US9048112B2 - Integrated voltage regulator with embedded passive device(s) for a stacked IC - Google Patents
Integrated voltage regulator with embedded passive device(s) for a stacked IC Download PDFInfo
- Publication number
- US9048112B2 US9048112B2 US12/825,937 US82593710A US9048112B2 US 9048112 B2 US9048112 B2 US 9048112B2 US 82593710 A US82593710 A US 82593710A US 9048112 B2 US9048112 B2 US 9048112B2
- Authority
- US
- United States
- Prior art keywords
- semiconductor
- voltage regulator
- voltage
- integrated circuit
- stacked
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000004806 packaging method and process Methods 0.000 claims abstract description 89
- 239000000758 substrate Substances 0.000 claims abstract description 87
- 239000004065 semiconductor Substances 0.000 claims abstract description 83
- 239000003990 capacitor Substances 0.000 claims abstract description 18
- 230000008878 coupling Effects 0.000 claims abstract description 8
- 238000010168 coupling process Methods 0.000 claims abstract description 8
- 238000005859 coupling reaction Methods 0.000 claims abstract description 8
- 230000001105 regulatory effect Effects 0.000 claims description 22
- 238000004891 communication Methods 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 41
- 229910052710 silicon Inorganic materials 0.000 description 41
- 239000010703 silicon Substances 0.000 description 41
- 238000010586 diagram Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 238000013461 design Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5384—Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49822—Multilayer substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/642—Capacitive arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/645—Inductive arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/165—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/181—Printed circuits structurally associated with non-printed electric components associated with surface mounted components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/023—Redistribution layers [RDL] for bonding areas
- H01L2224/0237—Disposition of the redistribution layers
- H01L2224/02371—Disposition of the redistribution layers connecting the bonding area on a surface of the semiconductor or solid-state body with another surface of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05617—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/05624—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1302—Disposition
- H01L2224/13025—Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16227—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16235—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06517—Bump or bump-like direct electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06527—Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06541—Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06541—Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
- H01L2225/06544—Design considerations for via connections, e.g. geometry or layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1205—Capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1206—Inductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/1517—Multilayer substrate
- H01L2924/15172—Fan-out arrangement of the internal vias
- H01L2924/15174—Fan-out arrangement of the internal vias in different layers of the multilayer substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/1517—Multilayer substrate
- H01L2924/15192—Resurf arrangement of the internal vias
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19042—Component type being an inductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30105—Capacitance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30107—Inductance
Definitions
- the present disclosure generally relates to integrated circuits (ICs). More specifically, the present disclosure relates to manufacturing integrated circuits.
- Integrated circuits are fabricated on wafers. Commonly, these wafers are semiconductor materials, such as silicon, and singulated to form individual dies.
- the size of the transistors making up the ICs has decreased to 45 nm and will soon decrease to 32 nm.
- the supply voltage to the transistors decreases.
- the supply voltage is conventionally smaller than wall voltages available in most countries or battery voltages used in portable devices. For example, an IC may operate at 1.25 Volts whereas the wall voltage is 120V or 240V. In a portable device, such as cellular phone, the battery voltage may range from 6V at full charge to 3V at near empty charge.
- a semiconductor IC may be coupled to a voltage regulator that converts available voltages at wall outlets or batteries to lower voltages used by the IC.
- the voltage regulator ensures a constant voltage supply is provided to the IC. This is an important function, because the ability of transistors to tolerate voltages under or over the target voltage is small. Only tenths of a volt lower may create erratic results in the IC; only tenths of a volt higher may damage the IC.
- ICs are mounted on a packaging substrate, and the packaging substrate is mounted on a printed circuit board (PCB) approximately 1-2 mm thick during assembly.
- PCB printed circuit board
- the voltage regulator is located on the PCB with the IC to which the voltage regulator supplies voltage. Placing the voltage regulator on the PCB separate from the IC results in a voltage drop between the voltage regulator and the IC that the voltage regulator supplies. For example, at a supply voltage of 1.125 Volts, a voltage drop of 0.100V may occur between the voltage regulator and the IC as the voltage passes through the PCB, packaging substrate, and IC. As the supply voltage decreases with shrinking transistor size, the voltage drop becomes a significant fraction of the supply voltage.
- placing the voltage regulator on the PCB uses pins on the IC for the IC to communicate with the voltage regulator.
- the IC may send commands to the voltage regulator such as sleep or wake-up for scaling up or scaling down the voltage supply.
- the additional pins consume space on the IC that could otherwise be eliminated.
- Maximum frequency of a IC scales proportionally with supply voltage. For example, eliminating a voltage drop of 0.100V may increase a maximum frequency (f max ) of the IC by 100 MHz. Alternatively, if the voltage drop is reduced and maximum frequency not increased, power consumption in the IC is reduced. Power consumption is proportional to capacitance multiplied by a square of the supply voltage. Thus, reducing the supply voltage may result in significant power savings.
- decoupling capacitors provide additional power to the IC.
- Voltage regulators located on the PCB often have response times in the microsecond range.
- large decoupling capacitors are placed on the packaging substrate to compensate for slow response times.
- the large decoupling capacitors occupy a large area.
- One conventional arrangement includes a bulk capacitor of microFarads and a multi-layer chip capacitor (MLCC) having hundreds of nanoFarads along with the voltage regulator on the PCB. The combination of the bulk capacitor and the MLCC supplies voltage to the IC while the voltage regulator responds to the current transient.
- MLCC multi-layer chip capacitor
- voltage regulators include passive components such as inductors and capacitors that are also embedded in the ICs. Passive devices consume a large amount of IC area, which increases manufacturing cost. For example, a IC manufactured using 45 nm technology has a capacitance density of 10 femtoFarads/ ⁇ m 2 . At this density a suitable amount of capacitance may consume over 2.5 mm 2 .
- Providing inductance to the voltage regulator conventionally uses an on-IC inductor or a discrete inductor mounted on the packaging substrate. In addition to consuming large areas on a IC, conventional on-IC inductors have a low quality factor.
- the quality factor defined by the energy stored in a passive component versus energy dissipated in the passive component, for a passive component embedded in a IC is low.
- the passive components are manufactured thin to fit in the IC and suffer conductive or magnetic losses that degrade the quality factor.
- supplying voltage to the second tier of a stacked IC is conventionally accomplished with wire-bonding. Wire-bonding is completed after assembly of the stacked IC and has a limited connection density based on size of the wire bond.
- Another conventional solution includes providing the supply voltage to the second tier IC with through silicon vias in the first tier IC. Through silicon vias have a high resistance resulting in voltage drop that further decreases performance and occupy space on the ICs that could otherwise be used active circuitry.
- a stacked integrated circuit includes a first semiconductor IC having a first active face, and a first interconnect structure.
- the stacked integrated circuit also includes a second semiconductor IC stacked on the first semiconductor IC having a second active face appearing opposite the first active face and a second interconnect structure coupled to the first interconnect structure.
- the second active face receives regulated voltage from a voltage regulator.
- the stacked integrated circuit further includes an active portion of the voltage regulator in the first semiconductor IC coupled to the first interconnect structure supplying regulated voltage to the first IC.
- a method of manufacturing a voltage regulator of a stacked IC having a first tier IC and a second tier IC mounted on a packaging substrate includes integrating an active portion of a voltage regulator in the first tier IC. The method also includes coupling the active portion of the voltage regulator to at least one passive component at least partially embedded in the packaging substrate. The method further includes coupling active circuitry of the first tier IC to the voltage regulator. The method also includes coupling the second tier IC to the voltage regulator.
- a method of supplying voltage to a stacked IC mounted on a packaging substrate having a first tier IC and a second tier IC includes providing a supply voltage to an active portion of a voltage regulator integrated in the first tier IC of the stacked.
- the method also includes passing the supply voltage from the active portion of the voltage regulator to at least one inductor at least partially embedded in the packaging substrate.
- the method further includes passing the supply voltage from the at least one inductor to at least one capacitor.
- the method also includes passing the supply voltage from the at least one capacitor to the first tier IC.
- the method yet also includes passing the supply voltage from the first tier IC to the second tier IC.
- a stacked integrated circuit includes a packaging substrate.
- the stacked integrated circuit also includes a first tier IC having a first interconnect structure coupled to the packaging substrate.
- the stacked integrated circuit further includes a second tier IC having a second interconnect structure coupled to the first tier IC.
- the stacked integrated circuit yet also includes a means for regulating voltage integrated in the first tier IC.
- FIG. 1 is a block diagram showing an exemplary wireless communication system in which an embodiment of the disclosure may be advantageously employed.
- FIG. 2 is a block diagram illustrating a design workstation used for circuit, layout, and logic design of the disclosed semiconductor IC package.
- FIG. 3A is a block diagram illustrating a conventional voltage regulator on a printed circuit board.
- FIG. 3B is a top-down view of a semiconductor IC illustrating conventional placement of through silicon vias.
- FIG. 4 is a block diagram illustrating an exemplary integrated voltage regulator in a stacked IC according to one embodiment.
- FIG. 5 is a block diagram illustrating an exemplary integrated voltage regulator in a stacked IC having through vias as inductors according to one embodiment.
- FIG. 6 is a block diagram illustrating an exemplary integrated voltage regulator in a stacked IC having an embedded capacitance according to one embodiment.
- FIG. 7 is a block diagram illustrating an exemplary integrated voltage regulator in a stacked IC having an embedded capacitance and through vias as inductors according to one embodiment.
- FIGS. 8A-C are block diagram illustrating paths through a packaging substrate and printed circuit board that may provide inductance.
- FIG. 9 is a top-down view of a semiconductor IC having an exemplary arrangement of through silicon vias according to one embodiment.
- FIG. 1 is a block diagram showing an exemplary wireless communication system 100 in which an embodiment of the disclosure may be advantageously employed.
- FIG. 1 shows three remote units 120 , 130 , and 150 and two base stations 140 .
- Remote units 120 , 130 , and 150 include IC devices 125 A, 125 B and 125 C, as disclosed below.
- any device containing an IC may also include semiconductor components having the disclosed features and/or components manufactured by the processes disclosed here, including the base stations, switching devices, and network equipment.
- FIG. 1 shows forward link signals 180 from the base station 140 to the remote units 120 , 130 , and 150 and reverse link signals 190 from the remote units 120 , 130 , and 150 to base stations 140 .
- the remote unit 120 is shown as a mobile telephone
- the remote unit 130 is shown as a portable computer
- the remote unit 150 is shown as a fixed location remote unit in a wireless local loop system.
- the remote units may be a device such as a music player, a video player, an entertainment unit, a navigation device, a communications device, a personal digital assistant (PDA), a fixed location data unit, and a computer.
- FIG. 1 illustrates remote units according to the teachings of the disclosure, the disclosure is not limited to these exemplary illustrated units. The disclosure may be suitably employed in any device which includes semiconductor components, as described below.
- FIG. 2 is a block diagram illustrating a design workstation for circuit, layout and design of a semiconductor part as disclosed below.
- a design workstation 200 includes a hard disk 201 containing operating system software, support files, and design software such as Cadence or OrCAD.
- the design workstation 200 also includes a display to facilitate design of a semiconductor part 210 that may include a circuit and semiconductor ICs.
- a storage medium 204 is provided for tangibly storing the semiconductor part 210 .
- the semiconductor part 210 may be stored on the storage medium 204 in a file format such as GDSII or GERBER.
- the storage medium 204 may be a CD-ROM, DVD, hard disk, flash memory, or other appropriate device.
- the design workstation 200 includes a drive apparatus 203 for accepting input from or writing output to the storage medium 204 .
- Data recorded on the storage medium 204 may specify circuit configurations, pattern data for photolithography masks, or mask pattern data for serial write tools such as electron beam lithography. Providing data on the storage medium 204 facilitates the design of the semiconductor part 210 by decreasing the number of processes for designing circuits and semiconductor ICs.
- FIG. 3 is a block diagram illustrating a conventional voltage regulator on a printed circuit board.
- An IC product 300 includes a printed circuit board (PCB) 310 that supports packaging substrates and provides communication between packaging substrates on the PCB 310 .
- a packaging substrate 320 is coupled to the PCB 310 through a packaging connection 322 such as bumps or pillars and includes through vias 324 to enable communications between the PCB 310 and a IC 330 .
- the IC 330 is coupled to the packaging substrate 320 through an interconnect structure 332 such as bumps or pillars. Stacked above the IC 330 is a second tier IC 350 .
- An interconnect structure 352 couples the second tier IC 350 to the packaging substrate 320 with through silicon vias 334 in the IC 330 .
- a voltage regulator 340 is coupled to the PCB 310 through a packaging connection 342 .
- the voltage regulator 340 conventionally couples to discrete passive components such as inductors and capacitors mounted on the PCB 310 .
- Low inductance passes such as traces 344 provide voltage from the voltage regulator 340 to the IC 350 with through silicon vias 324 and through silicon vias 334 .
- the traces 344 are restricted in location on the PCB 310 , which also restricts location of the voltage regulator 340 .
- the distance between the voltage regulator 340 and the IC 350 has a fixed minimum based on the PCB 310 .
- locating a voltage regulator on the PCB separate from the packaging substrate may not provide sufficient voltages to the IC for proper operation. If the supply voltage drops below an acceptable level, the IC may output incorrect results or stop working completely.
- FIG. 3B is a top-down view of a semiconductor IC illustrating conventional placement of through silicon vias.
- the through silicon vias 334 enable communication between both sides of the IC 330 .
- the through silicon vias 334 provide voltage to a second IC 350 stacked on the IC 330 .
- the through silicon vias 334 are spaced apart because of the large size of the through silicon vias 334 to supply voltage and large currents to the second IC 350 . Organizing digital circuitry on the IC 330 around the through silicon vias 334 is difficult because of the size and position of the through silicon vias 334 .
- Providing voltage to a second tier IC of a stacked IC from a voltage regulator mounted on a PCB is difficult due to the distance between the voltage regulator and the second tier IC.
- Through silicon vias located in a first tier conventionally used to couple the second tier IC to the PCB have a high resistance.
- the supply voltage is of a lower quality after passing through the high resistance through silicon vias of the first tier IC.
- the number of vias supplying voltage to the second tier IC through the first tier IC creates problems with mounting the first tier IC on the packaging substrate. For example, during assembly when the first tier IC is welded to the packaging substrate, the large number of vias for supplying voltage to the second tier IC decreases assembly throughput and decreases yield.
- an active portion of a voltage regulator is integrated into the IC.
- the active portion of the voltage regulator includes, for example, transistors and drivers. Locating an active portion of an integrated voltage regulator in the first tier IC reduces the number of packaging connections between the first tier IC and the packaging substrate.
- the integrated voltage regulator is also closer to the first tier IC and the second tier IC resulting in quicker response times to current transients and smaller decoupling capacitors to filter the output of the voltage regulator.
- the active portion of the voltage regulator is in close proximity to circuitry on both the first tier IC and the second tier IC.
- passive components may be embedded in the packaging substrate to reduce area on the first tier IC occupied by the voltage regulator.
- passive components are embedded in a PCB. Embedding the passive components maintains a short and low inductance path from the voltage regulator to the IC. Further, the voltage regulator control loop bandwidth is increased by higher switching frequency and shortened feedback path between the voltage regulator and the IC. Embedding passive components also reduces IC size by reducing or eliminating discrete passive components of the voltage regulator from the IC itself.
- FIG. 4 is a block diagram illustrating an exemplary integrated voltage regulator in a stacked IC according to one embodiment.
- a packaged IC 400 includes a stacked IC having a first tier IC 430 and a second tier IC 440 .
- An active face 439 of the first tier IC 430 faces an active face 449 of the second tier IC 440 .
- the first tier IC 430 is coupled to the second tier IC 440 through an interconnect structure 442 , such as microbumps.
- the first tier IC 430 includes an active portion of a voltage regulator 432 and an input/output area 436 .
- the active portion of the voltage regulator 432 and the input/output area 436 include through silicon vias 434 , 438 .
- the through silicon vias 438 enable communication between the second tier IC 440 and a packaging substrate 420 .
- the second tier IC 440 is a memory device cooperating with the first tier IC 430 .
- a reduced number of through silicon vias 438 exist.
- through silicon vias in the first tier IC outside of the active portion of the voltage regulator 432 and the input/output area 436 are reduced or eliminated.
- the first tier IC 430 is coupled to the packaging substrate 420 .
- Passive components for the active portion of the voltage regulator 432 such as inductors, are embedded in the packaging substrate 420 .
- An embedded inductance 428 in the packaging substrate 420 is coupled to packaging connections 431 by an electrical path 426 .
- the embedded inductance 428 is coupled to the active portion of the voltage regulator 432 through the electrical path 426 , packaging connections 431 , and through silicon vias 434 .
- a decoupling capacitor (not shown) may be similarly embedded in the packaging substrate 420 to provide instantaneous voltage in the case where a current transient exceeds the capability of the active portion of the voltage regulator 432 to provide voltage.
- a supply voltage is provided to the active portion of the voltage regulator 432 through interconnects (not shown) in a printed circuit board (PCB) 410 .
- the PCB 410 is coupled to the packaging substrate 420 through a packaging connection 422 .
- An electrical path 424 in the packaging substrate 420 couples the packaging connection 422 to the packaging connection 431 .
- the electrical path 424 , 426 may include vias, through vias, and/or interconnects that form a conductive path in the packaging substrate 420 .
- Supplying voltage to the second tier IC of a stacked IC from a voltage regulator integrated into the first tier IC using microbumps provides a high density and low resistance path improving quality and stability of the supply voltage for the second tier IC.
- FIG. 5 is a block diagram illustrating an exemplary integrated voltage regulator in a stacked IC having through vias as inductors according to one embodiment.
- An electrical path 522 in the packaging substrate 420 provides inductance to the active portion of the voltage regulator 432 .
- the electrical path 522 may include, for example, a pair of through vias. Inductance is proportional to the length of the electrical path 522 .
- the electrical path 522 may couple through interconnects in the packaging substrate 420 or through a conductive layer on a side of the packaging substrate 420 facing the PCB 410 .
- additional length may be provided by an electrical path 512 in the PCB 410 .
- the electrical path 512 is completed through a bottom conductive layer 514 of the PCB 410 .
- the packaging connection 422 couples the electrical path 522 to the electrical path 512 .
- the inductance provided to the active portion of the voltage regulator 432 is proportional to the cumulative length of the electrical path 522 and the electrical path 512 .
- the inductance may be outside of the packaging substrate 420 .
- wirebonds may couple from the first tier IC 430 to the packaging substrate 420 to provide the inductance.
- the inductance results from the wire bonds in addition to the electrical paths 522 and 512 / 514 .
- FIG. 6 is a block diagram illustrating an exemplary integrated voltage regulator in a stacked IC having an embedded capacitance according to one embodiment.
- Passive components coupled to the active portion of the voltage regulator 432 may be embedded in the packaging substrate 420 such as the embedded inductance 428 and an embedded capacitance 626 using, for example, embedded IC substrate (EDS) technology.
- EDS embedded IC substrate
- the electrical path 426 couples the embedded inductance 428 to the packaging connection 431 . Additionally, an electrical path 624 couples the embedded capacitance 626 to the embedded inductance 428 . That is, the embedded capacitance 626 is coupled to the active portion of the voltage regulator 432 through the electrical path 624 , the electrical path 426 , the packaging connection 431 , and the through silicon vias 434 .
- FIG. 7 is a block diagram illustrating an exemplary integrated voltage regulator in a stacked IC having an embedded capacitance and through vias as inductors according to one embodiment.
- the electrical path 720 in the packaging substrate 420 provides inductance to the active portion of the voltage regulator 432 .
- the electrical path 720 may include, for example, a through via. Inductance is proportional to the length of the electrical path 720 .
- the electrical path 720 may couple through interconnects in the packaging substrate 420 or through a conductive layer on a side of the packaging substrate 420 facing the PCB 410 .
- additional length may be provided by the electrical path 712 in the PCB 410 .
- the electrical path 712 is completed through a bottom conductive layer 714 of the PCB 410 .
- the packaging connection 422 couples the electrical path 720 to the electrical path 712 . That is, the inductance provided to the active portion of the voltage regulator 432 is proportional to the cumulative length of the electrical path 720 and the electrical path 712 .
- the embedded capacitance 626 is embedded in the packaging substrate 420 using, for example, embedded die substrate (EDS) technology.
- the electrical path 624 couples the embedded capacitance 626 to the embedded inductance 720 . That is, the embedded capacitance 626 is coupled to the active portion of the voltage regulator 432 through the electrical path 624 , the embedded inductance 720 , the packaging connection 431 , and the through silicon vias 434 .
- FIGS. 8A-C are block diagrams illustrating paths through a packaging substrate and PCB that may provide inductance.
- FIG. 8A is a block diagram illustrating a path 800 through a packaging substrate and PCB according to one embodiment.
- a top conductive layer 802 and a bottom conductive layer 810 of a packaging substrate are shown. Inner layers 804 , 806 of the packaging substrate are also shown.
- a series of vias 805 couples the top conductive layer 802 and the bottom conductive layer 810 .
- a packaging connection 812 may be a bump of a ball grid array or a pillar and couples the bottom conductive layer 810 to a top conductive layer 820 of a PCB.
- a through via 822 a couples the top conductive layer 820 to a bottom conductive layer 830 .
- the bottom conductive layer 830 may be an interconnect that couples to another through via 822 b in the PCB.
- the amount of inductance in the path 800 is proportional to a length of the path 800 .
- FIG. 8B is a block diagram illustrating a path 840 having a longer length than the path 800 .
- a bottom conductive layer 842 couples the through via 822 a to another through via 822 b in the PCB.
- the bottom conductive layer 842 includes extra length, for example in a coil, which increases the inductance of the path 840 .
- FIG. 8C is a block diagram illustrating a path 850 having a longer length than the path 840 .
- An inductor coil 852 mounted on a back side of the PCB couples the through via 822 a to another through via 822 b in the PCB.
- a coiled wire 854 wraps around another inductor coil 852 to extend the length of the path 850 .
- a voltage regulator with passives embedded in packaging maintains a short and low inductive path from the voltage regulator to the IC. Further, the embedded passive components reduce packaging substrate top side area consumed by passive components.
- One advantage to locating the active portion of the voltage regulator in a first tier IC of a stacked IC is reducing a number of through silicon vias manufactured in the first tier IC.
- the active portion of the voltage regulator when integrated into the first tier IC supplies voltage to the second tier IC through the interconnect structure between the first tier IC and the second tier IC.
- a reduced number of through silicon vias in the first tier IC are used for supplying voltage to the second tier IC. That is, few or no through silicon vias in the first tier IC couple the second tier IC to a power supply on the PCB because power is provided by the voltage regulator on the first tier IC.
- FIG. 9 One exemplary arrangement of through silicon vias in a first tier IC of a stacked IC is described with reference to FIG. 9 .
- FIG. 9 is a top-down view of a semiconductor IC having an exemplary arrangement of through silicon vias according to one embodiment.
- a semiconductor IC 920 includes an active portion of a voltage regulator 922 and an input/output area 926 .
- the semiconductor IC 920 may be, for example, a first tier IC of a stacked IC.
- the input/output area 926 may include through silicon vias 928 .
- the through silicon vias 928 enable communications for input/output with circuitry on a IC (not shown) stacked above the semiconductor IC 920 from a packaging substrate (not shown) below the semiconductor IC 920 .
- Through silicon vias 924 in the active portion of the voltage regulator 922 couple the active portion of the voltage regulator 922 to passive components embedded in the packaging substrate (not shown) below the semiconductor IC 920 .
- the through silicon vias 924 , 928 may be isolated in portions of the semiconductor IC 920 . This may result in a smaller size of the semiconductor IC 920 .
- circuitry on the semiconductor IC 920 is organized to avoid interference from the through silicon vias 924 , 928 . That is, where there are through silicon vias 924 , 928 in the semiconductor IC 920 , circuitry is not built. Isolating the through silicon vias 924 , 928 to regions of the semiconductor IC 920 reduces design complexity of circuitry on the semiconductor IC 920 allowing higher densities of circuitry.
- the input/output vias 928 are provided around the periphery of the IC 920 , instead of in the area 926 shown in FIG. 9 .
- through silicon via includes the word silicon, it is noted that through silicon vias are not necessarily constructed in silicon. Rather, the material can be any device substrate material.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
Claims (18)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/825,937 US9048112B2 (en) | 2010-06-29 | 2010-06-29 | Integrated voltage regulator with embedded passive device(s) for a stacked IC |
CN201180028159.9A CN102934227B (en) | 2010-06-29 | 2011-06-28 | Comprise the stacked IC of the integrated voltage regulator with embedded passive device |
KR1020137002249A KR101614132B1 (en) | 2010-06-29 | 2011-06-28 | Stacked ic comprising integrated voltage regulator with embedded passive device(s) |
JP2013518554A JP5854338B2 (en) | 2010-06-29 | 2011-06-28 | Integrated voltage regulator including embedded passive devices for stacked ICs |
PCT/US2011/042102 WO2012003169A1 (en) | 2010-06-29 | 2011-06-28 | Stacked ic comprising integrated voltage regulator with embedded passive device (s) |
EP11738867.8A EP2589079B1 (en) | 2010-06-29 | 2011-06-28 | Stacked integrated circuit package with integrated voltage regulator and embedded inductor |
US14/703,240 US9349692B2 (en) | 2010-06-29 | 2015-05-04 | Integrated voltage regulator with embedded passive device(s) for a stacked IC |
JP2015229468A JP6517131B2 (en) | 2010-06-29 | 2015-11-25 | Integrated voltage regulator including embedded passive devices for stacked ICs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/825,937 US9048112B2 (en) | 2010-06-29 | 2010-06-29 | Integrated voltage regulator with embedded passive device(s) for a stacked IC |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/703,240 Continuation US9349692B2 (en) | 2010-06-29 | 2015-05-04 | Integrated voltage regulator with embedded passive device(s) for a stacked IC |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110317387A1 US20110317387A1 (en) | 2011-12-29 |
US9048112B2 true US9048112B2 (en) | 2015-06-02 |
Family
ID=44474972
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/825,937 Active 2031-10-26 US9048112B2 (en) | 2010-06-29 | 2010-06-29 | Integrated voltage regulator with embedded passive device(s) for a stacked IC |
US14/703,240 Active US9349692B2 (en) | 2010-06-29 | 2015-05-04 | Integrated voltage regulator with embedded passive device(s) for a stacked IC |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/703,240 Active US9349692B2 (en) | 2010-06-29 | 2015-05-04 | Integrated voltage regulator with embedded passive device(s) for a stacked IC |
Country Status (6)
Country | Link |
---|---|
US (2) | US9048112B2 (en) |
EP (1) | EP2589079B1 (en) |
JP (2) | JP5854338B2 (en) |
KR (1) | KR101614132B1 (en) |
CN (1) | CN102934227B (en) |
WO (1) | WO2012003169A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150230338A1 (en) * | 2012-10-30 | 2015-08-13 | Intel Corporation | Circuit board with integrated passive devices |
US20170062119A1 (en) * | 2015-08-24 | 2017-03-02 | Qorvo Us, Inc. | Stacked laminate inductors for high module volume utilization and performance-cost-size-processing-time tradeoff |
US20170231085A1 (en) * | 2014-09-26 | 2017-08-10 | Murata Manufacturing Co., Ltd. | High-frequency component |
US10056182B2 (en) | 2012-12-14 | 2018-08-21 | Intel Corporation | Surface-mount inductor structures for forming one or more inductors with substrate traces |
US10424536B2 (en) * | 2017-05-15 | 2019-09-24 | Schweizer Electronic Ag | Electronic component having a lead frame consisting of an electrically conductive material |
US10615133B2 (en) | 2013-09-27 | 2020-04-07 | Intel Corporation | Die package with superposer substrate for passive components |
US10849245B2 (en) | 2002-10-22 | 2020-11-24 | Atd Ventures, Llc | Systems and methods for providing a robust computer processing unit |
US10965258B2 (en) | 2013-08-01 | 2021-03-30 | Qorvo Us, Inc. | Weakly coupled tunable RF receiver architecture |
US11139238B2 (en) | 2016-12-07 | 2021-10-05 | Qorvo Us, Inc. | High Q factor inductor structure |
US11177064B2 (en) | 2013-03-15 | 2021-11-16 | Qorvo Us, Inc. | Advanced 3D inductor structures with confined magnetic field |
US11190149B2 (en) | 2013-03-15 | 2021-11-30 | Qorvo Us, Inc. | Weakly coupled based harmonic rejection filter for feedback linearization power amplifier |
US11387810B2 (en) * | 2018-12-21 | 2022-07-12 | Murata Manufacturing Co., Ltd. | High-frequency module |
US11537154B2 (en) | 2020-12-09 | 2022-12-27 | Samsung Electronics Co., Ltd. | Mobile devices and methods controlling power in mobile devices |
US11721677B2 (en) * | 2018-12-27 | 2023-08-08 | Intel Corporation | Microelectronic assemblies having an integrated capacitor |
US12224096B2 (en) | 2013-03-15 | 2025-02-11 | Qorvo Us, Inc. | Advanced 3D inductor structures with confined magnetic field |
Families Citing this family (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR0315613A (en) | 2002-10-22 | 2005-08-23 | Jason A Sullivan | Systems and methods for providing a dynamically modular processing unit |
JP2006512691A (en) | 2002-10-22 | 2006-04-13 | アイシス テクノロジーズ | Non-peripheral processing control module with improved heat dissipation characteristics |
US20110050334A1 (en) * | 2009-09-02 | 2011-03-03 | Qualcomm Incorporated | Integrated Voltage Regulator with Embedded Passive Device(s) |
WO2011055734A1 (en) * | 2009-11-04 | 2011-05-12 | ローム株式会社 | Pressure sensor and method for manufacturing pressure sensor |
US8315068B2 (en) | 2009-11-12 | 2012-11-20 | International Business Machines Corporation | Integrated circuit die stacks having initially identical dies personalized with fuses and methods of manufacturing the same |
US8310841B2 (en) * | 2009-11-12 | 2012-11-13 | International Business Machines Corporation | Integrated circuit die stacks having initially identical dies personalized with switches and methods of making the same |
US9999129B2 (en) * | 2009-11-12 | 2018-06-12 | Intel Corporation | Microelectronic device and method of manufacturing same |
US8258619B2 (en) | 2009-11-12 | 2012-09-04 | International Business Machines Corporation | Integrated circuit die stacks with translationally compatible vias |
US20120002455A1 (en) * | 2010-06-07 | 2012-01-05 | Sullivan Jason A | Miniturization techniques, systems, and apparatus relatng to power supplies, memory, interconnections, and leds |
US9048112B2 (en) | 2010-06-29 | 2015-06-02 | Qualcomm Incorporated | Integrated voltage regulator with embedded passive device(s) for a stacked IC |
KR101739742B1 (en) * | 2010-11-11 | 2017-05-25 | 삼성전자 주식회사 | Semiconductor package and semiconductor system comprising the same |
KR20120068216A (en) * | 2010-12-17 | 2012-06-27 | 에스케이하이닉스 주식회사 | Semiconductor integrated circuit |
JP6122290B2 (en) * | 2011-12-22 | 2017-04-26 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Semiconductor package having a rewiring layer |
US8767408B2 (en) * | 2012-02-08 | 2014-07-01 | Apple Inc. | Three dimensional passive multi-component structures |
KR101350388B1 (en) | 2012-11-22 | 2014-01-15 | 숭실대학교산학협력단 | Integrated circuit having stack structure |
TWI479640B (en) * | 2012-12-25 | 2015-04-01 | Ind Tech Res Inst | Chip stacking structure |
US8941212B2 (en) * | 2013-02-06 | 2015-01-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Helical spiral inductor between stacking die |
US9373583B2 (en) | 2013-03-01 | 2016-06-21 | Qualcomm Incorporated | High quality factor filter implemented in wafer level packaging (WLP) integrated device |
US9035421B2 (en) | 2013-03-01 | 2015-05-19 | Qualcomm Incorporated | High quality factor inductor implemented in wafer level packaging (WLP) |
KR20140148179A (en) * | 2013-06-21 | 2014-12-31 | 삼성전자주식회사 | Semiconductor Package and method of fabricating the same |
US9595526B2 (en) | 2013-08-09 | 2017-03-14 | Apple Inc. | Multi-die fine grain integrated voltage regulation |
US9911689B2 (en) | 2013-12-23 | 2018-03-06 | Intel Corporation | Through-body-via isolated coaxial capacitor and techniques for forming same |
US20150201495A1 (en) * | 2014-01-14 | 2015-07-16 | Qualcomm Incorporated | Stacked conductive interconnect inductor |
JP2015135870A (en) * | 2014-01-16 | 2015-07-27 | 富士通株式会社 | Inductor device and manufacturing method for inductor device |
US10008316B2 (en) | 2014-03-28 | 2018-06-26 | Qualcomm Incorporated | Inductor embedded in a package substrate |
US9230944B1 (en) * | 2014-08-20 | 2016-01-05 | Intel Corporation | Techniques and configurations associated with a capductor assembly |
US9478490B2 (en) * | 2014-09-10 | 2016-10-25 | Qualcomm Incorporated | Capacitor from second level middle-of-line layer in combination with decoupling capacitors |
US10468381B2 (en) | 2014-09-29 | 2019-11-05 | Apple Inc. | Wafer level integration of passive devices |
WO2016089917A2 (en) | 2014-12-01 | 2016-06-09 | Endura Technologies LLC | Switched power stage with integrated passive components |
US9673173B1 (en) * | 2015-07-24 | 2017-06-06 | Altera Corporation | Integrated circuit package with embedded passive structures |
US9915978B2 (en) | 2015-09-21 | 2018-03-13 | Intel Corporaiton | Method of fabricating a stretchable computing device |
WO2017052667A1 (en) * | 2015-09-27 | 2017-03-30 | Intel Corporation | Metal on both sides of the transistor integrated with magnetic inductors |
US9627365B1 (en) * | 2015-11-30 | 2017-04-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tri-layer CoWoS structure |
US9852988B2 (en) | 2015-12-18 | 2017-12-26 | Invensas Bonding Technologies, Inc. | Increased contact alignment tolerance for direct bonding |
KR102556052B1 (en) * | 2015-12-23 | 2023-07-14 | 삼성전자주식회사 | System module and mobile computing device including the same |
US10483249B2 (en) | 2015-12-26 | 2019-11-19 | Intel Corporation | Integrated passive devices on chip |
US9954267B2 (en) * | 2015-12-28 | 2018-04-24 | Qualcomm Incorporated | Multiplexer design using a 2D passive on glass filter integrated with a 3D through glass via filter |
CN105489597B (en) | 2015-12-28 | 2018-06-15 | 华为技术有限公司 | System-in-package module component, system-in-package module and electronic equipment |
US9831148B2 (en) * | 2016-03-11 | 2017-11-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated fan-out package including voltage regulators and methods forming same |
WO2017217986A1 (en) * | 2016-06-15 | 2017-12-21 | Intel Corporation | Semiconductor package having inductive lateral interconnects |
US10249580B2 (en) * | 2016-06-22 | 2019-04-02 | Qualcomm Incorporated | Stacked substrate inductor |
US10446487B2 (en) | 2016-09-30 | 2019-10-15 | Invensas Bonding Technologies, Inc. | Interface structures and methods for forming same |
US10580735B2 (en) | 2016-10-07 | 2020-03-03 | Xcelsis Corporation | Stacked IC structure with system level wiring on multiple sides of the IC die |
KR102591624B1 (en) | 2016-10-31 | 2023-10-20 | 삼성전자주식회사 | Semiconductor packages |
TW202431592A (en) | 2016-12-29 | 2024-08-01 | 美商艾德亞半導體接合科技有限公司 | Bonded structures with integrated passive component |
US10276909B2 (en) | 2016-12-30 | 2019-04-30 | Invensas Bonding Technologies, Inc. | Structure comprising at least a first element bonded to a carrier having a closed metallic channel waveguide formed therein |
CN106847710B (en) * | 2017-03-03 | 2018-09-07 | 中芯长电半导体(江阴)有限公司 | It is integrated with the packaging method of the packaging part of power transmission system |
US10629577B2 (en) | 2017-03-16 | 2020-04-21 | Invensas Corporation | Direct-bonded LED arrays and applications |
WO2018183739A1 (en) * | 2017-03-31 | 2018-10-04 | Invensas Bonding Technologies, Inc. | Interface structures and methods for forming same |
EP3688803A4 (en) * | 2017-09-29 | 2021-05-12 | Intel Corporation | Device, system and method for providing inductor structures |
US11245329B2 (en) | 2017-09-29 | 2022-02-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Power module |
US10685947B2 (en) * | 2018-01-12 | 2020-06-16 | Intel Corporation | Distributed semiconductor die and package architecture |
US11169326B2 (en) | 2018-02-26 | 2021-11-09 | Invensas Bonding Technologies, Inc. | Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects |
US11515291B2 (en) | 2018-08-28 | 2022-11-29 | Adeia Semiconductor Inc. | Integrated voltage regulator and passive components |
KR102678311B1 (en) | 2018-08-30 | 2024-06-25 | 삼성전자주식회사 | electronic device including semiconductor package having package ball |
US11282632B2 (en) | 2018-10-09 | 2022-03-22 | Delta Electronics, Inc. | Power module |
EP3637445A1 (en) | 2018-10-09 | 2020-04-15 | Delta Electronics, Inc. | Voltage regulator module |
EP3637446A1 (en) * | 2018-10-09 | 2020-04-15 | Delta Electronics, Inc. | Voltage regulator module |
EP3864696A4 (en) | 2018-10-26 | 2021-12-08 | Huawei Technologies Co., Ltd. | DESIGN FOR EMBEDDED THIN FILM MAGNETIC INDUCER FOR APPLICATIONS WITH INTEGRATED VOLTAGE REGULATOR (IVR) |
US11217546B2 (en) | 2018-12-14 | 2022-01-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Embedded voltage regulator structure and method forming same |
KR102574231B1 (en) * | 2019-03-05 | 2023-09-06 | 가부시키가이샤 아이신 | semiconductor device |
US11901281B2 (en) | 2019-03-11 | 2024-02-13 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures with integrated passive component |
US11011466B2 (en) | 2019-03-28 | 2021-05-18 | Advanced Micro Devices, Inc. | Integrated circuit package with integrated voltage regulator |
TW202044678A (en) * | 2019-04-30 | 2020-12-01 | 美商山姆科技公司 | Power interposer with bypass capacitors |
US11863081B2 (en) | 2019-10-31 | 2024-01-02 | Dialog Semiconductor (Uk) Limited | Integrated voltage regulator with integrated air-core inductor |
US11762200B2 (en) | 2019-12-17 | 2023-09-19 | Adeia Semiconductor Bonding Technologies Inc. | Bonded optical devices |
US20230068300A1 (en) * | 2021-08-26 | 2023-03-02 | Intel Corporation | Packaging architecture for disaggregated integrated voltage regulators |
KR20230118406A (en) * | 2022-02-04 | 2023-08-11 | 삼성전자주식회사 | electronic device including interposer printed circuit board |
Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04211191A (en) | 1990-02-09 | 1992-08-03 | Hitachi Ltd | Substrate with built-in capacitor |
KR970009676A (en) | 1994-09-06 | 1997-03-27 | 히로스케 다카후지 | Height adjustable folding chair |
JP2002368428A (en) | 2001-06-11 | 2002-12-20 | Sony Corp | Board unit for high-frequency module, high-frequency module unit and their manufacturing methods |
JP2003123472A (en) | 2001-08-09 | 2003-04-25 | Matsushita Electric Ind Co Ltd | Semiconductor device |
US6777818B2 (en) | 2001-10-24 | 2004-08-17 | Intel Corporation | Mechanical support system for a thin package |
US6809421B1 (en) | 1996-12-02 | 2004-10-26 | Kabushiki Kaisha Toshiba | Multichip semiconductor device, chip therefor and method of formation thereof |
JP2005183890A (en) | 2003-12-24 | 2005-07-07 | Taiyo Yuden Co Ltd | Multilayer substrate, method of designing a plurality of kinds of multilayer substrates, and simultaneous sintering multilayer substrate |
US6930381B1 (en) | 2002-04-12 | 2005-08-16 | Apple Computer, Inc. | Wire bonding method and apparatus for integrated circuit |
JP2005223226A (en) | 2004-02-06 | 2005-08-18 | Murata Mfg Co Ltd | Composite multilayer substrate |
EP1610599A1 (en) | 2003-03-28 | 2005-12-28 | TDK Corporation | Multilayer substrate and method for producing same |
US20060063312A1 (en) * | 2004-06-30 | 2006-03-23 | Nec Electronics Corporation | Semiconductor device and method for manufacturing the same |
US20060071649A1 (en) | 2004-09-30 | 2006-04-06 | Gerhard Schrom | Apparatus and method for multi-phase transformers |
US20060071650A1 (en) | 2004-09-30 | 2006-04-06 | Narendra Siva G | CPU power delivery system |
WO2006039254A2 (en) | 2004-09-29 | 2006-04-13 | Actel Corporation | Face to face bonded i/o circuit die and functional logic circuit die system |
US20070010065A1 (en) * | 2005-07-05 | 2007-01-11 | Endicott Interconnect Technologies, Inc. | Method of making a capacitive substrate for use as part of a larger circuitized substrate, method of making said circuitized substrate and method of making an information handling system including said circuitized substrate |
US20070013080A1 (en) | 2005-06-29 | 2007-01-18 | Intel Corporation | Voltage regulators and systems containing same |
US20070045875A1 (en) | 2005-08-30 | 2007-03-01 | Micron Technology, Inc. | Methods for wafer-level packaging of microfeature devices and microfeature devices formed using such methods |
EP1761118A1 (en) | 2005-09-01 | 2007-03-07 | Ngk Spark Plug Co., Ltd | Wiring board and capacitor |
US20070114651A1 (en) | 2005-10-29 | 2007-05-24 | Stats Chippac Ltd. | Integrated circuit stacking system with integrated passive components |
US20070262132A1 (en) | 2006-05-12 | 2007-11-15 | Burton Edward A | Power control unit with digitally supplied system parameters |
US20080001698A1 (en) | 2006-06-29 | 2008-01-03 | Peter Hazucha | Integrated inductors |
US20080002380A1 (en) | 2006-06-29 | 2008-01-03 | Peter Hazucha | Integrated inductor |
US7378733B1 (en) | 2006-08-29 | 2008-05-27 | Xilinx, Inc. | Composite flip-chip package with encased components and method of fabricating same |
US20080169896A1 (en) | 2007-01-11 | 2008-07-17 | Fuji Electric Device Technology Co., Ltd. | Microminiature power converter |
US7435619B2 (en) | 2006-02-14 | 2008-10-14 | Stats Chippac Ltd. | Method of fabricating a 3-D package stacking system |
WO2008144573A2 (en) | 2007-05-16 | 2008-11-27 | Qualcomm Incorporated | Die stacking system and method |
EP2018092A1 (en) | 2006-05-08 | 2009-01-21 | Ibiden Co., Ltd. | Inductor and electric power source using same |
US20090309234A1 (en) * | 2007-09-28 | 2009-12-17 | International Business Machines Corporation | Semiconductor device and method of making semiconductor device |
US20090315167A1 (en) | 2007-01-11 | 2009-12-24 | Hideki Sasaki | Semiconductor device |
US20090322414A1 (en) * | 2008-06-30 | 2009-12-31 | Oraw Bradley S | Integration of switched capacitor networks for power delivery |
US20100033236A1 (en) | 2007-12-31 | 2010-02-11 | Triantafillou Nicholas D | Packaged voltage regulator and inductor array |
US7667320B2 (en) | 2004-04-26 | 2010-02-23 | Intel Corporation | Integrated circuit package with improved power signal connection |
US20100148344A1 (en) * | 2008-12-11 | 2010-06-17 | Harry Chandra | Integrated circuit package system with input/output expansion |
US20110050334A1 (en) | 2009-09-02 | 2011-03-03 | Qualcomm Incorporated | Integrated Voltage Regulator with Embedded Passive Device(s) |
JP2012502476A (en) | 2008-09-08 | 2012-01-26 | インテル・コーポレーション | Main board structure in which the package covers the die attached directly to the main board |
US8812879B2 (en) * | 2009-12-30 | 2014-08-19 | International Business Machines Corporation | Processor voltage regulation |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7001A (en) * | 1850-01-08 | Thomas Hoyt | Improvement in curing tobacco-stems | |
US6007A (en) * | 1849-01-09 | Improvement in plows | ||
JP5511119B2 (en) * | 2006-04-14 | 2014-06-04 | 株式会社リキッド・デザイン・システムズ | Interposer and semiconductor device |
JP2008251666A (en) * | 2007-03-29 | 2008-10-16 | Tohoku Univ | Three-dimensional structure semiconductor device |
US8270137B2 (en) | 2007-10-15 | 2012-09-18 | International Rectifier Corporation | Interposer for an integrated DC-DC converter |
JP5605978B2 (en) * | 2008-02-26 | 2014-10-15 | ピーエスフォー ルクスコ エスエイアールエル | Stacked memory |
JP5405785B2 (en) * | 2008-09-19 | 2014-02-05 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
US9048112B2 (en) | 2010-06-29 | 2015-06-02 | Qualcomm Incorporated | Integrated voltage regulator with embedded passive device(s) for a stacked IC |
-
2010
- 2010-06-29 US US12/825,937 patent/US9048112B2/en active Active
-
2011
- 2011-06-28 EP EP11738867.8A patent/EP2589079B1/en active Active
- 2011-06-28 WO PCT/US2011/042102 patent/WO2012003169A1/en active Application Filing
- 2011-06-28 CN CN201180028159.9A patent/CN102934227B/en active Active
- 2011-06-28 JP JP2013518554A patent/JP5854338B2/en active Active
- 2011-06-28 KR KR1020137002249A patent/KR101614132B1/en active IP Right Grant
-
2015
- 2015-05-04 US US14/703,240 patent/US9349692B2/en active Active
- 2015-11-25 JP JP2015229468A patent/JP6517131B2/en active Active
Patent Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04211191A (en) | 1990-02-09 | 1992-08-03 | Hitachi Ltd | Substrate with built-in capacitor |
KR970009676A (en) | 1994-09-06 | 1997-03-27 | 히로스케 다카후지 | Height adjustable folding chair |
US6809421B1 (en) | 1996-12-02 | 2004-10-26 | Kabushiki Kaisha Toshiba | Multichip semiconductor device, chip therefor and method of formation thereof |
JP2002368428A (en) | 2001-06-11 | 2002-12-20 | Sony Corp | Board unit for high-frequency module, high-frequency module unit and their manufacturing methods |
JP2003123472A (en) | 2001-08-09 | 2003-04-25 | Matsushita Electric Ind Co Ltd | Semiconductor device |
US6777818B2 (en) | 2001-10-24 | 2004-08-17 | Intel Corporation | Mechanical support system for a thin package |
US6930381B1 (en) | 2002-04-12 | 2005-08-16 | Apple Computer, Inc. | Wire bonding method and apparatus for integrated circuit |
EP1610599A1 (en) | 2003-03-28 | 2005-12-28 | TDK Corporation | Multilayer substrate and method for producing same |
US20060180342A1 (en) | 2003-03-28 | 2006-08-17 | Minoru Takaya | Multilayer substrate and method for producing same |
JP2005183890A (en) | 2003-12-24 | 2005-07-07 | Taiyo Yuden Co Ltd | Multilayer substrate, method of designing a plurality of kinds of multilayer substrates, and simultaneous sintering multilayer substrate |
JP2005223226A (en) | 2004-02-06 | 2005-08-18 | Murata Mfg Co Ltd | Composite multilayer substrate |
US7667320B2 (en) | 2004-04-26 | 2010-02-23 | Intel Corporation | Integrated circuit package with improved power signal connection |
US20060063312A1 (en) * | 2004-06-30 | 2006-03-23 | Nec Electronics Corporation | Semiconductor device and method for manufacturing the same |
JP2008515202A (en) | 2004-09-29 | 2008-05-08 | アクテル・コーポレイシヨン | Face-to-face bonded I / O circuit die and functional logic circuit system |
WO2006039254A2 (en) | 2004-09-29 | 2006-04-13 | Actel Corporation | Face to face bonded i/o circuit die and functional logic circuit die system |
US20060071650A1 (en) | 2004-09-30 | 2006-04-06 | Narendra Siva G | CPU power delivery system |
CN101031862A (en) | 2004-09-30 | 2007-09-05 | 英特尔公司 | Three dimensional packaging and voltage regulator/converter module of cpu |
US20060071649A1 (en) | 2004-09-30 | 2006-04-06 | Gerhard Schrom | Apparatus and method for multi-phase transformers |
US20070013080A1 (en) | 2005-06-29 | 2007-01-18 | Intel Corporation | Voltage regulators and systems containing same |
US20070010065A1 (en) * | 2005-07-05 | 2007-01-11 | Endicott Interconnect Technologies, Inc. | Method of making a capacitive substrate for use as part of a larger circuitized substrate, method of making said circuitized substrate and method of making an information handling system including said circuitized substrate |
US20070045875A1 (en) | 2005-08-30 | 2007-03-01 | Micron Technology, Inc. | Methods for wafer-level packaging of microfeature devices and microfeature devices formed using such methods |
EP1761118A1 (en) | 2005-09-01 | 2007-03-07 | Ngk Spark Plug Co., Ltd | Wiring board and capacitor |
US20070114651A1 (en) | 2005-10-29 | 2007-05-24 | Stats Chippac Ltd. | Integrated circuit stacking system with integrated passive components |
US7435619B2 (en) | 2006-02-14 | 2008-10-14 | Stats Chippac Ltd. | Method of fabricating a 3-D package stacking system |
EP2018092A1 (en) | 2006-05-08 | 2009-01-21 | Ibiden Co., Ltd. | Inductor and electric power source using same |
US20070262132A1 (en) | 2006-05-12 | 2007-11-15 | Burton Edward A | Power control unit with digitally supplied system parameters |
US20080001698A1 (en) | 2006-06-29 | 2008-01-03 | Peter Hazucha | Integrated inductors |
US20080002380A1 (en) | 2006-06-29 | 2008-01-03 | Peter Hazucha | Integrated inductor |
WO2008003008A2 (en) | 2006-06-29 | 2008-01-03 | Intel Corporation | Integrated inductor |
JP2010507225A (en) | 2006-06-29 | 2010-03-04 | インテル・コーポレーション | Integrated inductor |
US7378733B1 (en) | 2006-08-29 | 2008-05-27 | Xilinx, Inc. | Composite flip-chip package with encased components and method of fabricating same |
US20080169896A1 (en) | 2007-01-11 | 2008-07-17 | Fuji Electric Device Technology Co., Ltd. | Microminiature power converter |
US20090315167A1 (en) | 2007-01-11 | 2009-12-24 | Hideki Sasaki | Semiconductor device |
WO2008144573A2 (en) | 2007-05-16 | 2008-11-27 | Qualcomm Incorporated | Die stacking system and method |
US7872356B2 (en) | 2007-05-16 | 2011-01-18 | Qualcomm Incorporated | Die stacking system and method |
US20090309234A1 (en) * | 2007-09-28 | 2009-12-17 | International Business Machines Corporation | Semiconductor device and method of making semiconductor device |
US20100033236A1 (en) | 2007-12-31 | 2010-02-11 | Triantafillou Nicholas D | Packaged voltage regulator and inductor array |
US20090322414A1 (en) * | 2008-06-30 | 2009-12-31 | Oraw Bradley S | Integration of switched capacitor networks for power delivery |
JP2012502476A (en) | 2008-09-08 | 2012-01-26 | インテル・コーポレーション | Main board structure in which the package covers the die attached directly to the main board |
US20100148344A1 (en) * | 2008-12-11 | 2010-06-17 | Harry Chandra | Integrated circuit package system with input/output expansion |
US20110050334A1 (en) | 2009-09-02 | 2011-03-03 | Qualcomm Incorporated | Integrated Voltage Regulator with Embedded Passive Device(s) |
US20110215863A1 (en) | 2009-09-02 | 2011-09-08 | Qualcomm Incorporated | Integrated Voltage Regulator with Embedded Passive Device(s) |
US20120293972A1 (en) | 2009-09-02 | 2012-11-22 | Qualcomm Incorporated | Integrated Voltage Regulator Method with Embedded Passive Device(s) |
US8812879B2 (en) * | 2009-12-30 | 2014-08-19 | International Business Machines Corporation | Processor voltage regulation |
Non-Patent Citations (1)
Title |
---|
International Search Report and Written Opinion-PCT/US2011/042102, ISA/EPO-Sep. 8, 2011. |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11751350B2 (en) | 2002-10-22 | 2023-09-05 | Atd Ventures, Llc | Systems and methods for providing a robust computer processing unit |
US10849245B2 (en) | 2002-10-22 | 2020-11-24 | Atd Ventures, Llc | Systems and methods for providing a robust computer processing unit |
US9480162B2 (en) * | 2012-10-30 | 2016-10-25 | Intel Corporation | Circuit board with integrated passive devices |
US20150230338A1 (en) * | 2012-10-30 | 2015-08-13 | Intel Corporation | Circuit board with integrated passive devices |
US10056182B2 (en) | 2012-12-14 | 2018-08-21 | Intel Corporation | Surface-mount inductor structures for forming one or more inductors with substrate traces |
US12224096B2 (en) | 2013-03-15 | 2025-02-11 | Qorvo Us, Inc. | Advanced 3D inductor structures with confined magnetic field |
US11190149B2 (en) | 2013-03-15 | 2021-11-30 | Qorvo Us, Inc. | Weakly coupled based harmonic rejection filter for feedback linearization power amplifier |
US11177064B2 (en) | 2013-03-15 | 2021-11-16 | Qorvo Us, Inc. | Advanced 3D inductor structures with confined magnetic field |
US10965258B2 (en) | 2013-08-01 | 2021-03-30 | Qorvo Us, Inc. | Weakly coupled tunable RF receiver architecture |
US10615133B2 (en) | 2013-09-27 | 2020-04-07 | Intel Corporation | Die package with superposer substrate for passive components |
US20170231085A1 (en) * | 2014-09-26 | 2017-08-10 | Murata Manufacturing Co., Ltd. | High-frequency component |
US10912188B2 (en) * | 2014-09-26 | 2021-02-02 | Murata Manufacturing Co., Ltd. | High-frequency component |
US10796835B2 (en) * | 2015-08-24 | 2020-10-06 | Qorvo Us, Inc. | Stacked laminate inductors for high module volume utilization and performance-cost-size-processing-time tradeoff |
US20170062119A1 (en) * | 2015-08-24 | 2017-03-02 | Qorvo Us, Inc. | Stacked laminate inductors for high module volume utilization and performance-cost-size-processing-time tradeoff |
US11139238B2 (en) | 2016-12-07 | 2021-10-05 | Qorvo Us, Inc. | High Q factor inductor structure |
US10424536B2 (en) * | 2017-05-15 | 2019-09-24 | Schweizer Electronic Ag | Electronic component having a lead frame consisting of an electrically conductive material |
US11387810B2 (en) * | 2018-12-21 | 2022-07-12 | Murata Manufacturing Co., Ltd. | High-frequency module |
US11721677B2 (en) * | 2018-12-27 | 2023-08-08 | Intel Corporation | Microelectronic assemblies having an integrated capacitor |
US12087746B2 (en) | 2018-12-27 | 2024-09-10 | Intel Corporation | Microelectronic assemblies having an integrated capacitor |
US11537154B2 (en) | 2020-12-09 | 2022-12-27 | Samsung Electronics Co., Ltd. | Mobile devices and methods controlling power in mobile devices |
Also Published As
Publication number | Publication date |
---|---|
KR101614132B1 (en) | 2016-04-20 |
EP2589079A1 (en) | 2013-05-08 |
JP5854338B2 (en) | 2016-02-09 |
EP2589079B1 (en) | 2018-03-28 |
US20110317387A1 (en) | 2011-12-29 |
KR20130047734A (en) | 2013-05-08 |
JP2016029744A (en) | 2016-03-03 |
WO2012003169A1 (en) | 2012-01-05 |
JP2013531385A (en) | 2013-08-01 |
CN102934227B (en) | 2015-12-09 |
US20150235952A1 (en) | 2015-08-20 |
US9349692B2 (en) | 2016-05-24 |
JP6517131B2 (en) | 2019-05-22 |
CN102934227A (en) | 2013-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9349692B2 (en) | Integrated voltage regulator with embedded passive device(s) for a stacked IC | |
US8692368B2 (en) | Integrated voltage regulator method with embedded passive device(s) | |
US20230299668A1 (en) | Power management system switched capacitor voltage regulator with integrated passive device | |
US11373966B2 (en) | Embedded thin-film magnetic inductor design for integrated voltage regulator (IVR) applications | |
US9101068B2 (en) | Two-stage power delivery architecture | |
US11417637B2 (en) | Stacked decoupling capacitors with integration in a substrate | |
WO2010059724A2 (en) | Capacitor die design for small form factors | |
US20100327433A1 (en) | High Density MIM Capacitor Embedded in a Substrate | |
US8803305B2 (en) | Hybrid package construction with wire bond and through silicon vias | |
US20150255142A1 (en) | Compact System with Memory and PMU Integration | |
US8691707B2 (en) | Voltage switchable dielectric for die-level electrostatic discharge (ESD) protection | |
US20220216154A1 (en) | Semiconductor structure | |
US11848656B2 (en) | Anti-resonance structure for dampening die package resonance | |
US11462521B2 (en) | Multilevel die complex with integrated discrete passive components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: QUALCOMM INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PAN, YUANCHENG CHRISTOPHER;SWEENEY, FIFIN;CHUA-EOAN, LEW G.;AND OTHERS;SIGNING DATES FROM 20100216 TO 20100611;REEL/FRAME:024610/0222 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: QUALCOMM INCORPORATED, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT ADDITION OF 6TH INVENTOR NAME PREVIOUSLY RECORDED AT REEL: 024610 FRAME: 0222. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:PAN, YUAN CHRIS;SWEENEY, FIFI;CHUA-EOAN, LEW G;AND OTHERS;SIGNING DATES FROM 20150623 TO 20150716;REEL/FRAME:036777/0387 |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |