11B5/553—Details
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/58—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B5/596—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
- G11B5/59683—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks for magnetoresistive heads
Definitions
- This disclosure relates to data storage systems of the type in which read and write heads move over the surface of a storage medium. More particularly, this disclosure relates to determining the position of two read heads that are used with a single disk surface.
- reading and writing are performed by one or more heads that move relative to the surface of a storage medium.
- Many magnetic disk drives include a plurality of individual disks, or “platters,” which may be two-sided—i.e., each platter can store data on each of its two sides. Therefore, such a disk drive would have at least two heads for each platter. Indeed, for each platter, there is normally at least one write head and at least one separate read head, so that such a disk drive normally has at least four heads per platter.
- all of the heads in a given disk drive are mounted on arms attached to a common actuator that controls the radial position of the heads (an angular, tangential or circumferential component of motion is provided by the rotation of the platters relative to the heads). This is true whether there is one or many platters, and one or multiple heads per platter.
- each surface of each platter has distributed upon it positional information referred to as “servo” data.
- the servo data are commonly distributed in spaced-apart servo “wedges” (generally spaced equiangularly) on the platter surface.
- the disk drive controller can determine the precise radial (and angular) position of the head and can feed back that determination to control the position of the read head or the write head, depending on the required operation.
- TDMR two-dimensional magnetic recording
- a method of determining radial position of a first read head of a storage device includes reading servo data from the storage media platter surface using the first read head, deriving, from the servo data read from the storage media platter surface using the first read head, a first positron error signal representing a first estimate of the radial position of the first read head, reading the servo data from the storage media platter surface using a different one of the at least two read heads, deriving, from the servo data read from the storage media platter surface using the different one of the at least two read heads, a second position error signal representing an estimate of the radial position of the different one of the at least two read heads, and combining the first estimate of the radial position of the first read head and the estimate of the
- the combining includes taking account of the known positional offset between the first read head and the different one of the at least two read heads.
- Another variant of that implementation also includes temporally aligning the first position error signal and the second position error signal.
- apparatus that determines radial position of a first read head of a storage device, where the first read head is one of at least two read heads carried by a common actuator relative to a storage media platter surface of the storage device, there being a known positional offset between the first read head and each other one of the at least two read heads, includes a first position error detector that derives, from the servo data read from the storage media platter surface using the first read head, a first position error signal representing a first estimate of the radial position of the first read head, a second position error detector that derives, from the servo data read from the storage media platter surface using the different one of the at least two read heads, a second position error signal representing an estimate of the radial position of the different one of the at least two read heads, and a position error signal combiner that combines the first estimate of the radial position of the first read head and the estimate of the radial position of the different one of the at least two read heads to obtain a revised estimate of the radial position of
- an input to the positron error signal combiner is the known positional offset between the first read head and the different one of the at least two read heads.
- Another variant of that implementation also includes circuitry to temporally align the first position error signal and the second position error signal.
- FIG. 1 is a side elevational view of a portion of a disk drive with which the present disclosure may be used;
- FIG. 2 is a plan view of the disk drive portion of FIG. 1 , taken from line 2 - 2 of FIG. 1 ;
- FIG. 3 is a schematic representation of an implementation of apparatus according to this disclosure.
- FIG. 4 is a schematic representation of a controller for the drive of FIGS. 1 and 2 ;
- FIG. 5 is a schematic representation of an alternate implementation of apparatus according to this disclosure.
- FIG. 6 is a flow diagram of an implementation of a method according to this disclosure.
- each read sensor may pick up at least portions of two or more adjacent tracks. This can be used for improved head position “servo” control.
- each read sensor may pick up at least portions of two or more adjacent tracks, that means that for each track, there will be at least two servo channels.
- Each servo channel provides a position error signal (PES) for its respective head or sensor.
- PES position error signal
- the position error signals for the different sensors can be combined to obtain an improved PES for each sensor, as described below.
- FIGS. 1 and 2 show an example of a disk drive 100 with which the present disclosure may be used.
- disk drive 100 has three platters 101 , 102 , 103 , although any number of platters may be included in a disk drive with which the present disclosure may be used.
- each platter 101 , 102 , 103 has, on each of its upper and lower surfaces 111 , 112 , a coating 110 made from a material in which data can be stored, e.g., magnetically.
- the present disclosure also is relevant to a disk drive in which one or more platters includes coating 110 on only one of its surfaces, but such a disk drive would store less data in the same volume than a disk drive with two-sided platters.
