US8926959B2 - System for optical stimulation of target cells - Google Patents
System for optical stimulation of target cells Download PDFInfo
- Publication number
- US8926959B2 US8926959B2 US11/651,422 US65142207A US8926959B2 US 8926959 B2 US8926959 B2 US 8926959B2 US 65142207 A US65142207 A US 65142207A US 8926959 B2 US8926959 B2 US 8926959B2
- Authority
- US
- United States
- Prior art keywords
- light
- polypeptide
- emitting device
- nucleic acid
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/062—Photodynamic therapy, i.e. excitation of an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/177—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0058—Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0075—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0083—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the administration regime
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0622—Optical stimulation for exciting neural tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/065—Light sources therefor
- A61N2005/0651—Diodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/82—Proteins from microorganisms
- Y10S530/825—Bacteria
Definitions
- the present invention relates generally to systems and approaches for stimulating target cells, and more particularly to using an optical device to stimulate the target cells.
- the stimulation of various cells of the body has been used to produce a number of beneficial effects.
- One method of stimulation involves the use of electrodes to introduce an externally generated signal into cells.
- One problem faced by electrode-based brain stimulation techniques is the distributed nature of neurons responsible for a given mental process. Conversely, different types of neurons reside close to one another such that only certain cells in a given region of the brain are activated while performing a specific task. Alternatively stated, not only do heterogeneous nerve tracts move in parallel through tight spatial confines, but the cell bodies themselves may exist in mixed, sparsely embedded configurations. This distributed manner of processing seems to defy the best attempts to understand canonical order within the CNS, and makes neuromodulation a difficult therapeutic endeavor.
- Electrodes are relatively indiscriminate with regards to the underlying physiology of the neurons that they stimulate. Instead, physical proximity of the electrode poles to the neuron is often the single largest determining factor as to which neurons will be stimulated. Accordingly, it is generally not feasible to absolutely restrict stimulation to a single class of neuron using electrodes.
- Electrodes for stimulation Another issue with the use of electrodes for stimulation is that because electrode placement dictates which neurons will be stimulated, mechanical stability is frequently inadequate, and results in lead migration of the electrodes from the targeted area. Moreover, after a period of time within the body, electrode leads frequently become encapsulated with glial cells, raising the effective electrical resistance of the electrodes, and hence the electrical power delivery required to reach targeted cells. Compensatory increases in voltage, frequency or pulse width, however, may spread of electrical current may increase the unintended stimulation of additional cells.
- Another method of stimulus uses photosensitive bio-molecular structures to stimulate target cells in response to light.
- light activated proteins can be used to control the flow of ions through cell membranes.
- the cell By facilitating or inhibiting the flow of positive or negative ions through cell membranes, the cell can be briefly depolarized, depolarized and maintained in that state, or hyperpolarized.
- Neurons are an example of a type of cell that uses the electrical currents created by depolarization to generate communication signals (i.e., nerve impulses).
- Other electrically excitable cells include skeletal muscle, cardiac muscle, and endocrine cells. Recently discovered techniques allow for stimulation of cells resulting in the rapid depolarization of cells (e.g., in the millisecond range).
- Such techniques can be used to control the depolarization of cells such as neurons.
- Neurons use rapid depolarization to transmit signals throughout the body and for various purposes, such as motor control (e.g., muscle contractions), sensory responses (e.g., touch, hearing, and other senses) and computational functions (e.g., brain functions).
- motor control e.g., muscle contractions
- sensory responses e.g., touch, hearing, and other senses
- computational functions e.g., brain functions
- the control of the depolarization of cells can be beneficial for a number of different purposes, including (but not limited to) psychological therapy, muscle control and sensory functions.
- ChR2 blue-light-activated ion channel channelrhodopsin-2
- Ca++ calcium-mediated neural depolarization
- Other applicable light-activated ion channels include halorhodopsin (NpHR), in which amber light affects chloride (Cl ⁇ ) ion flow so as to hyperpolarize neuronal membrane, and make it resistant to firing.
- the claimed invention is directed to photosensitive bio-molecular structures and related methods.
- the present invention is exemplified in a number of implementations and applications, some of which are summarized below.
- an implantable arrangement having a light-generation device for generating light.
- the arrangement also has a biological portion that modifies target cells for stimulation in response to light generated by the light-generation means in vivo.
- target cells are stimulated using an implantable arrangement.
- the arrangement includes an electrical light-generation means for generating light and a biological portion.
- the biological portion has a photosensitive bio-molecular arrangement that responds to the generated light by stimulating target cells in vivo. Stimulation may be manifest as either up-regulation, or down-regulation of activity at the target.
- an implantable device delivers gene transfer vector, such as a virus, which induces expression of photosensitive bio-molecular membrane proteins.
- the device has a light generator, responsive to (for example, charged by or triggered by) an external signal, to generate light and a biological arrangement that includes the photosensitive bio-molecular protein that responds to the generated light by interacting with target cells in vivo.
- the electronic portions of the device may be used to optically stimulate target cells. Stimulation may be manifest as either upregulation (e.g. increased neuronal firing activity), or downregulation (e.g. neuronal hyperpolarization, or alternatively, chronic depolarization) of activity at the target.
- a method for stimulating target cells using photosensitive proteins that bind with the target cells.
- the method includes a step of implanting the photosensitive proteins and a light generating device near the target cells.
- the light generating device is activated and the photosensitive protein stimulates the target cells in response to the generated light.
- Applications include those associated with any population of electrically-excitable cells, including neurons, skeletal, cardiac, and smooth muscle cells, and insulin-secreting pancreatic beta cells.
- Major diseases with altered excitation-effector coupling include heart failure, muscular dystrophies, diabetes, pain, cerebral palsy, paralysis, depression, and schizophrenia. Accordingly, the present invention has utility in the treatment of a wide spectrum of medical conditions, from Parkinson's disease and brain injuries to cardiac dysrhthmias, to diabetes, and muscle spasm.
- FIG. 1 shows a block diagram of a system for stimulating target cells, according to an example embodiment of the present invention
- FIG. 2 shows a block diagram of an implantable device for stimulating target cells, according to an example embodiment of the present invention
- FIG. 3 shows a block diagram of an implantable device, according to an example embodiment of the present invention
- FIG. 4A shows a block diagram of an implantable device, according to an example embodiment of the present invention.
- FIG. 4B shows a circuit diagram corresponding to the block diagram of FIG. 4A , according to an example embodiment of the present invention
- FIG. 5A and FIG. 5B show a diagram of a mesh for containing photosensitive bio-molecules, according to an example embodiment of the present invention
- FIG. 6A and FIG. 6B show a diagram of a viral matrix, according to an example embodiment of the present invention.
- FIG. 7 shows a circuit diagram of a circuit that produces light in response to a magnetic field, according to an example embodiment of the present invention
- FIG. 8A-8C show a block diagram and circuits for the production of light in response to a RF signal, according to an example embodiment of the present invention
- FIG. 9A and FIG. 9B each show a diagram of a fiber-optic device, according to an example embodiment of the present invention.
- FIGS. 10A-10D depict various stages in the production of a photosensitive biological portion, according to an example embodiment of the present invention.
- FIG. 11 shows an implantation device, according to an example embodiment of the present invention.
- FIG. 12A and FIG. 12B show a diagram for another implantation device, according to an example embodiment of the present invention.
- the present invention is believed to be useful for enabling practical application of a variety of photosensitive bio-molecular structures, and the invention has been found to be particularly suited for use in arrangements and methods dealing with neuron stimulation. While the present invention is not necessarily limited to such applications, various aspects of the invention may be appreciated through a discussion of various examples using this context.
- target cells are stimulated using an implantable arrangement.
- the implantable arrangement includes a biological portion that facilitates the stimulation of the target cells in response to receipt of light.
- the implantable arrangement also includes a light generator for creating light to trigger the stimulus of the target cells.
- a method for stimulating target cells in vivo using gene transfer vectors (for example, viruses) capable of inducing photosensitive ion channel growth (for example, ChR2 ion channels).
- the vectors are implanted in the body, along with the electronic components of the apparatus.
- a light producing device is implanted near the target cells.
- the target cells are stimulated in response to light generated by the light producing device.
- stimulation of a target cell is generally used to describe modification of properties of the cell.
- the stimulus of a target cell may result in a change in the properties of the cell membrane that can lead to the depolarization or polarization of the target cell.
- the target cell is a neuron and the stimulus affects the transmission of impulses by facilitating or inhibiting the generation of impulses by the neuron.
- the target cells are neurons located in the brain of a mammal.
- the target cells are genetically modified to express photosensitive bio-molecular arrangement, for example, ChR2 ion channels.
- Light can then be used to stimulate the neurons.
- different objectives can be achieved. For instance, current techniques for deep brain stimulus (DBS) use electrodes to apply a current directly to the targeted area of the brain.
- DBS deep brain stimulus
- the frequency of the electrical stimulus is sometimes referred to as either low-frequency DBS or high-frequency DBS.
- high-frequency DBS inhibits the generation of impulses from the stimulated cells
- low-frequency DBS facilitates the generation of impulses from the stimulated cells.
- the frequencies that produce the effects of high-frequency of low-frequency DBS have also been shown to vary depending upon the specific area of the brain being stimulated.
- the neurons are stimulated using electrodes supplying current pulses at frequencies around 100 Hz or more. Such a frequency has been shown to be effective in certain applications, as discussed further herein.
- DBS DBS is often applied to the globus pallidus interna, or the subthalamic nucleus within a patient's brain.
- a light flashing light can be used in place of electrodes.
- the targeted neuron cells and external electrical signal need not be directly applied to the targeted cells.
- light can often travel from its point of origin farther than electricity, thereby increasing the effective area relative to the stimulation source and only those neurons that have been photosensitized are stimulated.
- one embodiment of the present invention can be implemented using high-frequency DBS to inhibit neuron generated impulses. While high-frequency DBS has been accomplished at frequencies around 100 Hz, high-frequency DBS using various embodiments of the present invention may not necessarily require the same frequency. For instance, it may be possible to reproduce the inhibiting effects of high-frequency DBS at lower frequencies (e.g., 50 Hz) when using light activated techniques. For example, activation of the halorhodopsin (NpHR) channel intrinsically favors hyperpolarization and resistance to action potential generation. Also, a light-sensitive ion channel may recover more slowly than naturally occurring mammalian ion channels, thus slowing the repolarization (and hence overall reactivity) of a neuron. Thus, various frequencies can be used depending upon the particular application (e.g., the targeted portion of the brain and the desired effect), and the stimulation modality being applied.
- the particular application e.g., the targeted portion of the brain and the desired effect
- gene transfer vectors inducing the expression of photosensitive bio-molecules are used to target a specific type of cell.
- viral-based proteins e.g., lentiviruses or retroviruses
- the targeted cells are then infected by the viral-based gene-transfer proteins, and begin to produce a new type of ion channel (for example ChR2), thereby becoming photosensitive.
- This can be particularly useful for stimulating the targeted cells without stimulating other cells that are in proximity to the targeted cells.
- neurons of disparate length, diameter, chronaxie, other membrane properties, electrical insulation, neurotransmitter output, and overall function lie in close proximity to one another, and thus, can be inadvertently stimulated when using electrodes to provide the stimulation of the neurons.
- U.S. patent application Ser. No. 11/459,636 filed on Jul. 24, 2006 which is fully incorporated herein by reference.
- FIG. 1 shows a block diagram of a system for stimulating target cells, according to an example embodiment of the present invention.
- Block 102 represents a location internal to an organism (e.g., a mammal), as shown by the in vivo designation.
- Light generator 104 is an implantable device that generates light in vivo.
- the photosensitive biological portion 106 affects the target cells such that generated light strikes causes stimulation of the target.
- the light generator 104 is a small electronic device on the order of a few millimeters in size. The small size is particularly useful for minimizing the intrusiveness of the device and associated implantation procedure.
- the light generator 104 may include a fiber optic device that can be used to transmit light from an external source to the target cells.
- the target cells are modified to contain light-activated ion channel proteins.
- a specific example of such protein is channelrhodopsin-3 (ChR2), which is a product based upon green alga Chalamydomanas reinhardtii.
- Example methods include, but are not limited to, the use of various delivery devices, such as gelatin capsules, liquid injections and the like. Such methods also include the use of stereotactic surgery techniques such as frames or computerized surgical navigation systems to implant or otherwise access areas of the body.
- FIG. 2 shows a block diagram of an implantable device for stimulating target cells, according to an example embodiment of the present invention.
- the figure includes control circuit 208 , light source 206 , biological portion 204 and target cells 202 .
- Biological portion 204 affects the target cells 202 such that the target cells are stimulated in response to light
- biological portion 204 may be composed of target cells 202 that have been modified to be photosensitive.
- biological portion 204 may contain biological elements such as gene transfer vectors, which cause target cells 202 to become sensitive to light.
- biological elements such as gene transfer vectors, which cause target cells 202 to become sensitive to light.
- the control circuit 208 can be arranged to respond to an external signal by activating, or deactivating light source 206 , or by charging the battery that powers light source 206 .
- the external signal is electromagnetic radiation that is received by control circuit 208 .
- radio frequency (RF) signals can be transmitted by an external RF transmitter and received by control circuit 208 .
- a magnetic field can be used to activate and/or power the control circuit.
- Control circuit 208 can be implemented using varying degrees of complexity.
- the circuit is a simple coil that when exposed to a magnetic field generates a current. The current is then used to power light source 206 .
- control circuit 208 can include an RF antenna.
- a battery or similar power source such as a capacitive element, can be used by control circuit 208 . While charged, the power source allows the circuitry to continue to operate without need for concurrent energy delivery from outside the body. This can be particularly useful for providing precise control over the light emitted by light source 206 and for increased intensity of the emitted light.
- light source 206 is implemented using a light-emitting-diode (LED). LEDs have been proven to be useful for low power applications and also to have a relatively fast response to electrical signals.
- LEDs have been proven to be useful for low power applications and also to have a relatively fast response to electrical signals.
- biological portion 204 includes a gelatin or similar substance that contains gene transfer vectors which genetically code the target cells for photosensitivity.
- the vectors are released once implanted into the body. This can be accomplished, for example, by using a containment material that allows the vectors to be released into aqueous solution (e.g., using dehydrated or water soluble materials such as gelatins). The release of the vectors results in the target cells being modified such that they are simulated in response to light from light source 206
- the biological portion 204 includes a synthetic mesh that contains the photosensitive cells.
- the cells are neurons that have been modified to be photosensitive.
- the synthetic mesh can be constructed so as to allow the dendrites and axons to pass through the mess without allowing the entire neuron (e.g., the cell body) to pass.
- One example of such a mesh has pores that are on the order of 3-7 microns in diameter and is made from polyethylene terephthalate.
- the biological portion 204 includes an injection mechanism as discussed in further detail herein.
- FIG. 3 shows a block diagram of an implantable device, according to an example embodiment of the present invention.
- the implantable device of FIG. 3 is responsive to a field magnetic. More specifically, an inductor constructed from windings 302 and core 304 generates a current/voltage in response to a magnetic field. The current is passed to control circuit 310 through conductive path 306 . In response, control circuit 310 activates light source 312 using conductive path 308 . Light source 312 illuminates biological portion 314 in order to stimulate the target cells.
- biological portion 314 includes a gelatin, synthetic mesh or injection mechanism as discussed in further detail herein.
- control portion can be a simple electrical connection, resistive element, or can be removed completely.
- the intensity, duration and frequency of light generated would be directly controlled by the current generated from a magnetic field. This can be particularly useful for creating inexpensive, long lasting and small devices. An example of such an embodiment is discussed further in connection with FIG. 4A and FIG. 4B .
- control portion can be implemented as a more complex circuit.
- control circuit may include and otherwise implement different rectifier circuits, batteries, pulse timings, comparator circuits and the like.
- control circuit includes an integrated circuit (IC) produced using CMOS or other processes. Integrated circuit technology allows for the use of a large number of circuit elements in a very small area, and thus, a relatively complex control circuit can be implemented for some applications.
- IC integrated circuit
- the inductor ( 302 and 304 ) is a surface mount inductor, such as a 100 uH inductor part number CF1008-103K supplied by Gowanda Electronics Corp.
- the light generating portion is a blue LED, such as LEDs in 0603 or 0805 package sizes.
- a particular example is a blue surface mount LED having part number SML0805, available from LEDtronics, Inc (Torrance, Calif.).
- Connective paths 306 and 308 can be implemented using various electrical conductors, such as conductive epoxies, tapes, solder or other adhesive materials. LEDs emitting light in the amber spectrum (as applicable to NpHR channels) are available through commercial sources including this same manufacturer.
- FIG. 4A shows a block diagram of an implantable device, according to an example embodiment of the present invention.
- FIG. 4A shows an inductor comprising coils 402 and core 404 connected to LED 408 using conductive paths shown by 406 .
- FIG. 4B shows a circuit diagram corresponding to the block diagram of FIG. 4A .
- Inductor 412 is connected in parallel to LED 410 .
- current and voltage generated by changing a magnetic field seen at inductor 412 causes LED 410 to produce light.
- the frequency and strength of the changing magnetic field can be varied to produce the desired amount and periodicity of light from LED 410 .
- FIG. 5A and FIG. 5B show a diagram of a mesh for containing photosensitive bio-molecules, according to an example embodiment of the present invention.
- Mesh 502 is constructed having holes 504 of a size that allows illumination to pass but is small enough to prevent cells 506 to pass. This allows for cells 506 to be implanted while still receiving light from a light generator.
- the cells 506 are stem cells that are modified to be photosensitive.
- the stem cells are allowed to mature as shown by FIG. 5B .
- the stem cells mature into neurons having a cell body 512 , axons/dendrites 508 and 510 .
- the neurons are genetically modified to be photosensitive.
- Holes 504 are on the order of 3-7 microns in diameter. This size allows some axons and dendrites to pass through holes 504 , while preventing the cell body 512 to pass.
- FIG. 6A and FIG. 6B show a diagram of a viral matrix, according to an example embodiment of the present invention.
- the viral matrix includes structure 602 , which contains viral vectors 604 .
- structure 602 includes a gel or fluid substance that contains viral vectors 604 until they are implanted in a mammal 606 . Once viral vectors 604 are released, they infect target cells 608 in the vicinity of the implanted viral matrix as shown by FIG. 6B . Infected target cell 610 becomes photosensitive, and thus, light can be used to control the stimulation of target cell 610 .
- structure 602 is a gelatin that has been impregnated, or otherwise sealed with viral vectors 604 contained within the gelatin.
- the gelatin When structure 602 is implanted, the gelatin is hydrated and or dissolved, thereby releasing viral vectors 604 .
- Standard commercially available gelatin mix may be used, in addition to compounds such as Matrigel by BD Biosciences division of Becton Dickenson and Company (Franklin Lakes, N.J.)
- FIG. 7 shows a circuit diagram of a circuit that produces light in response to a magnetic field, according to an example embodiment of the present invention.
- FIG. 7 includes an input circuit 720 and an output circuit 730 .
- Inductor 704 generates current in response to magnetic field 702 . Due to properties of magnetic fields, the current produced by inductor 704 is an alternating current (AC) signal.
- Full-wave bridge rectifier 706 rectifies the AC signal and along with an RC circuit generates a relatively stable voltage from the AC signal. This generated voltage is responsive to magnetic field 702 and output circuit 730 generates light when the generated voltage is at a sufficient level. More specifically, power from battery 708 is used to drive LED 710 in response to magnetic field 702 . This is particularly useful for applications where the magnetic field 702 seen by inductor 704 is less powerful (e.g., due to the in vivo location of inductor 704 ).
- FIG. 8A shows a circuit diagram of a circuit that produces light in response to RF signal 801 , according to an example embodiment of the present invention.
- Antenna 802 is used to receive RF transmission 801 and convert the signal to electricity.
- the received transmission is rectified by diode 803 and further filtered by capacitor 805 .
- diode 803 can be implemented using a diode having a low forward bias and fast switching capabilities, such as a Schottky diode.
- RF transmission 801 contains a power component for charging battery 815 and a signal component for controlling LED 825 .
- Capacitor 805 can be selected to separate these components for use by the circuit.
- the power component may be a relatively low-frequency, large-amplitude signal, while the signal component is a relatively high-frequency, small-amplitude signal.
- Capacitor 805 can be selected to filter the power component of the signal to create a corresponding voltage. The remaining the high-frequency component of the RF transmission is added to this voltage.
- the power component of the transmission can then be used to charge on the battery 815 , and the signal component of the transmission is used to enable LED 825 .
- the light generated by LED 825 to triggers stimulus of the target cells 827 .
- FIG. 8B illustrates an alternative embodiment radio-frequency energy accumulator, which charges a battery, which in turn, powers a digital pulse generator, which powers a LED.
- An electromagnetic signal 850 is received by loop antenna 852 generating a corresponding electrical signal.
- the voltage generated from loop antenna 852 is limited by the reverse bias voltage of the diodes 855 and 856 and stored in capacitor 854 . In a particular instance these diodes have a low reverse bias voltage that is relatively precise, such as a Zener diode.
- Electromagnetic signal 850 is rectified via diode rectifier bridge 858 and filtered by voltage regulator 859 to produce a DC voltage. The DC can be used to charge power source 860 .
- Battery 860 is coupled to the input of Schmidt trigger 865 through capacitor 862 .
- Feedback from the output of the Schmidt trigger is provided through resistor 864 relative to the charge on capacitor 863 .
- the frequency of the square-wave output of Schmidt trigger 865 is determined by the values of the resistor-capacitor network including capacitor 863 and resistor 864 . Resistor 864 and capacitor 863 may be fixed or variable.
- the output of Schmidt trigger 865 is fed through digital inverter 867 which powers LED 866 . Light from LED 866 is transmitted to light-sensitive neurons 868 relative to the frequency of the square-wave output of Schmidt trigger 865 .
- FIG. 8C illustrates block diagram for an electromagnetic filed (EMF) energy accumulator and pulsing approach in which the received EMF 897 (for example radiofrequency energy) includes not only energy for accumulation, but also an encoded signal regarding instructions to microcontroller 895 .
- EMF electromagnetic filed
- step 885 Energy plus Parameter Control Signal: Encoding and transmission
- a control instruction signal is encoded to ride upon the energy component by methods known in the art, for example, by frequency modulation.
- Energy receiver block 890 uses a portion of the EMF signal to provide power to block 893 .
- Control signal receiver block 891 uses a portion of the EMF signal to provide control instructions to microcontroller block 895 .
- the control instruction can be used to transmit information regarding the various parameters of the generated light, such as frequency, strength, duration, color, and the like. These instructions can be decoded and processed using a microcontroller or logic circuitry as shown by block 895 .
- Block 895 can generate control signal(s) in response to the decoded instructions. Accordingly, the frequency (and other parameters) of the light generated by LED 896 rate need not be fixed for the given implanted device.
- Antenna 889 delivers input to the Energy Receiver 890 (providing power to voltage regulator and battery circuitry 893 ). Concurrently, antenna 889 delivers encoded data to Control Signal Receiver 891 , which provides control input to microcontroller 895 that drives LED 896 . Selected wavelength light 897 is then delivered to electrically excitable cell 898 .
- the battery in the voltage regulator and battery circuitry 893 provides power to the microcontroller 895 and the Control Signal Receiver 891 .
- FIG. 7 and FIGS. 8A , 8 B and 8 C are merely illustrative of a few particular embodiments of the present invention, and various other implementations are envisioned.
- particular embodiments implement a light source that uses a blue LED; however, other colors and light sources can be implemented depending upon the particular application.
- FIG. 9A and FIG. 9B each show a diagram of a fiber-optic device, according to an example embodiment of the present invention.
- the fiber-optic device includes a control portion 908 , a light generator 906 and a fiber optic cable 902 .
- Fiber optic cable 902 can be positioned near a photosensitive biological portion, such as a viral matrix or synthetic mesh as discussed herein. This allows for control portion 908 and light generator 906 to be located at a distance from the target cells 910 (e.g., at a distance corresponding to the length of fiber-optic cable 902 ). This can be particularly useful for minimizing the size of the portion of the implanted device that is near the target cells, for example, where the target cells are located at or near a sensitive location within the brain. In some instances, the remote location of portions 908 and 906 also facilitates modifications of the device, including, but not limited to, replacement of various components (e.g., batteries), changes in stimulation frequency and length.
- various components e.g., batteries
- Control portion 908 can be configured to respond to an external signal, such as magnetic field or RF signals. Alternatively, control portion 908 can be configured to enable light generator 906 according to a programmed schedule or a combination of an external signal and a programmed response.
- an external signal such as magnetic field or RF signals.
- control portion 908 can be configured to enable light generator 906 according to a programmed schedule or a combination of an external signal and a programmed response.
- FIGS. 10A-10D depict various stages in the production of a photosensitive biological portion, according to an example embodiment of the present invention. More specifically, FIG. 10A shows molding structure 1004 having several molds 1002 . Molds 1002 are constructed to various sizes depending upon the particular application. In one such application, the molds are a few millimeters or less in diameter.
- FIG. 10B shows the molds 1002 from FIG. 10A after applying a layer of gelatin or similar substance as shown by 1006 and 1008 .
- viral vectors (shown by ‘v’) are in the upper two molds. These viruses may be suspended within media 1012 , which may be a liquid or gelatinous media. Such liquids include normal saline, HEPES-buffered saline and other known viral sustenance and transfer media. Suitable gelatinous media includes Matrigel (BD Biosciences, San Jose Calif.) These viral vectors are designed transfer genes for light-sensitization to the membranes of targeted cells after implantation.
- FIG. 10C shows a side view of mold 1006 .
- 1016 represents the molding structure that forms the shape of gelatin layer 1014 .
- Gelatin layer 1014 traps viral vectors contained within media 1012 .
- a top gelatin layer 1010 is applied to fully contain the viral vectors.
- FIG. 10D shows the resulting viral vector capsule.
- the viral vectors 1018 are contained within area 1022 by casing 1020 .
- Casing 1020 can be designed to dissolve or otherwise allow viral vectors 1018 to disseminate towards the target cells once implanted.
- the capsule is constructed of a water soluble material, for example, gelatin, so that upon implantation the viral vectors are allowed to escape into the body. Water soluble capsule materials are well known in the pharmaceutical industry.
- FIG. 11 shows an implantation device, according to an example embodiment of the present invention.
- Biological portion 1102 and light generation device 1108 are implanted using the implantation device.
- the shaft of the device 1114 is positioned near the target cells.
- a user of the device presses on portion 1116 which causes portion 1112 to place biological portion 1102 and light generation device 1108 near the target cells.
- the implantation device can then be removed.
- FIG. 12A and FIG. 12B show a diagram for another implantation device, according to an example embodiment of the present invention.
- Implantable light generating device 1204 is surrounded by, and permeated by fluid channels 1202 .
- Fluid channels 1202 allow a solution 1210 containing bio-molecular material (e.g., photosensitizing viral vectors) to be injected immediately proximal to light generating device 1204 and the target cells.
- the fluid channels can be located outside of device 1204 and/or within device 1204 , as shown by 1212 and 1214 respectively.
- the viral vectors can be injected in large quantities or over a period of time. For instance, cells infected by viral vectors can revert back to their pre-infection state after a period of time.
- the viral vectors can be periodically reintroduced to the target cells.
- different viral vectors can be introduced through the fluid channels, allowing for targeting of different cells at the implantation site. This can be particularly useful for staged treatment through stimulation of different types of cells.
- a specific embodiment of the present invention relates to a method for genetically modifying neurons to express light-sensitive ion channel ChannelRhodopsin (ChR2).
- ChR2 light-sensitive ion channel ChannelRhodopsin
- pulses of blue light causes ChR2 neurons to fire action potentials corresponding to each pulse.
- Depolarization and repolarization occur on a millisecond timescale making this method consistent with normal network neurophysiology.
- ChR2 a cell membrane ion channel, known as “Channelrhodopsin 2”, or “ChR2”.
- ChR2 resides on the cellular membrane of unicellular green algae Chlamydormas reinhardtii . Upon absorption of blue light (470-480 nm), this ion channel briefly opens, allowing cation influx.
- a neuronal-type specific feature which is also a robust promoter (for example, CaMKII ⁇ ) is inserted adjacent to the ChR2 code within the virus, and the line is propagated by calcium-phosphate cotransfection of 293FT cells. The supernatant is then centrifuged into viral pellets, which are placed within phosphate-buffered saline.
- ChR2 when coupled with retinal, or Chop-2 for the gene
- Chlamydomonas reinhardtii can be used to impart fast photosensitivity upon mammalian nerve cells, by using a viral vector to insert the gene for ChR2 into targeted nerve cells which may subsequently express this gene.
- ChR2 is a seven-transmembrane protein with a molecule of all-trans retinal (ATR) bound at the core as a photosensor.
- ChR2 Upon illumination with approximately 470 nm blue light, ATR isomerizes and triggers a conformational change to open the channel pore.
- ChR2 is a light-sensitive ion channel, it allows an inward current to be evoked within 50 ⁇ s of illumination. Combining ChR2 with ultrafast light switching it is possible to activate neurons at the temporal precision of single action potentials, reliably over sustained multiple action potential trains.
- NpHR bacterial light-gated chloride channel halorhodopsin
- Excitable cells distinguish inputs in part based on their temporal properties, channel recruitment patterns and amplitude or polarity characteristics.
- temporal properties glutamate uncaging and ChR2 achieve responses on the millisecond time scale. Such responses are well suited for photostimulating pathways triggered by fast synaptic events and action potentials.
- channel recruitment patterns glutamate uncaging directly activates native glutamate receptors and so may achieve physiological spatial patterns of subcellular excitation.
- the other photostimulation methods via depolarization, will recruit native voltage-activated channels such as voltage-dependent calcium, sodium and potassium channels, and thereby activate native, spatially sensitive signaling pathways.
- channels could be activated experimentally so that populations can be labeled via stereotactic injection of viruses that effect retrograde axonal transport, by taking advantage of region specific axonal projections.
- other genetically based photostimulation methods can use these targeting strategies, although some multicomponent systems may be difficult to implement without the use of transgenic technologies.
- NpHR genetically based photostimulation methods
- sufficient gene expression must be achieved to elicit physiologically relevant levels of current.
- ChR2 has been estimated to possess a single-channel conductance as low as 50 femtosiemens. This would imply that between 100,000 and 1,000,000 ChR2 molecules would have to be generated and localized to the neuronal membrane to achieve the observed currents in the range of 1 nA (starting from a resting potential of ⁇ 70 mV and neglecting space-clamp issues and changes in driving force due to ion entry).
- the insertion may be genetically targeted to the products expressed by specific cellular subtypes. For example, it might be advantageous to cause only dopaminergic neurons, and not cholinergic neurons to react to blue light.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Neurosurgery (AREA)
- Cell Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Radiation-Therapy Devices (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Claims (22)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/651,422 US8926959B2 (en) | 2005-07-22 | 2007-01-09 | System for optical stimulation of target cells |
PCT/US2008/050628 WO2008089003A2 (en) | 2007-01-09 | 2008-01-09 | System for optical stimulation of target cells |
US12/522,528 US10052497B2 (en) | 2005-07-22 | 2008-01-09 | System for optical stimulation of target cells |
US12/185,624 US9238150B2 (en) | 2005-07-22 | 2008-08-04 | Optical tissue interface method and apparatus for stimulating cells |
US12/187,927 US9274099B2 (en) | 2005-07-22 | 2008-08-07 | Screening test drugs to identify their effects on cell membrane voltage-gated ion channel |
US13/847,785 US10046174B2 (en) | 2005-07-22 | 2013-03-20 | System for electrically stimulating target neuronal cells of a living animal in vivo |
US13/850,436 US9360472B2 (en) | 2005-07-22 | 2013-03-26 | Cell line, system and method for optical-based screening of ion-channel modulators |
US14/537,305 US10569099B2 (en) | 2005-07-22 | 2014-11-10 | System for optical stimulation of target cells |
US15/153,305 US10451608B2 (en) | 2005-07-22 | 2016-05-12 | Cell line, system and method for optical-based screening of ion-channel modulators |
US15/156,124 US20160279267A1 (en) | 2005-07-22 | 2016-05-16 | Optical tissue interface method and apparatus for stimulating cells |
US16/041,647 US20180326221A1 (en) | 2005-07-22 | 2018-07-20 | System for optical stimulation of target cells |
US16/404,430 US20190321651A1 (en) | 2005-07-22 | 2019-05-06 | System for Optical Stimulation of Target Cells |
US16/562,176 US20200072817A1 (en) | 2005-07-22 | 2019-09-05 | Cell line, system and method for optical-based screening of ion-channel modulators |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US70179905P | 2005-07-22 | 2005-07-22 | |
US11/459,636 US8906360B2 (en) | 2005-07-22 | 2006-07-24 | Light-activated cation channel and uses thereof |
US11/651,422 US8926959B2 (en) | 2005-07-22 | 2007-01-09 | System for optical stimulation of target cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/459,636 Continuation-In-Part US8906360B2 (en) | 2005-07-22 | 2006-07-24 | Light-activated cation channel and uses thereof |
Related Child Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/050628 Continuation WO2008089003A2 (en) | 2005-07-22 | 2008-01-09 | System for optical stimulation of target cells |
US12/522,528 Continuation US10052497B2 (en) | 2005-07-22 | 2008-01-09 | System for optical stimulation of target cells |
US12/041,628 Continuation-In-Part US20090093403A1 (en) | 2005-07-22 | 2008-03-03 | Systems, methods and compositions for optical stimulation of target cells |
US12/185,624 Continuation-In-Part US9238150B2 (en) | 2005-07-22 | 2008-08-04 | Optical tissue interface method and apparatus for stimulating cells |
US12/187,927 Continuation-In-Part US9274099B2 (en) | 2005-07-22 | 2008-08-07 | Screening test drugs to identify their effects on cell membrane voltage-gated ion channel |
US14/537,305 Continuation US10569099B2 (en) | 2005-07-22 | 2014-11-10 | System for optical stimulation of target cells |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080085265A1 US20080085265A1 (en) | 2008-04-10 |
US8926959B2 true US8926959B2 (en) | 2015-01-06 |
Family
ID=39275103
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/651,422 Active US8926959B2 (en) | 2005-07-22 | 2007-01-09 | System for optical stimulation of target cells |
US14/537,305 Active US10569099B2 (en) | 2005-07-22 | 2014-11-10 | System for optical stimulation of target cells |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/537,305 Active US10569099B2 (en) | 2005-07-22 | 2014-11-10 | System for optical stimulation of target cells |
Country Status (1)
Country | Link |
---|---|
US (2) | US8926959B2 (en) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9187745B2 (en) | 2007-01-10 | 2015-11-17 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US9340589B2 (en) | 2010-11-05 | 2016-05-17 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated chimeric opsins and methods of using the same |
US9394347B2 (en) | 2008-04-23 | 2016-07-19 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for treating parkinson's disease by optically stimulating target cells |
US9421258B2 (en) | 2010-11-05 | 2016-08-23 | The Board Of Trustees Of The Leland Stanford Junior University | Optically controlled CNS dysfunction |
US9453215B2 (en) | 2008-05-29 | 2016-09-27 | The Board Of Trustees Of The Leland Stanford Junior University | Cell line, system and method for optical control of secondary messengers |
US9458208B2 (en) | 2008-11-14 | 2016-10-04 | The Board Of Trustees Of The Leland Stanford Junior University | Optically-based stimulation of target cells and modifications thereto |
US9505817B2 (en) | 2011-12-16 | 2016-11-29 | The Board Of Trustees Of The Leland Stanford Junior University | Opsin polypeptides and methods of use thereof |
US9522288B2 (en) | 2010-11-05 | 2016-12-20 | The Board Of Trustees Of The Leland Stanford Junior University | Upconversion of light for use in optogenetic methods |
US9604073B2 (en) | 2010-03-17 | 2017-03-28 | The Board Of Trustees Of The Leland Stanford Junior University | Light-sensitive ion-passing molecules |
US9615789B2 (en) | 2010-11-22 | 2017-04-11 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic magnetic resonance imaging |
US9636380B2 (en) | 2013-03-15 | 2017-05-02 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of inputs to the ventral tegmental area |
US9693692B2 (en) | 2007-02-14 | 2017-07-04 | The Board Of Trustees Of The Leland Stanford Junior University | System, method and applications involving identification of biological circuits such as neurological characteristics |
US9757587B2 (en) | 2007-03-01 | 2017-09-12 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic method for generating an inhibitory current in a mammalian neuron |
US9829492B2 (en) | 2005-07-22 | 2017-11-28 | The Board Of Trustees Of The Leland Stanford Junior University | Implantable prosthetic device comprising a cell expressing a channelrhodopsin |
US9992981B2 (en) | 2010-11-05 | 2018-06-12 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of reward-related behaviors |
US10016600B2 (en) | 2013-05-30 | 2018-07-10 | Neurostim Solutions, Llc | Topical neurological stimulation |
US10035027B2 (en) | 2007-10-31 | 2018-07-31 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method for ultrasonic neuromodulation via stereotactic frame based technique |
US10046174B2 (en) | 2005-07-22 | 2018-08-14 | The Board Of Trustees Of The Leland Stanford Junior University | System for electrically stimulating target neuronal cells of a living animal in vivo |
US10052497B2 (en) | 2005-07-22 | 2018-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US10052383B2 (en) | 2014-03-28 | 2018-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | Engineered light-activated anion channel proteins and methods of use thereof |
US10086012B2 (en) | 2010-11-05 | 2018-10-02 | The Board Of Trustees Of The Leland Stanford Junior University | Control and characterization of memory function |
US10220092B2 (en) | 2013-04-29 | 2019-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Devices, systems and methods for optogenetic modulation of action potentials in target cells |
US10307609B2 (en) | 2013-08-14 | 2019-06-04 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for controlling pain |
US10426970B2 (en) | 2007-10-31 | 2019-10-01 | The Board Of Trustees Of The Leland Stanford Junior University | Implantable optical stimulators |
US10451608B2 (en) | 2005-07-22 | 2019-10-22 | The Board Of Trustees Of The Leland Stanford Junior University | Cell line, system and method for optical-based screening of ion-channel modulators |
US10568307B2 (en) | 2010-11-05 | 2020-02-25 | The Board Of Trustees Of The Leland Stanford Junior University | Stabilized step function opsin proteins and methods of using the same |
US10569099B2 (en) | 2005-07-22 | 2020-02-25 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US10568516B2 (en) | 2015-06-22 | 2020-02-25 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and devices for imaging and/or optogenetic control of light-responsive neurons |
US10583309B2 (en) | 2008-07-08 | 2020-03-10 | The Board Of Trustees Of The Leland Stanford Junior University | Materials and approaches for optical stimulation of the peripheral nervous system |
US10711242B2 (en) | 2008-06-17 | 2020-07-14 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus and methods for controlling cellular development |
WO2020257864A1 (en) * | 2019-06-26 | 2020-12-30 | The Bionics Institute Of Australia | Combined light and electrical stimulation of light-sensitive neural tissue |
US10953225B2 (en) | 2017-11-07 | 2021-03-23 | Neurostim Oab, Inc. | Non-invasive nerve activator with adaptive circuit |
US10974064B2 (en) | 2013-03-15 | 2021-04-13 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of behavioral state |
US11077301B2 (en) | 2015-02-21 | 2021-08-03 | NeurostimOAB, Inc. | Topical nerve stimulator and sensor for bladder control |
US11103723B2 (en) | 2012-02-21 | 2021-08-31 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for treating neurogenic disorders of the pelvic floor |
US11229789B2 (en) | 2013-05-30 | 2022-01-25 | Neurostim Oab, Inc. | Neuro activator with controller |
US11273283B2 (en) | 2017-12-31 | 2022-03-15 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to enhance emotional response |
US11294165B2 (en) | 2017-03-30 | 2022-04-05 | The Board Of Trustees Of The Leland Stanford Junior University | Modular, electro-optical device for increasing the imaging field of view using time-sequential capture |
US11364361B2 (en) | 2018-04-20 | 2022-06-21 | Neuroenhancement Lab, LLC | System and method for inducing sleep by transplanting mental states |
US11452839B2 (en) | 2018-09-14 | 2022-09-27 | Neuroenhancement Lab, LLC | System and method of improving sleep |
US11458311B2 (en) | 2019-06-26 | 2022-10-04 | Neurostim Technologies Llc | Non-invasive nerve activator patch with adaptive circuit |
US20230173299A1 (en) * | 2020-05-05 | 2023-06-08 | Lumeda Inc. | Time mulitplexed dosimetry system and method |
US11717686B2 (en) | 2017-12-04 | 2023-08-08 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
US11723579B2 (en) | 2017-09-19 | 2023-08-15 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement |
US11730958B2 (en) | 2019-12-16 | 2023-08-22 | Neurostim Solutions, Llc | Non-invasive nerve activator with boosted charge delivery |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE455312T1 (en) * | 2007-02-05 | 2010-01-15 | Olympus Corp | LASER SCANNING MICROSCOPE |
US20140324138A1 (en) * | 2007-05-09 | 2014-10-30 | Massachusetts Institute Of Technology | Wirelessly-powered illumination of biological tissue |
AU2009274482A1 (en) | 2008-05-20 | 2010-01-28 | Eos Neuroscience, Inc. | Vectors for delivery of light-sensitive proteins and methods of use |
EP2303406B1 (en) * | 2008-06-17 | 2016-11-09 | The Board of Trustees of the Leland Stanford Junior University | Devices for optical stimulation of target cells using an optical transmission element |
WO2011057137A1 (en) * | 2009-11-05 | 2011-05-12 | Neuronexus Technologies | Waveguide neural interface device |
US8936630B2 (en) | 2009-11-25 | 2015-01-20 | Medtronic, Inc. | Optical stimulation therapy |
CA2792761C (en) * | 2010-03-11 | 2018-07-10 | Emc2 Holding Llc | Emf probe configurations for electro-modulation of ionic channels of cells and methods of use thereof |
GB2492719A (en) | 2010-04-05 | 2013-01-09 | Eos Neuroscience Inc | Methods and compositions for decreasing chronic pain |
WO2012006320A1 (en) | 2010-07-06 | 2012-01-12 | President And Fellows Of Harvard College | Photosensitive cardiac rhythm modulation systems |
GB2498325B (en) | 2010-10-15 | 2018-05-02 | Eos Neuroscience Inc | Engineered human GRM6 enhancer sequence for use in eye therapies |
JP5436479B2 (en) * | 2011-03-08 | 2014-03-05 | バイオリサーチセンター株式会社 | Nerve cell light stimulator |
US9592398B2 (en) | 2011-05-12 | 2017-03-14 | Medtronic, Inc. | Leadless implantable medical device with osmotic pump |
WO2013056037A1 (en) | 2011-10-13 | 2013-04-18 | The Cleveland Clinic Foundation | Estimation of neural response for optical stimulation |
US10377818B2 (en) | 2015-01-30 | 2019-08-13 | The Board Of Trustees Of The Leland Stanford Junior University | Method of treating glioma |
EP3377225A4 (en) | 2015-11-18 | 2019-07-03 | President and Fellows of Harvard College | CARTRIDGE-BASED SYSTEMS FOR LONG-TERM CULTIVATION OF CELLULAR AGGREGATES |
WO2019079681A1 (en) | 2017-10-20 | 2019-04-25 | President And Fellows Of Harvard College | Methods for producing mature adipocytes and methods of use thereof |
WO2022216697A1 (en) * | 2021-04-06 | 2022-10-13 | Shining Buddha Corp. | Wearable light therapy device |
Citations (203)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2968302A (en) | 1956-07-20 | 1961-01-17 | Univ Illinois | Multibeam focusing irradiator |
US3131690A (en) | 1962-10-22 | 1964-05-05 | American Optical Corp | Fiber optics devices |
US3499437A (en) | 1967-03-10 | 1970-03-10 | Ultrasonic Systems | Method and apparatus for treatment of organic structures and systems thereof with ultrasonic energy |
US3567847A (en) | 1969-01-06 | 1971-03-02 | Edgar E Price | Electro-optical display system |
US4343301A (en) | 1979-10-04 | 1982-08-10 | Robert Indech | Subcutaneous neural stimulation or local tissue destruction |
US4559951A (en) | 1982-11-29 | 1985-12-24 | Cardiac Pacemakers, Inc. | Catheter assembly |
US4616231A (en) | 1984-03-26 | 1986-10-07 | Hughes Aircraft Company | Narrow-band beam steering system |
US4865042A (en) | 1985-08-16 | 1989-09-12 | Hitachi, Ltd. | Ultrasonic irradiation system |
US4879284A (en) | 1985-04-15 | 1989-11-07 | L'oreal | Naphthalene derivatives having retinoid type action, the process for preparation thereof and medicinal and cosmetic compositions containing them |
US5032123A (en) | 1989-12-28 | 1991-07-16 | Cordis Corporation | Laser catheter with radially divergent treatment beam |
US5041224A (en) | 1988-03-28 | 1991-08-20 | Canon Kabushiki Kaisha | Ion permeable membrane and ion transport method by utilizing said membrane |
US5082670A (en) * | 1988-12-15 | 1992-01-21 | The Regents Of The University Of California | Method of grafting genetically modified cells to treat defects, disease or damage or the central nervous system |
US5249575A (en) | 1991-10-21 | 1993-10-05 | Adm Tronics Unlimited, Inc. | Corona discharge beam thermotherapy system |
US5267152A (en) | 1989-10-28 | 1993-11-30 | Yang Won S | Non-invasive method and apparatus for measuring blood glucose concentration |
US5290280A (en) | 1989-09-08 | 1994-03-01 | S.L.T. Japan Co., Ltd. | Laser light irradiation apparatus |
US5330515A (en) | 1992-06-17 | 1994-07-19 | Cyberonics, Inc. | Treatment of pain by vagal afferent stimulation |
US5460950A (en) | 1990-11-26 | 1995-10-24 | Genetics Institute, Inc. | Expression of PACE in host cells and methods of use thereof |
US5460954A (en) | 1992-04-01 | 1995-10-24 | Cheil Foods & Chemicals, Inc. | Production of human proinsulin using a novel vector system |
US5470307A (en) | 1994-03-16 | 1995-11-28 | Lindall; Arnold W. | Catheter system for controllably releasing a therapeutic agent at a remote tissue site |
US5495541A (en) | 1994-04-19 | 1996-02-27 | Murray; Steven C. | Optical delivery device with high numerical aperture curved waveguide |
US5520188A (en) | 1994-11-02 | 1996-05-28 | Focus Surgery Inc. | Annular array transducer |
US5527695A (en) | 1993-01-29 | 1996-06-18 | Purdue Research Foundation | Controlled modification of eukaryotic genomes |
US5550316A (en) * | 1991-01-02 | 1996-08-27 | Fox Chase Cancer Center | Transgenic animal model system for human cutaneous melanoma |
US5641650A (en) | 1993-03-25 | 1997-06-24 | The Regents Of The University Of California | Expression of heterologous polypeptides in halobacteria |
US5703985A (en) | 1996-04-29 | 1997-12-30 | Eclipse Surgical Technologies, Inc. | Optical fiber device and method for laser surgery procedures |
US5722426A (en) | 1996-02-26 | 1998-03-03 | Kolff; Jack | Coronary light probe and method of use |
US5738625A (en) | 1993-06-11 | 1998-04-14 | Gluck; Daniel S. | Method of and apparatus for magnetically stimulating neural cells |
US5739273A (en) | 1992-02-12 | 1998-04-14 | Yale University | Transmembrane polypeptide and methods of use |
US5741316A (en) | 1996-12-02 | 1998-04-21 | Light Sciences Limited Partnership | Electromagnetic coil configurations for power transmission through tissue |
US5755750A (en) | 1995-11-13 | 1998-05-26 | University Of Florida | Method and apparatus for selectively inhibiting activity in nerve fibers |
US5756351A (en) | 1997-01-13 | 1998-05-26 | The Regents Of The University Of California | Biomolecular optical sensors |
US5782896A (en) | 1997-01-29 | 1998-07-21 | Light Sciences Limited Partnership | Use of a shape memory alloy to modify the disposition of a device within an implantable medical probe |
US5795581A (en) | 1995-03-31 | 1998-08-18 | Sandia Corporation | Controlled release of molecular components of dendrimer/bioactive complexes |
US5807285A (en) | 1994-08-18 | 1998-09-15 | Ethicon-Endo Surgery, Inc. | Medical applications of ultrasonic energy |
US5939320A (en) | 1996-05-20 | 1999-08-17 | New York University | G-coupled receptors associated with macrophage-trophic HIV, and diagnostic and therapeutic uses thereof |
WO2000027293A1 (en) | 1998-11-06 | 2000-05-18 | University Of Rochester | A method to improve circulation to ischemic tissue |
US6134474A (en) | 1997-10-27 | 2000-10-17 | Neuropace, Inc. | Responsive implantable system for the treatment of neurological disorders |
US6161045A (en) | 1999-06-01 | 2000-12-12 | Neuropace, Inc. | Method for determining stimulation parameters for the treatment of epileptic seizures |
WO2001025466A1 (en) | 1999-10-05 | 2001-04-12 | Oxford Biomedica (Uk) Limited | Producer cell for the production of retroviral vectors |
US6253109B1 (en) | 1998-11-05 | 2001-06-26 | Medtronic Inc. | System for optimized brain stimulation |
US6303362B1 (en) | 1998-11-19 | 2001-10-16 | The Board Of Trustees Of The Leland Stanford Junior University | Adenoviral vector and methods for making and using the same |
US6334846B1 (en) | 1995-03-31 | 2002-01-01 | Kabushiki Kaisha Toshiba | Ultrasound therapeutic apparatus |
US6336904B1 (en) | 1998-04-07 | 2002-01-08 | Pro Duct Health, Inc. | Methods and devices for the localization of lesions in solid tissue |
US6364831B1 (en) | 1997-09-29 | 2002-04-02 | Boston Scientific Corporation | Endofluorescence imaging module for an endoscope |
US6377842B1 (en) | 1998-09-22 | 2002-04-23 | Aurora Optics, Inc. | Method for quantitative measurement of fluorescent and phosphorescent drugs within tissue utilizing a fiber optic probe |
US20020094516A1 (en) | 2000-02-18 | 2002-07-18 | Calos Michele P. | Altered recombinases for genome modification |
US6436708B1 (en) | 1997-04-17 | 2002-08-20 | Paola Leone | Delivery system for gene therapy to the brain |
US20020155173A1 (en) | 1999-06-14 | 2002-10-24 | Michael Chopp | Nitric oxide donors for inducing neurogenesis |
US6473639B1 (en) | 2000-03-02 | 2002-10-29 | Neuropace, Inc. | Neurological event detection procedure using processed display channel based algorithms and devices incorporating these procedures |
US20020164577A1 (en) | 1995-06-07 | 2002-11-07 | The Regents Of The University Of California | Detection of transmembrane potentials by optical methods |
US6480743B1 (en) | 2000-04-05 | 2002-11-12 | Neuropace, Inc. | System and method for adaptive brain stimulation |
US6489115B2 (en) | 2000-12-21 | 2002-12-03 | The Board Of Regents Of The University Of Nebraska | Genetic assays for trinucleotide repeat mutations in eukaryotic cells |
US6497872B1 (en) | 1991-07-08 | 2002-12-24 | Neurospheres Holdings Ltd. | Neural transplantation using proliferated multipotent neural stem cells and their progeny |
US20030009103A1 (en) | 1999-06-18 | 2003-01-09 | Rafael Yuste | Optical probing of neuronal connections with fluorescent indicators |
US6506154B1 (en) | 2000-11-28 | 2003-01-14 | Insightec-Txsonics, Ltd. | Systems and methods for controlling a phased array focused ultrasound system |
US20030026784A1 (en) | 1994-04-15 | 2003-02-06 | Duke University | Use of exogenous beta-adrenergic receptor and beta-adrenergic receptor kinase gene constructs to enhance myocardial function |
US20030040080A1 (en) * | 2001-08-16 | 2003-02-27 | Gero Miesenbock | Bio-synthetic photostimulators and methods of use |
US20030050258A1 (en) | 1998-08-19 | 2003-03-13 | Michele P. Calos | Methods and compositions for genomic modification |
US6536440B1 (en) | 2000-10-17 | 2003-03-25 | Sony Corporation | Method and system for generating sensory data onto the human neural cortex |
US6551346B2 (en) | 2000-05-17 | 2003-04-22 | Kent Crossley | Method and apparatus to prevent infections |
US6567690B2 (en) | 2000-10-16 | 2003-05-20 | Cole Giller | Method and apparatus for probe localization in brain matter |
US20030097122A1 (en) | 2001-04-10 | 2003-05-22 | Ganz Robert A. | Apparatus and method for treating atherosclerotic vascular disease through light sterilization |
US20030104512A1 (en) | 2001-11-30 | 2003-06-05 | Freeman Alex R. | Biosensors for single cell and multi cell analysis |
US20030125719A1 (en) | 2001-12-31 | 2003-07-03 | Furnish Simon M. | Multi-fiber catheter probe arrangement for tissue analysis or treatment |
US6597954B1 (en) | 1997-10-27 | 2003-07-22 | Neuropace, Inc. | System and method for controlling epileptic seizures with spatially separated detection and stimulation electrodes |
US6609020B2 (en) | 1999-12-01 | 2003-08-19 | Steven Gill | Neurosurgical guide device |
US6615080B1 (en) | 2001-03-29 | 2003-09-02 | John Duncan Unsworth | Neuromuscular electrical stimulation of the foot muscles for prevention of deep vein thrombosis and pulmonary embolism |
US6631283B2 (en) | 2000-11-15 | 2003-10-07 | Virginia Tech Intellectual Properties, Inc. | B/B-like fragment targeting for the purposes of photodynamic therapy and medical imaging |
US20030204135A1 (en) | 2002-04-30 | 2003-10-30 | Alexander Bystritsky | Methods for stimulating neurons |
US6647296B2 (en) | 1997-10-27 | 2003-11-11 | Neuropace, Inc. | Implantable apparatus for treating neurological disorders |
US20030232339A1 (en) | 2002-04-01 | 2003-12-18 | Youmin Shu | Human TRPCC cation channel and uses |
WO2003106486A1 (en) | 2002-06-12 | 2003-12-24 | Fraunhofer-Gelellschaft Zur Förderung Der Angewandten Forschung E.V. | Vegetable protein preparations and use thereof |
US6685656B1 (en) | 1997-02-14 | 2004-02-03 | Exogen, Inc. | Ultrasonic treatment for wounds |
US6686193B2 (en) | 2000-07-10 | 2004-02-03 | Vertex Pharmaceuticals, Inc. | High throughput method and system for screening candidate compounds for activity against target ion channels |
WO2003084994A3 (en) | 2002-04-11 | 2004-02-05 | Max Planck Gesellschaft | Use of biological photoreceptors as directly light-activated ion channels |
US20040034882A1 (en) | 1999-07-15 | 2004-02-19 | Vale Wylie W. | Corticotropin releasing factor receptor 2 deficient mice and uses thereof |
US20040039312A1 (en) | 2002-02-20 | 2004-02-26 | Liposonix, Inc. | Ultrasonic treatment and imaging of adipose tissue |
US6721603B2 (en) | 2002-01-25 | 2004-04-13 | Cyberonics, Inc. | Nerve stimulation as a treatment for pain |
US20040122475A1 (en) | 2002-12-18 | 2004-06-24 | Myrick Andrew J. | Electrochemical neuron systems |
US6780490B1 (en) | 1999-08-06 | 2004-08-24 | Yukadenshi Co., Ltd. | Tray for conveying magnetic head for magnetic disk |
US6790652B1 (en) | 1998-01-08 | 2004-09-14 | Bioimage A/S | Method and apparatus for high density format screening for bioactive molecules |
US6790657B1 (en) | 1999-01-07 | 2004-09-14 | The United States Of America As Represented By The Department Of Health And Human Services | Lentivirus vector system |
US6805129B1 (en) | 1996-10-22 | 2004-10-19 | Epicor Medical, Inc. | Apparatus and method for ablating tissue |
US6810285B2 (en) | 2001-06-28 | 2004-10-26 | Neuropace, Inc. | Seizure sensing and detection using an implantable device |
WO2003102156B1 (en) | 2002-05-31 | 2005-02-17 | Sloan Kettering Inst Cancer | Heterologous stimulus-gated ion channels and methods of using same |
US20050058987A1 (en) | 2002-11-18 | 2005-03-17 | Pei-Yong Shi | Screening for west nile virus antiviral therapy |
WO2003040323A3 (en) | 2001-11-08 | 2005-03-31 | Childrens Medical Center | Bacterial ion channel and a method for screening ion channel modulators |
US6889085B2 (en) | 2000-10-17 | 2005-05-03 | Sony Corporation | Method and system for forming an acoustic signal from neural timing difference data |
US20050119315A1 (en) | 1999-03-31 | 2005-06-02 | Cardiome Pharma Corp. | Ion channel modulating activity II |
US20050124897A1 (en) | 2003-12-03 | 2005-06-09 | Scimed Life Systems, Inc. | Apparatus and methods for delivering acoustic energy to body tissue |
US20050153885A1 (en) | 2003-10-08 | 2005-07-14 | Yun Anthony J. | Treatment of conditions through modulation of the autonomic nervous system |
US6921413B2 (en) | 2000-08-16 | 2005-07-26 | Vanderbilt University | Methods and devices for optical stimulation of neural tissues |
US20050215764A1 (en) | 2004-03-24 | 2005-09-29 | Tuszynski Jack A | Biological polymer with differently charged portions |
EP1334748B1 (en) | 1993-08-16 | 2005-10-26 | Light Sciences Corporation | Apparatus for photodynamic therapy |
US20050240127A1 (en) | 2004-03-02 | 2005-10-27 | Ralf Seip | Ultrasound phased arrays |
US20050267011A1 (en) | 2004-05-24 | 2005-12-01 | The Board Of Trustees Of The Leland Stanford Junior University | Coupling of excitation and neurogenesis in neural stem/progenitor cells |
US20050267454A1 (en) | 2000-01-19 | 2005-12-01 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US6974448B2 (en) | 2001-08-30 | 2005-12-13 | Medtronic, Inc. | Method for convection enhanced delivery catheter to treat brain and other tumors |
US20060025756A1 (en) | 2000-01-19 | 2006-02-02 | Francischelli David E | Methods of using high intensity focused ultrasound to form an ablated tissue area |
US20060034943A1 (en) | 2003-10-31 | 2006-02-16 | Technology Innovations Llc | Process for treating a biological organism |
US20060058678A1 (en) | 2004-08-26 | 2006-03-16 | Insightec - Image Guided Treatment Ltd. | Focused ultrasound system for surrounding a body tissue mass |
US20060057192A1 (en) | 2001-09-28 | 2006-03-16 | Kane Patrick D | Localized non-invasive biological modulation system |
US20060058671A1 (en) | 2004-08-11 | 2006-03-16 | Insightec-Image Guided Treatment Ltd | Focused ultrasound system with adaptive anatomical aperture shaping |
US20060100679A1 (en) | 2004-08-27 | 2006-05-11 | Dimauro Thomas | Light-based implants for treating Alzheimer's disease |
US20060106543A1 (en) | 2002-08-09 | 2006-05-18 | Gustavo Deco | Method for analyzing effectiveness of pharmaceutical preparation |
US20060155348A1 (en) | 2004-11-15 | 2006-07-13 | Decharms Richard C | Applications of the stimulation of neural tissue using light |
US20060161227A1 (en) | 2004-11-12 | 2006-07-20 | Northwestern University | Apparatus and methods for optical stimulation of the auditory nerve |
US7091500B2 (en) | 2003-06-20 | 2006-08-15 | Lucent Technologies Inc. | Multi-photon endoscopic imaging system |
US20060184069A1 (en) | 2005-02-02 | 2006-08-17 | Vaitekunas Jeffrey J | Focused ultrasound for pain reduction |
US20060190044A1 (en) | 2005-02-22 | 2006-08-24 | Cardiac Pacemakers, Inc. | Cell therapy and neural stimulation for cardiac repair |
US20060206172A1 (en) | 2005-03-14 | 2006-09-14 | Dimauro Thomas M | Red light implant for treating Parkinson's Disease |
US20060241697A1 (en) | 2005-04-25 | 2006-10-26 | Cardiac Pacemakers, Inc. | System to provide neural markers for sensed neural activity |
US20060236525A1 (en) | 2005-04-11 | 2006-10-26 | Jack Sliwa | High intensity ultrasound transducers and methods and devices for manufacturing high intensity ultrasound transducers |
JP2006295350A (en) | 2005-04-07 | 2006-10-26 | Sony Corp | Imaging apparatus and method of processing imaging result |
US20060253177A1 (en) | 2001-11-01 | 2006-11-09 | Taboada Luis D | Device and method for providing phototherapy to the brain |
US20060271024A1 (en) | 2005-01-25 | 2006-11-30 | Michael Gertner | Nasal Cavity Treatment Apparatus |
US20070031924A1 (en) | 2003-11-21 | 2007-02-08 | The Johns Hopkins University | Biomolecule partition motifs and uses thereof |
US7175596B2 (en) | 2001-10-29 | 2007-02-13 | Insightec-Txsonics Ltd | System and method for sensing and locating disturbances in an energy path of a focused ultrasound system |
US20070053996A1 (en) | 2005-07-22 | 2007-03-08 | Boyden Edward S | Light-activated cation channel and uses thereof |
US7191018B2 (en) | 1998-04-30 | 2007-03-13 | Medtronic, Inc. | Techniques for positioning therapy delivery elements within a spinal cord or brain |
US20070060915A1 (en) | 2005-09-15 | 2007-03-15 | Cannuflow, Inc. | Arthroscopic surgical temperature control system |
US7220240B2 (en) | 2000-05-03 | 2007-05-22 | Aspect Medical Systems, Inc. | System and method for adaptive drug delivery |
US20070135875A1 (en) | 2002-04-08 | 2007-06-14 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US20070156180A1 (en) | 2005-12-30 | 2007-07-05 | Jaax Kristen N | Methods and systems for treating osteoarthritis |
US20070191906A1 (en) | 2006-02-13 | 2007-08-16 | Anand Iyer | Method and apparatus for selective nerve stimulation |
US20070196838A1 (en) | 2000-12-08 | 2007-08-23 | Invitrogen Corporation | Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites |
US20070197918A1 (en) | 2003-06-02 | 2007-08-23 | Insightec - Image Guided Treatment Ltd. | Endo-cavity focused ultrasound transducer |
US20070220628A1 (en) | 2005-12-21 | 2007-09-20 | Pioneer Hi-Bred International, Inc. | Methods and compositions for in planta production of inverted repeats |
US20070219600A1 (en) | 2006-03-17 | 2007-09-20 | Michael Gertner | Devices and methods for targeted nasal phototherapy |
US20070239080A1 (en) | 2004-10-22 | 2007-10-11 | Wolfgang Schaden | Methods for promoting nerve regeneration and neuronal growth and elongation |
US20070239210A1 (en) | 2006-04-10 | 2007-10-11 | Imad Libbus | System and method for closed-loop neural stimulation |
US20070253995A1 (en) | 2006-04-28 | 2007-11-01 | Medtronic, Inc. | Drug Delivery Methods and Devices for Treating Stress Urinary Incontinence |
WO2007131180A2 (en) | 2006-05-04 | 2007-11-15 | Wayne State University | Restoration of visual responses by in vivo delivery of rhodopsin nucleic acids |
US7298143B2 (en) | 2002-05-13 | 2007-11-20 | Koninklijke Philips Electronics N.V. | Reduction of susceptibility artifacts in subencoded single-shot magnetic resonance imaging |
US20070282404A1 (en) | 2006-04-10 | 2007-12-06 | University Of Rochester | Side-firing linear optic array for interstitial optical therapy and monitoring using compact helical geometry |
US7313442B2 (en) | 2004-04-30 | 2007-12-25 | Advanced Neuromodulation Systems, Inc. | Method of treating mood disorders and/or anxiety disorders by brain stimulation |
US20070295978A1 (en) | 2006-06-26 | 2007-12-27 | Coushaine Charles M | Light emitting diode with direct view optic |
US20080020465A1 (en) | 2005-02-02 | 2008-01-24 | Malla Padidam | Site-specific serine recombinases and methods of their use |
US20080027505A1 (en) | 2006-07-26 | 2008-01-31 | G&L Consulting, Llc | System and method for treatment of headaches |
US20080033569A1 (en) | 2004-04-19 | 2008-02-07 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Bioelectromagnetic interface system |
US20080046053A1 (en) | 2006-06-19 | 2008-02-21 | Wagner Timothy A | Apparatus and method for stimulation of biological tissue |
US20080050770A1 (en) | 1998-12-01 | 2008-02-28 | Introgen Therapeutics, Inc. | Method for the production and purification of adenoviral vectors |
US20080051673A1 (en) | 2006-08-17 | 2008-02-28 | Xuan Kong | Motor unit number estimation (MUNE) for the assessment of neuromuscular function |
US20080060088A1 (en) | 2006-09-01 | 2008-03-06 | Heesup Shin | Phospholipase c beta1 (plcbeta1) knockout mice as a model system for testing schizophrenia drugs |
US20080065183A1 (en) | 2002-06-20 | 2008-03-13 | Advanced Bionics Corporation | Vagus nerve stimulation via unidirectional propagation of action potentials |
US20080065158A1 (en) | 2006-09-07 | 2008-03-13 | Omry Ben-Ezra | Techniques for reducing pain associated with nerve stimulation |
US20080077200A1 (en) | 2006-09-21 | 2008-03-27 | Aculight Corporation | Apparatus and method for stimulation of nerves and automated control of surgical instruments |
US20080085265A1 (en) | 2005-07-22 | 2008-04-10 | Schneider M B | System for optical stimulation of target cells |
US20080103551A1 (en) | 2006-10-30 | 2008-05-01 | Javaid Masoud | Implantable Medical Device with Variable Data Retransmission Characteristics Based Upon Data Type |
US20080119421A1 (en) | 2003-10-31 | 2008-05-22 | Jack Tuszynski | Process for treating a biological organism |
US20080125836A1 (en) | 2006-08-24 | 2008-05-29 | Jackson Streeter | Low level light therapy for enhancement of neurologic function of a patient affected by parkinson's disease |
US20080176076A1 (en) | 2006-05-11 | 2008-07-24 | University Of Victoria Innovation And Development Corporation | Functionalized lanthanide rich nanoparticles and use thereof |
US20080175819A1 (en) | 1997-06-04 | 2008-07-24 | Oxford Biomedica (Uk) Limited | Vector system |
US20080200749A1 (en) | 2005-06-15 | 2008-08-21 | Yunfeng Zheng | Magnetic Stimulating Circuit For Nervous Centralis System Apparatus, Purpose, and Method Thereof |
WO2008106694A2 (en) | 2007-03-01 | 2008-09-04 | The Board Of Trustees Of The Leland Stanford Junior University | Systems, methods and compositions for optical stimulation of target cells |
US20080221452A1 (en) | 2007-03-09 | 2008-09-11 | Philip Chidi Njemanze | Method for inducing and monitoring long-term potentiation and long-term depression using transcranial doppler ultrasound device in head-down bed rest |
US20080228244A1 (en) | 2007-03-16 | 2008-09-18 | Old Dominion University | Modulation of neuromuscular functions with ultrashort electrical pulses |
US20080227139A1 (en) | 2007-02-14 | 2008-09-18 | Karl Deisseroth | System, method and applications involving identification of biological circuits such as neurological characteristics |
US20080262411A1 (en) | 2006-06-02 | 2008-10-23 | Dobak John D | Dynamic nerve stimulation in combination with other eating disorder treatment modalities |
US20080287821A1 (en) | 2007-03-30 | 2008-11-20 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Computational user-health testing |
US20080290318A1 (en) | 2005-04-26 | 2008-11-27 | Van Veggel Franciscus C J M | Production of Light from Sol-Gel Derived Thin Films Made with Lanthanide Doped Nanoparticles, and Preparation Thereof |
US20090030930A1 (en) | 2007-05-01 | 2009-01-29 | Neurofocus Inc. | Neuro-informatics repository system |
US20090054954A1 (en) | 2007-08-22 | 2009-02-26 | Cardiac Pacemakers, Inc. | Optical depolarization of cardiac tissue |
US20090069261A1 (en) | 2005-05-02 | 2009-03-12 | Genzyme Corporation | Gene therapy for spinal cord disorders |
US20090088680A1 (en) | 2005-07-22 | 2009-04-02 | Alexander Aravanis | Optical tissue interface method and apparatus for stimulating cells |
US20090099038A1 (en) | 2005-07-22 | 2009-04-16 | Karl Deisseroth | Cell line, system and method for optical-based screening of ion-channel modulators |
US20090112133A1 (en) | 2007-10-31 | 2009-04-30 | Karl Deisseroth | Device and method for non-invasive neuromodulation |
US20090118800A1 (en) | 2007-10-31 | 2009-05-07 | Karl Deisseroth | Implantable optical stimulators |
US20090148861A1 (en) | 2007-06-20 | 2009-06-11 | The Salk Institute | Kir channel modulators |
US20090157145A1 (en) | 2007-11-26 | 2009-06-18 | Lawrence Cauller | Transfer Coil Architecture |
WO2009119782A1 (en) | 2008-03-24 | 2009-10-01 | 国立大学法人東北大学 | Modified photoreceptor channel type rhodopsin protein |
US20090254134A1 (en) | 2008-02-04 | 2009-10-08 | Medtrode Inc. | Hybrid ultrasound/electrode device for neural stimulation and recording |
US7603174B2 (en) | 2004-10-21 | 2009-10-13 | Advanced Neuromodulation Systems, Inc. | Stimulation of the amygdalohippocampal complex to treat neurological conditions |
US20090268511A1 (en) | 2008-01-16 | 2009-10-29 | University Of Connecticut | Bacteriorhodopsin Protein Variants and Methods of Use for Long Term Data Storage |
WO2009131837A2 (en) | 2008-04-23 | 2009-10-29 | The Board Of Trustees Of The Leland Stanford Junior University. | Systems, methods and compositions for optical stimulation of target cells |
US20090319008A1 (en) | 2005-03-31 | 2009-12-24 | Esther Mayer | Probe device, system and method for photobiomodulation of tissue lining a body cavity |
US20090326603A1 (en) | 2003-09-12 | 2009-12-31 | Case Western Reserve University | Apparatus for stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses |
US20100009444A1 (en) | 2006-07-26 | 2010-01-14 | Stefan Herlitze | System and method for controlling g-protein coupled receptor pathways |
US20100016783A1 (en) | 2008-04-04 | 2010-01-21 | Duke University | Non-invasive systems and methods for in-situ photobiomodulation |
US7686839B2 (en) | 2005-01-26 | 2010-03-30 | Lumitex, Inc. | Phototherapy treatment devices for applying area lighting to a wound |
WO2010056970A2 (en) | 2008-11-14 | 2010-05-20 | The Board Of Trustees Of The Leland Stanford Junior University | Optically-based stimulation of target cells and modifications thereto |
US20100145418A1 (en) | 2007-01-10 | 2010-06-10 | Feng Zhang | System for optical stimulation of target cells |
US20100190229A1 (en) | 2005-07-22 | 2010-07-29 | Feng Zhang | System for optical stimulation of target cells |
WO2010123993A1 (en) | 2009-04-21 | 2010-10-28 | Tuan Vo-Dinh | Non-invasive energy upconversion methods and systems for in-situ photobiomodulation |
WO2010011404A3 (en) | 2008-05-20 | 2011-02-24 | Eos Neuroscience, Inc. | Vectors for delivery of light-sensitive proteins and methods of use |
US20110092800A1 (en) | 2002-04-30 | 2011-04-21 | Seung-Schik Yoo | Methods for modifying electrical currents in neuronal circuits |
US20110112179A1 (en) | 2008-05-29 | 2011-05-12 | Airan Raag D | Cell line, system and method for optical control of secondary messengers |
US20110125077A1 (en) | 2009-11-25 | 2011-05-26 | Medtronic, Inc. | Optical stimulation therapy |
US20110159562A1 (en) | 2008-06-17 | 2011-06-30 | Karl Deisseroth | Apparatus and methods for controlling cellular development |
US20110166632A1 (en) | 2008-07-08 | 2011-07-07 | Delp Scott L | Materials and approaches for optical stimulation of the peripheral nervous system |
US20110172653A1 (en) | 2008-06-17 | 2011-07-14 | Schneider M Bret | Methods, systems and devices for optical stimulation of target cells using an optical transmission element |
WO2011116238A2 (en) | 2010-03-17 | 2011-09-22 | The Board Of Trustees Of The Leland Stanford Junior University. | Light-sensitive ion-passing molecules |
WO2011127088A3 (en) | 2010-04-05 | 2012-01-19 | Eos Neuroscience, Inc. | Methods and compositions for decreasing chronic pain |
WO2012061676A1 (en) | 2010-11-05 | 2012-05-10 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated chimeric opsins and methods of using the same |
WO2012061684A1 (en) | 2010-11-05 | 2012-05-10 | The Board Of Trustees Of The Leland Stanford Junior University | Upconversion of light for use in optogenetic methods |
WO2012061690A2 (en) | 2010-11-05 | 2012-05-10 | The Board Of Trustees Of The Leland Stanford Junior University | Optically-controlled cns dysfunction |
WO2012061681A1 (en) | 2010-11-05 | 2012-05-10 | The Board Of Trustees Of The Leland Stanford Junior University. | Control and characterization of memory function |
WO2012061688A1 (en) | 2010-11-05 | 2012-05-10 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of reward-related behaviors |
US20120253261A1 (en) | 2011-03-29 | 2012-10-04 | Medtronic, Inc. | Systems and methods for optogenetic modulation of cells within a patient |
US20130144359A1 (en) | 2009-03-24 | 2013-06-06 | Eyad Kishawi | Pain management with stimulation subthreshold to paresthesia |
WO2013126521A1 (en) | 2012-02-21 | 2013-08-29 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for treating neurogenic disorders of the pelvic floor |
WO2013142196A1 (en) | 2012-03-20 | 2013-09-26 | The Board Of Trustees Of The Leland Stanford Junior University | Non-human animal models of depression and methods of use thereof |
WO2012061744A3 (en) | 2010-11-05 | 2013-11-14 | The Board Of Trustees Of The Leland Stanford Junior University | Stabilized step function opsin proteins and methods of using the same |
Family Cites Families (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4876333A (en) | 1985-10-15 | 1989-10-24 | Ciba-Geigy Corporation | β-crystalline modification of diasazo acid dyestuff |
US5086958A (en) * | 1989-06-27 | 1992-02-11 | Giselle Nagy | Vehicular accessory mounting organization |
SE9103752D0 (en) | 1991-12-18 | 1991-12-18 | Astra Ab | NEW COMPOUNDS |
US5670113A (en) | 1991-12-20 | 1997-09-23 | Sibia Neurosciences, Inc. | Automated analysis equipment and assay method for detecting cell surface protein and/or cytoplasmic receptor function using same |
SE500410C2 (en) * | 1992-03-24 | 1994-06-20 | Ergotek I Smaland Ab | Walking trolley hand brake control - has normal application and release positions plus mechanism to hold on brake if lever is pushed downwards |
US5382516A (en) | 1992-09-15 | 1995-01-17 | Schleicher & Schuell, Inc. | Method and devices for delivery of substrate for the detection of enzyme-linked, membrane-based binding assays |
US5411540A (en) | 1993-06-03 | 1995-05-02 | Massachusetts Institute Of Technology | Method and apparatus for preferential neuron stimulation |
US6346101B1 (en) * | 1993-07-19 | 2002-02-12 | Research Foundation Of City College Of New York | Photon-mediated introduction of biological materials into cells and/or cellular components |
JPH07171162A (en) | 1993-09-07 | 1995-07-11 | Olympus Optical Co Ltd | Laser probe |
US6251100B1 (en) | 1993-09-24 | 2001-06-26 | Transmedica International, Inc. | Laser assisted topical anesthetic permeation |
ATE386131T1 (en) | 1994-04-13 | 2008-03-15 | Univ Rockefeller | AAV-MEDIATED DELIVERY OF DNA INTO CELLS OF THE NERVOUS SYSTEM |
US5503737A (en) | 1994-07-25 | 1996-04-02 | Ingersoll-Rand Company | Air inflow restrictor for disc filters |
WO1996032076A1 (en) | 1995-04-11 | 1996-10-17 | Baxter Internatonal Inc. | Tissue implant systems |
US5898058A (en) | 1996-05-20 | 1999-04-27 | Wellman, Inc. | Method of post-polymerization stabilization of high activity catalysts in continuous polyethylene terephthalate production |
US20040076613A1 (en) | 2000-11-03 | 2004-04-22 | Nicholas Mazarakis | Vector system |
US5816256A (en) | 1997-04-17 | 1998-10-06 | Bioanalytical Systems, Inc. | Movement--responsive system for conducting tests on freely-moving animals |
US5896779A (en) * | 1997-08-01 | 1999-04-27 | Sunrise Medical Hhg Inc. | Dual mode brake actuator for walker |
US20120006146A1 (en) * | 1997-12-01 | 2012-01-12 | Warren Vincent M | Collapsible control lever |
US6289229B1 (en) | 1998-01-20 | 2001-09-11 | Scimed Life Systems, Inc. | Readable probe array for in vivo use |
US6108081A (en) | 1998-07-20 | 2000-08-22 | Battelle Memorial Institute | Nonlinear vibrational microscopy |
US6224566B1 (en) | 1999-05-04 | 2001-05-01 | Cardiodyne, Inc. | Method and devices for creating a trap for confining therapeutic drugs and/or genes in the myocardium |
US7674463B1 (en) | 1999-07-15 | 2010-03-09 | Research Development Foundation | Method of inhibiting angiogenesis by administration of a corticotropin releasing factor receptor 2 agonist |
ES2152900B1 (en) | 1999-07-23 | 2001-08-16 | Palleja Xavier Estivill | TRANSGENIC MOUSES AND OVEREXPRESSION MODEL OF GEN NTRK3 (TRKC) BASED ON THE SAME FOR THE STUDY AND MONITORING OF TREATMENTS OF ANXIETY, DEPRESSION AND RELATED PSYCHIATRIC DISEASES. |
WO2001051923A2 (en) | 2000-01-14 | 2001-07-19 | Mitokor | Screening assays using intramitochondrial calcium |
JP2003531609A (en) | 2000-05-01 | 2003-10-28 | ノバルティス アクチエンゲゼルシャフト | Vectors for transduction of the eye and their uses for gene therapy |
US7250294B2 (en) | 2000-05-17 | 2007-07-31 | Geron Corporation | Screening small molecule drugs using neural cells differentiated from human embryonic stem cells |
ES2327609T3 (en) * | 2000-06-01 | 2009-11-02 | University Of North Carolina At Chapel Hill | PROCEDURES AND COMPOUNDS TO CONTROL THE RELEASE OF RECONBINANT PARVOVIRUS VECTORS. |
US7067626B2 (en) | 2000-07-05 | 2006-06-27 | Pharmacia & Upjohn Company | Human ion channel proteins |
US7350522B2 (en) | 2000-10-17 | 2008-04-01 | Sony Corporation | Scanning method for applying ultrasonic acoustic data to the human neural cortex |
SE525540C2 (en) | 2000-11-30 | 2005-03-08 | Datainnovation I Lund Ab | System and procedure for automatic sampling from a sample object |
AU2002303283A1 (en) | 2001-04-04 | 2002-10-21 | Irm Llc | Methods for treating drug addiction |
US6961045B2 (en) | 2001-06-16 | 2005-11-01 | Che-Chih Tsao | Pattern projection techniques for volumetric 3D displays and 2D displays |
JP2005500836A (en) | 2001-07-06 | 2005-01-13 | セノミックス、インコーポレイテッド | Expression of functional human olfactory cyclic nucleotide gate (CNG) channels in recombinant host cells and their use in cell-based assays to identify olfactory regulators |
US6858429B2 (en) | 2001-08-23 | 2005-02-22 | The Regents Of The University Of California | Universal light-switchable gene promoter system |
WO2003020103A2 (en) * | 2001-09-04 | 2003-03-13 | Amit Technology Science & Medicine Ltd. | Method of and device for therapeutic illumination of internal organs and tissues |
US20040054952A1 (en) * | 2002-09-13 | 2004-03-18 | Morrow James W. | Device verification system and method |
WO2003041496A1 (en) | 2001-11-14 | 2003-05-22 | Yamanouchi Pharmaceutical Co., Ltd. | Transgenic animal |
MXPA04005010A (en) | 2001-11-26 | 2005-04-08 | Advanced Cell Tech Inc | Methods for making and using reprogrammed human somatic cell nuclei and autologous and isogenic human stem cells. |
US10695577B2 (en) | 2001-12-21 | 2020-06-30 | Photothera, Inc. | Device and method for providing phototherapy to the heart |
US6666857B2 (en) | 2002-01-29 | 2003-12-23 | Robert F. Smith | Integrated wavefront-directed topography-controlled photoablation |
EP1478348A4 (en) * | 2002-02-01 | 2008-06-18 | Cleveland Clinic Foundation | Microinfusion device |
JP4363843B2 (en) | 2002-03-08 | 2009-11-11 | オリンパス株式会社 | Capsule endoscope |
WO2003101532A2 (en) | 2002-06-04 | 2003-12-11 | Cyberkinetics, Inc. | Optically-connected implants and related systems and methods of use |
US20050020945A1 (en) | 2002-07-02 | 2005-01-27 | Tosaya Carol A. | Acoustically-aided cerebrospinal-fluid manipulation for neurodegenerative disease therapy |
US20040049134A1 (en) | 2002-07-02 | 2004-03-11 | Tosaya Carol A. | System and methods for treatment of alzheimer's and other deposition-related disorders of the brain |
WO2004016315A1 (en) | 2002-08-19 | 2004-02-26 | Arizona Board Regents | Neurostimulator |
WO2004033647A2 (en) | 2002-10-10 | 2004-04-22 | Merck & Co., Inc. | Assay methods for state-dependent calcium channel agonists/antagonists |
US7201080B1 (en) * | 2002-10-21 | 2007-04-10 | Appalachian Cast Products, Inc. | Hand-operated jointed control lever |
JP2006517096A (en) | 2002-12-16 | 2006-07-20 | ジェネンテック・インコーポレーテッド | Transgenic mouse expressing human CD20 |
US20040216177A1 (en) | 2003-04-25 | 2004-10-28 | Otsuka Pharmaceutical Co., Ltd. | Congenic rats containing a mutant GPR10 gene |
CA2432810A1 (en) | 2003-06-19 | 2004-12-19 | Andres M. Lozano | Method of treating depression, mood disorders and anxiety disorders by brian infusion |
WO2005007233A2 (en) | 2003-06-20 | 2005-01-27 | Massachusetts Institute Of Technology | Application of electrical stimulation for functional tissue engineering in vitro and in vivo |
JP2005034073A (en) | 2003-07-16 | 2005-02-10 | Masamitsu Iino | Fluorescent probe for assaying myosin light chain phosphorylation |
EP1684861B1 (en) | 2003-10-21 | 2014-12-03 | The Regents Of The University Of Michigan | Intracranial neural interface system |
US6952097B2 (en) | 2003-10-22 | 2005-10-04 | Siemens Aktiengesellschaft | Method for slice position planning of tomographic measurements, using statistical images |
CN1236305C (en) | 2004-02-03 | 2006-01-11 | 复旦大学 | Preparation method for biologic photosensitive protein-nanometer semiconductor composite photoelectric electrode |
ITMI20040598A1 (en) | 2004-03-26 | 2004-06-26 | Carlotta Giorgi | METHOD FOR DETECTION OF INTRACELLULAR PARAMETERS WITH LUMINESCENT PROTEIN PROBES FOR THE SCREENING OF MOLECULES ABLE TO ALTER THE SAID PARAMETERS |
SE525445C2 (en) * | 2004-04-06 | 2005-02-22 | Bioresonator Ab | Measuring and testing device for oedema, comprises measuring head with resonantly vibrating sensor for pressing against oedema |
US20050279354A1 (en) * | 2004-06-21 | 2005-12-22 | Harvey Deutsch | Structures and Methods for the Joint Delivery of Fluids and Light |
US20060057614A1 (en) | 2004-08-04 | 2006-03-16 | Nathaniel Heintz | Tethering neuropeptides and toxins for modulation of ion channels and receptors |
US20060129126A1 (en) | 2004-11-19 | 2006-06-15 | Kaplitt Michael G | Infusion device and method for infusing material into the brain of a patient |
JP2006217866A (en) | 2005-02-10 | 2006-08-24 | Tohoku Univ | Neurons newly imparted photosensitivity |
US20070059775A1 (en) | 2005-03-29 | 2007-03-15 | The Trustees Of Columbia University In The City Of New York | Synthesis and conjugation of iron oxide nanoparticles to antibodies for targeting specific cells using fluorescence and MR imaging techniques |
GB0508254D0 (en) | 2005-04-23 | 2005-06-01 | Smith & Nephew | Ultrasound device |
US20070027443A1 (en) | 2005-06-29 | 2007-02-01 | Ondine International, Ltd. | Hand piece for the delivery of light and system employing the hand piece |
US7736382B2 (en) | 2005-09-09 | 2010-06-15 | Lockheed Martin Corporation | Apparatus for optical stimulation of nerves and other animal tissue |
US20090271024A1 (en) * | 2006-03-21 | 2009-10-29 | Mccleary Paul Robert | Cutting Apparatus |
US8057464B2 (en) | 2006-05-03 | 2011-11-15 | Light Sciences Oncology, Inc. | Light transmission system for photoreactive therapy |
SG139588A1 (en) | 2006-07-28 | 2008-02-29 | St Microelectronics Asia | Addressable led architecure |
US20100021982A1 (en) | 2006-12-06 | 2010-01-28 | Stefan Herlitze | Light-sensitive constructs for inducing cell death and cell signaling |
EE200600039A (en) | 2006-12-12 | 2008-10-15 | Tartu Ülikool | Animal Transgenic Model for Modeling Pathological Anxiety, Method for Identifying Compounds Suitable for the Treatment of Pathological Anxiety Diseases or Conditions, and Method for Wfs1 Protein Targeting Against Pathological Anxiety |
US7883536B1 (en) | 2007-01-19 | 2011-02-08 | Lockheed Martin Corporation | Hybrid optical-electrical probes |
US20110165681A1 (en) | 2009-02-26 | 2011-07-07 | Massachusetts Institute Of Technology | Light-Activated Proton Pumps and Applications Thereof |
EP2222372A2 (en) | 2007-12-06 | 2010-09-01 | Technion Research & Development Foundation Ltd. | Method and system for optical stimulation of neurons |
US20090193929A1 (en) * | 2008-02-05 | 2009-08-06 | Chen-Feng Lin | Foldable Control Lever Structure Of Motorcycle Handle |
US20090301252A1 (en) * | 2008-06-06 | 2009-12-10 | Chia-Wei Hsu | Bicycle brake lever |
US8636653B2 (en) | 2008-06-09 | 2014-01-28 | Capso Vision, Inc. | In vivo camera with multiple sources to illuminate tissue at different distances |
CN107329280A (en) | 2008-09-25 | 2017-11-07 | 纽约市哥伦比亚大学托管会 | Device, the apparatus and method of light stimulus and structure imaging are provided |
WO2010061686A1 (en) | 2008-11-26 | 2010-06-03 | シャープ株式会社 | Liquid crystal display device, liquid crystal display device drive method, and television receiver |
KR101081360B1 (en) | 2009-03-25 | 2011-11-08 | 한국과학기술연구원 | Photostimulation array apparatus |
WO2011005978A2 (en) | 2009-07-08 | 2011-01-13 | Duke University | Methods of manipulating cell signaling |
JP5322067B2 (en) | 2009-08-10 | 2013-10-23 | 国立大学法人東北大学 | Photoreceptive channel rhodopsin with improved expression efficiency |
US20110112463A1 (en) | 2009-11-12 | 2011-05-12 | Jerry Silver | Compositions and methods for treating a neuronal injury or neuronal disorders |
EP2539015B1 (en) | 2010-02-26 | 2015-12-30 | Cornell University | Retina prosthesis |
US10051240B2 (en) | 2010-06-14 | 2018-08-14 | Howard Hughes Medical Institute | Structured plane illumination microscopy |
WO2012027358A1 (en) | 2010-08-23 | 2012-03-01 | President And Fellows Of Harvard College | Optogenetic probes for measuring membrane potential |
PT2614079E (en) | 2010-09-08 | 2015-10-06 | Max Planck Ges Zur Förderung Der Wissenschaften E V | Mutant channelrhodopsin 2 |
EP2635110B1 (en) | 2010-11-05 | 2018-05-09 | The Board of Trustees of the Leland Stanford Junior University | Control and characterization of psychotic states |
US8957028B2 (en) | 2010-11-13 | 2015-02-17 | Massachusetts Institute Of Technology | Red-shifted opsin molecules and uses thereof |
US8696722B2 (en) | 2010-11-22 | 2014-04-15 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic magnetic resonance imaging |
US20120160053A1 (en) * | 2010-12-22 | 2012-06-28 | Charlie Hon | Adjustable motorcycle lever |
US9939449B2 (en) | 2011-02-01 | 2018-04-10 | The University Of Vermont And State Agricultural College | Diagnostic and therapeutic methods and products related to anxiety disorders |
US20140128800A1 (en) | 2011-06-28 | 2014-05-08 | University Of Rochester | Photoactivatable receptors and their uses |
EP2736402B1 (en) | 2011-07-25 | 2018-01-10 | NeuroNexus Technologies, Inc. | Opto-electrical device and method for artifact reduction |
EP3385992B1 (en) | 2011-07-27 | 2024-09-04 | The Board of Trustees of the University of Illinois | Nanopore sensors for biomolecular characterization |
US8759492B2 (en) | 2011-08-17 | 2014-06-24 | The Regents Of The University Of California | Engineered red-shifted channelrhodopsin variants |
AU2012352429B2 (en) | 2011-12-16 | 2018-07-19 | The Board Of Trustees Of The Leland Stanford Junior University | Opsin polypeptides and methods of use thereof |
CN104471462B (en) | 2012-02-23 | 2017-09-19 | 美国卫生与公共服务秘书部 | Multifocal structured illumination microscopy system and method |
AU2013348395A1 (en) | 2012-11-21 | 2015-06-11 | Circuit Therapeutics, Inc. | System and method for optogenetic therapy |
JP2016507078A (en) | 2013-01-25 | 2016-03-07 | ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティオブ ニューヨーク | Depth of field 3D imaging SLM microscope |
US9636380B2 (en) | 2013-03-15 | 2017-05-02 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of inputs to the ventral tegmental area |
US20150112411A1 (en) | 2013-10-18 | 2015-04-23 | Varaya Photoceuticals, Llc | High powered light emitting diode photobiology compositions, methods and systems |
AU2015237265A1 (en) | 2014-03-28 | 2016-10-13 | The Board Of Trustees Of The Leland Stanford Junior University | Engineered light-activated anion channel proteins and methods of use thereof |
EP3174600A4 (en) | 2014-07-29 | 2018-03-14 | Circuit Therapeutics, Inc. | System and method for optogenetic therapy |
US10424954B2 (en) | 2014-11-11 | 2019-09-24 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Power adaptor, terminal and charging system |
CA2969453A1 (en) | 2014-12-04 | 2016-06-09 | The Board Of Trustees Of The Leland Stanford Junior University | Dopamine receptor type 2 specific promoter and methods of use thereof |
US11147457B2 (en) | 2015-11-18 | 2021-10-19 | The Board Of Trustees Of The Leland Stanford Junior University | Method and systems for measuring neural activity |
-
2007
- 2007-01-09 US US11/651,422 patent/US8926959B2/en active Active
-
2014
- 2014-11-10 US US14/537,305 patent/US10569099B2/en active Active
Patent Citations (233)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2968302A (en) | 1956-07-20 | 1961-01-17 | Univ Illinois | Multibeam focusing irradiator |
US3131690A (en) | 1962-10-22 | 1964-05-05 | American Optical Corp | Fiber optics devices |
US3499437A (en) | 1967-03-10 | 1970-03-10 | Ultrasonic Systems | Method and apparatus for treatment of organic structures and systems thereof with ultrasonic energy |
US3567847A (en) | 1969-01-06 | 1971-03-02 | Edgar E Price | Electro-optical display system |
US4343301A (en) | 1979-10-04 | 1982-08-10 | Robert Indech | Subcutaneous neural stimulation or local tissue destruction |
US4559951A (en) | 1982-11-29 | 1985-12-24 | Cardiac Pacemakers, Inc. | Catheter assembly |
US4616231A (en) | 1984-03-26 | 1986-10-07 | Hughes Aircraft Company | Narrow-band beam steering system |
US4879284A (en) | 1985-04-15 | 1989-11-07 | L'oreal | Naphthalene derivatives having retinoid type action, the process for preparation thereof and medicinal and cosmetic compositions containing them |
US4865042A (en) | 1985-08-16 | 1989-09-12 | Hitachi, Ltd. | Ultrasonic irradiation system |
US5041224A (en) | 1988-03-28 | 1991-08-20 | Canon Kabushiki Kaisha | Ion permeable membrane and ion transport method by utilizing said membrane |
US5082670A (en) * | 1988-12-15 | 1992-01-21 | The Regents Of The University Of California | Method of grafting genetically modified cells to treat defects, disease or damage or the central nervous system |
US5290280A (en) | 1989-09-08 | 1994-03-01 | S.L.T. Japan Co., Ltd. | Laser light irradiation apparatus |
US5267152A (en) | 1989-10-28 | 1993-11-30 | Yang Won S | Non-invasive method and apparatus for measuring blood glucose concentration |
US5032123A (en) | 1989-12-28 | 1991-07-16 | Cordis Corporation | Laser catheter with radially divergent treatment beam |
US5460950A (en) | 1990-11-26 | 1995-10-24 | Genetics Institute, Inc. | Expression of PACE in host cells and methods of use thereof |
US5550316A (en) * | 1991-01-02 | 1996-08-27 | Fox Chase Cancer Center | Transgenic animal model system for human cutaneous melanoma |
US6497872B1 (en) | 1991-07-08 | 2002-12-24 | Neurospheres Holdings Ltd. | Neural transplantation using proliferated multipotent neural stem cells and their progeny |
US5249575A (en) | 1991-10-21 | 1993-10-05 | Adm Tronics Unlimited, Inc. | Corona discharge beam thermotherapy system |
US5739273A (en) | 1992-02-12 | 1998-04-14 | Yale University | Transmembrane polypeptide and methods of use |
US5460954A (en) | 1992-04-01 | 1995-10-24 | Cheil Foods & Chemicals, Inc. | Production of human proinsulin using a novel vector system |
US5330515A (en) | 1992-06-17 | 1994-07-19 | Cyberonics, Inc. | Treatment of pain by vagal afferent stimulation |
US5527695A (en) | 1993-01-29 | 1996-06-18 | Purdue Research Foundation | Controlled modification of eukaryotic genomes |
US5641650A (en) | 1993-03-25 | 1997-06-24 | The Regents Of The University Of California | Expression of heterologous polypeptides in halobacteria |
US5738625A (en) | 1993-06-11 | 1998-04-14 | Gluck; Daniel S. | Method of and apparatus for magnetically stimulating neural cells |
EP1334748B1 (en) | 1993-08-16 | 2005-10-26 | Light Sciences Corporation | Apparatus for photodynamic therapy |
US5470307A (en) | 1994-03-16 | 1995-11-28 | Lindall; Arnold W. | Catheter system for controllably releasing a therapeutic agent at a remote tissue site |
US20030026784A1 (en) | 1994-04-15 | 2003-02-06 | Duke University | Use of exogenous beta-adrenergic receptor and beta-adrenergic receptor kinase gene constructs to enhance myocardial function |
US5495541A (en) | 1994-04-19 | 1996-02-27 | Murray; Steven C. | Optical delivery device with high numerical aperture curved waveguide |
US5807285A (en) | 1994-08-18 | 1998-09-15 | Ethicon-Endo Surgery, Inc. | Medical applications of ultrasonic energy |
US5520188A (en) | 1994-11-02 | 1996-05-28 | Focus Surgery Inc. | Annular array transducer |
US5795581A (en) | 1995-03-31 | 1998-08-18 | Sandia Corporation | Controlled release of molecular components of dendrimer/bioactive complexes |
US6334846B1 (en) | 1995-03-31 | 2002-01-01 | Kabushiki Kaisha Toshiba | Ultrasound therapeutic apparatus |
US20020164577A1 (en) | 1995-06-07 | 2002-11-07 | The Regents Of The University Of California | Detection of transmembrane potentials by optical methods |
US5755750A (en) | 1995-11-13 | 1998-05-26 | University Of Florida | Method and apparatus for selectively inhibiting activity in nerve fibers |
US5722426A (en) | 1996-02-26 | 1998-03-03 | Kolff; Jack | Coronary light probe and method of use |
US5703985A (en) | 1996-04-29 | 1997-12-30 | Eclipse Surgical Technologies, Inc. | Optical fiber device and method for laser surgery procedures |
US5939320A (en) | 1996-05-20 | 1999-08-17 | New York University | G-coupled receptors associated with macrophage-trophic HIV, and diagnostic and therapeutic uses thereof |
US6805129B1 (en) | 1996-10-22 | 2004-10-19 | Epicor Medical, Inc. | Apparatus and method for ablating tissue |
US5741316A (en) | 1996-12-02 | 1998-04-21 | Light Sciences Limited Partnership | Electromagnetic coil configurations for power transmission through tissue |
US5756351A (en) | 1997-01-13 | 1998-05-26 | The Regents Of The University Of California | Biomolecular optical sensors |
US5782896A (en) | 1997-01-29 | 1998-07-21 | Light Sciences Limited Partnership | Use of a shape memory alloy to modify the disposition of a device within an implantable medical probe |
US6685656B1 (en) | 1997-02-14 | 2004-02-03 | Exogen, Inc. | Ultrasonic treatment for wounds |
US6436708B1 (en) | 1997-04-17 | 2002-08-20 | Paola Leone | Delivery system for gene therapy to the brain |
US20080175819A1 (en) | 1997-06-04 | 2008-07-24 | Oxford Biomedica (Uk) Limited | Vector system |
US6364831B1 (en) | 1997-09-29 | 2002-04-02 | Boston Scientific Corporation | Endofluorescence imaging module for an endoscope |
US6647296B2 (en) | 1997-10-27 | 2003-11-11 | Neuropace, Inc. | Implantable apparatus for treating neurological disorders |
US6134474A (en) | 1997-10-27 | 2000-10-17 | Neuropace, Inc. | Responsive implantable system for the treatment of neurological disorders |
US6597954B1 (en) | 1997-10-27 | 2003-07-22 | Neuropace, Inc. | System and method for controlling epileptic seizures with spatially separated detection and stimulation electrodes |
US6790652B1 (en) | 1998-01-08 | 2004-09-14 | Bioimage A/S | Method and apparatus for high density format screening for bioactive molecules |
US6336904B1 (en) | 1998-04-07 | 2002-01-08 | Pro Duct Health, Inc. | Methods and devices for the localization of lesions in solid tissue |
US7191018B2 (en) | 1998-04-30 | 2007-03-13 | Medtronic, Inc. | Techniques for positioning therapy delivery elements within a spinal cord or brain |
US20030050258A1 (en) | 1998-08-19 | 2003-03-13 | Michele P. Calos | Methods and compositions for genomic modification |
US20040203152A1 (en) | 1998-08-19 | 2004-10-14 | Calos Michele P. | Methods and compositions for genomic modification |
US6632672B2 (en) | 1998-08-19 | 2003-10-14 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for genomic modification |
US6377842B1 (en) | 1998-09-22 | 2002-04-23 | Aurora Optics, Inc. | Method for quantitative measurement of fluorescent and phosphorescent drugs within tissue utilizing a fiber optic probe |
US6253109B1 (en) | 1998-11-05 | 2001-06-26 | Medtronic Inc. | System for optimized brain stimulation |
US7211054B1 (en) | 1998-11-06 | 2007-05-01 | University Of Rochester | Method of treating a patient with a neurodegenerative disease using ultrasound |
WO2000027293A1 (en) | 1998-11-06 | 2000-05-18 | University Of Rochester | A method to improve circulation to ischemic tissue |
US6303362B1 (en) | 1998-11-19 | 2001-10-16 | The Board Of Trustees Of The Leland Stanford Junior University | Adenoviral vector and methods for making and using the same |
US7045344B2 (en) | 1998-11-19 | 2006-05-16 | The Board Of Trustees Of The Leland Stanford Junior University | Adenoviral vector and methods for making and using the same |
US20080050770A1 (en) | 1998-12-01 | 2008-02-28 | Introgen Therapeutics, Inc. | Method for the production and purification of adenoviral vectors |
US6790657B1 (en) | 1999-01-07 | 2004-09-14 | The United States Of America As Represented By The Department Of Health And Human Services | Lentivirus vector system |
US20050119315A1 (en) | 1999-03-31 | 2005-06-02 | Cardiome Pharma Corp. | Ion channel modulating activity II |
US6161045A (en) | 1999-06-01 | 2000-12-12 | Neuropace, Inc. | Method for determining stimulation parameters for the treatment of epileptic seizures |
US20020155173A1 (en) | 1999-06-14 | 2002-10-24 | Michael Chopp | Nitric oxide donors for inducing neurogenesis |
US20030009103A1 (en) | 1999-06-18 | 2003-01-09 | Rafael Yuste | Optical probing of neuronal connections with fluorescent indicators |
US20040034882A1 (en) | 1999-07-15 | 2004-02-19 | Vale Wylie W. | Corticotropin releasing factor receptor 2 deficient mice and uses thereof |
US6780490B1 (en) | 1999-08-06 | 2004-08-24 | Yukadenshi Co., Ltd. | Tray for conveying magnetic head for magnetic disk |
WO2001025466A1 (en) | 1999-10-05 | 2001-04-12 | Oxford Biomedica (Uk) Limited | Producer cell for the production of retroviral vectors |
US6609020B2 (en) | 1999-12-01 | 2003-08-19 | Steven Gill | Neurosurgical guide device |
US20060025756A1 (en) | 2000-01-19 | 2006-02-02 | Francischelli David E | Methods of using high intensity focused ultrasound to form an ablated tissue area |
US20050267454A1 (en) | 2000-01-19 | 2005-12-01 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US20020094516A1 (en) | 2000-02-18 | 2002-07-18 | Calos Michele P. | Altered recombinases for genome modification |
US20080167261A1 (en) | 2000-02-18 | 2008-07-10 | Sclimenti Christopher R | Altered Recombinases for Genome Modification |
US6473639B1 (en) | 2000-03-02 | 2002-10-29 | Neuropace, Inc. | Neurological event detection procedure using processed display channel based algorithms and devices incorporating these procedures |
US6480743B1 (en) | 2000-04-05 | 2002-11-12 | Neuropace, Inc. | System and method for adaptive brain stimulation |
US7220240B2 (en) | 2000-05-03 | 2007-05-22 | Aspect Medical Systems, Inc. | System and method for adaptive drug delivery |
US6551346B2 (en) | 2000-05-17 | 2003-04-22 | Kent Crossley | Method and apparatus to prevent infections |
US6686193B2 (en) | 2000-07-10 | 2004-02-03 | Vertex Pharmaceuticals, Inc. | High throughput method and system for screening candidate compounds for activity against target ion channels |
US6969449B2 (en) | 2000-07-10 | 2005-11-29 | Vertex Pharmaceuticals (San Diego) Llc | Multi-well plate and electrode assemblies for ion channel assays |
US20060216689A1 (en) | 2000-07-10 | 2006-09-28 | Maher Michael P | Ion channel assay methods |
US6921413B2 (en) | 2000-08-16 | 2005-07-26 | Vanderbilt University | Methods and devices for optical stimulation of neural tissues |
US6567690B2 (en) | 2000-10-16 | 2003-05-20 | Cole Giller | Method and apparatus for probe localization in brain matter |
US6536440B1 (en) | 2000-10-17 | 2003-03-25 | Sony Corporation | Method and system for generating sensory data onto the human neural cortex |
US6729337B2 (en) | 2000-10-17 | 2004-05-04 | Sony Corporation | Method and system for generating sensory data onto the human neural cortex |
US6889085B2 (en) | 2000-10-17 | 2005-05-03 | Sony Corporation | Method and system for forming an acoustic signal from neural timing difference data |
US20050197679A1 (en) | 2000-10-17 | 2005-09-08 | Dawson Thomas P. | Method and system for forming an acoustic signal from neural timing difference data |
US6631283B2 (en) | 2000-11-15 | 2003-10-07 | Virginia Tech Intellectual Properties, Inc. | B/B-like fragment targeting for the purposes of photodynamic therapy and medical imaging |
US6506154B1 (en) | 2000-11-28 | 2003-01-14 | Insightec-Txsonics, Ltd. | Systems and methods for controlling a phased array focused ultrasound system |
US20070196838A1 (en) | 2000-12-08 | 2007-08-23 | Invitrogen Corporation | Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites |
US6489115B2 (en) | 2000-12-21 | 2002-12-03 | The Board Of Regents Of The University Of Nebraska | Genetic assays for trinucleotide repeat mutations in eukaryotic cells |
US6615080B1 (en) | 2001-03-29 | 2003-09-02 | John Duncan Unsworth | Neuromuscular electrical stimulation of the foot muscles for prevention of deep vein thrombosis and pulmonary embolism |
US20030097122A1 (en) | 2001-04-10 | 2003-05-22 | Ganz Robert A. | Apparatus and method for treating atherosclerotic vascular disease through light sterilization |
US6810285B2 (en) | 2001-06-28 | 2004-10-26 | Neuropace, Inc. | Seizure sensing and detection using an implantable device |
US20030040080A1 (en) * | 2001-08-16 | 2003-02-27 | Gero Miesenbock | Bio-synthetic photostimulators and methods of use |
US7144733B2 (en) | 2001-08-16 | 2006-12-05 | Sloan-Kettering Institute For Cancer Research | Bio-synthetic photostimulators and methods of use |
US6974448B2 (en) | 2001-08-30 | 2005-12-13 | Medtronic, Inc. | Method for convection enhanced delivery catheter to treat brain and other tumors |
US20060057192A1 (en) | 2001-09-28 | 2006-03-16 | Kane Patrick D | Localized non-invasive biological modulation system |
US7175596B2 (en) | 2001-10-29 | 2007-02-13 | Insightec-Txsonics Ltd | System and method for sensing and locating disturbances in an energy path of a focused ultrasound system |
US20060253177A1 (en) | 2001-11-01 | 2006-11-09 | Taboada Luis D | Device and method for providing phototherapy to the brain |
WO2003040323A3 (en) | 2001-11-08 | 2005-03-31 | Childrens Medical Center | Bacterial ion channel and a method for screening ion channel modulators |
US20030104512A1 (en) | 2001-11-30 | 2003-06-05 | Freeman Alex R. | Biosensors for single cell and multi cell analysis |
US20030125719A1 (en) | 2001-12-31 | 2003-07-03 | Furnish Simon M. | Multi-fiber catheter probe arrangement for tissue analysis or treatment |
US6721603B2 (en) | 2002-01-25 | 2004-04-13 | Cyberonics, Inc. | Nerve stimulation as a treatment for pain |
US20040039312A1 (en) | 2002-02-20 | 2004-02-26 | Liposonix, Inc. | Ultrasonic treatment and imaging of adipose tissue |
US20030232339A1 (en) | 2002-04-01 | 2003-12-18 | Youmin Shu | Human TRPCC cation channel and uses |
US20070135875A1 (en) | 2002-04-08 | 2007-06-14 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US7824869B2 (en) | 2002-04-11 | 2010-11-02 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Use of biological photoreceptors as directly light-activated ion channels |
US20050202398A1 (en) | 2002-04-11 | 2005-09-15 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Use of biological photoreceptors as directly light-activated ion channels |
WO2003084994A3 (en) | 2002-04-11 | 2004-02-05 | Max Planck Gesellschaft | Use of biological photoreceptors as directly light-activated ion channels |
US20030204135A1 (en) | 2002-04-30 | 2003-10-30 | Alexander Bystritsky | Methods for stimulating neurons |
US20110092800A1 (en) | 2002-04-30 | 2011-04-21 | Seung-Schik Yoo | Methods for modifying electrical currents in neuronal circuits |
US7298143B2 (en) | 2002-05-13 | 2007-11-20 | Koninklijke Philips Electronics N.V. | Reduction of susceptibility artifacts in subencoded single-shot magnetic resonance imaging |
WO2003102156B1 (en) | 2002-05-31 | 2005-02-17 | Sloan Kettering Inst Cancer | Heterologous stimulus-gated ion channels and methods of using same |
WO2003106486A1 (en) | 2002-06-12 | 2003-12-24 | Fraunhofer-Gelellschaft Zur Förderung Der Angewandten Forschung E.V. | Vegetable protein preparations and use thereof |
US20080065183A1 (en) | 2002-06-20 | 2008-03-13 | Advanced Bionics Corporation | Vagus nerve stimulation via unidirectional propagation of action potentials |
US20060106543A1 (en) | 2002-08-09 | 2006-05-18 | Gustavo Deco | Method for analyzing effectiveness of pharmaceutical preparation |
US20050058987A1 (en) | 2002-11-18 | 2005-03-17 | Pei-Yong Shi | Screening for west nile virus antiviral therapy |
US20040122475A1 (en) | 2002-12-18 | 2004-06-24 | Myrick Andrew J. | Electrochemical neuron systems |
US20070197918A1 (en) | 2003-06-02 | 2007-08-23 | Insightec - Image Guided Treatment Ltd. | Endo-cavity focused ultrasound transducer |
US7091500B2 (en) | 2003-06-20 | 2006-08-15 | Lucent Technologies Inc. | Multi-photon endoscopic imaging system |
US20090326603A1 (en) | 2003-09-12 | 2009-12-31 | Case Western Reserve University | Apparatus for stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses |
US20050153885A1 (en) | 2003-10-08 | 2005-07-14 | Yun Anthony J. | Treatment of conditions through modulation of the autonomic nervous system |
US20080119421A1 (en) | 2003-10-31 | 2008-05-22 | Jack Tuszynski | Process for treating a biological organism |
US20060034943A1 (en) | 2003-10-31 | 2006-02-16 | Technology Innovations Llc | Process for treating a biological organism |
US20070031924A1 (en) | 2003-11-21 | 2007-02-08 | The Johns Hopkins University | Biomolecule partition motifs and uses thereof |
US20050124897A1 (en) | 2003-12-03 | 2005-06-09 | Scimed Life Systems, Inc. | Apparatus and methods for delivering acoustic energy to body tissue |
US20050240127A1 (en) | 2004-03-02 | 2005-10-27 | Ralf Seip | Ultrasound phased arrays |
US20050215764A1 (en) | 2004-03-24 | 2005-09-29 | Tuszynski Jack A | Biological polymer with differently charged portions |
US20080033569A1 (en) | 2004-04-19 | 2008-02-07 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Bioelectromagnetic interface system |
US7313442B2 (en) | 2004-04-30 | 2007-12-25 | Advanced Neuromodulation Systems, Inc. | Method of treating mood disorders and/or anxiety disorders by brain stimulation |
US20050267011A1 (en) | 2004-05-24 | 2005-12-01 | The Board Of Trustees Of The Leland Stanford Junior University | Coupling of excitation and neurogenesis in neural stem/progenitor cells |
US20060058671A1 (en) | 2004-08-11 | 2006-03-16 | Insightec-Image Guided Treatment Ltd | Focused ultrasound system with adaptive anatomical aperture shaping |
US20060058678A1 (en) | 2004-08-26 | 2006-03-16 | Insightec - Image Guided Treatment Ltd. | Focused ultrasound system for surrounding a body tissue mass |
US20060100679A1 (en) | 2004-08-27 | 2006-05-11 | Dimauro Thomas | Light-based implants for treating Alzheimer's disease |
US7603174B2 (en) | 2004-10-21 | 2009-10-13 | Advanced Neuromodulation Systems, Inc. | Stimulation of the amygdalohippocampal complex to treat neurological conditions |
US7613520B2 (en) | 2004-10-21 | 2009-11-03 | Advanced Neuromodulation Systems, Inc. | Spinal cord stimulation to treat auditory dysfunction |
US20070239080A1 (en) | 2004-10-22 | 2007-10-11 | Wolfgang Schaden | Methods for promoting nerve regeneration and neuronal growth and elongation |
US20060161227A1 (en) | 2004-11-12 | 2006-07-20 | Northwestern University | Apparatus and methods for optical stimulation of the auditory nerve |
US20060155348A1 (en) | 2004-11-15 | 2006-07-13 | Decharms Richard C | Applications of the stimulation of neural tissue using light |
US20060271024A1 (en) | 2005-01-25 | 2006-11-30 | Michael Gertner | Nasal Cavity Treatment Apparatus |
US7686839B2 (en) | 2005-01-26 | 2010-03-30 | Lumitex, Inc. | Phototherapy treatment devices for applying area lighting to a wound |
US20060184069A1 (en) | 2005-02-02 | 2006-08-17 | Vaitekunas Jeffrey J | Focused ultrasound for pain reduction |
US20080020465A1 (en) | 2005-02-02 | 2008-01-24 | Malla Padidam | Site-specific serine recombinases and methods of their use |
US20060190044A1 (en) | 2005-02-22 | 2006-08-24 | Cardiac Pacemakers, Inc. | Cell therapy and neural stimulation for cardiac repair |
US20060206172A1 (en) | 2005-03-14 | 2006-09-14 | Dimauro Thomas M | Red light implant for treating Parkinson's Disease |
US20090319008A1 (en) | 2005-03-31 | 2009-12-24 | Esther Mayer | Probe device, system and method for photobiomodulation of tissue lining a body cavity |
JP2006295350A (en) | 2005-04-07 | 2006-10-26 | Sony Corp | Imaging apparatus and method of processing imaging result |
US20060236525A1 (en) | 2005-04-11 | 2006-10-26 | Jack Sliwa | High intensity ultrasound transducers and methods and devices for manufacturing high intensity ultrasound transducers |
US20060241697A1 (en) | 2005-04-25 | 2006-10-26 | Cardiac Pacemakers, Inc. | System to provide neural markers for sensed neural activity |
US20080290318A1 (en) | 2005-04-26 | 2008-11-27 | Van Veggel Franciscus C J M | Production of Light from Sol-Gel Derived Thin Films Made with Lanthanide Doped Nanoparticles, and Preparation Thereof |
US20090069261A1 (en) | 2005-05-02 | 2009-03-12 | Genzyme Corporation | Gene therapy for spinal cord disorders |
US20080200749A1 (en) | 2005-06-15 | 2008-08-21 | Yunfeng Zheng | Magnetic Stimulating Circuit For Nervous Centralis System Apparatus, Purpose, and Method Thereof |
US20090099038A1 (en) | 2005-07-22 | 2009-04-16 | Karl Deisseroth | Cell line, system and method for optical-based screening of ion-channel modulators |
US20100234273A1 (en) | 2005-07-22 | 2010-09-16 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated cation channel and uses thereof |
US20100190229A1 (en) | 2005-07-22 | 2010-07-29 | Feng Zhang | System for optical stimulation of target cells |
WO2007024391A3 (en) | 2005-07-22 | 2008-09-25 | Univ Leland Stanford Junior | Light-activated cation channel and uses thereof |
US20070261127A1 (en) | 2005-07-22 | 2007-11-08 | Boyden Edward S | Light-activated cation channel and uses thereof |
US20070053996A1 (en) | 2005-07-22 | 2007-03-08 | Boyden Edward S | Light-activated cation channel and uses thereof |
US20080085265A1 (en) | 2005-07-22 | 2008-04-10 | Schneider M B | System for optical stimulation of target cells |
US20090088680A1 (en) | 2005-07-22 | 2009-04-02 | Alexander Aravanis | Optical tissue interface method and apparatus for stimulating cells |
US20070054319A1 (en) | 2005-07-22 | 2007-03-08 | Boyden Edward S | Light-activated cation channel and uses thereof |
US20070060915A1 (en) | 2005-09-15 | 2007-03-15 | Cannuflow, Inc. | Arthroscopic surgical temperature control system |
US20070220628A1 (en) | 2005-12-21 | 2007-09-20 | Pioneer Hi-Bred International, Inc. | Methods and compositions for in planta production of inverted repeats |
US20070156180A1 (en) | 2005-12-30 | 2007-07-05 | Jaax Kristen N | Methods and systems for treating osteoarthritis |
US7610100B2 (en) | 2005-12-30 | 2009-10-27 | Boston Scientific Neuromodulation Corporation | Methods and systems for treating osteoarthritis |
US20070191906A1 (en) | 2006-02-13 | 2007-08-16 | Anand Iyer | Method and apparatus for selective nerve stimulation |
US20070219600A1 (en) | 2006-03-17 | 2007-09-20 | Michael Gertner | Devices and methods for targeted nasal phototherapy |
US20070239210A1 (en) | 2006-04-10 | 2007-10-11 | Imad Libbus | System and method for closed-loop neural stimulation |
US20070282404A1 (en) | 2006-04-10 | 2007-12-06 | University Of Rochester | Side-firing linear optic array for interstitial optical therapy and monitoring using compact helical geometry |
US20070253995A1 (en) | 2006-04-28 | 2007-11-01 | Medtronic, Inc. | Drug Delivery Methods and Devices for Treating Stress Urinary Incontinence |
WO2007131180A2 (en) | 2006-05-04 | 2007-11-15 | Wayne State University | Restoration of visual responses by in vivo delivery of rhodopsin nucleic acids |
US20080176076A1 (en) | 2006-05-11 | 2008-07-24 | University Of Victoria Innovation And Development Corporation | Functionalized lanthanide rich nanoparticles and use thereof |
US20080262411A1 (en) | 2006-06-02 | 2008-10-23 | Dobak John D | Dynamic nerve stimulation in combination with other eating disorder treatment modalities |
US20080046053A1 (en) | 2006-06-19 | 2008-02-21 | Wagner Timothy A | Apparatus and method for stimulation of biological tissue |
US20070295978A1 (en) | 2006-06-26 | 2007-12-27 | Coushaine Charles M | Light emitting diode with direct view optic |
US20080027505A1 (en) | 2006-07-26 | 2008-01-31 | G&L Consulting, Llc | System and method for treatment of headaches |
US20100009444A1 (en) | 2006-07-26 | 2010-01-14 | Stefan Herlitze | System and method for controlling g-protein coupled receptor pathways |
US20080051673A1 (en) | 2006-08-17 | 2008-02-28 | Xuan Kong | Motor unit number estimation (MUNE) for the assessment of neuromuscular function |
US20080125836A1 (en) | 2006-08-24 | 2008-05-29 | Jackson Streeter | Low level light therapy for enhancement of neurologic function of a patient affected by parkinson's disease |
US20080060088A1 (en) | 2006-09-01 | 2008-03-06 | Heesup Shin | Phospholipase c beta1 (plcbeta1) knockout mice as a model system for testing schizophrenia drugs |
US20080065158A1 (en) | 2006-09-07 | 2008-03-13 | Omry Ben-Ezra | Techniques for reducing pain associated with nerve stimulation |
US7988688B2 (en) | 2006-09-21 | 2011-08-02 | Lockheed Martin Corporation | Miniature apparatus and method for optical stimulation of nerves and other animal tissue |
US20080077200A1 (en) | 2006-09-21 | 2008-03-27 | Aculight Corporation | Apparatus and method for stimulation of nerves and automated control of surgical instruments |
US20080103551A1 (en) | 2006-10-30 | 2008-05-01 | Javaid Masoud | Implantable Medical Device with Variable Data Retransmission Characteristics Based Upon Data Type |
US20100145418A1 (en) | 2007-01-10 | 2010-06-10 | Feng Zhang | System for optical stimulation of target cells |
US8398692B2 (en) | 2007-01-10 | 2013-03-19 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US20080227139A1 (en) | 2007-02-14 | 2008-09-18 | Karl Deisseroth | System, method and applications involving identification of biological circuits such as neurological characteristics |
WO2008106694A2 (en) | 2007-03-01 | 2008-09-04 | The Board Of Trustees Of The Leland Stanford Junior University | Systems, methods and compositions for optical stimulation of target cells |
US20110301529A1 (en) | 2007-03-01 | 2011-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | Systems, methods and compositions for optical stimulation of target cells |
US20090093403A1 (en) | 2007-03-01 | 2009-04-09 | Feng Zhang | Systems, methods and compositions for optical stimulation of target cells |
US20080221452A1 (en) | 2007-03-09 | 2008-09-11 | Philip Chidi Njemanze | Method for inducing and monitoring long-term potentiation and long-term depression using transcranial doppler ultrasound device in head-down bed rest |
US20080228244A1 (en) | 2007-03-16 | 2008-09-18 | Old Dominion University | Modulation of neuromuscular functions with ultrashort electrical pulses |
US20080287821A1 (en) | 2007-03-30 | 2008-11-20 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Computational user-health testing |
US20090030930A1 (en) | 2007-05-01 | 2009-01-29 | Neurofocus Inc. | Neuro-informatics repository system |
US8386312B2 (en) | 2007-05-01 | 2013-02-26 | The Nielsen Company (Us), Llc | Neuro-informatics repository system |
US20090148861A1 (en) | 2007-06-20 | 2009-06-11 | The Salk Institute | Kir channel modulators |
US20090054954A1 (en) | 2007-08-22 | 2009-02-26 | Cardiac Pacemakers, Inc. | Optical depolarization of cardiac tissue |
US20090112133A1 (en) | 2007-10-31 | 2009-04-30 | Karl Deisseroth | Device and method for non-invasive neuromodulation |
US20090118800A1 (en) | 2007-10-31 | 2009-05-07 | Karl Deisseroth | Implantable optical stimulators |
US20110021970A1 (en) | 2007-11-06 | 2011-01-27 | Duke University | Non-invasive energy upconversion methods and systems for in-situ photobiomodulation |
US20090157145A1 (en) | 2007-11-26 | 2009-06-18 | Lawrence Cauller | Transfer Coil Architecture |
US20090268511A1 (en) | 2008-01-16 | 2009-10-29 | University Of Connecticut | Bacteriorhodopsin Protein Variants and Methods of Use for Long Term Data Storage |
US20090254134A1 (en) | 2008-02-04 | 2009-10-08 | Medtrode Inc. | Hybrid ultrasound/electrode device for neural stimulation and recording |
WO2009119782A1 (en) | 2008-03-24 | 2009-10-01 | 国立大学法人東北大学 | Modified photoreceptor channel type rhodopsin protein |
US20100016783A1 (en) | 2008-04-04 | 2010-01-21 | Duke University | Non-invasive systems and methods for in-situ photobiomodulation |
US20110105998A1 (en) | 2008-04-23 | 2011-05-05 | The Board Of Trustees Of The Leland Stanford Junio | Systems, methods and compositions for optical stimulation of target cells |
WO2009131837A2 (en) | 2008-04-23 | 2009-10-29 | The Board Of Trustees Of The Leland Stanford Junior University. | Systems, methods and compositions for optical stimulation of target cells |
WO2010011404A3 (en) | 2008-05-20 | 2011-02-24 | Eos Neuroscience, Inc. | Vectors for delivery of light-sensitive proteins and methods of use |
US20120093772A1 (en) | 2008-05-20 | 2012-04-19 | Alan Horsager | Vectors for delivery of light sensitive proteins and methods of use |
US20110112179A1 (en) | 2008-05-29 | 2011-05-12 | Airan Raag D | Cell line, system and method for optical control of secondary messengers |
US20110159562A1 (en) | 2008-06-17 | 2011-06-30 | Karl Deisseroth | Apparatus and methods for controlling cellular development |
US20110172653A1 (en) | 2008-06-17 | 2011-07-14 | Schneider M Bret | Methods, systems and devices for optical stimulation of target cells using an optical transmission element |
US20110166632A1 (en) | 2008-07-08 | 2011-07-07 | Delp Scott L | Materials and approaches for optical stimulation of the peripheral nervous system |
US20110311489A1 (en) | 2008-11-14 | 2011-12-22 | Karl Deisseroth | Optically-based stimulation of target cells and modifications thereto |
WO2010056970A2 (en) | 2008-11-14 | 2010-05-20 | The Board Of Trustees Of The Leland Stanford Junior University | Optically-based stimulation of target cells and modifications thereto |
US20130144359A1 (en) | 2009-03-24 | 2013-06-06 | Eyad Kishawi | Pain management with stimulation subthreshold to paresthesia |
WO2010123993A1 (en) | 2009-04-21 | 2010-10-28 | Tuan Vo-Dinh | Non-invasive energy upconversion methods and systems for in-situ photobiomodulation |
US20110125077A1 (en) | 2009-11-25 | 2011-05-26 | Medtronic, Inc. | Optical stimulation therapy |
WO2011066320A3 (en) | 2009-11-25 | 2011-07-28 | Medtronic, Inc. | Optical stimulation therapy |
US20110125078A1 (en) | 2009-11-25 | 2011-05-26 | Medtronic, Inc. | Optical stimulation therapy |
WO2011116238A2 (en) | 2010-03-17 | 2011-09-22 | The Board Of Trustees Of The Leland Stanford Junior University. | Light-sensitive ion-passing molecules |
WO2011127088A3 (en) | 2010-04-05 | 2012-01-19 | Eos Neuroscience, Inc. | Methods and compositions for decreasing chronic pain |
WO2012061690A2 (en) | 2010-11-05 | 2012-05-10 | The Board Of Trustees Of The Leland Stanford Junior University | Optically-controlled cns dysfunction |
WO2012061688A1 (en) | 2010-11-05 | 2012-05-10 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of reward-related behaviors |
WO2012061681A1 (en) | 2010-11-05 | 2012-05-10 | The Board Of Trustees Of The Leland Stanford Junior University. | Control and characterization of memory function |
WO2012061684A1 (en) | 2010-11-05 | 2012-05-10 | The Board Of Trustees Of The Leland Stanford Junior University | Upconversion of light for use in optogenetic methods |
WO2012061676A1 (en) | 2010-11-05 | 2012-05-10 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated chimeric opsins and methods of using the same |
WO2012061744A3 (en) | 2010-11-05 | 2013-11-14 | The Board Of Trustees Of The Leland Stanford Junior University | Stabilized step function opsin proteins and methods of using the same |
US20120253261A1 (en) | 2011-03-29 | 2012-10-04 | Medtronic, Inc. | Systems and methods for optogenetic modulation of cells within a patient |
WO2012134704A2 (en) | 2011-03-29 | 2012-10-04 | Medtronic, Inc. | Systems and methods for optogenetic modulation of cells within a patient |
WO2013126521A1 (en) | 2012-02-21 | 2013-08-29 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for treating neurogenic disorders of the pelvic floor |
WO2013142196A1 (en) | 2012-03-20 | 2013-09-26 | The Board Of Trustees Of The Leland Stanford Junior University | Non-human animal models of depression and methods of use thereof |
Non-Patent Citations (290)
Title |
---|
"N. pharaonis halorhodopsin (hop) gene, complete cds.", XP002704883, retrieved from EBI accession No. EMBL: J05199. Database accession No. J05199. Nov. 22, 1990. |
"Subname: Fluu= Bacteriorhodopsin"; XP002704863, retrieved from EBI accession No. UNIPROT: B0R5N9. Database accession No. B0R5N9. Apr. 8, 2008. |
"SubName: Full=Channelrhodopsin-1", retrieved from EBI accession No. UNIPROT: B4Y103. Database accession No. B4Y103. Sep. 23, 2008. |
[No Authors Listed] "Two bright new faces in gene therapy," Nature Biotechnology, 1996, vol. 14: p. 556. |
Adamantidis, et al., "Optogenetic Interrogation of Dopaminergic Modulation of the Multiple Phases of Reward-Seeking Behavior", J. Neurosci, 2011, vol. 31, No. 30, pp. 10829-10835. |
Aebischer, Patrick, et al. 1991. Long-Term Cross-Species Brain Transplantation of a Polymer-Encapsulated Dopamine-Secreting Cell Line. Exp Neurol. 111: 269-275. |
Ahmad, et al. "The Drosophila rhodopsin cytoplasmic tail domain is required for maintenance of rhabdomere structure." The FASEB Journal, 2007, vol. 21, p. 449-455. |
Airan, et al., "Temporally Precise in vivo Control of Intracellular Signaling", 2009, Nature, vol. 458, No. 7241, pp. 1025-1029. |
Akirav, et al. "The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear", Neural Plasticity, 2007: vol. 2007 Article ID:30873, pp. 1-11. |
Ang, et at. "Hippocampal CA1 Circuitry Dynamically Gates Direct Cortical Inputs Preferentially at Theta Frequencies." The Journal of Neurosurgery, 2005, vol. 25, No. 42, pp. 9567-9580. |
Araki, et al. "Site-Directed Integration of the cre Gene Mediated by Cre Recombinase Using a Combination of Mutant lox Sites", Nucleic Acids Research, 2002, vol. 30, No. 19, pp. 1-8. |
Aravanis et al. "An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology." J Neural Eng. (Sep. 2007);4(3):S143-56. Epub May 31, 2007. * |
Aravanis, et al. "An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology," J. Neural. Eng., 2007, vol. 4(3):S143-S156. |
Arenkiel, et al. "In vivo light-induced activation of neural circuitry in transgenic mice expressing Channelrhodopsin-2", Neuron, 2007, 54:205-218. |
Argos, et al. "The integrase family of site-specific recombinases: regional similarities and global diversity", The EMBO Journal, 1986, vol. 5, No. 2, pp. 433-440. |
Balint, et al., "The Nitrate Transporting Photochemical Reaction Cycle of the Pharaonis Halorhodopsin", Biophysical Journal, 2004, vol. 86, pp. 1655-1663. |
Bamberg et al. "Light-driven proton or chloride pumping by halorhodopsin." Proc. Natl. Academy Science USA, 1993, vol. 90, No. 2, p. 639-643. |
Banghart et al., Nature Neuroscience, 7: 1381-1386. * |
Banghart, Matthew, et al. 2004. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7(12): 1381-1386. |
Banghart, Matthew, et al. 2004. Light-activated ion channels for remote control of neuronal firing. Nat. NeuroSci. 7(12):1381-1386. |
Basil et al. "Is There Evidence for Effectiveness of Transcranial Magnetic Stimulation in the Treatment of Psychiatric Disorders?" Psychiatry, 2005, pp. 64-69. |
Bebbington et al., "The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning" vol. 3, Academic Press, New York, 1987. |
Benabid "Future strategies to restore brain functions," Conference proceedings from Medicine Meets Millennium: World Congress of Medicine and Health, 2000, 6 pages. |
Benoist et al. "In vivo sequence requirements of the SV40 early promotor region" Nature (London), 1981, vol. 290(5804): pp. 304-310. |
Berges et al., "Transduction of Brain by Herpes Simplex Virus Vectors", Molecular Therapy, 2007, vol. 15, No. 1: pp. 20-29. |
Berke, et al. "Addiction, Dopamine, and the Molecular Mechanisms of Memory", Molecular Plasticity, 2000, vol. 25: pp. 515-532. |
Berndt et al. "Bi-stable neural state switches", Nature Neuroscience, 2009, vol. 12, No. 2: pp. 229-234. |
Berridge et al., "The Versatility and Universality of Calcium Signaling", Nature Reviews: Molecular Cell Biology, 2000, vol. 1: pp. 11-21. |
Bi, Anding, et al. 2006. Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration. Neuron.50: 23-33. |
Bi, Guo-qiang, et al. 1998. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type. J. Neurosci.18(24): 10464-10472. |
Blomer et al., "Highly Efficient and Sustained Gene Transfer in Adult Neurons with Lentivirus Vector", Journal of Virology,1997, vol. 71, No. 9: pp. 6641-6649. |
Bocquet et al. "A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family." Nature Letters, 2007, vol. 445, p. 116-119. |
Boyden, Edward S., et al. 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8(9): 1263-8. |
Braun, "Two Light-activated Conductances in the Eye of the Green Alga Volvox carteri", 1999, Biophys J., vol. 76, No. 3, pp. 1668-1678. |
Brinton, et al. "Preclinical analyses of the therapeutic potential of allopregnanolone to promote neurogenesis in vitro and in vivo in transgenic mouse model of Alzheimer's disease." Current Alzheimer Research, 2006, vol. 3, No. 1: pp. 11-7. |
Brosenitsch, Teresa et al. "Physiological Patterns of Electrical Stimulation Can Induce Neuronal Gene Expression by Activating N-Type Calcium Channels," Apr. 15, 2001, J. of Neuroscience, vol. 21, pp. 2571-2579. |
Brown, et al. "Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphate-operated gate." The Journal of Neuroscience, 2000, vol. 20, No. 21, pp. 7880-7887. |
Brown, et al. "Long-term potentiation induced by θ frequency stimulation is regulated by a protein phosphate-operated gate." The Journal of Neuroscience, 2000, vol. 20, No. 21, pp. 7880-7887. |
Callaway, Edward M., et al. 1993. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA. 90: 7661-7665. |
Campagnola et al. "Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin-2." Journal of Neuroscience Methods , 2008, vol. 169, Issue 1. Abstract only. |
Cardin, et al. "Driving Fast spiking Cells Induces Gamma Rhythm and Controls Sensory Responses", 2009, Nature, vol. 459, vol. 7247, pp. 663-667. |
Cazillis et al., "VIP and PACAP induce selective neuronal differentiation of mouse embryonic stem cells", Eur J Neurosci, 2004, 19(4):798-808. |
Cenatiempo "Prokaryotic gene expression in vitro: transcription-translation coupled systems", Biochimie, 1986, vol. 68(4): pp. 505-515. |
Claudio et al. "Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma subunit." PNAS USA,1983, vol. 80, p. 1111-1115. |
Collingridge et al. "Inhibitory post-synaptic currents in rat hippocampal CA1 neurones." J. Physiol., 1984, vol. 356, pp. 551-564. |
Covington, et al. "Antidepressant Effect of Optogenetic Stimulation of the Medial Prefrontal Cortex." Journal of Neuroscience, 2010, vol. 30(48), pp. 16082-16090. |
Crouse, et al. "Expression and amplification of engineered mouse dihydrofolate reductase minigenes" Mol. Cell. Biol. , 1983, vol. 3(2): pp. 257-266. |
Cucchiaro et al., "Electron-Microsoft Analysis of Synaptic Input from the Perigeniculate Nucleus to A-Lamine of the Lateral Geniculate Nucleus in Cats", The Journal of Comparitive Neurology, 1991, vol. 310, pp. 316-336. |
Cucchiaro et al., "Phaseolus vulgaris leucoagglutinin (PHA-L): a neuroanatomical tracer for electron microscopic analysis of synaptic circuitry in the cat's dorsal lateral geniculate nucleus" J. Electron. Microsc. Tech., 1990, 15 (4):352-368. |
Cui, et al., "Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes," Sensors and Actuators, 2001, vol. 93(1): pp. 8-18. |
Dalva, Matthew B. et al. 1994. Rearrangements of Synaptic Connections in Visual Cortex Revealed by Laser Photostimulation. Science. 265: 255-258. |
Date, Isao, et al. Grafting of Encapsulated Dopamine-Secreting Cells in Parkinson's Disease: Long-Term Primate Study. Cell Transplant. 9: 705-709, 2000. |
Date, Isao, et al. Grafting of Encapsulated Dopamine-Secreting Cells in Parkinson's Disease: Long-Term Primate Study. Cell Transplant. 9: 705-709. |
De Foubert et al. "Fluoxetine-Induced Change in Rat Brain Expression of Brain-Derived Neurotrophic Factor Varies Depending on Length of Treatment," Neuroscience, 2004, vol. 128, pp. 597-604. |
Dederen, et al. "Retrograde neuronal tracing with cholera toxin B subunit: comparison of three different visualization methods", Histochemical Journal, 1994, vol. 26, pp. 856-862. |
Deisseroth "Next-generation optical technologies for illuminating genetically targeted brain circuits," The Journal of Neuroscience, 2006, vol. 26, No. 41, pp. 10380-10386. |
Deisseroth et al. "Controlling the Brain with Light." Scientific American (Nov. 2010); 303: pp. 48-55. * |
Deisseroth et al., "Excitation-neurogenesis Coupling in Adult Neural Stem/Progenitor Cells", 2004, Neuron, vol. 42, pp. 535-552. |
Deisseroth et al., "Signaling from Synapse to Nucleus: Postsynaptic CREB Phosphorylation During Multiple Forms of Hippocampal Synaptic Plasticity", Neuron, 1996, vol. 16, pp. 89-101. |
Deisseroth et al., "Signaling from Synapse to Nucleus: the logic Behind the Mechanisms", Currrent Opinion in Neurobiology, 2003, vol. 13, pp. 354-365. |
Deisseroth et al., "Translocation of Calmodulin to the Nucleus Supports CREB Phosphorylation in Hippocampal Neurons", Nature, 1998, vol. 392, pp. 198-202. |
Denk, W., et al. 1994. Anatomical-and functional imaging of neurons using 2-photon laser scanning microscopy. J. Neurosci Methods. 54: 151-162. |
Ditterich, Jochen, et al. 2003. Microstimulation of visual cortex affects the speed of perceptual decisions. Nat. Neurosci. 6(8): 891-898. |
Dittgen, Tanjew, et al. 2004. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. PNAS. 101(52): 18206-11. |
Douglass et al. "Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons." Curr Biol. Aug. 5, 2008;18(15):1133-7. * |
Ehrlich I. et al. "Amygdala inhibitory circuits and the control of fear memory", Neuron, 2009. Friedrich Meischer Institute, vol. 62: pp. 757-771. |
Eisen, "Treatment of amyotrophic lateral sclerosis", Drugs Aging, 1999; vol. 14, No. 3, pp. 173-196. |
Emerich, Dwaine F., et al. 1992. A Novel Approach to Neural Transplantation in Parkinson's Disease: Use of Polymer-Encapsulated Cell Therapy. Neuroscience and Biobehavioral Reviews. 16: 437-447. |
Emerich, et al. "A Novel Approach to Neural Transplantation in Parkinson's Disease: Use of Polymer-Encapsulated Cell Therapy", Neuroscience and Biobehavioral Reviews, 1992, vol. 16, pp. 437-447. |
Ensell, et al. "Silicon-based microelectrodes for neurophysiology, micromachined from silicon-on-insulator wafers," Med. Biol. Eng. Comput., 2000, vol. 38, pp. 175-179. |
Ernst, et al. "Photoactivation of Channelrhodopsin", 2008, vol. 283, No. 3, pp. 1637-1643. |
Esposito et al. "The integrase family of tyrosine recombinases: evolution of a conserved active site domain" , Nucleic Acids Research, 1997, vol. 25, No. 18, pp. 3605-3614. |
Evanko "Optical excitation yin and yang" Nature Methods, 2007, 4:384. |
Fabian et al. "Transneuronal transport of lectins" Brain Research, 1985, vol. 344, pp. 41-48. |
Falconer et al. "High-throughput screening for ion channel modulators," Journal of Biomolecular Screening, 2002, vol. 7, No. 5, pp. 460-465. |
Farber, Ira C., et al. 1983. Identification of Presynaptic Neurons by Laser Photostimulation. Science.222(4627): 1025-1027. |
Feng, Guoping, et al. 2000. Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP. Neuron. 28:41-51. |
Fiala et al., "Optogenetic approaches in neuroscience", Current Biology, Oct. 2010, 20(20):R897-R903. |
Fisher, J. et al. "Spatiotemporal Activity Patterns During Respiratory Rhythmogenesis in the Rat Ventrolateral Medulla," The Journal of Neurophysiol, 2006, vol. 95, pp. 1982-1991. |
Fitzsimons et al., "Promotors and Regulatory Elements that Improve Adeno-Associated Virus Transgene Expression in the Brain", 2002, Methods, vol. 28, pp. 227-236. |
Foster, Russel G. 2005. Bright blue times. Nature. 433: 698-699. |
Fox et al., "A gene neuron expression fingerprint of C. elegans embryonic motor neurons", BMC Genomics, 2005, 6(42):1-23. |
Gelvich et al. "Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves," IEEE Transactions on Biomedical Engineering, 2002, vol. 49, Issue 9: 1015-1023. |
Genbank Accession No. DQ094781 (Jan. 15, 2008). |
Gigg, et al. "Glutamatergic hippocampal formation projections to prefrontal cortex in the rat are regulated by GABAergic inhibition and show convergence with glutamatergic projections from the limbic thalamus," Hippocampus, 1994, vol. 4, No. 2, pp. 189-198. |
Gilman, et al. "Isolation of sigma-28-specific promoters from Bacillus subtilis DNA" Gene, 1984, vol. 32(1-2): pp. 11-20. |
Glick et al."Factors affecting the expression of foreign proteins in Escherichia coli", Journal of Industrial Microbiology, 1987, vol. 1(5): pp. 277-282. |
Goekoop, R. et al. "Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation-a pharmacological fMRI study." Brain, 2006, vol. 129, pp. 141-157. |
Gold, et al. "Representation of a perceptual decision in developing oculomotor commands", Nature, 2000, vol. 404, pp. 390-394. |
Gold, Joshua I. et al. 2000. Representation of a perceptual decision in developing oculomotor commands. Nature.404: 390-394. |
Gonzalez, et al., "Cell-Based Assays and Instrumentation for Screening Ion-Channel Targets", DDT, 1999, vol. 4, No. 9, pp. 431439. |
Gordon, Jon W., et al. 1987. Regulation of Thy-1 Gene Expression in Transgenic Mice. Cell. 50: 445-452. |
Gorelova et al. , "The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat", Neuroscience, 1997, vol. 76, No. 3, pp. 689-706. |
Goshen et al. "Dynamics of Retrieval Strategies for Remote Memories", Cell, 2011, vol. 147: pp. 678-589. |
Gottesman et al."Bacterial regulation: global regulatory networks," Ann. Rev. Genet. , 1984, vol. 18, pp. 415-441. |
Gradinaru et al., "Optical deconstruction of parkinsonian neural circuitry", Science, Apr. 2009, 324(5925):354-359. |
Gradinaru et al., "Targeting and readout strategies for fast optical neural control in vitro and in vivo", J Neuroscience, 2007, 27(52):14231-14238. |
Gradinaru, et al. "ENpHR: a Natronomonas Halorhodopsin Enhanced for Optogenetic Applications", 2008, Brain Cell Biol., vol. 36 (1-4), pp. 129-139. |
Gradinaru, et al., Molecular and Cellular Approaches for Diversifying and Extending Optogenetics, Cell, 2010, vol. 141, No. 1, pp. 154-165. |
Greenberg, et al. "Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder," Neuropsychopharmacology, 2006, vol. 31, 2384-2393. |
Gregory, et al. "Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors", Journal of Bacteriology, 2003, vol. 185, No. 17, pp. 5320-5323. |
Gregory, et al. "Integration site for Streptomyces phage φBT1 and development of site-specific integrating vectors", Journal of Bacteriology, 2003, vol. 185, No. 17, pp. 5320-5323. |
Groth et al. "Phage integrases: biology and applications," Journal of Molecular Biology, 2004, vol. 335, pp. 667-678. |
Groth, et al. "A phage integrase directs efficient site-specific integration in human cells", PNAS, 2000, vol. 97, No. 11, pp. 5995-6000. |
Guatteo, et al. "Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: Involvement of transient receptor potential channels," Journal of Neurophysiol. , 2005, vol. 94, pp. 3069-3080. |
Gulick, et al. "Transfection using DEAE-Dextran" Supplement 40, Current Protocols in Molecular Biology, 1997, Supplement 40, 9.2.1-9.2.10. |
Gur et al., "A Dissociation Between Brain Activity and Perception: Chromatically Opponent Cortical Neurons Signal Chromatic Flicker that is not Perceived", Vision Research, 1997, vol. 37, No. 4, pp. 377-382. |
Hallet et al. "Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements," FEMS Microbiology Reviews, 1997, vol. 21, No. 2, pp. 157-178. |
Hamer, et al. "Regulation in Vivo of a cloned mammalian gene: cadmium induces the transcription of a mouse metallothionein gene in SV40 vectors," Journal of Molecular Applied Genetics, 1982, vol. 1, No. 4, pp. 273-288. |
Han, et al., "Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity with Single-Spike Temporal Resolution", PLoS One, 2007, vol. 2, No. 3, pp. 1-12. |
Hausser, et al. "Tonic Synaptic Inhibition Modulates Neuronal Output Pattern and Spatiotemporal Synaptic Integration", Neuron, 1997, vol. 19, pp. 665-678. |
Hausser, Michael, et al. 1997. Tonic Synaptic Inhibition Modulates Neuronal Output Pattern and Spatiotemporal Synaptic Integration. Neuron. 19: 665-678. |
Hegemann et al., "All-trans Retinal Constitutes the Functional Chromophore in Chlamydomonas rhodopsin", Biophys. J. , 1991, vol. 60, pp. 1477-1489. |
Herlitze, et al., "New Optical Tools for Controlling Neuronal Activity", 2007, Curr Opin Neurobiol, vol. 17, No. 1, pp. 87-94. |
Herry, et al. "Switching on and off fear by distinct neuronal circuits," Nature, 2008, vol. 454, pp. 600-606. |
Hikida et al., "Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine", PNAS, May 2003, 100(10):6169-6173. |
Hikida et al., "Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens", PNAS, Nov. 2001, 98(23): 13351-13354. |
Hildebrandt et al, "Bacteriorhodopsin expressed in Schizosaccharomyces pombe pumps protons through the plasma membrane," PNAS, 1993, vol. 90, pp. 3578-3582. |
Hirase, Hajime, et al. 2002. Multiphoton stimulation of neurons. J Neurobiol. 51(3): 237-47. |
Hodaie, et al., "Chronic Anterior Thalamus Stimulation for Intractable Epilepsy,"Epilepsia, 2002, vol. 43, pp. 603-608. |
Hoffman et al., "K+ Channel Regulation of Signal Propagation in Dendrites of Hippocampal Pyramidal Neurons", 1997, Nature, vol. 387: pp. 869-874. |
Hofherr et al. "Selective Golgi export of Kir2.1 controls the stoichiometry of functional Kir2.x channel heteromers"Journal of Cell Science, 2005, vol. 118, p. 1935-1943. |
Hosokawa, T. et al. "Imaging spatio-temporal patterns of long-term potentiation in mouse hippocampus." Philos. Trans. R. Soc. Lond. B., 2003, vol. 358, pp. 689-693. |
Hynynen, et al. "Clinical applications of focused ultrasound-The brain." Int. J. Hyperthermia, 2007, vol. 23, No. 2: pp. 193-202. |
International Search Report for International Application No. PCT/US2009/053474, dated Oct. 8, 2009. |
Isenberg et al. "Cloning of a Putative Neuronal Nicotinic Aceylcholine Receptor Subunit," Journal of Neurochemistry, 1989, pp. 988-991. |
Jekely, "Evolution of Phototaxis", 2009, Phil. Trans. R. Soc. B, vol. 364, pp. 2795-2808. |
Jimenez S.A & Maren S. et al/ "Nuclear disconnection within the amygdala reveals a direct pathway to fear", Learning Memory, 2009, vol. 16: pp. 766-768. |
Johansen, et al., "Optical Activation of Lateral Amygdala Pyramidal Cells Instructs Associative Fear Learning", 2010, PNAS, vol. 107, No. 28, pp. 12692-12697. |
Johnston et al. "Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon," PNAS, 1982, vol. 79, pp. 6971-6975. |
Kandel, E.R.,et al. 1961. Electrophysiology of Hippocampal Neurons: I. Sequential Invation and Synaptic Organization. JNeurophysiol. 24: 225-242. |
Kandel, E.R.,et al. 1961. Electrophysiology of Hippocampal Neurons: II. After-Potentials and Repetitive Firing. J Neurophysiol. 24: 243-259. |
Karreman et al. "On the use of double FLP recognition targets (FRTs) in the LTR of retroviruses for the construction of high producer cell lines" , Nucleic Acids Research, 1996, vol. 24, No. 9: pp. 1616-1624. |
Kato et al. "Present and future status of noninvasive selective deep heating using RF in hyperthermia." Med & Biol. Eng. & Comput 31 Supp: S2-11, 1993. Abstract. p. S2 only. |
Katz, Lawrence C. et al. 1994. Scanning laser photostimulation: a new approach for analyzing brain circuits. J. Neurosci Methods.54: 205-218. |
Khodakaramian, et al. "Expression of Cre Recombinase during Transient Phage Infection Permits Efficient Marker Removal in Streptomyces," Nucleic Acids Research, 2006, vol. 34, No. 3:e20, pp. 1-5. |
Khossravani et al., "Voltage-Gated Calcium Channels and Idiopathic Generalized Epilepsies", Physiol. Rev., 2006, vol. 86: pp. 941-966. |
Kianianmomeni, et al. "Channelrhodopsins of Volvox carteri are Photochromic Proteins that are Specifically Expressed in Somatic Cells under Control of Light, Temperature, and the Sex Inducer", 2009, Plant Physiology, vol. 151, No. 1, pp. 347-366. |
Kim et al., "Light-Driven Activation of beta2-Adrenergic Receptor Signaling by a Chimeric Rhodopsin Containing the beta2-Adrenergic Receptor Cytoplasmic Loops," Biochemistry, 2005, vol. 44, No. 7, pp. 2284-2292. |
Kim et al., "Light-Driven Activation of β2-Adrenergic Receptor Signaling by a Chimeric Rhodopsin Containing the β2-Adrenergic Receptor Cytoplasmic Loops," Biochemistry, 2005, vol. 44, No. 7, pp. 2284-2292. |
Kingston et al. "Transfection and Expression of Cloned DNA," Supplement 31, Current Protocols in Immunology, 1999, 10.13.1-10.13.9. |
Kingston et al. "Transfection of DNA into Eukaryotic Cells," Supplement 63, Current Protocols in Molecular Biology, 1996, 9.1.1-9.1.11, 11 pages. |
Kinoshita, et al., "Optogenetically Induced Supression of Neural Activity in the Macaque Motor Cortex", Poster Sessions Somatomotor System, Others,2010, pp. 141-154. |
Kita, H. et al. "Effects of dopamine agonists and antagonists on optical responses evoked in rat frontal cortex slices after stimulation of the subcortical white matter," Exp. Brain Research, 1999, vol. 125, pp. 383-388. |
Kitabatake et al., "Impairment of reward-related learning by cholinergic cell ablation in the striatum", PNAS, Jun. 2003, 100(13):7965-7970. |
Kitayama, et al. "Regulation of neuronal differentiation by N-methyl-D-aspartate receptors expressed in neural progenitor cells isolated from adult mouse hippocampus," Journal of Neurosci Research, 2004, vol. 76, No. 5: pp. 599-612. |
Klausberger, Thomas, et al. 2003. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature. 421: 844-848. |
Knopfel, et al. "Optical Probin of Neuronal Circuit Dynamics: Gentically Encoded Versus Classical Fluorescent Sensors", 2006, Trends Neurosci, vol. 29, No. 3, pp. 160-166. |
Kocsis et al., "Regenerating Mammalian Nerve Fibres: Changes in Action Potential Wavefrom and Firing Characteristics Following Blockage of Potassium Conductance", 1982, Proc. R. Soc. Lond., vol. B 217: pp. 77-87. |
Kuhlman et al. (2008) "High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression" PLoS One, 2005, vol. 3, No. 4, pp. 1-11. |
Kunkler, P. et at. "Optical Current Source Density Analysis in Hippocampal Organotypic Culture Shows that Spreading Depression Occurs with Uniquely Reversing Current," The Journal of Neuroscience, 2005, vol. 25, No. 15, pp. 3952-3961. |
Landy, A. "Mechanistic and structural complexity in the site-specific recombination pathways of Int and FLP", Current Opinion in Genetics and Development, 1993, vol. 3, pp. 699-707. |
Lanyi et al. "The primary structure of a Halorhodopsin from Natronobacterium Pharaonis" Journal of Biological Chemistry 1990, vol. 265, No. 3, p. 1253-1260. |
Lee et al., "Potassium Channel Gone Therapy Can Prevent Neuron Deatch Resulting from Necrotic and Apoptotic Insults", Journal of Neurochemistry, 2003, vol. 85: pp. 1079-1088. |
Lee et al., 2000, Neurosurgery, 46: 1461-1469. * |
Levitan et al. "Surface Expression of Kv1 Voltage-Gated K+ Channels is Governed by a C-terminal Motif," Trends Cardiovasc. Med., 2000, vol. 10, No. 7, pp. 317-320. |
Li et al. "Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin." PNAS, 2005, vol. 102, No. 49, p. 17816-17821. |
Lim et al., "A Novel Targeting Signal for Proximal Clustering of the Kv2.1K+ Channel in Hippocampal Neurons", Neuron, 2000, vol. 25: pp. 385-397. |
Lima, Susana Q., et al. 2005. Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons. Cell. 121: 141-152. |
Liman, E. R., Tytgat, J., Hess, P., "Subunit Stoichiometry of a Mammalian K+ Channel Determined by Construction of Multimeric cDNAs," Neuron, vol. 9, 861-871, Nov. 1992. |
Liu et al., "Optogenetics 3.0", Cell, Apr. 2010, 141(1):22-24. |
Loetterle, et al., "Cerebellar Stimulation: Pacing the Brain", American Journal of Nursing, 1975, vol. 75, No. 6, pp. 958-960. |
Louis et al. "Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line," Virology, 1997, vol. 233, pp. 423-429. |
Luecke, H., Schobert, B., Richter, H., Cartailler, J., Lanyi, J., "Structural Changes in Bacteriorhodopsin During Ion Transport at 2 Angstrom Resolution," Science Oct. 1999, vol. 286, No. 5438, pp. 255-260. |
Lyznik, et al. "FLP-mediated recombination of FRT sites in the maize genome," Nucleic Acids Research , 1996, vol. 24, No. 19: pp. 3784-3789. |
Ma et al. "Role of ER Export Signals in Controlling Surface Potassium Channel Numbers," Science, 2001, vol. 291, pp. 316-319. |
Malin et al., "Involvement of the rostral anterior cingulate cortex in consolidation of inhibitory avoidance memory: Interaction with the basolateral amygdala", Neurobiol Learning Mem,2007,87(2):295-302. |
Mann et at. "Perisomatic Feedback Inhibition Underlies Cholinergically Induced Fast Network Oscillations in the Rat Hippocampus in Vitro," Neuron, 2005, vol. 45, 2005, pp. 105-117. |
Marin, et al., The Amino Terminus of the Fourth Cytoplasmic Loop of Rhodopsin Modulates Rhodopsin-Transduction Interaction, The Journal of Biological Chemistry, 2000, vol. 275, pp. 1930-1936. |
Mattson, "Apoptosis in Neurodegenerative Disorders", Nature Reviews, 2000, vol. 1: pp. 120-129. |
Mayberg et al. "Deep Brain Stimulation for Treatment-Resistant Depression," Focus, 2008, vol. VI, No. 1, pp. 143-154. |
Mayford et al., "Control of memory formation through regulated expression of CAMKII Transgene", Science, Dec. 1996, 274:1678-1683. |
McAllister, "Cellular and Molecular Mechanisms of Dendrite Growth", 2000, Cereb Cortex, vol. 10, No. 10, pp. 963-973. |
McKnight "Functional relationships between transcriptional control signals of the thymidine kinase gene of herpes simplex virus", Cell, 1982, vol. 31 pp. 355-365. |
Melyan, Z., et al. 2005. Addition of human melanopsin renders mammalian cells photoresponsive. Nature. 433: 741-745. |
Mermelstein, Paul G., et al. 2000. Critical Dependence of cAMP Response Element-Binding Protein Phosphorylation on L-Type Calcium Channels Supports a Selective Response to EPSPs in Preference to Action Potentials. J. Neurosci. 20(1): 266-273. |
Meyer, et al. "High density interconnects and flexible hybrid assemblies for active biomedical implants," IEEE Transactions on Advanced Packaging , 2001, vol. 24, No. 3, pp. 366-372. |
Milella et al. "Opposite roles of dopamine, and orexin in quinpirole-induced excessive drinking: a rat model of psychotic polydipsia" Psychopharmacology, 2010, 211:355-366. |
Monje et al., "Irradiation Induces Neural Precursor-Cell Dysfunction", Natural Medicine, 2002, vol. 8, No. 9, pp. 955-962. |
Morelli et al., "Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosis-inducing molecule Fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity", Journal of General Virology, 1999, 80:571-583. |
Mortensen et al. "Selection of Transfected Mammalian Cells," Supplement 86, Current Protocols in Molecular Biology, 1997, 9.5.1-09.5.19. |
Nacher, et al. "NMDA receptor antagonist treatment increases the production of newneurons in the aged rat hippocampus", Neurobiology of Aging, 2003,vol. 24, No. 2: pp. 273-284. |
Nagel, et al. "Channelrhodopsin-I: a light-gated proton channel in green algae", Science, 2002, vol. 296: pp. 2395-2398. |
Nagel, G., Mockel, B., Buldt, G., Bamberg, E., "Functional Expression of Bacteriorhodopsin in Oocytes Allows Direct Measurement of Voltage Dependence of Light Induced H+ Pumping," FEBS Letters 16427, vol. 377, 263-266 (1995). |
Nagel, Georg, et al. 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Nat'l Acad. Sci. USA 100(24): 13940-13945. |
Nakagami, et al. "Optical Recording of Trisynaptic Pathway in Rat Hippocampal Slices with a Voltage-Sensitive Dye" Neuroscience, 1997, vol. 81, No. 1, pp. 1-8. |
Naqvi, et al. "Damage to the insula disrupts addiction to cigarette smoking," Science; 2007, vol. 315 pp. 531-534. |
Natochin, et al. "Probing rhodopsin-transducin interaction using Drosophila Rh1-bovine rhodopsin chimeras," Vision Res., 2006, vol. 46, No. 27: pp. 4575-4581. |
Nirenberg, Sheila, et al. 1997. The Light Response of Retinal Ganglion Cells is Truncated by a Displaced Amacrine Circuit. Neuron. 18: 637-650. |
Nonet, "Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions", J. Neurosci. Methods, 1999, 89:33-40. |
Nunes-Duby, et al. "Similarities and differences among 105 members of the Int family of site-specific recombinases" , Nucleic Acids Research, 1998, vol. 26, No. 2: pp. 391-406. |
O'Gorman et al. "Recombinase-mediated gene activation and site-specific integration in mammalian cells", Science, 1991, 251(4999): pp. 1351-1355. |
Olivares (2001) "Phage R4 integrase mediates site-specific integration in human cells", Gene, 2001, vol. 278, pp. 167-176. |
Ory, Daniel S., et al. 1996. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Nat'l Acad. Sci. U.S.A. 93: 11400-11406. |
Palmer et al., "Fibroblast Growth Factor-2 Activates a Latent Neurogenic Program in Neural Stem Cells from Diverse Regions of the Adult CNS", The Journal of Neuroscience, 1999, vol. 19, pp. 8487-8497. |
Palmer et al., "The Adult Rat Hippocampus Contains Primordial Neural Stem Cells", Molecular and Cellular Neuroscience, 1997, vol. 8, pp. 389-404. |
Pan et al. "Functional Expression of a Directly Light-Gated Membrane Channel in Mammalian Retinal Neurons: A Potential Strategy for Restoring Light Sensitivity to the Retina After Photoreceptor Degeneration,"Investigative Opthalmology & Visual Science, 2005, 46 E-Abstract 4631. Abstract only. |
Panda, Satchidananda, et al. 2005. Illumination of the Melanopsin Signaling Pathway. Science. 307: 600-604. |
Pape, et al., "Plastic Synaptic Networks of the Amygdala for the Acquisition, Expression, and Extinction of Conditioned Fear", 2010, Physiol Rev, vol. 90, pp. 419-463. |
Paulhe et al. "Specific Endoplasmic Reticulum Export Signal Drives Transport of Stem Cell Factor (Kitl) to the Cell Surface," The Journal of Biological Chemistry, 2004, vol. 279, No. 53, p. 55545-55555. |
Pear "Transient Transfection Methods for Preparation of High-Titer Retroviral Supernatants" Supplement 68, Current Protocols in Molecular Biology, 1996, 9.11.I-9.11.I 8. |
Peterlin, et al. "Optical probing of neuronal circuits with calcium indicators," PNAS, 2000, vol. 97, No. 7: pp. 3619-3624. |
Petersen et al. "Spatiotemporal Dynamics of Sensory Responses in Layer ⅔ of Rat Barrel Cortex Measured in Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions," The Journal of Neuroscience, 2003, vol. 23, No. 3, pp. 1298-1309. |
Petrecca, et al. "Localization and Enhanced Current Density of the Kv4.2 Potassium Channel by Interaction with the Actin-Binding Protein Filamin," The Journal of Neuroscience, 2000, vol. 20, No. 23, pp. 8736-8744. |
Pettit, Diana L., et al. 1999. Local Excitatory Circuits in the Intermediate Gray Layer of the Superior Colliculus. J Neurophysiol. 81(3): 1424-7. |
Potter, "Transfection by Electroporation." Supplement 62, Current Protocols in Molecular Biology, 1996, 9.3.1-9.3.6. |
Pouille, et al. "Routing of spike series by dynamic circuits in the hippocampus", Nature, 2004, vol. 429: pp. 717-723. |
Pouille, Frederic, et al. 2004. Routing of spike series by dynamic circuits in the hippocampus. Nature. 429: 717-723. |
Qui, Xudong, et al. 2005. Induction of photosensitivity by heterologous expression of melanopsin. Nature. 433: 745-749. |
Rammes, et al., "Synaptic Plasticity in the Basolateral Amygdala in Transgenic Mice Expressing Dominant-Negative cAMP Response Element-binding Protein (CREB) in Forebrain", Eur J. Neurosci, 2000, vol. 12, No. 7, pp. 2534-2546. |
Randic, et al. "Long-term Potentiation and Long-term Depression of Primary Afferent Neurotransmission in the Rat Spinal Cord", 1993, Journal of Neuroscience, vol. 13, No. 12, pp. 5228-5241. |
Rathnasingham et al., "Characterization of implantable microfabricated fluid delivery devices," IEEE Transactions on Biomedical Engineering, 2004, vol. 51, No. 1: pp. 138-145. |
RecName: Full=Halorhodopsin; Short=HR; Alt Name: Full=NpHR; XP002704922, retrieved from EBI accession No. UNIPROT: P15647. Database accession No. P15647. Apr. 1, 1990. |
Rein, et al., "The Optogenetic (r)evolution", Mol. Genet. Genomics, 2012, vol. 287, No. 2, pp. 95-109. |
Remy, et al., "Depression in Parkinson's Disease: Loss of Dopamine and Noradrenaline Innervation in the Limbic System", Brain, 2005, vol. 128 (Pt 6), pp. 1314-1322. |
Ritter, et al., "Monitoring Light-induced Structural Changes of Channelrhodopsin-2 by UV-Visable and Fourier Transform Infared Spectroscopy", 2008, The Journal of Biological Chemistry, vol. 283, No. 50, pp. 35033-35041. |
Rivera et al., "BDNF-Induced TrkB Activation Down-Regulates the K+-C1-cotransporter KCC2 and Impairs Neuronal C1- Extrusion", The Journal of Cell Biology, 2002, vol. 159: pp. 747-752. |
Rosenkranz, et al. "The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli", J. Neurosci., 2003, vol. 23, No. 35: pp. 11054-11064. |
Rousche, et al., "Flexible polyimide-based intracortical electrode arrays with bioactive capability," IEEE Transactions on Biomedical Engineering, 2001, vol. 48, No. 3, pp. 361-371. |
Rubinson et at. "A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference," Nature Genetics, 2003, vol. 33, p. 401-406. |
Rudiger et al., 1997, The EMBO Journal 16: 3813-3821. * |
Sajdyk, et al., "Excitatory Amino Acid Receptors in the Basolateral Amygdala Regulate Anxiety Responses in the Social Interaction Test", Brain Research, 1997, vol. 764, pp. 262-264. |
Salzman, C. Daniel, et al. 1990. Cortical miucrostimulation influences perceptual judgements of motion direction. Nature. 346: 174-177. |
Sato et al. "Role of Anion-binding Sites in cytoplasmic and extracellular channels of Natronomonas pharaonis halorhodopsin," Biochemistry, 2005. vol. 44, pp. 4775-4784. |
Sauer "Site-specific recombination: developments and applications," Current Opinion in Biotechnology, 1994, vol. 5, No. 5: pp. 521-527. |
Schiff, et al. "Behavioral improvements with thalamic stimulation after severe traumatic brain injury," Nature, 2007, vol. 448, pp. 600-604. |
Schlaepfer et al. "Deep Brain stimulation to Reward Circuitry Alleviates Anhedonia in Refractory Major Depresion," Neuropsychopharmacology, 2008,vol. 33, pp. 368-377. |
Schroll et al., "Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in drosphila larvae", Current Biology, Sep. 2006, 16(17):1741-1747. |
Sclimenti, et al. "Directed evolution of a recombinase for improved genomic integration at a native human sequence," Nucleic Acids Research, 2001, vol. 29, No. 24: pp. 5044-5051. |
Shepherd, Gordon M.G., et al. 2003. Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex. Neuron. 38: 277-289. |
Shibasaki et al. "Effects of body temperature on neural activity in the hippocampus: Regulation of resting membrane potentials by transient receptor potential vanilloid 4," The Journal of Neuroscience, 2007, vol. 27, No. 7: pp. 1566-1575. |
Silver, et al. "Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization" PNAS, 1984, vol. 81, No. 19: pp. 5951-5955. |
Simmons et al. "Localization and function of NK3 subtype Tachykinin receptors of layer pyramidal neurons of the guinea-pig medial prefrontal cortex", Neuroscience, 2008, vol. 156, No. 4: pp. 987-994. |
Sineshchekov et al. "Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii." Proc Natl Acad Sci U S A. Jun. 25, 2002;99(13):8689-94. Epub Jun. 11, 2002. * |
Singer et al. "Elevated Intrasynaptic Dopamine Release in Tourette's Syndrome Measured by PET," American Journal of Psychiatry, 2002, vol. 159: pp. 1329-1336. |
Slimko et al., 2002, The Journal of Neuroscience, 22: 7373-7379. * |
Smith et al. "Diversity in the serine recombinases", Molecular Microbiology, 2002, vol. 44, No. 2: pp. 299-307. |
Song et al. "Differential Effect of TEA on Long-Term Synaptic Modification in Hippocampal CA1 and Dentate Gyrus in vitro." Neurobiology of Learning and Memory, 2001, vol. 76, No. 3, pp. 375-387. |
Song, "Genes responsible for native depolarization-activated K+ currents in neurons," Neuroscience Research, 2002, vol. 42, pp. 7-14. |
Song, Wen-Jie. "Genes responsible for native depolarization-activated K+ currents in neurons," 2002, Neuroscience Research, vol. 42, pp. 7-14. |
Stark, et al. "Catalysis by site-specific recombinases," Trends Genet., 1992, vol. 8, No. 12: pp. 432-439. |
Stockklausner et al. "A sequence motif responsible for ER export and surface expression of Kir2.0 inward rectifier K+ channels," FEBS Letters, 2001, vol. 493, pp. 129-133. |
Stoll, et al. "Phage TP901-I site-specific integrase functions in human cells," Journal of Bacteriology, 2002, vol. 184, No. 13: pp. 3657-3663. |
Swanson, "Lights, Opsins, Action! Optogenetics Brings Complex Neuronal Circuits into Sharper Focus", 2009, The Dana Foundation, [URL: http://www.dana.org/news/features/detail.aspx?id=24236], PDF File, pp. 1-3. |
Swiss-Prot—Q2QCJ4, Opsin 1, Oct. 31, 2006, URL: http://www.ncbi.nlm.nig.gov/protein/Q2QCJ4. |
Synapse, Chapter 13, http://michaeldmann.net/mann13.html, downloaded Apr. 2014. |
Takahashi, et al., "Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors", 2006, Cell, vol. 126, pp. 663-676. |
Takahashi, T., Kubota, M., Watanabe, M., Yoshihara, K., Derguini, F., Nakanishi, K., "Diversion of the Sign of Phototaxis in a Chlamydomonas reinhardtii Mutant Incorporated with Retinal and Its Analogs," FEBS Letters 11878, vol. 314, No. 3, 275-279 (Dec. 1992). |
Tam, B. et al., "Identification of an Outer Segment Targeting Signal in the COOH Terminus of Rhodopsin Using Transgenic Xenopus laevis", The Journal of Cell Biology, 2000, vol. 151, No. 7, pp. 1369-1380. |
Tamai, "Progress in Pathogenesis and Therapeutic Research in Retinitis Pigmentosa and Age Related Macular Degeneration", Nippon Ganka Gakkai Zasshi, vol. 108, No. 12, Dec. 2004, pp. 750-769. |
Tatarkiewicz, Krystyna, et al. 1999. Reversal of Hyperglycemia in Mice After Subcutaneous Transplantation of Macroencapsulated Islets. Transplantation. 67(5): 665-671. |
Tønnesen et al. "Optogenetic control of epileptiform activity." Proc Natl Acad Sci U S A. Jul. 21, 2009;106(29):12162-7. Epub Jul. 6, 2009. * |
Tottene et al., "Familial Hemiplegic Migraine Mutations Increase Ca2+ Influx Through Single Human Cav2.1 Current Density in Neurons", PNAS USA, 2002, vol. 99, No. 20: pp. 13284-13289. |
Tsai, et al., "Phasic Firing in Dopaminergic Neurons in Sufficient for Behavioral Conditioning", Science, 2009, vol. 324, pp. 1080-1084. |
Tsau et al. "Distributed Aspects of the Response to Siphon Touch in Aplysia: Spread of Stimulus Information and Cross-Correlation Analysis," The Journal of Neuroscience, 1994, vol. 14, No. 7, pp. 4167-4184. |
Tye et. al., "Amygdala circuitry mediating reversible and bidirectional control of anxiety", Nature, 2011, vol. 471(7338): pp. 358-362. |
Tye et. al., Supplementary Materials: "An optically-resolved microcircuit for bidirectional anxiety control", Nature, 2011, vol. 471(7338): pp. 358-362. |
Tye, et al. "Optogenetic investigation of neural circuits underlying brain disease in animal models," Nature Reviews Neuroscience (Mar. 2012), 13(4):251-266. |
Ulmanen, et al. "Transcription and translation of foreign genes in Bacillus subtilis by the aid of a secretion vector," Journal of Bacteriology, 1985, vol. 162, No. 1: pp. 176-182. |
Van Der Linden, "Functional brain imaging and pharmacotherapy in social phobia: single photon emission computed tomography before and after Treatment with the selective serotonin reuptake inhibitor citalopram," Prog Neuro-psychopharmacol Biol Psychiatry, 2000, vol. 24, No. 3: pp. 419-438. |
Vanin, et al. "Development of high-titer retroviral producer cell lines by using Cre-mediated recombination," Journal of Virology, 1997, vol. 71, No. 10: pp. 7820-7826. |
Vetter, et al. "Development of a Microscale Implantable Neural Interface (MINI) Probe System," Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, Sep. 1-4, 2005. |
Wagner, "Noninvasive Human Brain Stimulation", Annual Rev. Biomed. Eng. 2007. 9:19.1-19.39. |
Wang et al. "Direct-current Nanogenerator Driven by Ultrasonic Waves," Science, 2007, vol. 316, pp. 102-105. |
Wang et. al., "High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice", PNAS, 2007, vol. 104, No. 19, pp. 8143-8148. |
Wang, et al., "Molecular Determinants Differentiating Photocurrent Properties of Two Channelrhodopsins from Chlamydomonas", 2009, The Journal of Biological Chemistry, vol. 284, No. 9, pp. 5685-5696. |
Ward, et al. "Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator", 1986, Mol. Gen. Genet., vol. 203: pp. 468-478. |
Watson, et al. "Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins," Molecular Therapy, 2002, vol. 5, No. 5, pp. 528-537. |
Weick et al. "Interactions with PDZ Proteins Are Required for L-Type Calcium Channels to Activate cAMP Response Element-Binding Protein-Dependent Gene Expression," The Journal of Neuroscience, 2003, vol. 23, No. 8, pp. 3446-3456. |
Wells et al. "Application of Infrared light for in vivo neural stimulation," Journal of Biomedical Optics, 2005, vol. 10(6), pp. 064003-1-064003-12. |
Witten et. al., "Cholinergic Interneurons Control Local Circuit Activity and Cocaine Conditioning", Science, 2010, vol. 330, No. 6011: pp. 1677-1681. |
Witten et. al., Supporting Online Material for: "Cholinergic Interneurons Control Local Circuit Activity and Cocaine Conditioning", Science, 2010, vol. 330: 17 pages. |
Xiong et al., "Interregional connectivity to primary motor cortex revealed using MRI resting state images", Hum Brain Mapp, 1999, 8(2-3):151-156. |
Yamazoe, Hironori, et al. 2006. Efficient generation of dopaminergic neurons from mouse embryonic stem cells enclosed in hollow fibers. Biomaterials. 27: 4871-4880. |
Yan et al., "Cloning and Characterization of a Human β,β-Carotene-15, 15′-Dioxygenase that is Highly Expressed in the Retinal Pigment Epithelium", Genomics, 2001, vol. 72: pp. 193-202. |
Yan, Weiming, et al. 2001. Cloning and Characterization of a Human β,β-Carotene-15, 15′-Dioxygenase That is Highly Expressed in the Retinal Pigment Epithelium. Genomics.72: 193-202. |
Yizhar et. al., "Neocortical excitation/inhibition balance in information processing and social dysfunction", Nature, 2011, vol. 477, pp. 171-178; and Supplemental Materials; 41 pages. |
Yoon, et al., "A micromachined silicon depth probe for multichannel neural recording," IEEE Transactions Biomedical Engineering, 2000, vol. 47, No. 8, pp. 1082-1087. |
Yoshimura, Yumiko, et al. 2005. Excitatory cortical neurons form fine-scale functional networks. Nature. 433: 868-873. |
Zacharias et al. "Recent advances in technology for measuring and manipulating cell signals," Current Opinion in Neurobiology, 2000, vol. 10: pp. 416-421. |
Zemelman, Boris V., et al. 2002. Selective Photostimulation of Genetically ChARGed Neurons. Neuron. 33: 15-22. |
Zemelman, Boris V., et al. 2003. Photochemical gating of heterologous ion channels: Remote control over genetically designated populations of neurons. Proc. Nat'l Acad. Sci. U.S.A. 100(3): 1352-1357. |
Zhang "Multimodal fast optical interrogation of neural circuitry," Nature, 2007, vol. 446, pp. 633-641. |
Zhang et al. "The Microbial Opsin Family of Optogenetic Tools." Cell. (Dec. 2011); 147(7): pp. 1446-1457. * |
Zhang, et al. "Channelrhodopsin-2 and optical control of excitable cells," Nature Methods,2006, vol. 3, No. 10, pp. 785-792. |
Zhang, et al. "Red-Shifted Optogenetic Excitation: a Tool for Fast Neural Control Derived from Volvox carteri", Nature Neurosciences, 2008,vol. 11, No. 6, pp. 631-633. |
Zhang, et al., "The Microbial Opsin Family of Optogenetic Tools", Cell, 2011, vol. 147, No. 7, pp. 1146-1457. |
Zhao, et al., "Improved Expression of Halorhodopsin for Light-Induced Silencing of Neuronal Activity", Brain Cell Biology, 2008, vol. 36 (1-4), pp. 141-154. |
Zrenner, E., "Will Retinal Implants Restore Vision?" Science Feb. 8, 2002, vol. 295, No. 5557, pp. 1022-1025. |
Zufferey, et al. "Self-Inactivating Lentivirus Vector for Safe and Efficient in Vivo Gene Delivery", Journal of Virology, 1998, vol. 72, No. 12, pp. 9873-9880. |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10052497B2 (en) | 2005-07-22 | 2018-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US10627410B2 (en) | 2005-07-22 | 2020-04-21 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated cation channel and uses thereof |
US10569099B2 (en) | 2005-07-22 | 2020-02-25 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US10451608B2 (en) | 2005-07-22 | 2019-10-22 | The Board Of Trustees Of The Leland Stanford Junior University | Cell line, system and method for optical-based screening of ion-channel modulators |
US10422803B2 (en) | 2005-07-22 | 2019-09-24 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated cation channel and uses thereof |
US9829492B2 (en) | 2005-07-22 | 2017-11-28 | The Board Of Trustees Of The Leland Stanford Junior University | Implantable prosthetic device comprising a cell expressing a channelrhodopsin |
US10036758B2 (en) | 2005-07-22 | 2018-07-31 | The Board Of Trustees Of The Leland Stanford Junior University | Delivery of a light-activated cation channel into the brain of a subject |
US10046174B2 (en) | 2005-07-22 | 2018-08-14 | The Board Of Trustees Of The Leland Stanford Junior University | System for electrically stimulating target neuronal cells of a living animal in vivo |
US10094840B2 (en) | 2005-07-22 | 2018-10-09 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated cation channel and uses thereof |
US9187745B2 (en) | 2007-01-10 | 2015-11-17 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US11007374B2 (en) | 2007-01-10 | 2021-05-18 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US10105551B2 (en) | 2007-01-10 | 2018-10-23 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US10369378B2 (en) | 2007-01-10 | 2019-08-06 | The Board Of Trustees Of The Leland Stanford Junior University | System for optical stimulation of target cells |
US9693692B2 (en) | 2007-02-14 | 2017-07-04 | The Board Of Trustees Of The Leland Stanford Junior University | System, method and applications involving identification of biological circuits such as neurological characteristics |
US9757587B2 (en) | 2007-03-01 | 2017-09-12 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic method for generating an inhibitory current in a mammalian neuron |
US9855442B2 (en) | 2007-03-01 | 2018-01-02 | The Board Of Trustees Of The Leland Stanford Junior University | Method for optically controlling a neuron with a mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from natromonas pharaonis (NpHR) |
US10589123B2 (en) | 2007-03-01 | 2020-03-17 | The Board Of Trustees Of The Leland Stanford Junior University | Systems, methods and compositions for optical stimulation of target cells |
US10035027B2 (en) | 2007-10-31 | 2018-07-31 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method for ultrasonic neuromodulation via stereotactic frame based technique |
US10434327B2 (en) | 2007-10-31 | 2019-10-08 | The Board Of Trustees Of The Leland Stanford Junior University | Implantable optical stimulators |
US10426970B2 (en) | 2007-10-31 | 2019-10-01 | The Board Of Trustees Of The Leland Stanford Junior University | Implantable optical stimulators |
US9878176B2 (en) | 2008-04-23 | 2018-01-30 | The Board Of Trustees Of The Leland Stanford Junior University | System utilizing Volvox carteri light-activated ion channel protein (VChR1) for optical stimulation of target cells |
US9394347B2 (en) | 2008-04-23 | 2016-07-19 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for treating parkinson's disease by optically stimulating target cells |
US10350430B2 (en) | 2008-04-23 | 2019-07-16 | The Board Of Trustees Of The Leland Stanford Junior University | System comprising a nucleotide sequence encoding a volvox carteri light-activated ion channel protein (VCHR1) |
US9453215B2 (en) | 2008-05-29 | 2016-09-27 | The Board Of Trustees Of The Leland Stanford Junior University | Cell line, system and method for optical control of secondary messengers |
US10711242B2 (en) | 2008-06-17 | 2020-07-14 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus and methods for controlling cellular development |
US10583309B2 (en) | 2008-07-08 | 2020-03-10 | The Board Of Trustees Of The Leland Stanford Junior University | Materials and approaches for optical stimulation of the peripheral nervous system |
US9458208B2 (en) | 2008-11-14 | 2016-10-04 | The Board Of Trustees Of The Leland Stanford Junior University | Optically-based stimulation of target cells and modifications thereto |
US10064912B2 (en) | 2008-11-14 | 2018-09-04 | The Board Of Trustees Of The Leland Stanford Junior University | Optically-based stimulation of target cells and modifications thereto |
US10071132B2 (en) | 2008-11-14 | 2018-09-11 | The Board Of Trustees Of The Leland Stanford Junior University | Optically-based stimulation of target cells and modifications thereto |
US9604073B2 (en) | 2010-03-17 | 2017-03-28 | The Board Of Trustees Of The Leland Stanford Junior University | Light-sensitive ion-passing molecules |
US9421258B2 (en) | 2010-11-05 | 2016-08-23 | The Board Of Trustees Of The Leland Stanford Junior University | Optically controlled CNS dysfunction |
US10086012B2 (en) | 2010-11-05 | 2018-10-02 | The Board Of Trustees Of The Leland Stanford Junior University | Control and characterization of memory function |
US9340589B2 (en) | 2010-11-05 | 2016-05-17 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated chimeric opsins and methods of using the same |
US9522288B2 (en) | 2010-11-05 | 2016-12-20 | The Board Of Trustees Of The Leland Stanford Junior University | Upconversion of light for use in optogenetic methods |
US10196431B2 (en) | 2010-11-05 | 2019-02-05 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated chimeric opsins and methods of using the same |
US9968652B2 (en) | 2010-11-05 | 2018-05-15 | The Board Of Trustees Of The Leland Stanford Junior University | Optically-controlled CNS dysfunction |
US10252076B2 (en) | 2010-11-05 | 2019-04-09 | The Board Of Trustees Of The Leland Stanford Junior University | Upconversion of light for use in optogenetic methods |
US10568307B2 (en) | 2010-11-05 | 2020-02-25 | The Board Of Trustees Of The Leland Stanford Junior University | Stabilized step function opsin proteins and methods of using the same |
US9992981B2 (en) | 2010-11-05 | 2018-06-12 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of reward-related behaviors |
US9850290B2 (en) | 2010-11-05 | 2017-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated chimeric opsins and methods of using the same |
US10371776B2 (en) | 2010-11-22 | 2019-08-06 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic magnetic resonance imaging |
US9615789B2 (en) | 2010-11-22 | 2017-04-11 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic magnetic resonance imaging |
US10018695B2 (en) | 2010-11-22 | 2018-07-10 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic magnetic resonance imaging |
US10914803B2 (en) | 2010-11-22 | 2021-02-09 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic magnetic resonance imaging |
US9840541B2 (en) | 2011-12-16 | 2017-12-12 | The Board Of Trustees Of The Leland Stanford Junior University | Opsin polypeptides and methods of use thereof |
US10538560B2 (en) | 2011-12-16 | 2020-01-21 | The Board Of Trustees Of The Leland Stanford Junior University | Opsin polypeptides and methods of use thereof |
US9505817B2 (en) | 2011-12-16 | 2016-11-29 | The Board Of Trustees Of The Leland Stanford Junior University | Opsin polypeptides and methods of use thereof |
US9969783B2 (en) | 2011-12-16 | 2018-05-15 | The Board Of Trustees Of The Leland Stanford Junior University | Opsin polypeptides and methods of use thereof |
US10087223B2 (en) | 2011-12-16 | 2018-10-02 | The Board Of Trustees Of The Leland Stanford Junior University | Opsin polypeptides and methods of use thereof |
US11103723B2 (en) | 2012-02-21 | 2021-08-31 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for treating neurogenic disorders of the pelvic floor |
US10974064B2 (en) | 2013-03-15 | 2021-04-13 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of behavioral state |
US9636380B2 (en) | 2013-03-15 | 2017-05-02 | The Board Of Trustees Of The Leland Stanford Junior University | Optogenetic control of inputs to the ventral tegmental area |
US10220092B2 (en) | 2013-04-29 | 2019-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Devices, systems and methods for optogenetic modulation of action potentials in target cells |
US10307591B2 (en) | 2013-05-30 | 2019-06-04 | Neurostim Solutions, Llc | Topical neurological stimulation |
US11229789B2 (en) | 2013-05-30 | 2022-01-25 | Neurostim Oab, Inc. | Neuro activator with controller |
US11291828B2 (en) | 2013-05-30 | 2022-04-05 | Neurostim Solutions LLC | Topical neurological stimulation |
US10918853B2 (en) | 2013-05-30 | 2021-02-16 | Neurostim Solutions, Llc | Topical neurological stimulation |
US10946185B2 (en) | 2013-05-30 | 2021-03-16 | Neurostim Solutions, Llc | Topical neurological stimulation |
US10016600B2 (en) | 2013-05-30 | 2018-07-10 | Neurostim Solutions, Llc | Topical neurological stimulation |
US10307609B2 (en) | 2013-08-14 | 2019-06-04 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for controlling pain |
US10052383B2 (en) | 2014-03-28 | 2018-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | Engineered light-activated anion channel proteins and methods of use thereof |
US11077301B2 (en) | 2015-02-21 | 2021-08-03 | NeurostimOAB, Inc. | Topical nerve stimulator and sensor for bladder control |
US10568516B2 (en) | 2015-06-22 | 2020-02-25 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and devices for imaging and/or optogenetic control of light-responsive neurons |
US11294165B2 (en) | 2017-03-30 | 2022-04-05 | The Board Of Trustees Of The Leland Stanford Junior University | Modular, electro-optical device for increasing the imaging field of view using time-sequential capture |
US11723579B2 (en) | 2017-09-19 | 2023-08-15 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement |
US10953225B2 (en) | 2017-11-07 | 2021-03-23 | Neurostim Oab, Inc. | Non-invasive nerve activator with adaptive circuit |
US11717686B2 (en) | 2017-12-04 | 2023-08-08 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
US11273283B2 (en) | 2017-12-31 | 2022-03-15 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to enhance emotional response |
US11478603B2 (en) | 2017-12-31 | 2022-10-25 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to enhance emotional response |
US11318277B2 (en) | 2017-12-31 | 2022-05-03 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to enhance emotional response |
US11364361B2 (en) | 2018-04-20 | 2022-06-21 | Neuroenhancement Lab, LLC | System and method for inducing sleep by transplanting mental states |
US11452839B2 (en) | 2018-09-14 | 2022-09-27 | Neuroenhancement Lab, LLC | System and method of improving sleep |
US11458311B2 (en) | 2019-06-26 | 2022-10-04 | Neurostim Technologies Llc | Non-invasive nerve activator patch with adaptive circuit |
WO2020257864A1 (en) * | 2019-06-26 | 2020-12-30 | The Bionics Institute Of Australia | Combined light and electrical stimulation of light-sensitive neural tissue |
US11730958B2 (en) | 2019-12-16 | 2023-08-22 | Neurostim Solutions, Llc | Non-invasive nerve activator with boosted charge delivery |
US20230173299A1 (en) * | 2020-05-05 | 2023-06-08 | Lumeda Inc. | Time mulitplexed dosimetry system and method |
US11786749B2 (en) * | 2020-05-05 | 2023-10-17 | Lumeda Inc. | Time mulitplexed dosimetry system and method |
Also Published As
Publication number | Publication date |
---|---|
US20150217128A1 (en) | 2015-08-06 |
US10569099B2 (en) | 2020-02-25 |
US20080085265A1 (en) | 2008-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10569099B2 (en) | System for optical stimulation of target cells | |
US20180326221A1 (en) | System for optical stimulation of target cells | |
US10350430B2 (en) | System comprising a nucleotide sequence encoding a volvox carteri light-activated ion channel protein (VCHR1) | |
US10064912B2 (en) | Optically-based stimulation of target cells and modifications thereto | |
WO2008089003A2 (en) | System for optical stimulation of target cells | |
US20120253261A1 (en) | Systems and methods for optogenetic modulation of cells within a patient | |
CN106413810A (en) | Method, system and apparatus for non-invasive neurostimulation therapy of the brain | |
CN105263575A (en) | Self-administrable method, system, and apparatus for non-invasive neurostimulation therapy of the brain | |
US20190321651A1 (en) | System for Optical Stimulation of Target Cells | |
C. Coffey | Optogenetics: Controlling neurons with photons | |
Loudin et al. | Delivery of information and power to the implant, integration of the electrode array with the retina, and safety of chronic stimulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHNEIDER, M. BRET;MISHELEVICH, DAVID J.;DEISSEROTH, KARL;SIGNING DATES FROM 20070309 TO 20070411;REEL/FRAME:019195/0558 Owner name: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHNEIDER, M. BRET;MISHELEVICH, DAVID J.;DEISSEROTH, KARL;REEL/FRAME:019195/0558;SIGNING DATES FROM 20070309 TO 20070411 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |