[go: up one dir, main page]

US8554411B2 - Electric power steering system - Google Patents

Electric power steering system Download PDF

Info

Publication number
US8554411B2
US8554411B2 US12/828,527 US82852710A US8554411B2 US 8554411 B2 US8554411 B2 US 8554411B2 US 82852710 A US82852710 A US 82852710A US 8554411 B2 US8554411 B2 US 8554411B2
Authority
US
United States
Prior art keywords
control signal
current
motor
electric power
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/828,527
Other versions
US20110010051A1 (en
Inventor
Noritake Ura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Assigned to JTEKT CORPORATION reassignment JTEKT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: URA, NORITAKE
Publication of US20110010051A1 publication Critical patent/US20110010051A1/en
Application granted granted Critical
Publication of US8554411B2 publication Critical patent/US8554411B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0493Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting processor errors, e.g. plausibility of steering direction

Definitions

  • the invention relates to an electric power steering system.
  • An electric power steering (EPS) system using a motor as a driving source has been proposed as one type of power steering systems for vehicles.
  • the EPS system is characterized by a high degree of flexibility in the layout thereof and a small amount of energy consumption. In recent years, therefore, the electric power steering system has been increasingly employed in a wide variety of vehicle types, from compact vehicles to large vehicles.
  • the microcomputer includes CPU and memories (RAM and ROM), and various types of electronic circuits (such as A/D converters).
  • RAM and ROM volatile and erasable programmable read-only memory
  • A/D converters various types of electronic circuits
  • start-up of the microcomputer i.e., when the ignition key is turned on
  • an initial check is conducted so as to check if a memory that provides a storage space for a program under execution and its work data is normal. See, for example, Japanese Patent Application Publication No. 2006-331086 (JP-A-2006-331086).
  • JP-A-2006-331086 Japanese Patent Application Publication No. 2006-331086
  • it is checked if the microcomputer and various electronic circuits under control of the microcomputer function normally. If any abnormality is detected in the abnormality determination process, a fail-safe action or measure is immediately taken so as to ensure high reliability and safety.
  • the EPS system is configured to perform various compensation controls in an attempt to achieve more excellent steering feeling, resulting in an increase in the capacity or storage of the memory and an increase in the time required for the initial check.
  • the function checks after start-up are conducted by a monitoring microcomputer provided independently of a main microcomputer that implements power assist control.
  • the main microcomputer has to carry out test computations sent from the monitoring microcomputer, in real time.
  • the provision of new monitoring circuits (abnormality determination circuits), including the monitoring microcomputer makes it necessary for the main microcomputer to check if the monitoring circuits function normally.
  • the processing power required to perform the abnormality determination process keeps growing or increasing, which is a cause of increase in the manufacturing cost.
  • the provision of a large number of monitoring circuits leads to a significant increase in the failure rate due to an increase in the number of elements of the system.
  • abnormality determinations are made over a wide range of phenomena, even a trivial phenomenon, which would hardly affect the operation of the EPS system, may be determined as an abnormality. If such an abnormality is counted as a failure, the failure rate may be further raised or increased, as one example of problems caused by the provision of the monitoring circuits. In this respect, too, there is still room for improvement.
  • An object of the invention is to provide an electric power steering system that solves the above-described problems.
  • An aspect of the invention relates to an electric power steering system has a steering force assist device that provides assist force for assisting a steering operation, to a steering system, using a motor as a driving source, and a controller that controls the operation of the steering force assist device.
  • the controller includes a control signal generator that generates a motor control signal so as to produce a motor torque corresponding to the assist force, and a driving circuit that supplies driving electric power based on the motor control signal, to the motor.
  • the control signal generator calculates a current command value representing a target assist force, based on a detected steering torque, and performs a current feedback computation so that an actual current value follows the current command value, thereby to create the motor control signal.
  • the driving circuit is formed by connecting switching arms in parallel with each other, each of the switching arms comprising a pair of switching devices connected in series and operable to be turned on or off based on the motor control signal.
  • the controller has two control signal generators that perform the same current feedback computation, as the above-indicated control signal generator, and the two switching arms corresponding to motor terminals operate independently of each other, based on the motor control signals generated by the respective control signal generators, so that the driving electric power is supplied to the motor.
  • the controller has an abnormality determining unit that determines that an abnormality occurs when a current deviation of an actual current value from the current command value exceeds a predetermined threshold value in at least one of the control signal generators.
  • control signal generators perform the same current feedback computation, based on the quantities of state detected with respect to common objects. Accordingly, the control signal generators provide the same computation result as long as there is no abnormality in the two control systems.
  • FIG. 1 is a schematic view showing the construction of an electric power steering (EPS) system
  • FIG. 2 is a block diagram showing an electrical arrangement of the EPS system
  • FIG. 3 is a flowchart illustrating a control routine of power assist control
  • FIG. 4 is a block diagram of motor control in the EPS system according to an embodiment.
  • FIG. 5 is a flowchart illustrating a process of making an abnormality determination.
  • a steering shaft 3 to which a steering wheel 2 is fixed is coupled to a rack shaft 5 via a rack-and-pinion mechanism 4 , and rotation of the steering shaft 3 caused by a steering operation is converted into reciprocating linear motion of the rack shaft 5 by means of the rack-and-pinion mechanism 4 .
  • the steering shaft 3 includes a column shaft 3 a , an intermediate shaft 3 b , and a pinion shaft 3 c , which are coupled to each other.
  • the reciprocating linear motion of the rack shaft 5 originating from the rotation of the steering shaft 3 is transmitted to knuckles (not shown) via tie rods 6 coupled to the opposite ends of the rack shaft 5 , so as to change the turning angles of steered wheels 7 , or the traveling direction of the vehicle.
  • the EPS system 1 also includes an EPS actuator 10 that serves as a steering force assist device for providing assist force to a steering system so as to assist a steering operation, and an ECU 11 that serves as a controller for controlling the operation of the EPS actuator 10 .
  • the EPS actuator 10 is configured as a column-assist-type EPS actuator in which a motor 12 as a driving source is operatively coupled to the column shaft 3 a via a reduction gear 13 .
  • a known worm-and-wheel gear is employed as the reduction gear 13 .
  • the motor 12 which is in the form of a brushed DC motor, is operable to rotate based on driving electric power supplied from the ECU 11 .
  • the EPS actuator 10 is arranged to reduce the rotational speed of the motor 12 , and transmit the resulting rotation to the column shaft 3 a , thereby to provide the motor torque as assist force to the steering system.
  • a torque sensor 14 and a vehicle speed sensor 15 are connected to the ECU 11 .
  • the torque sensor 14 includes a torsion bar 16 provided somewhere in the column shaft 3 a , and two independent sensor units 14 a , 14 b each capable of detecting a steering torque ⁇ transmitted via the steering shaft 3 , based on the torsion of the torsion bar 16 .
  • the sensor units 14 a , 14 b generate sensor signals (Sa, Sb) representative of the detected steering torques.
  • the torque sensor may be formed by placing two or more Hall ICs, as the sensor units 14 a , 14 b serving as sensing elements, around a sensor core (not shown) that causes a change in the magnetic flux based on the amount of torsion of the torsion bar 16 .
  • the ECU 11 controls assist torque generated by the motor 12 as the driving source of the EPS actuator 10 , based on the steering torque ⁇ ( ⁇ 1 , ⁇ 2 ) detected by the torque sensor 14 , and the vehicle speed V detected by the vehicle speed sensor 15 , thereby to perform power assist control.
  • FIG. 2 is a control block diagram of the EPS system.
  • the ECU 11 has microcomputers 17 ( 17 a , 17 b ) that serve as motor control signal generators for generating motor control signals, and a driving circuit 18 that supplies driving electric power to the motor 12 based on the motor control signals generated by the microcomputers 17 .
  • the driving circuit 18 is configured as a known H-bridge-type PWM inverter in which a series circuit consisting of a pair of FETs 18 a , 18 c and a series circuit consisting of a pair of FETs 18 b , 18 d are connected in parallel with each other, and a connection point of the FETs 18 a , 18 c and a connection point of the FETs 18 b , 18 d form output terminals 19 a , 19 b , respectively.
  • the driving circuit 18 includes two switching arms 20 a , 20 b that are connected in parallel with each other, each of the switching arms having a pair of switching devices connected in series, as a basic unit, and the two output terminals 19 a , 19 b are connected to corresponding motor terminals 12 a , 12 b via power lines 21 a , 21 b , respectively.
  • the motor control signals generated by the microcomputers 17 ( 17 a , 17 b ) are gate on/off signals that specify the switching states of the respective FETs 18 a to 18 d that constitute the driving circuit 18 .
  • the driving circuit 18 By turning on/off the respective FETs 18 a to 18 d in response to the motor control signals received as the gate on/off signals, the driving circuit 18 converts the power supply voltage of a battery 22 into a voltage corresponding to the duty ratio represented by the motor control signals. Then, the controlled voltage is applied to the motor terminals 12 a , 12 b , so that driving electric power having a desired direction of current flow is supplied to the motor 12 .
  • the ECU 11 has two independent microcomputers 17 a , 17 b as signal control generators.
  • the switching arms 20 a , 20 b that constitute the driving circuit 18 are arranged to operate independently of each other, according to the motor control signals generated by the corresponding microcomputers 17 a , 17 b.
  • each of the microcomputers 17 a , 17 b calculates a target assist force to be applied to the steering system, based on the steering torque ⁇ detected by the torque sensor 14 and the vehicle speed V detected by the vehicle speed sensor 15 .
  • the microcomputer 17 a receives a sensor signal Sa generated by the sensor unit 14 a as one of the two sensor units 14 a , 14 b that constitute the torque sensors 14
  • the microcomputer 17 b receives a sensor signal Sb generated by the sensor unit 14 b
  • the microcomputers 17 a , 17 b detect the steering torques ⁇ 1 , ⁇ 2 independently, based on the sensor signal Sa, Sb received from the corresponding sensor unit 14 a , 14 b.
  • Each of the microcomputers 17 a , 17 b has a map (not shown) in which the target assist force is associated with the vehicle speed V and the steering torque t, and each microcomputer 17 a , 17 b calculates the target assist force based on the map.
  • the microcomputers 17 a , 17 b receive common values representing the vehicle speed V.
  • Each of the microcomputers 17 a , 17 b calculates the target assist force, based on the detected vehicle speed V and steering torque ⁇ ( ⁇ 1 , ⁇ 2 ), such that the target assist force becomes larger as the vehicle speed V is lower, and becomes larger as the steering torque ⁇ is larger.
  • Each of the microcomputers 17 a , 17 b is configured to calculate the motor control signal, by performing a current feedback computation so that the detected actual current value I follows a current command value (I*) corresponding to the target assist force.
  • two current sensors 23 a , 23 b are respectively provided in the two power lines 21 a , 21 b that connect the output terminals 19 a , 19 b of the switching arms 20 a , 20 b with the motor terminals 12 a , 12 b , respectively.
  • the microcomputer 17 a receives an output signal of the current sensor 23 a provided in the power line 21 a , as one of the two current sensors 23 a , 23 b , and the microcomputer 17 b receives an output signal of the current sensor 23 b provided in the power line 21 b.
  • the microcomputers 17 a , 17 b individually detect the actual current values I 1 , I 2 of the motor 12 , based on the output signals of the corresponding current sensors 23 a , 23 b . Then, the microcomputers 17 a , 17 b are configured to perform the same current feedback computation, independently of each other, based on the actual current values I 1 , I 2 , so as to implement the power assist control.
  • the microcomputer 17 ( 17 a , 17 b ) initially acquires the steering torque ⁇ ( ⁇ 1 , ⁇ 2 ) and the vehicle speed V (step 101 ), calculates a target assist force based on these quantities of state of the vehicle (step 102 ), and calculates a current command value I* corresponding to the target assist force (step 103 ). Then, the microcomputer 17 acquires the actual current value I (step 104 ), and executes an abnormality determination process that will be described later (step 105 ).
  • the microcomputer 17 performs a current feedback computation so that the detected actual current value I follows the current command value I* corresponding to the target assist force (step 106 ).
  • the current feedback computation is performed through proportional integral control using a proportional term obtained by multiplying a current deviation of the actual current value I acquired in the above step 104 from the current command value I* calculated in the above step 103 by a proportional gain, and an integral term obtained by multiplying an integral value of the current deviation by an integral gain.
  • a duty ratio corresponding to the result (voltage command value) of the above-described current feedback computation is calculated through execution of a PWM control operation (step 107 ), and gate on/off signals having the thus calculated duty ratio are generated as motor control signals (step 108 ).
  • each of the microcomputers 17 a , 17 b inherently has the ability to generate motor control signals to all of the FETs 18 a to 18 d that constitute the driving circuit 18 , and control the operations of the FETs, by itself.
  • the microcomputer 17 a In the EPS system 1 as shown in FIG. 2 , however, the microcomputer 17 a generates its motor control signals only to the FETs 18 a , 18 c of the switching arm 20 a , as one of the two switching arms 20 a , 20 b that constitute the driving circuit 18 . Also, the microcomputer 17 b generates its motor control signals only to the FETs 18 b , 18 d of the switching arm 20 b . Namely, the switching arms 20 a , 20 b operate independently of each other, based on the motor control signals generated by the corresponding microcomputers 17 a , 17 b.
  • the EPS system 1 has a double system, i.e., two independent systems (portions surrounded by broken lines L 1 , L 2 in FIG. 4 ) each performing the process of detecting the main quantities ( ⁇ , I) of state used in a current feedback computation for implementation of power assist control, performing the current feedback computation, and applying the resulting voltage to each of the motor terminals 12 a , 12 b .
  • the symbols and quantities of state in FIG. 4 are generally used in block diagrams of motor control, and therefore, will not be described in detail.
  • the two systems are independent of each other, the two systems have common objects (the torsion bar 16 and the motor 12 ) with respect to which the quantities of state as a basis of the control are detected, and perform the same current feedback computation.
  • the operation of the driving circuit 18 can be controlled in the same manner as in a hypothetical case where the driving circuit 18 is controlled solely by one of the microcomputers 17 a , 17 b , as long as each control system is normal.
  • the ECU 11 is arranged to supply driving electric power to the motor 12 .
  • the two microcomputers 17 a , 17 b independently control the operations of the switching arms 20 a , 20 b , respectively, when a difference arises in the results of current feedback computations performed by the respective microcomputers 17 a , 17 b , the actual current value I of the motor 12 is controlled according to the motor control signals indicative of the smaller amount of current to be passed through the motor 12 , irrespective of which of the computation results is correct.
  • the ECU 11 has an abnormality determining function of determining an abnormality in the system, utilizing this arrangement.
  • the microcomputer 17 a when current is passed through the motor 12 from the motor terminal 12 a to the motor terminal 12 b , the microcomputer 17 a generates a motor control signal for turning on the high-potential-side FET 18 a of the switching arm 20 a , and the microcomputer 17 b generates a motor control signal for turning on the low-potential-side FET 18 d of the switching arm 20 b .
  • the low-potential-side FET 18 c of the switching arm 20 a and the high-potential-side FET 18 b of the switching arm 20 b are turned off.
  • the microcomputers 17 a , 17 b perform the same current feedback computation, based on the quantities of state detected with respect to the same objects. Thus, the results of computation are the same as long as there is no abnormality in the two control systems (see FIG. 4 ).
  • the switching arms 20 a , 20 b corresponding to these microcomputers 17 a , 17 b operate in synchronism with each other, based on the motor control signals received from the microcomputers 17 a , 17 b , so that electric power is supplied to the motor 12 in the same manner as in the hypothetical case where each of the microcomputers 17 a , 17 b controls the driving circuit 18 by itself.
  • any abnormality occurs in one of the two control systems, a difference will arise between the results of the current feedback computations performed by the respective microcomputers 17 a , 17 b . If the microcomputer 17 a generates a motor control signal that indicates that X should be generated as the actual current value I of the motor 12 , and the microcomputer 17 b generates a motor control signal that indicates that Y should be generated as the actual current value I (X>Y), for example, the actual current value I of the motor 12 will follow the smaller one, i.e., Y.
  • the switching arm 20 a corresponding to the high-potential-side motor terminal 12 a i.e., the FET 18 a that operates according to the motor control signal output of the microcomputer 17 a
  • the on-time (turn-on time) of the switching arm 20 b corresponding to the motor terminal 12 , or the FET 18 d that operates according to the motor control signal output of the microcomputer 17 b is only such a length that permits generation of a motor current equivalent to Y that is smaller than the above-indicated X.
  • the ECU 11 makes a system abnormality determination, based on a current deviation that appears on the side that generates the motor control signal indicating that the larger actual current value I should be generated.
  • the microcomputers 17 a , 17 b individually calculate the current command values I*, and detect the actual current values ( 11 , 12 ) of the motor 12 , as described above.
  • Each of the microcomputers 17 a , 17 b carries out an abnormality determination process (see FIG. 3 , step 104 to step 106 ), based on a current deviation of the actual current value I from the current command value I*.
  • each of the microcomputers 17 a , 17 b serving as an abnormality determining unit determines whether an absolute value of a current deviation of the actual current value I (I 1 , I 2 ) from the current command value I* exceeds a predetermined threshold value Ith (step 201 ). If the current deviation exceeds the threshold value Ith (
  • step 201 If it is determined in the above-indicated step 201 that the absolute value of the current deviation of the actual current value I (I 1 , I 2 ) from the current command value I* is equal to or smaller than the predetermined threshold value Ith (
  • step 204 If it is determined in the above-indicated step 204 that no abnormality detection signal Str is received (NO in step 204 ), it is determined that the system is normal, and the power assist control is continued (step 205 ).
  • the present embodiment provides the following effects.
  • the ECU 11 includes the two independent microcomputers 17 a , 17 b serving as motor control signal generators, and the microcomputers 17 a , 17 b perform the same current feedback computation.
  • the switching arms 20 a , 20 b that constitute the driving circuit 18 operate independently of each other, based on motor control signals generated by the corresponding microcomputers 17 a , 17 b .
  • Each of the microcomputers 17 a , 17 b determines whether the absolute value of the current deviation of the actual current value I (I 1 , I 2 ) from the current command value I* exceeds the predetermined threshold value Ith. If the current deviation exceeds the threshold value Ith, it is determined that any abnormality occurs in the system.
  • the microcomputers 17 a , 17 b perform the same current feedback computation, based on the quantities of state detected with respect to the common objects. Therefore, the microcomputers 17 a , 17 b provide the same computation result as long as there is no abnormality in the two control systems.
  • the switching arms 20 a , 20 b operate in synchronism with each other, based on the motor control signal outputs of the respective microcomputers 17 a , 17 b , so that electric power can be supplied to the motor 12 in the same manner as that in the hypothetical case where each of the microcomputer 17 a , 17 b controls the driving circuit 18 by itself.
  • the actual current value I of the motor 12 is controlled according to the motor control signal indicative of the smaller amount of current to be passed through the motor; therefore, an excessive assist force is prevented from being generated upon the occurrence of the abnormality.
  • the high-potential-side FETs 18 a , 18 b and low-potential-side FETs 18 c , 18 d of the switching arms 20 a , 20 are turned on or off at the same time, namely, all of the devices in the upper stage or all of the devices in the lower stage are turned on, so that reverse assist force is prevented from being generated. Consequently, even higher reliability and improved safety are assured.
  • the microcomputers 17 a , 17 b detect the actual current values I 1 , I 2 of the motor 12 , independently of each other, based on the output signals of the corresponding current sensors 23 a , 23 b .
  • an abnormality that occurs in any one of the current sensors 23 a , 23 b also appears in the form of a current deviation as described above. Accordingly, a determination as to whether an abnormality occurs in the current sensor 23 a , 23 b may also be replaced or substituted by an abnormality determination based on the current deviation, resulting in a further simplified arrangement and further improved reliability.
  • the current sensors 23 a , 23 b are respectively disposed in the two power lines 21 a , 21 b that connect the respective output terminals 19 a , 19 b of the switching arms 20 a , 20 b that constitute the driving circuit 18 , with the corresponding motor terminals 12 a , 12 b.
  • the microcomputers 17 a , 17 b detect the steering torques ⁇ 1 , ⁇ 2 independently of each other, based on the sensor signals Sa, Sb of two independent systems received from the torque sensor 14 . Then, each of the microcomputer 17 a , 17 b calculates a current command value I* corresponding to the target assist force, based on the steering torque ⁇ ( ⁇ 1 , ⁇ 2 ).
  • an abnormality that occurs in the torque sensor 14 also appears in the form of a current deviation as described above. Accordingly, a determination as to whether an abnormality occurs in the torque sensor 14 can be replaced or substituted by an abnormality determination based on the current deviation, resulting in a further simplified arrangement and further improved reliability.
  • the torque sensor 14 has the torsion bar 16 provided somewhere in the column shaft 3 a , and two independent sensor units 14 a , 14 b each operable to detect the amount of torsion of the torsion bar 16 , i.e., the steering torque ⁇ transmitted via the steering shaft 3 , and generate a sensor signal Sa, Sb representing the detected steering torque.
  • the mechanical arrangement of the torque sensor including the torsion bar is highly likely to be extremely rugged.
  • the use of the torque sensor in which only the electrical arrangement has a double system makes it possible to simplify the arrangement while assuring sufficiently high reliability.
  • the invention is embodied as a column assist type EPS system.
  • the invention is not limitedly applied to the EPS system of this type, but may be embodied as a pinion assist type or rack assist type EPS system.
  • one current sensor 23 ( 23 a , 23 b ) is provided in each of the two power lines 21 a , 21 b , and the microcomputers 17 a , 17 b detect the actual current values I 1 , I 2 , independently of each other, based on the output signals of the corresponding current sensors 23 a , 23 b .
  • the microcomputers 17 a , 17 b may use a common actual current value I provided that the current is detected with sufficiently high reliability. In this case, only one current sensor may be provided in the system.
  • the location of the installation of the current sensors is not limited to the power lines 21 a , 21 b , but the current sensor(s) may be connected in series with the driving circuit 18 .
  • the torque sensor 14 including the two independent sensor units 14 a , 14 b operable to detect the steering torque ⁇ and generate sensor signals Sa, Sb, respectively, is used, and the microcomputers 17 a , 17 b detect the steering torques ⁇ 1 , ⁇ 2 , independently of each other, based on the corresponding sensor signals Sa, Sb.
  • the invention is not limited to this arrangement, but two independent torque sensors may be provided, and may be arranged to transmit respective signals to the corresponding microcomputers.
  • the microcomputers 17 a , 17 b may use a common value as the steering torque provided that the torque can be detected with sufficiently high reliability.
  • an abnormality in the system is determined by making an abnormality determination based on a current deviation, it is preferable to provide two independent current sensors 23 a , 23 b , and cause the microcomputers 17 a , 17 b to receive the corresponding output signals of the current sensors 23 a , 23 b , and sensor signals Sa, Sb of two independent systems capable of detecting the steering torques ⁇ , as indicated in the above-described embodiment.
  • the microcomputers 17 a , 17 b individually calculate current command values, based on the steering torques ⁇ 1 , ⁇ 2 detected based on the respective sensor signals Sa, Sb, and individually perform current feedback control, based on the actual current values I 1 , I 2 detected by the respective current sensors 23 a , 23 b.
  • the process of detecting the main quantities of state ( ⁇ , I) used in the current feedback computation for executing power assist control, performing the current feedback computation, and applying the resulting voltage to the motor terminals 12 a , 12 b is implemented by the double system, i.e., two independent systems (see FIG. 4 ), so that any of the abnormalities that occur in the main system for providing assist force appears as a current deviation or is determined by detecting a current deviation. Consequently, other abnormality determination control (monitoring circuits) may be eliminated, for simplification of the arrangement, while assuring high reliability in the detection of abnormalities.
  • the microcomputers 17 a , 17 b constitute the abnormality determining unit in the illustrated embodiment
  • the abnormality determining unit may be provided independently.
  • the arrangement of the illustrated embodiment is more preferable, in terms of simplification of the arrangement and the accompanying benefits, such as reduction of the failure rate due to scale-down of relevant circuits.
  • each of the current sensors is provided in each of the power lines that connect the respective motor terminals with the corresponding switching arms.
  • an abnormality that occurs in the power lines also appears as a current deviation, thus assuring further simplification of the arrangement and improved reliability.
  • the torque sensor is adapted to generate sensor signals of two systems each capable of detecting the steering torque based on the amount of torsion of the torsion bar provided in the steering shaft.
  • the mechanical arrangement of the torque sensor including the torsion bar is highly likely to be rugged.
  • the use of the torque sensor in which only the electrical arrangement has a double system makes it possible to simplify its arrangement or construction, while assuring sufficiently high reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

In an electric power steering system, an ECU 11 includes two independent microcomputers 17 a , 17 b that serve as motor control signal generators, and the microcomputers 17 a , 17 b perform the same current feedback computation. Switching arms 20 a , 20 b that constitute a driving circuit 18 operate independently of each other, based on motor control signals generated by the corresponding microcomputers 17 a , 17 b. Each of the microcomputers 17 a , 17 b determines whether an absolute value of a current deviation of an actual current I (I1, I2) from a current command value exceeds a predetermined threshold value. If the current deviation exceeds the threshold value, it is determined that an abnormality occurs in the system.

Description

INCORPORATED BY REFERENCE
The disclosure of Japanese Patent Application No. 2009-165014 filed on Jul. 13, 2009, including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an electric power steering system.
2. Description of the Related Art
An electric power steering (EPS) system using a motor as a driving source has been proposed as one type of power steering systems for vehicles. The EPS system is characterized by a high degree of flexibility in the layout thereof and a small amount of energy consumption. In recent years, therefore, the electric power steering system has been increasingly employed in a wide variety of vehicle types, from compact vehicles to large vehicles.
In the EPS system, numerous abnormality determining operations (diagnostics) are performed in information processing equipment (such as a microcomputer) that performs power assist control of the EPS system. For example, the microcomputer includes CPU and memories (RAM and ROM), and various types of electronic circuits (such as A/D converters). Upon start-up of the microcomputer (i.e., when the ignition key is turned on), an initial check is conducted so as to check if a memory that provides a storage space for a program under execution and its work data is normal. See, for example, Japanese Patent Application Publication No. 2006-331086 (JP-A-2006-331086). After start-up, too, it is checked if the microcomputer and various electronic circuits under control of the microcomputer function normally. If any abnormality is detected in the abnormality determination process, a fail-safe action or measure is immediately taken so as to ensure high reliability and safety.
In recent years, the EPS system is configured to perform various compensation controls in an attempt to achieve more excellent steering feeling, resulting in an increase in the capacity or storage of the memory and an increase in the time required for the initial check. Also, the function checks after start-up are conducted by a monitoring microcomputer provided independently of a main microcomputer that implements power assist control. In this case, the main microcomputer has to carry out test computations sent from the monitoring microcomputer, in real time. Furthermore, the provision of new monitoring circuits (abnormality determination circuits), including the monitoring microcomputer, makes it necessary for the main microcomputer to check if the monitoring circuits function normally. Thus, the processing power required to perform the abnormality determination process keeps growing or increasing, which is a cause of increase in the manufacturing cost.
In addition, the provision of a large number of monitoring circuits leads to a significant increase in the failure rate due to an increase in the number of elements of the system. Also, since abnormality determinations are made over a wide range of phenomena, even a trivial phenomenon, which would hardly affect the operation of the EPS system, may be determined as an abnormality. If such an abnormality is counted as a failure, the failure rate may be further raised or increased, as one example of problems caused by the provision of the monitoring circuits. In this respect, too, there is still room for improvement.
SUMMARY OF INVENTION
An object of the invention is to provide an electric power steering system that solves the above-described problems.
An aspect of the invention relates to an electric power steering system has a steering force assist device that provides assist force for assisting a steering operation, to a steering system, using a motor as a driving source, and a controller that controls the operation of the steering force assist device. The controller includes a control signal generator that generates a motor control signal so as to produce a motor torque corresponding to the assist force, and a driving circuit that supplies driving electric power based on the motor control signal, to the motor. The control signal generator calculates a current command value representing a target assist force, based on a detected steering torque, and performs a current feedback computation so that an actual current value follows the current command value, thereby to create the motor control signal. The driving circuit is formed by connecting switching arms in parallel with each other, each of the switching arms comprising a pair of switching devices connected in series and operable to be turned on or off based on the motor control signal. The controller has two control signal generators that perform the same current feedback computation, as the above-indicated control signal generator, and the two switching arms corresponding to motor terminals operate independently of each other, based on the motor control signals generated by the respective control signal generators, so that the driving electric power is supplied to the motor. The controller has an abnormality determining unit that determines that an abnormality occurs when a current deviation of an actual current value from the current command value exceeds a predetermined threshold value in at least one of the control signal generators.
With the above arrangement, the control signal generators perform the same current feedback computation, based on the quantities of state detected with respect to common objects. Accordingly, the control signal generators provide the same computation result as long as there is no abnormality in the two control systems. By operating the switching arms in synchronism with each other, based on the motor control signals generated by the respective control signal generators, it is possible to supply electric power to the motor in the same manner as in a hypothetical case where only one of the control signal generators performs control by itself.
BRIEF DESCRIPTION OF DRAWINGS
The foregoing and further features and advantages of the invention will become apparent from the following description of example embodiments with reference to the accompanying drawings, wherein like numerals are used to represent like elements and wherein:
FIG. 1 is a schematic view showing the construction of an electric power steering (EPS) system;
FIG. 2 is a block diagram showing an electrical arrangement of the EPS system;
FIG. 3 is a flowchart illustrating a control routine of power assist control;
FIG. 4 is a block diagram of motor control in the EPS system according to an embodiment; and
FIG. 5 is a flowchart illustrating a process of making an abnormality determination.
DETAILED DESCRIPTION OF EMBODIMENTS
One embodiment of the invention will be described with reference to the drawings.
As shown in FIG. 1, in an electric power steering (EPS) system 1 according to the embodiment, a steering shaft 3 to which a steering wheel 2 is fixed is coupled to a rack shaft 5 via a rack-and-pinion mechanism 4, and rotation of the steering shaft 3 caused by a steering operation is converted into reciprocating linear motion of the rack shaft 5 by means of the rack-and-pinion mechanism 4. The steering shaft 3 includes a column shaft 3 a, an intermediate shaft 3 b, and a pinion shaft 3 c, which are coupled to each other. The reciprocating linear motion of the rack shaft 5 originating from the rotation of the steering shaft 3 is transmitted to knuckles (not shown) via tie rods 6 coupled to the opposite ends of the rack shaft 5, so as to change the turning angles of steered wheels 7, or the traveling direction of the vehicle.
The EPS system 1 also includes an EPS actuator 10 that serves as a steering force assist device for providing assist force to a steering system so as to assist a steering operation, and an ECU 11 that serves as a controller for controlling the operation of the EPS actuator 10.
The EPS actuator 10 is configured as a column-assist-type EPS actuator in which a motor 12 as a driving source is operatively coupled to the column shaft 3 a via a reduction gear 13. A known worm-and-wheel gear is employed as the reduction gear 13. The motor 12, which is in the form of a brushed DC motor, is operable to rotate based on driving electric power supplied from the ECU 11. The EPS actuator 10 is arranged to reduce the rotational speed of the motor 12, and transmit the resulting rotation to the column shaft 3 a, thereby to provide the motor torque as assist force to the steering system.
A torque sensor 14 and a vehicle speed sensor 15 are connected to the ECU 11. The torque sensor 14 includes a torsion bar 16 provided somewhere in the column shaft 3 a, and two independent sensor units 14 a, 14 b each capable of detecting a steering torque τ transmitted via the steering shaft 3, based on the torsion of the torsion bar 16. The sensor units 14 a, 14 b generate sensor signals (Sa, Sb) representative of the detected steering torques.
For example, the torque sensor may be formed by placing two or more Hall ICs, as the sensor units 14 a, 14 b serving as sensing elements, around a sensor core (not shown) that causes a change in the magnetic flux based on the amount of torsion of the torsion bar 16. See, for example, Japanese Patent Application Publication No. 2003-149062 (JP-A-2003-149062). The ECU 11 controls assist torque generated by the motor 12 as the driving source of the EPS actuator 10, based on the steering torque τ(τ1, τ2) detected by the torque sensor 14, and the vehicle speed V detected by the vehicle speed sensor 15, thereby to perform power assist control.
Next, an electrical arrangement of the EPS system of this embodiment will be described.
FIG. 2 is a control block diagram of the EPS system. As shown in FIG. 2, the ECU 11 has microcomputers 17 (17 a, 17 b) that serve as motor control signal generators for generating motor control signals, and a driving circuit 18 that supplies driving electric power to the motor 12 based on the motor control signals generated by the microcomputers 17.
The driving circuit 18 is configured as a known H-bridge-type PWM inverter in which a series circuit consisting of a pair of FETs 18 a, 18 c and a series circuit consisting of a pair of FETs 18 b, 18 d are connected in parallel with each other, and a connection point of the FETs 18 a, 18 c and a connection point of the FETs 18 b, 18 d form output terminals 19 a, 19 b, respectively.
The driving circuit 18 includes two switching arms 20 a, 20 b that are connected in parallel with each other, each of the switching arms having a pair of switching devices connected in series, as a basic unit, and the two output terminals 19 a, 19 b are connected to corresponding motor terminals 12 a, 12 b via power lines 21 a, 21 b, respectively. The motor control signals generated by the microcomputers 17 (17 a, 17 b) are gate on/off signals that specify the switching states of the respective FETs 18 a to 18 d that constitute the driving circuit 18.
By turning on/off the respective FETs 18 a to 18 d in response to the motor control signals received as the gate on/off signals, the driving circuit 18 converts the power supply voltage of a battery 22 into a voltage corresponding to the duty ratio represented by the motor control signals. Then, the controlled voltage is applied to the motor terminals 12 a, 12 b, so that driving electric power having a desired direction of current flow is supplied to the motor 12.
The ECU 11 has two independent microcomputers 17 a, 17 b as signal control generators. The switching arms 20 a, 20 b that constitute the driving circuit 18 are arranged to operate independently of each other, according to the motor control signals generated by the corresponding microcomputers 17 a, 17 b.
Initially, each of the microcomputers 17 a, 17 b calculates a target assist force to be applied to the steering system, based on the steering torque τ detected by the torque sensor 14 and the vehicle speed V detected by the vehicle speed sensor 15.
More specifically, the microcomputer 17 a receives a sensor signal Sa generated by the sensor unit 14 a as one of the two sensor units 14 a, 14 b that constitute the torque sensors 14, and the microcomputer 17 b receives a sensor signal Sb generated by the sensor unit 14 b. The microcomputers 17 a, 17 b detect the steering torques τ1, τ2 independently, based on the sensor signal Sa, Sb received from the corresponding sensor unit 14 a, 14 b.
Each of the microcomputers 17 a, 17 b has a map (not shown) in which the target assist force is associated with the vehicle speed V and the steering torque t, and each microcomputer 17 a, 17 b calculates the target assist force based on the map. In this embodiment, the microcomputers 17 a, 17 b receive common values representing the vehicle speed V. Each of the microcomputers 17 a, 17 b calculates the target assist force, based on the detected vehicle speed V and steering torque τ(τ1, τ2), such that the target assist force becomes larger as the vehicle speed V is lower, and becomes larger as the steering torque τ is larger.
Current sensors 23 for detecting actual current values I of the motor 12 are connected to the ECU 11. Each of the microcomputers 17 a, 17 b is configured to calculate the motor control signal, by performing a current feedback computation so that the detected actual current value I follows a current command value (I*) corresponding to the target assist force.
More specifically, two current sensors 23 a, 23 b are respectively provided in the two power lines 21 a, 21 b that connect the output terminals 19 a, 19 b of the switching arms 20 a, 20 b with the motor terminals 12 a, 12 b, respectively. The microcomputer 17 a receives an output signal of the current sensor 23 a provided in the power line 21 a, as one of the two current sensors 23 a, 23 b, and the microcomputer 17 b receives an output signal of the current sensor 23 b provided in the power line 21 b.
The microcomputers 17 a, 17 b individually detect the actual current values I1, I2 of the motor 12, based on the output signals of the corresponding current sensors 23 a, 23 b. Then, the microcomputers 17 a, 17 b are configured to perform the same current feedback computation, independently of each other, based on the actual current values I1, I2, so as to implement the power assist control.
Specifically, as shown in the flowchart of FIG. 3, the microcomputer 17 (17 a, 17 b) initially acquires the steering torque τ(τ1, τ2) and the vehicle speed V (step 101), calculates a target assist force based on these quantities of state of the vehicle (step 102), and calculates a current command value I* corresponding to the target assist force (step 103). Then, the microcomputer 17 acquires the actual current value I (step 104), and executes an abnormality determination process that will be described later (step 105).
The microcomputer 17 performs a current feedback computation so that the detected actual current value I follows the current command value I* corresponding to the target assist force (step 106). The current feedback computation is performed through proportional integral control using a proportional term obtained by multiplying a current deviation of the actual current value I acquired in the above step 104 from the current command value I* calculated in the above step 103 by a proportional gain, and an integral term obtained by multiplying an integral value of the current deviation by an integral gain. A duty ratio corresponding to the result (voltage command value) of the above-described current feedback computation is calculated through execution of a PWM control operation (step 107), and gate on/off signals having the thus calculated duty ratio are generated as motor control signals (step 108).
Thus, each of the microcomputers 17 a, 17 b inherently has the ability to generate motor control signals to all of the FETs 18 a to 18 d that constitute the driving circuit 18, and control the operations of the FETs, by itself.
In the EPS system 1 as shown in FIG. 2, however, the microcomputer 17 a generates its motor control signals only to the FETs 18 a, 18 c of the switching arm 20 a, as one of the two switching arms 20 a, 20 b that constitute the driving circuit 18. Also, the microcomputer 17 b generates its motor control signals only to the FETs 18 b, 18 d of the switching arm 20 b. Namely, the switching arms 20 a, 20 b operate independently of each other, based on the motor control signals generated by the corresponding microcomputers 17 a, 17 b.
As shown in the block diagram of FIG. 4, the EPS system 1 has a double system, i.e., two independent systems (portions surrounded by broken lines L1, L2 in FIG. 4) each performing the process of detecting the main quantities (τ, I) of state used in a current feedback computation for implementation of power assist control, performing the current feedback computation, and applying the resulting voltage to each of the motor terminals 12 a, 12 b. The symbols and quantities of state in FIG. 4 are generally used in block diagrams of motor control, and therefore, will not be described in detail.
Although the above two control systems are independent of each other, the two systems have common objects (the torsion bar 16 and the motor 12) with respect to which the quantities of state as a basis of the control are detected, and perform the same current feedback computation.
Accordingly, even where the object to be controlled by each of the microcomputers 17 a, 17 b is limited only to a corresponding one of the switching arms 20 a, 20 b (the FETs 18 a, 18 c or FETs 18 b, 18 d), as in this embodiment, the operation of the driving circuit 18 can be controlled in the same manner as in a hypothetical case where the driving circuit 18 is controlled solely by one of the microcomputers 17 a, 17 b, as long as each control system is normal. With this arrangement, the ECU 11 is arranged to supply driving electric power to the motor 12.
In the arrangement in which the two microcomputers 17 a, 17 b independently control the operations of the switching arms 20 a, 20 b, respectively, when a difference arises in the results of current feedback computations performed by the respective microcomputers 17 a, 17 b, the actual current value I of the motor 12 is controlled according to the motor control signals indicative of the smaller amount of current to be passed through the motor 12, irrespective of which of the computation results is correct. The ECU 11 has an abnormality determining function of determining an abnormality in the system, utilizing this arrangement.
For example, when current is passed through the motor 12 from the motor terminal 12 a to the motor terminal 12 b, the microcomputer 17 a generates a motor control signal for turning on the high-potential-side FET 18 a of the switching arm 20 a, and the microcomputer 17 b generates a motor control signal for turning on the low-potential-side FET 18 d of the switching arm 20 b. In this case, in order to prevent the emergence of flow-through current, the low-potential-side FET 18 c of the switching arm 20 a and the high-potential-side FET 18 b of the switching arm 20 b are turned off.
As discussed above, the microcomputers 17 a, 17 b perform the same current feedback computation, based on the quantities of state detected with respect to the same objects. Thus, the results of computation are the same as long as there is no abnormality in the two control systems (see FIG. 4). In this case, the switching arms 20 a, 20 b corresponding to these microcomputers 17 a, 17 b operate in synchronism with each other, based on the motor control signals received from the microcomputers 17 a, 17 b, so that electric power is supplied to the motor 12 in the same manner as in the hypothetical case where each of the microcomputers 17 a, 17 b controls the driving circuit 18 by itself.
If any abnormality occurs in one of the two control systems, a difference will arise between the results of the current feedback computations performed by the respective microcomputers 17 a, 17 b. If the microcomputer 17 a generates a motor control signal that indicates that X should be generated as the actual current value I of the motor 12, and the microcomputer 17 b generates a motor control signal that indicates that Y should be generated as the actual current value I (X>Y), for example, the actual current value I of the motor 12 will follow the smaller one, i.e., Y.
Namely, the switching arm 20 a corresponding to the high-potential-side motor terminal 12 a, i.e., the FET 18 a that operates according to the motor control signal output of the microcomputer 17 a, is provided with the on-time (turn-on time) that permits generation of a motor current equivalent to the above-indicated X. On the other hand, the on-time (turn-on time) of the switching arm 20 b corresponding to the motor terminal 12, or the FET 18 d that operates according to the motor control signal output of the microcomputer 17 b, is only such a length that permits generation of a motor current equivalent to Y that is smaller than the above-indicated X. When there is a difference between the results of current feedback computations performed by the microcomputers 17 a, 17 b, the ECU 11 makes a system abnormality determination, based on a current deviation that appears on the side that generates the motor control signal indicating that the larger actual current value I should be generated.
Described in more detail, the microcomputers 17 a, 17 b individually calculate the current command values I*, and detect the actual current values (11, 12) of the motor 12, as described above. Each of the microcomputers 17 a, 17 b carries out an abnormality determination process (see FIG. 3, step 104 to step 106), based on a current deviation of the actual current value I from the current command value I*.
More specifically, as shown in the flowchart of FIG. 5, each of the microcomputers 17 a, 17 b serving as an abnormality determining unit determines whether an absolute value of a current deviation of the actual current value I (I1, I2) from the current command value I* exceeds a predetermined threshold value Ith (step 201). If the current deviation exceeds the threshold value Ith (|I*−I|≦Ith, YES in step 201), an abnormality detection signal Str that indicates that an abnormality is detected in the system is generated to the other microcomputer (step S202), and execution of the power assist control is stopped (step 203).
If it is determined in the above-indicated step 201 that the absolute value of the current deviation of the actual current value I (I1, I2) from the current command value I* is equal to or smaller than the predetermined threshold value Ith (|I*−I|≦Ith, NO in step 201), the microcomputer 17 determines whether it receives an abnormality detection signal Str from the other microcomputer (step 204). If the abnormality detection signal Str is received (YES in step 204), execution of the power assist control is stopped (step 203).
If it is determined in the above-indicated step 204 that no abnormality detection signal Str is received (NO in step 204), it is determined that the system is normal, and the power assist control is continued (step 205).
The present embodiment provides the following effects.
1) The ECU 11 includes the two independent microcomputers 17 a, 17 b serving as motor control signal generators, and the microcomputers 17 a, 17 b perform the same current feedback computation. The switching arms 20 a, 20 b that constitute the driving circuit 18 operate independently of each other, based on motor control signals generated by the corresponding microcomputers 17 a, 17 b. Each of the microcomputers 17 a, 17 b determines whether the absolute value of the current deviation of the actual current value I (I1, I2) from the current command value I* exceeds the predetermined threshold value Ith. If the current deviation exceeds the threshold value Ith, it is determined that any abnormality occurs in the system.
The microcomputers 17 a, 17 b perform the same current feedback computation, based on the quantities of state detected with respect to the common objects. Therefore, the microcomputers 17 a, 17 b provide the same computation result as long as there is no abnormality in the two control systems. In this case, the switching arms 20 a, 20 b operate in synchronism with each other, based on the motor control signal outputs of the respective microcomputers 17 a, 17 b, so that electric power can be supplied to the motor 12 in the same manner as that in the hypothetical case where each of the microcomputer 17 a, 17 b controls the driving circuit 18 by itself.
When an abnormality occurs in at least one of the two independent control systems formed by the microcomputers 17 a, 17 b, a difference arises between the results of the current feedback computations. As a result, the actual current value I of the motor 12 is controlled according to the motor control signal indicative of the smaller amount of current to be passed through the motor 12, irrespective of which of the computation results is correct, and a current deviation appears on the side that generates the motor control signal indicating that the larger actual current value I should be generated. According to this arrangement, it is possible to make an abnormality determination with high reliability, with a simple arrangement, by monitoring the current deviation.
In particular, when an abnormality that occurs in the microcomputer(s) 17 a, 17 b has an influence on execution of the power assist control, the influence appears in the form of a current deviation in one of the microcomputers. If execution of the power assist control is stopped after detection of the abnormality, other abnormality determination control (monitoring circuit) concerning the microcomputers 17 a, 17 b, such as an initial check of a memory upon start-up of the system as described above, may be eliminated, and replaced by the abnormality determination based on the current deviation. Consequently, not only the start-up time is reduced, but also cost reduction due to reduction of the processing power required of the microcomputers 17 a, 17 b and reduction of the failure rate due to scale-down of relevant circuits can be achieved.
Even in the event of occurrence of an abnormality, the actual current value I of the motor 12 is controlled according to the motor control signal indicative of the smaller amount of current to be passed through the motor; therefore, an excessive assist force is prevented from being generated upon the occurrence of the abnormality. Also, even in the case where one of the motor control signals indicates that the assist force should be applied in the reverse direction, the high-potential- side FETs 18 a, 18 b and low-potential-side FETs 18 c, 18 d of the switching arms 20 a, 20 are turned on or off at the same time, namely, all of the devices in the upper stage or all of the devices in the lower stage are turned on, so that reverse assist force is prevented from being generated. Consequently, even higher reliability and improved safety are assured.
2) The microcomputers 17 a, 17 b detect the actual current values I1, I2 of the motor 12, independently of each other, based on the output signals of the corresponding current sensors 23 a, 23 b. With this arrangement, an abnormality that occurs in any one of the current sensors 23 a, 23 b also appears in the form of a current deviation as described above. Accordingly, a determination as to whether an abnormality occurs in the current sensor 23 a, 23 b may also be replaced or substituted by an abnormality determination based on the current deviation, resulting in a further simplified arrangement and further improved reliability.
3) The current sensors 23 a, 23 b are respectively disposed in the two power lines 21 a, 21 b that connect the respective output terminals 19 a, 19 b of the switching arms 20 a, 20 b that constitute the driving circuit 18, with the corresponding motor terminals 12 a, 12 b.
With the above arrangement, an abnormality that occurs in any one of the power lines 21 a, 21 b also appears in the form of a current deviation as described above, thus assuring a further simplified arrangement and further improved reliability.
4) The microcomputers 17 a, 17 b detect the steering torques τ1, τ2 independently of each other, based on the sensor signals Sa, Sb of two independent systems received from the torque sensor 14. Then, each of the microcomputer 17 a, 17 b calculates a current command value I* corresponding to the target assist force, based on the steering torque τ(τ1, τ2).
With the above arrangement, an abnormality that occurs in the torque sensor 14 also appears in the form of a current deviation as described above. Accordingly, a determination as to whether an abnormality occurs in the torque sensor 14 can be replaced or substituted by an abnormality determination based on the current deviation, resulting in a further simplified arrangement and further improved reliability.
5) The torque sensor 14 has the torsion bar 16 provided somewhere in the column shaft 3 a, and two independent sensor units 14 a, 14 b each operable to detect the amount of torsion of the torsion bar 16, i.e., the steering torque τ transmitted via the steering shaft 3, and generate a sensor signal Sa, Sb representing the detected steering torque.
Thus, the mechanical arrangement of the torque sensor including the torsion bar is highly likely to be extremely rugged. The use of the torque sensor in which only the electrical arrangement has a double system makes it possible to simplify the arrangement while assuring sufficiently high reliability.
The above-described embodiment may be modified as follows.
In the above-described embodiment, the invention is embodied as a column assist type EPS system. However, the invention is not limitedly applied to the EPS system of this type, but may be embodied as a pinion assist type or rack assist type EPS system.
In the above-described embodiment, one current sensor 23 (23 a, 23 b) is provided in each of the two power lines 21 a, 21 b, and the microcomputers 17 a, 17 b detect the actual current values I1, I2, independently of each other, based on the output signals of the corresponding current sensors 23 a, 23 b. It is, however, to be understood that the invention is not limited to this arrangement, but the microcomputers 17 a, 17 b may use a common actual current value I provided that the current is detected with sufficiently high reliability. In this case, only one current sensor may be provided in the system. Furthermore, the location of the installation of the current sensors is not limited to the power lines 21 a, 21 b, but the current sensor(s) may be connected in series with the driving circuit 18.
In the above-described embodiment, the torque sensor 14 including the two independent sensor units 14 a, 14 b operable to detect the steering torque τ and generate sensor signals Sa, Sb, respectively, is used, and the microcomputers 17 a, 17 b detect the steering torques τ1, τ2, independently of each other, based on the corresponding sensor signals Sa, Sb. However, the invention is not limited to this arrangement, but two independent torque sensors may be provided, and may be arranged to transmit respective signals to the corresponding microcomputers. Also, the microcomputers 17 a, 17 b may use a common value as the steering torque provided that the torque can be detected with sufficiently high reliability.
If an abnormality in the system is determined by making an abnormality determination based on a current deviation, it is preferable to provide two independent current sensors 23 a, 23 b, and cause the microcomputers 17 a, 17 b to receive the corresponding output signals of the current sensors 23 a, 23 b, and sensor signals Sa, Sb of two independent systems capable of detecting the steering torques τ, as indicated in the above-described embodiment. It is thus preferable that the microcomputers 17 a, 17 b individually calculate current command values, based on the steering torques τ1, τ2 detected based on the respective sensor signals Sa, Sb, and individually perform current feedback control, based on the actual current values I1, I2 detected by the respective current sensors 23 a, 23 b.
Namely, the process of detecting the main quantities of state (τ, I) used in the current feedback computation for executing power assist control, performing the current feedback computation, and applying the resulting voltage to the motor terminals 12 a, 12 b is implemented by the double system, i.e., two independent systems (see FIG. 4), so that any of the abnormalities that occur in the main system for providing assist force appears as a current deviation or is determined by detecting a current deviation. Consequently, other abnormality determination control (monitoring circuits) may be eliminated, for simplification of the arrangement, while assuring high reliability in the detection of abnormalities.
While the microcomputers 17 a, 17 b constitute the abnormality determining unit in the illustrated embodiment, the abnormality determining unit may be provided independently. However, the arrangement of the illustrated embodiment is more preferable, in terms of simplification of the arrangement and the accompanying benefits, such as reduction of the failure rate due to scale-down of relevant circuits.
Next, technical ideas that can be grasped from the above-described embodiment, along with their effects, will be described.
In the electric power steering system, each of the current sensors is provided in each of the power lines that connect the respective motor terminals with the corresponding switching arms. With this arrangement, an abnormality that occurs in the power lines also appears as a current deviation, thus assuring further simplification of the arrangement and improved reliability.
In the electric power steering system, the torque sensor is adapted to generate sensor signals of two systems each capable of detecting the steering torque based on the amount of torsion of the torsion bar provided in the steering shaft. Namely, the mechanical arrangement of the torque sensor including the torsion bar is highly likely to be rugged. Thus, the use of the torque sensor in which only the electrical arrangement has a double system makes it possible to simplify its arrangement or construction, while assuring sufficiently high reliability.

Claims (6)

What is claimed is:
1. An electric power steering system comprising:
a steering force assist device that provides assist force for assisting a steering operation, to a steering system, using a motor as a driving source; and
a controller that controls the operation of the steering force assist device, wherein
the controller includes
a control signal generator that generates a motor control signal so as to produce a motor torque corresponding to the assist force, and
a driving circuit that supplies driving electric power based on the motor control signal, to the motor, wherein
the control signal generator calculates a current command value representing a target assist force, based on a detected steering torque, and performs a current feedback computation so that an actual current value follows the current command value, thereby to create the motor control signal, wherein
the driving circuit includes switching arms that are connected to each other in parallel, each of the switching arms comprising a pair of switching devices connected in series and operable to be turned on or off based on the motor control signal, wherein
the controller has two independent control signal generators that perform the same current feedback computation as the control signal generator, and the two switching arms corresponding to motor terminals operate independently of each other based on the motor control signals generated by the respective control signal generators, so that the driving electric power is supplied to the motor, and wherein
the controller has an abnormality determining unit that determines that an abnormality occurs when a current deviation of an actual current value from the current command value exceeds a predetermined threshold value in at least one of the control signal generators.
2. The electric power steering system according to claim 1, further comprising two current sensors, wherein
each of the control signal generators performs the current feedback computation, based on an actual current value detected by a corresponding one of the current sensors.
3. The electric power steering system according to claim 1, wherein
the controller receives sensor signals of two systems each capable of detecting the steering torque, and
the control signal generators calculate the current command values independently of each other, based on the steering torques detected based on the corresponding sensor signals.
4. The electric power steering system according to claim 2, wherein:
the controller receives sensor signals of two systems each capable of detecting the steering torque, and
the control signal generators calculate the current command values independently of each other, based on the steering torques detected based on the corresponding sensor signals.
5. The electric power steering system according to claim 1, wherein
the controller receives sensor signals of two systems each capable of detecting the steering torque, and
the control signal generators, based on the steering torque detected by different systems of the two systems, calculate the current command values independently of each other.
6. The electric power steering system according to claim 1, wherein
when the abnormality determining unit determines that an abnormality has occurred, the actual current value is controlled according to the motor control signal generated by the control signal generator that calculates a lower current command value.
US12/828,527 2009-07-13 2010-07-01 Electric power steering system Expired - Fee Related US8554411B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009165014A JP5326889B2 (en) 2009-07-13 2009-07-13 Electric power steering device
JP2009-165014 2009-07-13

Publications (2)

Publication Number Publication Date
US20110010051A1 US20110010051A1 (en) 2011-01-13
US8554411B2 true US8554411B2 (en) 2013-10-08

Family

ID=42372179

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/828,527 Expired - Fee Related US8554411B2 (en) 2009-07-13 2010-07-01 Electric power steering system

Country Status (4)

Country Link
US (1) US8554411B2 (en)
EP (1) EP2275322B1 (en)
JP (1) JP5326889B2 (en)
CN (1) CN101954925B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110236243A1 (en) * 2010-03-25 2011-09-29 Sauer-Danfoss Aps Fluid rotary machine
US20110236244A1 (en) * 2010-03-25 2011-09-29 Sauer-Danfoss Aps Fluid rotary machine with a sensor arrangement

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945741B2 (en) * 2012-09-24 2016-07-05 日立オートモティブシステムズ株式会社 Electric power steering device
JP6383353B2 (en) * 2013-03-18 2018-08-29 本田技研工業株式会社 Vehicle steering system
JP6201529B2 (en) * 2013-08-29 2017-09-27 株式会社ジェイテクト Electric power steering device
JP6078444B2 (en) * 2013-09-20 2017-02-08 日立オートモティブシステムズ株式会社 Power steering device and control device for on-vehicle equipment
EP3093215B1 (en) * 2014-01-08 2018-08-15 Nsk Ltd. Electric power steering device
CN104386117A (en) * 2014-10-19 2015-03-04 侯舒婷 Motor power steering device
JP6327198B2 (en) * 2015-04-30 2018-05-23 株式会社デンソー Electric power steering control device
JP6848632B2 (en) * 2017-04-10 2021-03-24 株式会社ジェイテクト Vehicle control device
CN110196583B (en) * 2018-02-27 2020-11-20 长城汽车股份有限公司 Fault diagnosis method and device and vehicle
KR102033559B1 (en) 2018-05-08 2019-10-17 주식회사 만도 Steering control apparatus and steering control method and, steering apparatus
CN112332746B (en) * 2019-07-31 2022-11-11 比亚迪股份有限公司 Motor control system and vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621327A (en) 1984-06-13 1986-11-04 Nartron Corporation Electronic power steering method and apparatus
EP0896422A1 (en) 1997-08-08 1999-02-10 STMicroelectronics S.r.l. Current control in driving DC-brushless motor with independent windings
JP2001128482A (en) 1999-10-22 2001-05-11 Yamaha Motor Co Ltd Method and device for detecting abnormality of dc commutatorless motor
US20020177932A1 (en) 2001-05-25 2002-11-28 Mitsubishi Denki Kabushiki Kaisha Electric power steering apparatus
US20060076182A1 (en) 2004-09-10 2006-04-13 Mitsubishi Denki Kabushiki Kaisha Steering control apparatus
JP2006331086A (en) 2005-05-26 2006-12-07 Nsk Ltd Memory diagnostic method and electric power steering device with the function
EP1826899A1 (en) 2004-11-24 2007-08-29 NSK Steering Systems Co., Ltd. Non-connection motor, its drive control device and mortorized power steering device using drive control device of non-connection motor
US20070236186A1 (en) 2004-04-23 2007-10-11 Patterson Stanley C Fault tolerant architecture for permanent magnet starter generator subsystem

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874642B2 (en) 2001-05-18 2007-01-31 株式会社デンソー Torque sensor and electric power steering apparatus provided with the torque sensor
JP4046005B2 (en) * 2003-05-12 2008-02-13 株式会社デンソー Electric motor drive device and electric power steering device
JP5023833B2 (en) * 2007-06-19 2012-09-12 株式会社ジェイテクト Electric power steering apparatus and abnormality detection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621327A (en) 1984-06-13 1986-11-04 Nartron Corporation Electronic power steering method and apparatus
EP0896422A1 (en) 1997-08-08 1999-02-10 STMicroelectronics S.r.l. Current control in driving DC-brushless motor with independent windings
JP2001128482A (en) 1999-10-22 2001-05-11 Yamaha Motor Co Ltd Method and device for detecting abnormality of dc commutatorless motor
US20020177932A1 (en) 2001-05-25 2002-11-28 Mitsubishi Denki Kabushiki Kaisha Electric power steering apparatus
US20070236186A1 (en) 2004-04-23 2007-10-11 Patterson Stanley C Fault tolerant architecture for permanent magnet starter generator subsystem
US20060076182A1 (en) 2004-09-10 2006-04-13 Mitsubishi Denki Kabushiki Kaisha Steering control apparatus
EP1826899A1 (en) 2004-11-24 2007-08-29 NSK Steering Systems Co., Ltd. Non-connection motor, its drive control device and mortorized power steering device using drive control device of non-connection motor
JP2006331086A (en) 2005-05-26 2006-12-07 Nsk Ltd Memory diagnostic method and electric power steering device with the function

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Copending U.S. Appl. No. 12/833,341 to Ura, filed Jul. 9, 2010.
Diss.Wishart, Jeffrey Daniel. Modelling, simulation, testing, and optimization of advanced hybrid vehicle powertrains. University of Victoria (Canada), ProQuest, UMI Dissertations Publishing, 2008. NR41215. *
Extended Search Report issued in corresponding European Patent Application No. 10169240.8 dated Feb. 10, 2011.
Search Report issued in corresponding European Patent Application No. 10170924.4, mailed on Sep. 28, 2010.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110236243A1 (en) * 2010-03-25 2011-09-29 Sauer-Danfoss Aps Fluid rotary machine
US20110236244A1 (en) * 2010-03-25 2011-09-29 Sauer-Danfoss Aps Fluid rotary machine with a sensor arrangement
US8893566B2 (en) 2010-03-25 2014-11-25 Danfoss Power Solutions Aps Fluid rotary machine with a sensor arrangement
US9086050B2 (en) * 2010-03-25 2015-07-21 Danfoss Power Solutions Aps Fluid rotary machine capable of high-accuracy detection of shaft rotation

Also Published As

Publication number Publication date
EP2275322A2 (en) 2011-01-19
JP2011020481A (en) 2011-02-03
CN101954925B (en) 2014-06-18
US20110010051A1 (en) 2011-01-13
EP2275322B1 (en) 2012-11-07
CN101954925A (en) 2011-01-26
EP2275322A3 (en) 2011-03-16
JP5326889B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
US8554411B2 (en) Electric power steering system
US8164284B2 (en) Electric power steering system
JP6078444B2 (en) Power steering device and control device for on-vehicle equipment
JP2011195089A (en) Electric power steering device
JP5023833B2 (en) Electric power steering apparatus and abnormality detection method
US20210206427A1 (en) Method for providing steering assistance for an electromechanical steering system of a motor vehicle comprising a redundantly designed control device
CN101734135A (en) Vehicle electric power steering control method and control device thereof
JP5961566B2 (en) Torque sensor abnormality diagnosis device and abnormality diagnosis method
JP4230348B2 (en) Rotation detector
US20210313923A1 (en) Motor controller
JP2001287659A (en) Motor-driven power steering device
US12252191B2 (en) Steering control device and method
JP5754088B2 (en) Electric power steering device
JP4107030B2 (en) Electric power steering device
JP2011057012A (en) Electric power steering control device
JP4371844B2 (en) Brushless motor drive device
US20080217095A1 (en) Limiting Device for Limiting Relay Welding and Motor Driving Apparatus
JP4483522B2 (en) Electric power steering apparatus and power supply system
US20220169307A1 (en) Input power health diagnostic for electric power steering
JP2012218646A (en) Electric power steering device
JP2008254685A (en) Electric power steering device
JP2011011567A (en) Electric power steering control device
JP3989351B2 (en) Steering device failure detection method
US20240106264A1 (en) Power supply apparatus
JP5035744B2 (en) Electric power steering control device and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: JTEKT CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:URA, NORITAKE;REEL/FRAME:024641/0409

Effective date: 20100616

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20211008