- the platters 101 - 103 are mounted on a rotatable spindle 104 .
- Motor 105 rotates spindle 104 to rotate platters 101 - 103 in the direction of arrow A ( FIG. 2 ).
- motor 105 is shown connected directly to spindle 104 , in some cases motor 105 may be located off-axis of spindle 104 and would be connected to spindle 104 through belts or gears (not shown).
- Read/write head assembly 120 includes an actuator 121 that bears arms 122 - 125 , one of which is disposed adjacent to each surface 111 , 112 of a platter 101 , 102 , 103 that has a memory storage coating 110 .
- arms 122 - 125 one of which is disposed adjacent to each surface 111 , 112 of a platter 101 , 102 , 103 that has a memory storage coating 110 .
- Each arm 122 - 125 bears, at or near its end furthest from actuator 121 , and on both its upper and lower surfaces in the case of arms 123 , 124 , a plurality of read heads/sensors and write heads.
- two sensors 131 , 132 are shown, and will be used to represent read sensors, although it would normally at least be expected that each set of one or more read sensors has a companion write head (not shown).
- arms 122 - 125 are aligned along a radius of platters 101 - 103 , bringing heads 131 , 132 as close as they can get to spindle 104 .
- FIGS. 1 and 2 are schematic only and not to scale. Normally, the spindle diameter would be larger by comparison to the disk diameter. Moreover, arms 122 - 125 normally cannot point directly at the center of the disk.
- a motor 126 rotates actuator 121 back and forth along the directions of arrow B ( FIG. 2 ) to move the heads 131 , 132 along the path indicated by dashed arrow 201 .
- the motion of actuator 121 thus changes both the radial and circumferential positions of heads 131 , 132 , but the circumferential positional change is relatively unimportant insofar as the platters are rotating.
- the motion of actuator 121 thus is used to control the radial position of heads 131 , 132 .
- Each servo wedge 200 includes data identifying it by wedge index, track index, or sector number (to give an angular, tangential or circumferential position) and by data representing, at each point along a radius of the platter, the distance from spindle 104 .
- Hard drive controller 400 also includes a processor 410 and memory 411 , as well as a connection 412 to a host processor (not shown). Memory 411 may be used as discussed, above to store the PES data that indicates the track position offsets.
- a servo control loop in hard drive controller 400 uses the PES data to keep the heads 131 , 132 on track.
- FIG. 3 schematically shows tour tracks N ⁇ 1 ( 301 ), N ( 302 ), N+1 ( 303 ) and N+2 ( 304 ). Although drawn as being straight, in reality, tracks 301 - 304 would typically be curved.
- Two read, heads or sensors H 1 ( 311 ) and H 2 ( 312 ) may be mounted on a common actuator. As shown, heads 311 , 312 are positioned over tracks N ( 302 ) and N+1 ( 303 ) (although they could, be positioned over any two adjacent tracks).
- Servo wedges or bursts A ( 321 ), B ( 322 ), C ( 323 ) and B ( 324 ) are provided to allow head position detection and servo control.
- Each servo wedge or burst 321 - 24 provides an estimate for each of the two sensors 311 , 312 that pass over it.
- two sensors 311 , 312 are mounted on a common actuator, so the offset between the relative positions of the two sensors 311 , 312 is known. Therefore, the servo data from the two sensors 311 , 312 can be used to provide improved position estimates for each sensor 311 , 312 .
- PES Detector 1 ( 341 ) will generate an estimate of position X of sensor H 1 ( 311 ), which estimate may be designated E A [X]. The same would occur with respect to wedges B, C and D, to generate estimates E B [X], E B [Y], E C [X], E C [Y], E D [X] and E D [Y].
- the radial offset Z actually is not a constant. Instead, it varies as the actuator angle varies. Therefore, the actuator angle ⁇ also is input to PES combiner 343 so that PES combiner 343 can compute Z ( ⁇ ).
- sensor H 2 ( 312 ) will get to a particular servo burst before sensor H 1 ( 311 ) as a result of the rotation of the disk. Therefore, ideally, for the estimate of the position of one sensor to be most meaningful as an estimate of the position of the other sensor, the time difference required for sensor H 1 ( 311 ) to reach the particular servo burst after sensor H 2 ( 312 ) had already reached that particular servo burst, must be taken into account. Otherwise, when PES combiner 343 is combining the output of PES detectors 341 , 342 , the contribution from PES detector 342 may already reflect the next servo PES burst.
