US9067208B2 - Apparatus for blocking nucleic acids by means of photoactivating intercalating agents - Google Patents
Apparatus for blocking nucleic acids by means of photoactivating intercalating agents Download PDFInfo
- Publication number
- US9067208B2 US9067208B2 US13/502,748 US201013502748A US9067208B2 US 9067208 B2 US9067208 B2 US 9067208B2 US 201013502748 A US201013502748 A US 201013502748A US 9067208 B2 US9067208 B2 US 9067208B2
- Authority
- US
- United States
- Prior art keywords
- test
- housing
- intercalating agents
- nucleic acids
- leds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/06—Test-tube stands; Test-tube holders
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2523/00—Reactions characterised by treatment of reaction samples
- C12Q2523/30—Characterised by physical treatment
- C12Q2523/313—Irradiation, e.g. UV irradiation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2563/00—Nucleic acid detection characterized by the use of physical, structural and functional properties
- C12Q2563/173—Nucleic acid detection characterized by the use of physical, structural and functional properties staining/intercalating agent, e.g. ethidium bromide
Definitions
- the present invention relates to an apparatus for blocking nucleic acids by means of photoactivating intercalating agents using light emitting diodes, LEDs, and more particularly to an apparatus comprising a housing into which to insert one or more test or microcentrifuge tubes containing respective samples mixed with intercalating agents in liquid form, and inside which one or more LEDs which emit light towards said tube or tubes are mounted.
- the present invention is comprised in the field corresponding to equipments for molecular biology techniques for the study of nucleic acids.
- the treatment consists of a short exposure of 2 to 5 minutes to a halogen lamp of at least 650 Watts. This exposure is critical because it produces significant heating of the sample making it necessary to work with a cooling system of the samples in order to avoid damage thereto. Until now, this cooling consists of pre-cooling the sample and using ice baths. This all results in for considerable work loads the process being laborious, the temperature control not always being constant and the sample contamination risk is increased since the tube containing it is in contact with a non-sterile water-ice mass. Professionals who work with techniques of this type today do so with particular assemblies which are not based on commercial equipment.
- intercalating agents of this type are only photoactivated with light comprised between 400-500 nm (Bolton, P. H., and Kearns, D. R., 1978), which is a very small fraction of the emission spectrum of the halogen lamps used today. Therefore the photoactivation process by itself is very inefficient.
- Blocking nucleic acids by means of using photosensitive intercalating agents is a developing technology.
- microorganisms of any type such as bacteria, archaea, viruses, protozoa and other structures such as nematode eggs.
- microorganisms not only should microorganisms be considered, but also the type of environmental samples (water, soil, foods) and clinical samples. It is therefore unlikely that there is a single treatment protocol. This has been the case in conventional and molecular microbiology up until now, so it is estimated that the use of agents such as PMA will require protocols adapted and developed for each type of sample and microorganism.
- the photoactivation reaction depends on the concentration of the reagent and on the light dose (which is a function of time and power).
- the reaction must be carried out in thermal conditions which do not alter the object of the assay. For example, for psychrophilic microorganisms, the temperature increase must be minimized, and generally for all biological samples isothermal conditions assuring stability and homogeneity are required.
- the absorption maximum is at 470 nm and said absorption presents a reduced amplitude curve, so it fits perfectly with the emission spectra of some LED models which emit blue light.
- LEDS today which allow non-continuously covering most of the visible spectrum, and even the ultraviolet spectrum. So for photo-biochemical laboratory and industrial-scale processes, they are usually the most logical option due to the light quality and their performance efficiency.
- WO2009055810-A1 describes a proposal which contemplates carrying out the mentioned photoactivation by means of blue light, particularly using LEDs.
- Said application describes a microorganism discriminator comprising a housing for incubating the sample in low-light conditions, including an injector arranged in the housing to supply the intercalating agents (for example PMA) to the sample, and an illuminator to emit blue light towards the sample.
- the microorganism discriminator of WO2009055810-A1 comprises said base since the incubating housing and the illuminator are two separate units.
- Said application does not propose implementing the entire photoactivation process in a single apparatus or applying it on samples mixed in liquid form with the intercalating agents in test or microcentrifuge tubes.
- the present invention relates to an apparatus for blocking nucleic acids by means of photoactivating intercalating agents, of the type comprising:
- the housing of the apparatus comprises a wall with one or more through holes, each of them intended for inserting therethrough, at least in part, a respective test or microcentrifuge tube containing said sample and said intercalating agents mixed in liquid form, at least one of said LED or LEDs being mounted inside the housing in order to emit light, in a determined direction, towards part of said test or microcentrifuge tube including said sample.
- LED emitters including high-powered emitters, are small devices which emit light with an aperture which is a function of the structure thereof, and in absolute terms they are low-powered devices. Therefore, the use of the latter generally requires the combination of several units, it being necessary to contemplate the arrangement thereof with respect to one another and to the object to be illuminated. The objective is to achieve the greatest exposed surface with the necessary intensity and preventing the existence of non-illuminated areas. On the other hand, it is still necessary to contemplate a minimum distance with respect to the object to be illuminated which minimizes a thermal effect due to the LEDs (and the associated electronics).
- said wall of said housing comprises a plurality of through holes intended for inserting therethrough, at least in part, a corresponding plurality of test or microcentrifuge tubes, each of which contains a respective sample and intercalating agents mixed in liquid form
- the apparatus comprises a plurality of said LEDs mounted inside said housing such that they emit light, in at least one determined direction, towards respective parts of said plurality of test or microcentrifuge tubes including said respective samples, at least one LED per tube.
- said plurality of LEDs comprises at least several first LEDs, each of them arranged adjacent to the tip of a respective one of said test or microcentrifuge tubes, to emit light towards it in said determined direction which coincides with the longitudinal axis of the tube.
- Equipment which has the purpose of treating biological samples with agents such as PMA must assure optimal performance of all the optics in order to maximize the irradiation of the support to be treated, while at the same time it must allow the operator to adjust the light dose in a thermally stable environment compatible with the object of the assay.
- the apparatus provided by the present invention comprises a plurality of LEDs with suitable optics (built-in or external to the LEDs) designed for such purpose, as well as manual and/or automatic adjustment means to regulate the light emitted by the LEDs.
- suitable optics built-in or external to the LEDs
- manual and/or automatic adjustment means to regulate the light emitted by the LEDs.
- the mentioned thermally stable environment is achieved by means of a venting system formed by one or more fans by means of which the LEDs and the whole inside of the housing, including the sample, are cooled, which venting system is comprised in the apparatus provided by the invention for one embodiment.
- FIG. 1 is a perspective view of the apparatus provided by the present invention with a series of microcentrifuge tubes held by a support and partially inserted inside the housing of the apparatus for one embodiment;
- FIG. 2 is a view analogous to that of FIG. 1 but in which the support with the microcentrifuge tubes is shown in an exploded view with respect to the rest of the apparatus;
- FIG. 3 shows a perspective view of the inside of the apparatus of FIG. 1 with the microcentrifuge tubes illustrated as they are positioned with the aid of the support illustrated in FIGS. 1 and 2 ;
- FIG. 4 is a cross-section view of the apparatus provided by the present invention according to a section made through a plane indicated as section line IV-IV in FIG. 1 ;
- FIG. 5 shows a plan view of part of the elements mounted inside the apparatus provided by the present invention.
- the apparatus for blocking nucleic acids by means of photoactivating intercalating agents comprises, for the illustrated embodiment:
- the LEDs L 1 , L 2 , L 3 , L 10 , L 20 , L 30 are configured to emit a blue light in a range of 400 to 500 nm.
- the housing 1 is formed by two parts that can be coupled to one another to form said parallelepiped body: one (see FIGS. 1 and 2 ) comprising said upper wall 1 a and larger side walls 1 b , 1 c , and another one (see FIGS. 3 and 5 ) comprising a base wall 1 d , opposite said upper wall la when both parts of the housing 1 are coupled, and two smaller side walls 1 e , 1 f.
- the apparatus provided by the present invention comprises a support 4 for said plurality of microcentrifuge tubes 3 , intended for, when arranged adjacent to the upper wall la of the housing 1 , positioning each of the microcentrifuge tubes 3 in relation to a respective hole of said plurality of through holes 2 and enabling their insertion therein/extraction therefrom.
- the support 4 comprises a board 4 a defining a corresponding plurality of through holes 5 with a diameter less than the diameter of the outer contour of an area close to the opening of each microcentrifuge tube 3 or of a stopper 6 closing such opening (illustrated case), such that each of the tubes 3 is fitted in one of the through holes 5 upon passing through it in part, being held in this case by the lower contour of each stopper 6 (see FIG.
- the through holes 5 being distributed in the same manner as the through holes 2 of the upper wall 1 a of the housing 1 , in this case forming two rows of six holes, being aligned therewith when said board 4 a is arranged adjacent on the area of the upper wall 1 a of the housing 1 including the through holes 2 , as is seen in the situation illustrated in FIG. 1 .
- the tubes 3 are positioned by means of the support 4 when introducing them in the housing 1 through the holes 2 .
- the support 4 illustrated in FIGS. 1 , 2 and 4 comprises two side walls 4 b , 4 c extending from two respective longitudinal edges b 1 , b 2 of the board 4 a , the support 4 adopting a U-shaped cross-section, and it can be seen that when the board 4 a is arranged adjacent to the upper wall 1 a of the housing 1 (situation illustrated in FIG.
- each of said two side walls 4 b , 4 c of the support 4 is adjacent to a region of a respective one of two larger side walls 1 b , 1 c of the housing 1 , simply contacting them if the support 4 is only to be supported on the housing 1 , or exerting slight pressure against them (for example by elastic deformation) if the support 4 is to be detachably fixed to the housing 1 , depending on the embodiment.
- the distance of the side walls 4 b , 4 c going from the longitudinal edge b 1 , b 2 of the board 4 a to its free edge b 3 , b 4 , opposite said longitudinal edge b 1 , b 2 is greater than the longitudinal portion of the microcentrifuge tube 3 which passes through the through hole 5 of the board 4 a of the support 4 , such that when the support 4 is supported on a flat surface by said free edges b 3 , b 4 , the tips 3 a of the test or microcentrifuge tubes 3 do not touch said flat surface.
- the mentioned plurality of LEDs is formed by six rows of LEDs, three per row of tubes 3 .
- references L 1 , L 2 , L 3 , L 10 , L 20 , L 30 it must be understood that said references seek to point out each of the LEDs of each respective row, i.e., for example, L 1 refers to each of the LEDs of the row to which the LED pointed out by said reference in FIG. 5 belongs.
- the apparatus provided by the invention comprises an electronic system including the LEDs L 1 , L 2 , L 3 , L 10 , L 20 , L 30 mounted on printed circuit boards P 1 , P 2 , P 3 , P 10 , P 20 , P 30 (six in FIGS. 4 and 5 , one per row of LEDs) with electric/electronic circuitry electrically connected thereto.
- FIGS. 4 and 5 it can be seen how the boards of each group of three printed circuit boards, P 1 , P 2 , P 3 , on one side, and P 10 , P 20 , P 30 , on the other, associated with a respective one of the two rows of tubes 3 , are mounted on a respective support element S 1 , S 2 , such that the LEDs L 1 , L 2 , L 3 , L 10 , L 20 , L 30 are at a certain distance from the microcentrifuge tubes 3 , which distance is predetermined to meet the minimum distance requirements, mentioned in a previous section, which are necessary for minimizing a thermal effect due to the LEDs (and the associated circuitry) on the samples M.
- FIGS. 3 and 5 schematically show a power supply 8 (the components forming it have been omitted in the illustration as they are conventional) and a plug 9 for the supply through the electrical network, the power supply being connected to the plug 9 and to the electronic system (connections not illustrated) for the purpose of supplying the latter with the suitable operating voltage once that coming from the network has been treated.
- the mentioned electronic system is intended for controlling the operation of the LEDs L 1 , L 2 , L 3 , L 10 , L 20 , L 30 in order to regulate their different operating parameters, from the light intensity with which to emit to the time and mode of emission.
- the apparatus comprises one or more manual controls connected to the electronic system so as to allow the user to participate in said control of the operation of the LEDs, such that this can be done manually or automatically, according to the application.
- the apparatus provided by the present invention comprises a venting system formed by a fan 7 mounted inside the housing 1 facing towards the LEDs L 1 , L 2 , L 3 , L 10 , L 20 , L 30 for the purpose of cooling them and thus maintaining the mentioned thermally stable environment.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Clinical Laboratory Science (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Manufacturing & Machinery (AREA)
Abstract
-
- a housing (1) with an upper wall (1 a) with one or more through holes (2), intended for inserting therethrough one or more test or microcentrifuge tubes (3), each of which contains a respective sample (M) including nucleic acids and photosensitive intercalating agents mixed in liquid form, and
- one or more LEDs (L1, L2, L3, L10, L20, L30) mounted inside the housing (1) such that they emit light, according to one or more determined directions, towards respective parts (3 a, 3 b and 3 c) of said of tubes (3), to photoactivate the intercalating agents in order to covalently bond them to free or accessible nucleic acids.
Description
-
- a housing to house one or more samples including nucleic acids and photosensitive intercalating agents, generally PMA or EMA, and
- one or more light emitting diodes, LEDs, arranged to emit light towards said sample or samples, to photoactivate said intercalating agents in order to covalently bond them to at least part of said nucleic acids.
-
- a
housing 1 which forms a parallelepiped body with anupper wall 1 a with a plurality of throughholes 2, particularly twelve (seeFIG. 2 ), intended for inserting therethrough a corresponding plurality ofmicrocentrifuge tubes 3, each of which contains a respective sample M (seeFIG. 4 ) including nucleic acids and photosensitive intercalating agents mixed in liquid form, and - a plurality of LEDs L1, L2, L3, L10, L20, L30, (see
FIGS. 4 and 5 ) mounted inside thehousing 1 such that they emit light, according to different determined directions, towardsrespective parts microcentrifuge tubes 3, to photoactivate the intercalating agents in order to covalently bond them to at least part of said nucleic acids, particularly to the free or accessible nucleic acids.
- a
-
- several first LEDs L1, L10, particularly two rows of LEDs, each of them arranged adjacent to the
tip 3 a of a respective one ofmicrocentrifuge tubes 3, to emit light towards it in a determined direction which coincides with the longitudinal axis of thetube 3. - several second LEDs L2, L20, also forming two rows of LEDs, each of them mounted inside the
housing 1 being arranged adjacent to a firstside wall region 3 b of a respective one of saidmicrocentrifuge tubes 3, saidregion 3 b being included in the longitudinal third thereof ending in a respective one of saidtips 3 a , to emit light towards it in a transverse direction, and - several third LEDs L3, L30, clustered in two rows, each of them mounted inside the
housing 1 being arranged adjacent to a secondside wall region 3 c of a respective one of said test ormicrocentrifuge tubes 3, opposite saidfirst region 3 b , and therefore also included in the longitudinal third of thetube 3 ending in a respective one of saidtips 3 a , to emit light towards it also in a transverse direction.
- several first LEDs L1, L10, particularly two rows of LEDs, each of them arranged adjacent to the
Claims (16)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP200902087 | 2009-10-26 | ||
ES200902087A ES2363697B1 (en) | 2009-10-26 | 2009-10-26 | APPARATUS FOR LOCKING NUCLEIC ACIDS BY PHOTOACTIVATION OF INTERCALANT AGENTS. |
ES200902087 | 2009-10-26 | ||
PCT/IB2010/002696 WO2011051774A1 (en) | 2009-10-26 | 2010-10-21 | Apparatus for blocking nucleic acids by means of photoactivating intercalating agents |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130045147A1 US20130045147A1 (en) | 2013-02-21 |
US9067208B2 true US9067208B2 (en) | 2015-06-30 |
Family
ID=43447102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/502,748 Expired - Fee Related US9067208B2 (en) | 2009-10-26 | 2010-10-21 | Apparatus for blocking nucleic acids by means of photoactivating intercalating agents |
Country Status (5)
Country | Link |
---|---|
US (1) | US9067208B2 (en) |
EP (1) | EP2493620A1 (en) |
JP (1) | JP5643827B2 (en) |
ES (1) | ES2363697B1 (en) |
WO (1) | WO2011051774A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2363697B1 (en) | 2009-10-26 | 2012-04-20 | Ingenia Biosystems, S.L. | APPARATUS FOR LOCKING NUCLEIC ACIDS BY PHOTOACTIVATION OF INTERCALANT AGENTS. |
HUE038401T2 (en) * | 2014-09-19 | 2018-10-29 | Instr Utils De Laboratori Geniul Sl | Procedure to improve sperm quality in mammals |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999042809A1 (en) | 1998-02-20 | 1999-08-26 | Sanguinex | Cell analysis methods and apparatus |
US7148043B2 (en) * | 2003-05-08 | 2006-12-12 | Bio-Rad Laboratories, Inc. | Systems and methods for fluorescence detection with a movable detection module |
US20070207450A1 (en) | 2003-06-05 | 2007-09-06 | Bioprocessors Corp. | System and method for process automation |
US20080043235A1 (en) | 2001-07-25 | 2008-02-21 | Applera Corporation | Electrophoretic system with multi-notch filter and laser excitation source |
WO2008070198A2 (en) | 2006-05-17 | 2008-06-12 | California Institute Of Technology | Thermal cycling system |
WO2009055810A1 (en) | 2007-10-25 | 2009-04-30 | U.S. Environmental Agency | Microorganism discriminator and method |
WO2011051774A1 (en) | 2009-10-26 | 2011-05-05 | Ingenia Biosystems, Sl | Apparatus for blocking nucleic acids by means of photoactivating intercalating agents |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11178567A (en) * | 1997-12-22 | 1999-07-06 | Bml:Kk | Bacteria detection device |
WO2005100538A1 (en) * | 2004-04-16 | 2005-10-27 | Spartan Bioscience Inc. | System for rapid nucleic acid amplification and detection |
-
2009
- 2009-10-26 ES ES200902087A patent/ES2363697B1/en not_active Expired - Fee Related
-
2010
- 2010-10-21 US US13/502,748 patent/US9067208B2/en not_active Expired - Fee Related
- 2010-10-21 EP EP10782679A patent/EP2493620A1/en not_active Withdrawn
- 2010-10-21 JP JP2012534789A patent/JP5643827B2/en not_active Expired - Fee Related
- 2010-10-21 WO PCT/IB2010/002696 patent/WO2011051774A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999042809A1 (en) | 1998-02-20 | 1999-08-26 | Sanguinex | Cell analysis methods and apparatus |
US20080043235A1 (en) | 2001-07-25 | 2008-02-21 | Applera Corporation | Electrophoretic system with multi-notch filter and laser excitation source |
US7148043B2 (en) * | 2003-05-08 | 2006-12-12 | Bio-Rad Laboratories, Inc. | Systems and methods for fluorescence detection with a movable detection module |
US20070207450A1 (en) | 2003-06-05 | 2007-09-06 | Bioprocessors Corp. | System and method for process automation |
WO2008070198A2 (en) | 2006-05-17 | 2008-06-12 | California Institute Of Technology | Thermal cycling system |
WO2009055810A1 (en) | 2007-10-25 | 2009-04-30 | U.S. Environmental Agency | Microorganism discriminator and method |
US20090123959A1 (en) * | 2007-10-25 | 2009-05-14 | U.S. Environmental Protection Agency | Microorganism discriminator and method |
WO2011051774A1 (en) | 2009-10-26 | 2011-05-05 | Ingenia Biosystems, Sl | Apparatus for blocking nucleic acids by means of photoactivating intercalating agents |
Also Published As
Publication number | Publication date |
---|---|
US20130045147A1 (en) | 2013-02-21 |
ES2363697A1 (en) | 2011-08-11 |
WO2011051774A1 (en) | 2011-05-05 |
JP5643827B2 (en) | 2014-12-17 |
EP2493620A1 (en) | 2012-09-05 |
ES2363697B1 (en) | 2012-04-20 |
JP2013507951A (en) | 2013-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104204229B (en) | For automatically analyzing equipment and the method for Biosample | |
US20180113066A1 (en) | Systems and methods for bio-inactivation | |
CN103201614B (en) | There is the microplate reader of controlled atmosphere, its correlation method and purposes | |
US20190224684A1 (en) | Apparatus and method for segmented thermal cycler | |
CA2738578C (en) | Droplet-based assay system | |
EP2825865B1 (en) | Portable device for detecting molecule(s) | |
CN101802164A (en) | Intergrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples | |
US9165740B2 (en) | Ionization probe assemblies | |
US9067208B2 (en) | Apparatus for blocking nucleic acids by means of photoactivating intercalating agents | |
US20240017256A1 (en) | An apparatus & method for processing and analysing one or more samples | |
US20180252646A1 (en) | Optical structure and optical light detection system | |
EP4154981A1 (en) | Multichannel isothermal amplification system and operation method | |
KR20230043438A (en) | Multu channel isothermal amplification system | |
WO2022093853A1 (en) | Microfluidic platform and a method for electrostaticaly-enhanced, excitation-modulated reverse transcriptase quantitative polymerase chain reaction analysis | |
CN215931670U (en) | Metal bath with fluorescence detection function | |
WO2020079767A1 (en) | Biochemical cartridge and biochemical analysis device | |
KR100479782B1 (en) | Biological Process Monitoring Methods and Systems | |
US11485946B2 (en) | Device for storing, incubating or manipulating biological samples and method for mounting a holder with a UV light source to an irradiation chamber of such device | |
CN117402730B (en) | Temperature control device and PCR instrument for PCR detection | |
US20240142376A1 (en) | Light detection module and apparatus for detecting target analyte comprising the same | |
KR20240041310A (en) | Apparatus for detecting target analyte including TIR lens | |
CN113203715A (en) | Portable fluorescence detection device and diagnostic method | |
JP2006214986A (en) | Sample container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INGENIA BIOSYSTEMS, S.L., SPAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CODONY IGLESIAS, FRANCESC;MORATO FARRERAS, JORDI;SANCHEZ SOLER, DIDAC;REEL/FRAME:028215/0700 Effective date: 20110606 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: INSTRUMENTS UTILS DE LABORATORI GENUL, SPAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INGENIA BIOSYSYSTEMS, SL;REEL/FRAME:036582/0535 Effective date: 20120210 |
|
AS | Assignment |
Owner name: INSTRUMENTS UTILS DE LABORATORI GENIUL, SL, SPAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CODONY IGLESIAS, FRANCESC;MORATO FARRERAS, JORDI;SANCHEZ SOLAR, DIDAC;AND OTHERS;REEL/FRAME:040398/0131 Effective date: 20161110 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: INSTRUMENTS UTILS DE LABORATORI GENIUL, SL, SPAIN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED AT REEL: 136582 FRAME: 0535. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:INGENIA BIOSYSTEMS, SL;REEL/FRAME:049774/0445 Effective date: 20120210 |
|
AS | Assignment |
Owner name: IUL S.A., SPAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INSTRUMENTS UTILS DE LABORATORI GENIUL S.L.;REEL/FRAME:051227/0229 Effective date: 20190725 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230630 |