- a latch or buffer 333 may be provided to store the output of PES detector 342 until PES detector 341 reflects the output of sensor H 1 ( 311 ) from the correct servo PES burst.
- Latch or buffer 333 may actually represent multiple latches or buffers, because if the various wedges A, B, C, D are close enough together, sensor H 2 ( 312 ) may pass more than one additional burst before sensor H 1 ( 311 ) reaches the first PES burst.
- latch or buffer 333 may be replaced by a delay 533 ( FIG. 5 ).
- delay 533 may be variable, because the tangential distance between sensors H 1 , H 2 ( 311 , 312 ) varies as the actuator angle varies, just as Z varies. Therefore, actuator angle a may be used to control variable delay 533 .
- Implementations of this disclosure thereby use the same narrow track width and/or high track density that give rise to the need for better head servo control to provide that better control by relying on the fact that each head may detect servo wedge data so that multiple estimates may be derived for each track and then combined.
- Method 600 is a method for determining the radial position of a first read head of a storage device.
- servo data from the storage media platter surface are read using the first read head.
- a first position error signal representing a first estimate of the radial position of the first read head is derived from the servo data read from the storage media platter surface using the first read head.
- servo data from the storage media platter surface are read using a different one of the at least two read heads.
- a second position error signal representing an estimate of the radial position of the different one of the at least two read heads is derived from the servo data read from the storage media platter surface using the different one of the at least two read heads.
- the estimate of the radial position of the first read head and the estimate of the radial position of the different one of the at least two read heads are combined to obtain a revised estimate of the radial position of the first read head.
- the combining takes account of the known positional offset between the first read head and the different one of the at least two read heads.
- the known positional offset varies as a function of actuator rotation angle, and taking account of the known positional offset may include deriving a radial offset component from the known positional offset and the actuator rotation angle.
- the combining may include using the estimate of the radial position of the different one of the at least two read heads and the known positional offset between the first read head and the different one of the at least two read heads to obtain a second estimate of the radial position of the first read head, and using the first and second estimates of the radial position of the first read head to obtain the revised estimate of the radial position of the first read head.
- Method 600 also may optionally include, at 614 , temporally aligning the first position error signal and the second position error signal.
- Temporal alignment may be performed by storing whichever of the first position error signal and the second position error signal is available earlier until whichever of the first position error signal and the second position error signal is available letter becomes available, or by delaying whichever of the first position error signal and the second position error signal is available earlier until whichever of the first position error signal and the second position error signal is available later becomes available.
- the delay may be derived by determining a circumferential offset from the known positional offset and the actuator rotation angle and calculating how long it takes for the disk rotation to cover that circumferential offset.
Landscapes
- Moving Of The Head To Find And Align With The Track (AREA)
Abstract
Description
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/482,124 US9123369B2 (en) | 2013-09-30 | 2014-09-10 | Method and apparatus for determining position of multiple drive heads |
PCT/US2014/054964 WO2015047730A1 (en) | 2013-09-30 | 2014-09-10 | Method and apparatus for determining position of multiple drive heads |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361884536P | 2013-09-30 | 2013-09-30 | |
US14/482,124 US9123369B2 (en) | 2013-09-30 | 2014-09-10 | Method and apparatus for determining position of multiple drive heads |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150092296A1 US20150092296A1 (en) | 2015-04-02 |
US9123369B2 true US9123369B2 (en) | 2015-09-01 |
Family
ID=52739914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/482,124 Active US9123369B2 (en) | 2013-09-30 | 2014-09-10 | Method and apparatus for determining position of multiple drive heads |
Country Status (2)
Country | Link |
---|---|
US (1) | US9123369B2 (en) |
WO (1) | WO2015047730A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9384767B2 (en) | 2013-09-30 | 2016-07-05 | Marvell World Trade Ltd. | Generating position error signal based on data tracks for rotating magnetic data storage |
US10360930B1 (en) | 2018-01-26 | 2019-07-23 | Kabushiki Kaisha Toshiba | Disk device and method of manufacturing disk device |
US11942122B1 (en) | 2023-01-17 | 2024-03-26 | Kabushiki Kaisha Toshiba | Determining absolute position on HDD spiral patterns using dual TDMR readers |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10008226B1 (en) | 2017-06-28 | 2018-06-26 | International Business Machines Corporation | Dynamic head offset selection for tape drive |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4575775A (en) * | 1984-08-27 | 1986-03-11 | International Business Machines Corporation | Magnetic recording disk having a sector servo pattern for use with a multiple element head |
US5245487A (en) * | 1989-01-27 | 1993-09-14 | International Business Machines Corporation | Transducer head for rigid disk drive |
US5436773A (en) * | 1994-06-10 | 1995-07-25 | International Business Machines Corporation | Enhanced linearity range for magneto resistive transducer servo by changing the direction of the bias current |
US6104562A (en) | 1997-04-03 | 2000-08-15 | International Business Machines Corporation | Multiple element transducer for magnetic recording |
US6154335A (en) | 1996-01-02 | 2000-11-28 | International Business Machines Corporation | Method and apparatus for positioning a dual element magnetoresistive head |
US20030007276A1 (en) | 2001-07-03 | 2003-01-09 | Naoki Satoh | Servo detection control system, servo detection control method and hard disk drive |
US7233453B2 (en) * | 2002-08-30 | 2007-06-19 | Fujitsu Limited | Servo track writing device and method thereof |
US20070201160A1 (en) * | 2005-02-28 | 2007-08-30 | Hitachi Global Storage Technologies | Positioning of a magnetic head in a magnetic data recording device using a multiple sensor array |
US20090040643A1 (en) | 2007-07-19 | 2009-02-12 | Quantum Corporation | Method and apparatus for writing timing based servo tracks on magnetic tape using complementary servo writer pairs |
US8139301B1 (en) * | 2009-07-22 | 2012-03-20 | Western Digital (Fremont), Llc | Disk drive comprising a dual read element and delay circuitry to improve read signal |
US8891207B1 (en) * | 2013-06-07 | 2014-11-18 | Western Digital (Fremont), Llc | Connection schemes for a multiple sensor array usable in two-dimensional magnetic recording |
-
2014
- 2014-09-10 WO PCT/US2014/054964 patent/WO2015047730A1/en active Application Filing
- 2014-09-10 US US14/482,124 patent/US9123369B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4575775A (en) * | 1984-08-27 | 1986-03-11 | International Business Machines Corporation | Magnetic recording disk having a sector servo pattern for use with a multiple element head |
US5245487A (en) * | 1989-01-27 | 1993-09-14 | International Business Machines Corporation | Transducer head for rigid disk drive |
US5436773A (en) * | 1994-06-10 | 1995-07-25 | International Business Machines Corporation | Enhanced linearity range for magneto resistive transducer servo by changing the direction of the bias current |
US6154335A (en) | 1996-01-02 | 2000-11-28 | International Business Machines Corporation | Method and apparatus for positioning a dual element magnetoresistive head |
US6104562A (en) | 1997-04-03 | 2000-08-15 | International Business Machines Corporation | Multiple element transducer for magnetic recording |
US20030007276A1 (en) | 2001-07-03 | 2003-01-09 | Naoki Satoh | Servo detection control system, servo detection control method and hard disk drive |
US7233453B2 (en) * | 2002-08-30 | 2007-06-19 | Fujitsu Limited | Servo track writing device and method thereof |
US20070201160A1 (en) * | 2005-02-28 | 2007-08-30 | Hitachi Global Storage Technologies | Positioning of a magnetic head in a magnetic data recording device using a multiple sensor array |
US20090040643A1 (en) | 2007-07-19 | 2009-02-12 | Quantum Corporation | Method and apparatus for writing timing based servo tracks on magnetic tape using complementary servo writer pairs |
US8139301B1 (en) * | 2009-07-22 | 2012-03-20 | Western Digital (Fremont), Llc | Disk drive comprising a dual read element and delay circuitry to improve read signal |
US8891207B1 (en) * | 2013-06-07 | 2014-11-18 | Western Digital (Fremont), Llc | Connection schemes for a multiple sensor array usable in two-dimensional magnetic recording |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9384767B2 (en) | 2013-09-30 | 2016-07-05 | Marvell World Trade Ltd. | Generating position error signal based on data tracks for rotating magnetic data storage |
US10360930B1 (en) | 2018-01-26 | 2019-07-23 | Kabushiki Kaisha Toshiba | Disk device and method of manufacturing disk device |
US11942122B1 (en) | 2023-01-17 | 2024-03-26 | Kabushiki Kaisha Toshiba | Determining absolute position on HDD spiral patterns using dual TDMR readers |
Also Published As
Publication number | Publication date |
---|---|
WO2015047730A1 (en) | 2015-04-02 |
US20150092296A1 (en) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9105302B1 (en) | Reading narrow data tracks with multiple wide readers | |
US7522371B2 (en) | Servo track having periodic frames of tone field and embedded synchronization marks | |
US7880992B2 (en) | Phase detector that compensates for frequency variation induced bias in phases of servo burst fields | |
US20140063644A1 (en) | Magnetic Element with Multiple Selective Transducing Elements | |
US7612961B2 (en) | Magnetic recording disk and disk drive with patterned phase-type servo fields for read/write head positioning | |
US9792939B2 (en) | Servo tracking using a single servo writing pass per track for multi sensors | |
US9123369B2 (en) | Method and apparatus for determining position of multiple drive heads | |
US20120019948A1 (en) | Arrangement and processing of longitudinal position information on a data storage medium | |
US10388313B2 (en) | Method and apparatus for determining read-head deviation using orthogonal preambles | |
US9508370B1 (en) | Repeated runout (RRO) compensation for alternating tracks in an interlaced magnetic recording system | |
KR20010082289A (en) | Apparatus for developing a dynamic servo signal from data in a magnetic disc drive and method | |
EP1764781A2 (en) | Storage media having areas for storing data for correcting servo information errors | |
JP2005129216A (en) | Method for recording data track on magnetic storage medium, method for recording plural data tracks by track format of variable width, and servo system for positioning head | |
US9153264B1 (en) | Method and apparatus for determining radial incoherence between servo tracks | |
US8737011B1 (en) | Repeatable runout data stored in pre-servo gap | |
US9123384B2 (en) | Requirement relaxation for multiple readers in presence of large skew angle range | |
KR101426964B1 (en) | Magnetic recording disk and disk drive with patterned phase-type servo fields for read/write head positioning | |
US9305595B2 (en) | Reader separation dependent linear and track density push for array reader based magnetic recording | |
US10008228B1 (en) | Method and apparatus for determining read-head deviation using orthogonal preambles | |
US20160049169A1 (en) | Servo parameterization for multi-sensor reader | |
US8953279B1 (en) | Servo bursts having at least three frequencies | |
US20050248870A1 (en) | Magnetic tape reading system and method | |
US7768728B2 (en) | Detecting head/disk contact using timing jitter | |
JPH10112151A (en) | Information recording medium and its recording/ reproducing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MARVELL INTERNATIONAL LTD., BERMUDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARVELL SEMICONDUCTOR, INC.;REEL/FRAME:035577/0322 Effective date: 20140909 Owner name: MARVELL SEMICONDUCTOR, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OBERG, MATS;ZOU, QIYUE;BURD, GREGORY;REEL/FRAME:035577/0289 Effective date: 20140908 Owner name: MARVELL WORLD TRADE LTD., BARBADOS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARVELL INTERNATIONAL LTD.;REEL/FRAME:035577/0349 Effective date: 20140909 Owner name: MARVELL INTERNATIONAL LTD., BERMUDA Free format text: LICENSE;ASSIGNOR:MARVELL WORLD TRADE LTD.;REEL/FRAME:035577/0358 Effective date: 20150122 |
|
AS | Assignment |
Owner name: MARVELL WORLD TRADE LTD., BARBADOS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARVELL INTERNATIONAL LTD.;REEL/FRAME:036120/0210 Effective date: 20140909 Owner name: MARVELL SEMICONDUCTOR, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OBERG, MATS;ZOU, QIYUE;BURD, GREGORY;REEL/FRAME:036120/0174 Effective date: 20140908 Owner name: MARVELL INTERNATIONAL LTD., BERMUDA Free format text: LICENSE;ASSIGNOR:MARVELL WORLD TRADE LTD.;REEL/FRAME:036120/0241 Effective date: 20150122 Owner name: MARVELL INTERNATIONAL LTD., BERMUDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARVELL SEMICONDUCTOR, INC.;REEL/FRAME:036120/0197 Effective date: 20140909 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: MARVELL INTERNATIONAL LTD., BERMUDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARVELL WORLD TRADE LTD.;REEL/FRAME:051778/0537 Effective date: 20191231 |
|
AS | Assignment |
Owner name: CAVIUM INTERNATIONAL, CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARVELL INTERNATIONAL LTD.;REEL/FRAME:052918/0001 Effective date: 20191231 |
|
AS | Assignment |
Owner name: MARVELL ASIA PTE, LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAVIUM INTERNATIONAL;REEL/FRAME:053475/0001 Effective date: 20191231 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |