US8238771B2 - Image forming apparatus having paper-type detecting unit - Google Patents
Image forming apparatus having paper-type detecting unit Download PDFInfo
- Publication number
- US8238771B2 US8238771B2 US12/206,346 US20634608A US8238771B2 US 8238771 B2 US8238771 B2 US 8238771B2 US 20634608 A US20634608 A US 20634608A US 8238771 B2 US8238771 B2 US 8238771B2
- Authority
- US
- United States
- Prior art keywords
- paper
- type
- failure
- sheet
- detecting unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/50—Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
- G03G15/5029—Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the copy material characteristics, e.g. weight, thickness
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/20—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
- G03G15/2003—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
- G03G15/2014—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
- G03G15/2039—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/55—Self-diagnostics; Malfunction or lifetime display
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/65—Apparatus which relate to the handling of copy material
- G03G15/6588—Apparatus which relate to the handling of copy material characterised by the copy material, e.g. postcards, large copies, multi-layered materials, coloured sheet material
- G03G15/6594—Apparatus which relate to the handling of copy material characterised by the copy material, e.g. postcards, large copies, multi-layered materials, coloured sheet material characterised by the format or the thickness, e.g. endless forms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/00362—Apparatus for electrophotographic processes relating to the copy medium handling
- G03G2215/00535—Stable handling of copy medium
- G03G2215/00717—Detection of physical properties
- G03G2215/00751—Detection of physical properties of sheet type, e.g. OHP
Definitions
- the present invention relates to an image forming apparatus, and, more particularly to an image forming apparatus having a paper-type detecting unit.
- Such types of paper are usually distinguished by basis weight (unit: g/m 2 ) indicating weight per a fixed are.
- basis weight unit: g/m 2
- papers in groups of basis weights 64 to 105, 106 to 163, 164 to 209, 210 to 256, and 257 to 300 are called plain paper, thick paper 1 , thick paper 2 , thick paper 3 , and thick paper 4 .
- These basis weights are usually written on packages of sheets.
- a user selects one of the groups of the written basis weights, whereby a printing condition corresponding to a type of paper belonging to the selected group is automatically set.
- basis weight may be unknown. In such a case, it is difficult to easily detect basis weight.
- Such a paper thickness detecting device detects paper thickness in any case.
- a paper type is estimated from the paper thickness.
- a device for detecting a paper type such as the paper thickness detecting device is in failure, it may be difficult to detect a paper type.
- Japanese patent disclosure JP-A-2005-202177 discloses an image forming apparatus that determines a failure of a media sensor on the basis of a media feature value.
- the image forming apparatus determines that the media sensor is in failure when a feature value S of a medium detected by the media sensor deviates from a range from a detection upper limit value Smax to a detection lower limit value Smin set in advance and performs image formation according to a control mode during a failure set in advance.
- Japanese patent disclosure JP-A-2005-38277 discloses an image forming apparatus that determines a paper type on the basis of a history of use of sheets in the past.
- the image forming apparatus stores a history of use of sheets (media), determines, when latest media information cannot be acquired, a type of a medium with a highest frequency of use with reference to the history in the past, and performs processing for print data according to the type.
- the present invention has been devised in view of the above points and it is an object of the present invention to provide an image forming apparatus having a paper-type detecting device that can perform satisfactory printing even when a paper type cannot be detected by paper-type detecting means and is low in cost.
- an image forming apparatus having a paper-type detecting unit, the apparatus including a paper-type detecting unit that detects a paper type of a sheet to be printed, a fixing unit that sets fixing temperature on the basis of the paper type detected by the paper-type detecting unit and fixes a toner image on the sheet, a paper-type-detection-failure determining unit that determines that the paper-type detecting unit is in failure, a paper-type-during-failure setting unit that sets in advance a paper type having a high frequency of use as a paper type during a failure according to a region, and a printing-during-failure selecting unit which is selectably provided, when the paper-type-detection-failure determining unit determines that the paper-type detecting unit is in failure, whether a printing condition for the paper type set by the paper-type-during-failure setting unit is set or it is determined that the paper type is
- FIG. 1 is a perspective view showing an overview of a multifunction color copying apparatus (an MFP) according to an embodiment of the present invention
- FIG. 2 is a diagram showing an example of a display screen on a touch panel display 103 of an operation panel 102 during input of basis weight;
- FIG. 3 is a diagram showing an electric schematic configuration of the entire MFP according to the embodiment.
- FIG. 4 is a diagram showing the schematic structure in which a process of supply of a sheet, printing on the sheet, and discharge of the sheet in the MFP according to the embodiment is drawn;
- FIG. 5 is a flowchart for explaining operations of the MFP according to the embodiment.
- FIG. 6 is a diagram for explaining a relation between a conveying driving mechanism and a paper-thickness detecting mechanism in the embodiment
- FIG. 7 is a diagram for explaining that it is possible to separate a conveyance guide 301 B and the like from a conveyance guide 301 A and the like in the lateral direction in the embodiment;
- FIG. 8 is a diagram for explaining that it is possible to further separate a conveying driven roller and the like from the conveyance guide 301 B in the embodiment;
- FIG. 9 is a diagram showing a configuration of a paper-thickness detecting unit 124 according to the embodiment.
- FIG. 10 is a perspective view showing the structure of a resistance-change detecting module 401 , an arm 403 , and a bearing 404 in the paper-thickness detecting unit 124 ;
- FIG. 11 is a diagram showing an example of an output voltage of a voltage detecting circuit 406 at the time when a sheet is fed into the paper-thickness detecting unit 124 ;
- FIG. 12 is a flowchart for explaining operations according to another embodiment of the present invention.
- an image forming apparatus is a multifunction color copying apparatus.
- the present invention is characterized by how a failure in a paper-thickness detecting device as well as a paper-type detecting device is determined and how a paper type is estimated when these devices are in failure.
- a voltage detecting unit determines whether a failure occurs according to whether an output voltage V 0 of a voltage detecting circuit before sheet insertion and a differential voltage V 0 -V 1 calculated from the output voltage V 0 and an output voltage V 1 after the insertion of the sheet are within predetermined voltage ranges.
- the image forming apparatus uses the paper type, and, if the paper type during a failure is not set, the image forming apparatus causes a user to select a paper type.
- FIG. 1 is a perspective view showing an example of an external appearance of the multifunction color copying machine according to this embodiment.
- An automatic document feeder (ADF) 101 that also serves as an original cover and automatically feeds sheet-like originals one by one is openably and closably provided in an upper part of an apparatus main body 100 .
- Various setting and registration buttons are also provided in the operation panel 102 .
- a touch panel display 103 on which various kinds of information for the user are displayed and with which, when the user is requested to input information, the user can perform predetermined input by touching the same is provided beside the operation panel 102 .
- a handle 104 is provided below the operation panel 102 on a front surface of the apparatus main body 100 to allow the user to open the inside of the main body when, for example, a paper jam occurs.
- Paper feeding cassettes 111 , 112 , 113 , and 114 are detachably provided in a lower part of the apparatus main body 100 . Sheets of different sizes and paper types are stored in the paper feeding cassettes, respectively.
- a post-processing apparatus 115 is attached on the left side of the apparatus main body 100 .
- a latent image described later is formed, printed, and fixed on a sheet.
- the sheet is subjected to processing such as aligning and stapling in the post-processing apparatus 115 and discharged from a sheet discharge port 116 .
- the sheet discharged from the sheet discharge port 116 is stacked on a stacking tray 117 .
- a general setting registration screen is displayed on the touch panel display 103 .
- a sheet setting screen shown in FIG. 2 is displayed.
- a main body side icon 118 is displayed on the left side of this screen.
- Buttons P 0 , P 1 , and P 2 for plain paper (automatic), plain paper 1 , and plain paper 2 are arrayed and displayed at a first stage on the right of the main body side icon 118 .
- Buttons for four kinds of thick paper, i.e., thick paper 1 , thick paper 2 , thick paper 3 , and thick paper 4 are displayed at a second stage.
- Buttons corresponding to types of sheets other than plain paper and the thick paper are displayed at a third stage.
- a guidance “after selecting a cassette, please select a paper type and press the setting and registration button of the operation panel” is displayed.
- the user touches any one of paper feeding cassettes of the main body side icon 118 , then, touches an icon of a paper type displayed on the right side, and selects a paper type stored in the selected paper feeding cassette.
- paper types are displayed in respective paper feeding cassette positions of the main body side icon 118 .
- This MFP 119 includes a communication unit 120 connected to the outside through a network, a control-panel control unit 121 that controls an entire control panel including the operation panel 102 and the touch panel display 103 shown in FIG. 1 , a cassette-sheet-correspondence recognizing unit 122 that recognizes in advance paper types stored in the paper feeding cassettes 111 , 112 , 113 , and 114 , a sheet-supply control unit 123 that supplies, according to a type of a sheet inputted to the touch panel display 103 as explained with reference to FIG.
- the fixing unit 127 includes a fixing processing unit 127 a that applies image fixing processing to the predetermined sheet and a fixing-temperature control unit 127 b that controls fixing temperature in performing the fixing processing.
- a paper-type-during-failure setting unit 122 a is connected to the cassette-sheet-correspondence recognizing unit 122 .
- the paper-type-during-failure setting unit 122 a sets in advance whether a printing condition for the plain paper 1 is set or a printing condition for the plain paper 2 is set when the paper-thickness detecting unit 124 described later is in failure.
- the plain paper includes relatively thick plain paper and relative thin plain paper.
- basis weight changes in these kinds of plain paper.
- the basis weight is in a range of, for example, 64 g/m 2 to 105 g/m 2 .
- the range is relatively wide.
- the relatively thin plain paper is used in Japan and the relatively thick plain paper is used in countries other than Japan.
- icons of the plain paper 1 and the plain paper 2 are displayed on a display screen of the touch panel display 103 shown in FIG. 2 .
- toner image fixing processing is performed at relatively low first fixing temperature.
- the fixing processing is performed at relatively high second fixing temperature.
- the paper-type-during-failure setting unit 122 a sets a paper type such that the fixing processing is performed at relatively low temperature in the same manner as the fixing processing performed when the plain paper 1 is selected as a paper type during a failure.
- the paper-type-during-failure setting unit 122 a sets a paper type such that the fixing processing is performed at relatively high temperature in the same manner as the fixing processing performed when the plain paper 2 is selected as a paper type during a failure.
- fixing processing for the toner image is performed by the fixing processing unit 127 a of the fixing unit 127 .
- the temperature for the fixing processing is controlled by the fixing-voltage control unit 127 b .
- An icon P 1 of the plain paper 1 and an icon P 2 of the plain paper 2 are associated with the fixing-temperature control unit 127 b.
- the fixing-voltage control unit 127 b controls fixing temperature as a printing condition such that fixing temperature in the fixing unit 127 is set within a range from about 150° C. to about 175° C. (first fixing temperature).
- the fixing-voltage control unit 127 b controls fixing temperature as a printing condition such that fixing temperature in the fixing unit 127 is set within a range from about 160° C. to about 180° C. (second fixing temperature)
- a user reads a manual of the MFP and touches the icon of the plain paper 1 or the plain paper 2 .
- the user touches the icon of the plain paper (automatic).
- FIG. 4 A schematic structure of the MFP according to this embodiment in which a flow of a sheet is mainly drawn is shown in FIG. 4 .
- the plain paper 1 , the plain paper 2 , the thick paper 1 , and the thick paper 2 are stored in the paper feeding cassettes 111 , 112 , 113 , and 114 .
- the sheets stored in the paper feeding cassettes are selectively extracted one by one by paper feeding rollers 201 , 202 , 203 , and 204 as required and fed to a paper-thickness detecting and conveying unit 205 .
- a circuit that drives the paper feeding rollers 201 , 202 , 203 , and 204 is also included in the sheet-supply control unit 123 shown in FIG. 3 .
- the paper-thickness detecting and conveying unit 205 includes, as described later, the paper-thickness detecting unit 124 that detects the thickness of the conveyed sheet 118 , two pairs of conveying rollers for conveying the sheet, i.e., two conveying driving rollers 206 A and two conveying driven rollers 206 B.
- the sheet, the thickness of which is detected by the paper-thickness detecting unit 124 of the paper-thickness detecting and conveying unit 205 is conveyed and aligned by a pair of registration rollers 207 a and 207 b .
- the sheet aligned by the registration rollers 207 a and 207 b is supplied to the developing and transfer unit 126 .
- the electrostatic latent image generated by the latent-image generating unit 125 shown in FIG. 2 is developed by the developing and transfer unit 126 with a toner and transferred onto the conveyed sheet.
- the sheet having the toner image transferred thereon is subjected to image fixing processing, i.e., printing by the fixing unit 127 .
- image fixing processing i.e., printing by the fixing unit 127 .
- the printed sheet is discharged from the apparatus main body 100 through several pairs of conveying rollers 208 and enters the post-processing apparatus 115 .
- the sheet that enters the post-processing apparatus 115 is subjected to various post processing such as stapling (not shown) in the post-processing apparatus 115 , discharged from the sheet discharge port 116 , and stacked on the stacking tray 117 .
- FIG. 5 A flowchart of operations according to this embodiment in selecting the plain paper (automatic) in the multifunction color copying apparatus is shown in FIG. 5 .
- the user presses an icon P 0 of the plain paper (automatic) on the display screen of the touch panel display 103 shown in FIG. 2 .
- the paper-thickness detecting unit 124 measures paper thickness of the conveyed sheet as a voltage to thereby determine whether the plain paper 1 or the plain paper 2 is suitable as the plain paper.
- the paper-thickness detecting unit 124 measures a detected voltage V 0 before sheet insertion.
- the paper-thickness detecting unit 124 detects whether the detected voltage V 0 before sheet insertion is within a predetermined voltage range.
- the paper-thickness detecting unit 124 measures a detected voltage V 1 after sheet insertion.
- the paper-thickness detecting unit 124 determines whether a voltage obtained by subtracting the detected voltage V 1 after sheet insertion from the detected voltage V 0 before sheet insertion, i.e., a differential voltage V 0 -V 1 is within a predetermined voltage range.
- a differential voltage V 0 -V 1 is within the predetermined voltage range.
- the paper-thickness detecting unit 124 detects paper thickness substantially proportional to the differential voltage and sets a printing condition corresponding to the paper thickness. Thereafter, printing is performed in Act 107 .
- the sectional structure of the paper-thickness detecting and conveying unit 205 is shown in FIG. 6 .
- the conveying driving rollers 206 A are rollers, at least peripheral surfaces of which are formed by, for example, rubber.
- the conveying driving rollers 206 A are driven to rotate by a conveying driving motor 300 .
- the conveying driven rollers 206 B are rollers, peripheral surfaces of which are formed by, for example, plastic.
- the conveying driven rollers 206 B rotate according to the rotation of the conveying driving rollers 206 A.
- the sheet passes between a conveyance guide 301 A and a conveyance guide 301 B.
- the conveyance guide 301 A is formed in a reverse L shape in section.
- the conveyance guide 301 B is formed in an L shape in section.
- the sheet 118 is conveyed upward by the conveying driving rollers 206 A and the conveying driven rollers 206 .
- the conveyance guide 301 B is configured to be movable in a lateral direction, i.e., a direction of an arrow 305 such that, when the sheet 118 jams during the conveyance, the sheet 118 can be easily removed.
- FIG. 7 A sectional view in which the conveyance guide 301 B and the conveying driven rollers 206 B are separated from the conveyance guide 301 A and the conveying driving rollers 206 A is shown in FIG. 7 .
- FIG. 8 A perspective view in a state in which the conveying driven rollers 206 B are separated in the lateral direction from the conveyance guide 301 B is shown in FIG. 8 .
- Openings 302 a are provided in the conveyance guide 301 A. Openings 302 b are provided in the conveyance guide 301 B.
- the conveying driving rollers 206 A and the conveying driven rollers 206 B are set in contact with each other through the openings 302 a and the openings 302 b.
- the sheet 118 is fed from the paper feeding cassettes 111 to 114 , the sheet 118 is nipped by the conveying driving rollers 206 A and the conveying driven rollers 106 B and conveyed in an arrow direction (upward). As described later, the thickness of the sheet is detected by the paper-thickness detection unit 124 during the conveyance.
- An opening 306 provided between the two openings 302 b of the conveyance guide 301 B shown in FIG. 8 is an opening for bringing a bearing 404 (shown in FIG. 7 ) of the paper-thickness detecting unit 124 described later into contact with the sheet 118 .
- the conveyance guide 301 B and the conveyance driven rollers 206 B can be separated from the conveyance guide 301 A and the conveying driving rollers 206 A.
- the conveyance guide 301 B and the conveyance driven rollers 206 B can be separated from the conveyance guide 301 A and the conveying driving rollers 206 A.
- the sheet 118 jams near somewhere between the conveying driving rollers 206 A and the conveying driven rollers 206 B, it is possible to separate the conveyance guides 301 A and 301 B as described above and remove the sheet.
- the conveyance guide 301 B is attached to the main body and pressed in an arrow C direction by, for example, pressing springs 308 a and 308 b.
- the conveying driven rollers 206 B and a holding mechanism 309 therefor are provided independently from the conveyance guide 301 B and the like. This is for the purpose of preventing, as much as possible, vibration or the like of the main body described later from being transmitted to the bearing 404 of the paper-thickness detecting unit 124 and affecting paper thickness detection.
- the paper-thickness detecting unit 124 includes a resistance-change detecting module 401 , an arm 403 that pivots around a fulcrum 402 of the resistance-change detecting module 401 , the bearing 404 provided at a distal end of the arm 403 , a voltage detecting circuit 406 , a sampling circuit 407 , an averaging circuit 408 , a voltage-difference detecting circuit 409 , and a failure determining circuit 410 .
- FIG. 10 is a perspective view showing the structure of the resistance-change detecting module 401 , the arm 403 , and the bearing 404 .
- the bearing 404 is pressed in a direction of the conveyance guide 301 A and the conveying driving rollers 206 A with predetermined pressure by a not-shown spring or the like.
- a pressing load P of the spring is, for example, 100 g.
- a contact position of the sheet 118 and the bearing 404 is provided on a downstream side of a nip point of the conveying driving rollers 206 A and the conveying driven rollers 206 B.
- a distance D between the nip point of the conveying driving rollers 206 A and the conveying driven rollers 206 B and the contact position of the sheet 118 and the bearing 404 is, for example, about 6 mm.
- the pressing load P is too large, when the sheet 118 enters between the conveyance guide 301 A and the conveyance guide 301 B, the sheet 118 buckles without being smoothly conveyed.
- the bearing 404 is not properly brought into contact with the sheet 118 .
- the bearing 404 tends to be separated from the sheet 118 by the vibration of the driving system.
- the bearing 404 also separates from the sheet 118 because of the shock of the entrance of the sheet 118 . Therefore, it is difficult to measure accurate thickness of the sheet 118 if the pressing load P is too low.
- a position where the bearing 404 comes into contact with the sheet 118 is away from a position where the sheet 118 is driven to be conveyed, i.e., a contact position of the conveying driving rollers 206 A and the conveying driven rollers 206 B. Since the bearing 404 does not have a function of conveying the sheet 118 , even in such a situation, sheet conveying force is small in the position where the bearing 404 comes into contact with the sheet 118 . As a result, normal conveyance of the sheet 118 tends to be difficult. In this way, in general, the sheet conveying force by the conveying driving rollers 206 A and the conveying driven rollers 206 B, the pressing load P of the bearing 404 , and the distance D are related.
- the pressing load P of the bearing 404 is different depending on a material, the structure, and the like of the bearing 404 , the sheet conveying force, and the like, usually, the pressing load P only has to be about 60 g to 140 g and is preferably about 80 g to 120 g.
- the distance D is different depending on the length of a contact section of the conveying driving rollers 206 A and the conveying driven roller 206 B, the conveying force, and the like, usually, the distance D only has to be about 0 mm to 10 mm and is preferably in a range from about 2 mm to 8 mm.
- the bearing 404 rotates in a direction indicated by an arrow 405 a .
- the arm 403 shifts, i.e., pivots in a direction indicated by an arrow 405 b because of the thickness of the sheet 118 .
- a magnet is provided near a fulcrum of the arm 403 .
- a magnetic resistance sensor that uses magnetic resistance, a resistance value of which changes according to a change in a magnetic field, is provided near the magnet.
- An electric signal output of the magnetic resistance sensor is inputted to the voltage detecting circuit 406 .
- An output voltage of the voltage detecting circuit 406 is sampled, for example, ten times by the sampling circuit 407 .
- the output voltage is sampled and sampled values are averaged because, when the bearing 404 is moved in a direction indicated by an arrow 405 b by the vibration of the apparatus or the conveyance of the sheet 118 , a value of the magnetic resistance changes and the output voltage of the voltage detecting circuit 406 changes.
- Voltage values sampled by the sampling circuit 407 are averaged by the averaging circuit 408 and inputted to the voltage-difference detecting circuit 409 .
- the voltage-difference detecting circuit 409 detects a difference in the averaged voltage value. This voltage difference corresponds to the thickness of the sheet 118 .
- the magnetic resistance of the magnetic resistance sensor acts in a direction in which the resistance value decreases when the sheet 118 is conveyed to the paper-thickness detecting unit 124 .
- the output voltage value of the voltage detecting circuit 406 decreases.
- a voltage value detected by the voltage detecting circuit 406 is set to 1 mV with respect to the thickness 1 ⁇ m of the sheet 118 .
- the output voltage is detected as about 100 mV for the plain paper. For example, if the voltage V 0 before sheet passage is 3.3 V and the thickness of paper is large around about 1.35 V, the voltage value changes in a decreasing direction.
- the voltage detecting circuit 406 outputs a voltage of about V 0 when the sheet 118 is not present. Even in this state, an output value fluctuates because of the vibration of the apparatus and the like. Fluctuating output voltage values are sampled by the sampling circuit 407 and the sampling values are averaged by the averaging circuit 408 . The averaged voltage value is sent to the voltage-difference detecting circuit 409 . V 0 is once stored as a voltage value at the time when the sheet 118 is not conveyed to the paper-thickness detecting unit 124 .
- the sheet 118 is conveyed to the paper-thickness detecting unit 124 , the sheet 118 is nipped by the bearing 404 and the conveyance guide 301 A, and the bearing 404 rotates as indicated by an arrow 405 a and pivots as indicated by an arrow 405 b .
- a value of the magnetic resistance in the magnetic resistance sensor decreases.
- the output value of the voltage detecting circuit 406 falls below V 0 as shown in FIG. 9 .
- the bearing 404 is moved by the movement of the sheet 118 and the vibration of the apparatus.
- the output voltage value of the voltage detecting circuit 406 fluctuates.
- the fluctuating voltage values are sampled, for example, ten times by the sampling circuit 407 and averaged by the averaging circuit 408 .
- An average value of the voltage values is inputted to the voltage-difference detecting circuit 409 as a voltage value V 1 in a state in which the sheet 118 is inserted.
- the voltage-difference detecting circuit 409 outputs, as a voltage difference, a value obtained by subtracting the voltage value V 1 from the voltage value V 0 detected earlier.
- This value (V 0 -V 1 ) corresponds to the thickness of the sheet 118 .
- the thickness of the sheet 118 is detected. In this way, if paper thickness is detected as a difference of voltage values rather than a voltage value, it is possible to cancel an offset of voltages. A problem such as a change in a voltage value due to distortion by a conveyance guide is eliminated. Therefore, there is an advantage that paper thickness can be more accurately measured.
- the failure determining circuit 410 has a not-shown comparator and stores an upper limit value V 0 max and a lower limit value V 0 min of the voltage V 0 in advance.
- the voltage V 0 detected by the voltage detecting circuit 406 before the sheet 118 enters the bearing 404 and the conveyance guide 301 A is inputted to the failure determining circuit 410 .
- the failure determining circuit 410 compares, in the comparator, the voltage V 0 with the upper limit value V 0 max and compares the voltage V 0 with the lower limit value V 0 min. The failure determining circuit 410 determines whether the voltage V 0 satisfies a condition V 0 max ⁇ V 0 ⁇ V 0 min. When the voltage V 0 does not satisfy this condition, the failure determining circuit 410 determines that the paper-thickness detecting unit 124 is in failure.
- the differential voltage V 0 -V 1 is inputted to the failure determining circuit 410 from the voltage-difference detecting circuit 409 .
- an upper limit value (V 0 -V 1 )max and a lower limit value (V 0 -V 1 )min of the differential voltage are also stored.
- the failure determining circuit 410 compares the differential voltage V 0 -V 1 with the voltage values (V 0 -V 1 )max and (V 0 -V 1 )min.
- the failure determining circuit 410 determines that the paper-thickness detecting unit 124 is in failure.
- the failure determining circuit 410 has a function of determining whether the voltage value V 0 of the voltage detecting circuit 406 before the sheet 118 enters and the differential voltage V 0 -V 1 obtained by the voltage-difference detecting circuit 409 are within a predetermined range and, when the voltage value V 0 and the differential voltage V 0 -V 1 are not within the range, determining that the paper-thickness detecting unit 124 is in failure.
- the determination on whether the paper-thickness detecting unit 124 is in failure from Act 102 to Act 108 and from Act 105 to Act 108 is performed by the failure-determining circuit 410 .
- the failure determining circuit 410 shifts to Act 108 and determines that the paper-thickness detecting unit 124 cannot detect paper thickness because of a failure or the like.
- the failure determining circuit 410 shifts to Act 108 and determines that the paper-thickness detecting unit 124 is in failure.
- the determination on whether the differential voltage V 0 -V 1 is within the predetermined voltage range may be performed according to whether the voltage value V 1 is within the predetermined voltage range. Alternatively, both the determinations may be performed, i.e., the determination on whether the voltage V 1 is within the predetermined voltage range and the determination on whether the differential voltage V 0 -V 1 is within the predetermined range may be performed.
- the failure determining circuit 410 detects whether a paper type is set in advance.
- a paper type during a failure is set in the paper-type-during-failure setting unit 122 a shown in FIG. 3 in the MFP as described above, in Act 110 , the failure determining circuit 410 sets a printing condition corresponding to the set paper type.
- the MFP is set in Japan and the paper-type-during-failure setting unit 122 a selects the plain paper 1 as the setting of the paper type during a failure.
- fixing processing for a toner image is performed at relatively low temperature.
- the MFP is set outside Japan and the paper-type-during-failure setting unit 122 a selects the plain paper 2 as the setting of the paper type during a failure.
- fixing processing for a toner image is performed at relatively high temperature.
- the failure determining circuit 410 shifts to Act 111 .
- the failure determining circuit 410 displays, for example, an indication “please select the plain paper 1 or the plain paper 2 as a paper type” on the display screen of the touch panel display 103 and causes the user to select the plain paper 1 or the plain paper 2 .
- a printing condition corresponding to the selected paper type i.e., the plain paper 1 or the plain paper 2 is set in Act 113 .
- printing i.e., fixing processing is performed under the condition.
- the paper-thickness detecting unit 124 detects whether the output voltage V 0 and the differential voltage V 0 -V 1 of the voltage detecting circuit 406 is within the predetermined voltage range and determines whether the paper-thickness detecting unit 124 is in failure. However, it is also possible to determine whether the paper-thickness detecting unit 124 is in failure according to whether the output voltage V 0 before sheet insertion and the output voltage V 1 after sheet insertion are within the predetermined voltage range.
- the paper type during a failure when a failure occurs, if the paper type during a failure is set in advance, the paper type is set. If the paper type during a failure is not set, the user selects a paper type when a failure occurs. However, when a failure occurs, it is also possible to estimate a type of paper printed immediately before the failure, continue printing under a printing condition corresponding to the paper type, and cause the user to select a paper type when a paper type immediately before the failure is not detected.
- FIG. 12 Another embodiment of the present invention is explained with reference to a flowchart shown in FIG. 12 .
- the paper-thickness detecting unit 124 measures a detected voltage V 0 before sheet insertion.
- the paper-thickness detecting unit 124 detects whether the detected voltage V 0 before sheet insertion is within a predetermined voltage range.
- the paper-thickness detecting unit 124 measures a detected voltage V 1 after sheet insertion.
- the paper-thickness detecting unit 124 determines whether the detected voltage V 1 after sheet insertion is within the predetermined voltage range. When the detected voltage V 1 is within the predetermined range, the paper-thickness detecting unit 124 shifts to Act 206 . The paper-thickness detecting unit 124 detects paper thickness substantially proportional to the detected voltage V 1 and sets a printing condition corresponding to the paper thickness. Thereafter, printing is performed in Act 207 .
- the determination on whether the paper-thickness detecting unit 124 is in failure in from Act 202 to Act 208 and from Act 205 to Act 208 is performed by the failure-determining circuit 410 .
- the failure determining circuit 410 shifts to Act 208 and determines that the paper-thickness detecting unit 124 cannot detect paper thickness because of a failure or the like.
- the failure determining circuit 410 When the voltage value V 1 is not within the predetermined voltage range, i.e., when the voltage value V 1 is larger than the upper limit value V 1 max of the normal value or smaller than the lower limit value V 1 min of the normal value in Act 205 , the failure determining circuit 410 also shifts to Act 208 and determines that the paper-thickness detecting unit 124 is in failure.
- the failure determining circuit 410 determines whether a paper type immediately before the failure can be detected.
- the paper type immediately before the failure can be determined because the sheet-supply control unit 123 shown in FIG. 3 recognizes from which paper feeding cassette a sheet is supplied immediately before the failure.
- the failure determining circuit 410 shifts to Act 211 .
- the failure determining circuit 410 displays an indication “please select the plain paper 1 or the plain paper 2 as a paper type” on the display screen of the touch panel display 103 and causes the user to select the plain paper 1 or the plain paper 2 .
- a printing condition corresponding to the selected paper type i.e., the plain paper 1 or the plain paper 2 is set.
- printing i.e., fixing processing is performed under the condition.
- a paper type immediately before a failure is detected by the sheet supplying unit 123 and printing is continued. Therefore, there is an advantage that a special circuit for, for example, checking a frequency of use of a sheet in the past when a failure occurs is unnecessary.
- the paper-thickness detecting device is used.
- the present invention can be applied to an image forming apparatus having a paper-type detecting unit.
- the output voltage V 0 to the voltage detecting circuit 406 before sheet insertion into the paper-thickness detecting unit is primarily detected.
- failure detection since failure detection is performed before sheet supply, it is possible to inform the user to that effect earlier. Therefore, there is an advantage that it is possible to earlier change not only a fixing condition but also other conditions such as a condition for forming a latent image and sheets are not wasted.
- failure determination after it is detected whether the voltage value V 0 is within the predetermined voltage range, it is detected whether the differential voltage V 0 -V 1 or the voltage value V 1 is within the predetermined range.
- the present invention it is also possible to use only the detection on whether the voltage value V 0 before sheet insertion is within the predetermined voltage range can be used for determination on a failure.
- a paper type during a failure is set in advance or a paper type immediately before a failure is determined to set a printing condition and the like.
- the present invention is applied to the multifunction color copying apparatus.
- the present invention can be applied not only to the multifunction color copying apparatus but also to other image forming apparatuses that have image generating units, which generate images printed on recording sheets, and designate a type of paper to be printed such as a normal copying machine, a printer, and a facsimile.
- fixing temperature is changed according to whether a printed image is rough or is abnormally glossy or whether an image fades or is abnormally less glossy.
- fixing temperature may be changed according to whether the gloss is large or small.
- paper thickness is detected by the paper-thickness detecting unit having the specific configuration to estimate a paper type and perform printing.
- paper thickness may be detected by other apparatuses to estimate a paper type and perform printing.
- the present invention may be adapted to directly detect a paper type without detecting paper thickness and perform printing under a printing condition corresponding to the paper type.
- a paper-type detecting unit that can estimate a paper type and directly detect a paper type is provided, the object of the present invention can be attained.
- the toner image is transferred onto a sheet.
- the present invention can be applied when the toner image is not transferred but is formed on the sheet.
- fixing temperature in performing fixing of a transferred image is changed as a printing condition.
- the present invention can be applied when a printing condition other than the fixing temperature is changed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Control Or Security For Electrophotography (AREA)
- Controlling Sheets Or Webs (AREA)
- Fixing For Electrophotography (AREA)
Abstract
Description
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/206,346 US8238771B2 (en) | 2007-09-13 | 2008-09-08 | Image forming apparatus having paper-type detecting unit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US97223307P | 2007-09-13 | 2007-09-13 | |
US12/206,346 US8238771B2 (en) | 2007-09-13 | 2008-09-08 | Image forming apparatus having paper-type detecting unit |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090074435A1 US20090074435A1 (en) | 2009-03-19 |
US8238771B2 true US8238771B2 (en) | 2012-08-07 |
Family
ID=40454587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/206,346 Active 2031-06-08 US8238771B2 (en) | 2007-09-13 | 2008-09-08 | Image forming apparatus having paper-type detecting unit |
Country Status (1)
Country | Link |
---|---|
US (1) | US8238771B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160187826A1 (en) * | 2014-12-26 | 2016-06-30 | Kyocera Document Solutions Inc. | Sheet Type Detection Device That Ensures Reduced Trouble for Unexecuted Sheet Type Setting, Sheet Type Detection Method, Image Forming Apparatus, and Recording Medium |
US10962913B2 (en) * | 2019-08-16 | 2021-03-30 | Konica Minolta, Inc. | Image forming apparatus, sheet type determination method and program in the apparatus |
US11052682B2 (en) | 2017-02-03 | 2021-07-06 | Hewlett-Packard Development Company, L.P. | Identifying printing substrate types |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8079590B2 (en) * | 2008-06-16 | 2011-12-20 | Kabushiki Kaisha Toshiba | Image forming apparatus |
JP6098220B2 (en) * | 2013-02-21 | 2017-03-22 | 株式会社リコー | Image forming control apparatus, image forming apparatus, and image forming apparatus control method |
JP6355066B2 (en) | 2013-08-29 | 2018-07-11 | 株式会社リコー | Sensor device and image forming apparatus |
JP6403617B2 (en) * | 2015-03-24 | 2018-10-10 | 株式会社沖データ | Image forming apparatus |
JP7067207B2 (en) * | 2018-04-03 | 2022-05-16 | コニカミノルタ株式会社 | Image forming device and image forming method |
JP7358800B2 (en) * | 2019-06-27 | 2023-10-11 | 京セラドキュメントソリューションズ株式会社 | Electronic equipment and its control program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486903A (en) * | 1993-07-16 | 1996-01-23 | Canon Kabushiki Kaisha | Image forming apparatus with paper thickness detector |
JP2005038277A (en) | 2003-07-17 | 2005-02-10 | Canon Inc | Printing system |
JP2005202177A (en) | 2004-01-16 | 2005-07-28 | Canon Inc | Image forming apparatus |
-
2008
- 2008-09-08 US US12/206,346 patent/US8238771B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486903A (en) * | 1993-07-16 | 1996-01-23 | Canon Kabushiki Kaisha | Image forming apparatus with paper thickness detector |
JP2005038277A (en) | 2003-07-17 | 2005-02-10 | Canon Inc | Printing system |
JP2005202177A (en) | 2004-01-16 | 2005-07-28 | Canon Inc | Image forming apparatus |
Non-Patent Citations (1)
Title |
---|
Uekawa et al. (JP 2005-202177 A), JPO Machine Translation. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160187826A1 (en) * | 2014-12-26 | 2016-06-30 | Kyocera Document Solutions Inc. | Sheet Type Detection Device That Ensures Reduced Trouble for Unexecuted Sheet Type Setting, Sheet Type Detection Method, Image Forming Apparatus, and Recording Medium |
US9575450B2 (en) * | 2014-12-26 | 2017-02-21 | Kyocera Document Solutions Inc. | Sheet type detection device that ensures reduced trouble for unexecuted sheet type setting, sheet type detection method, image forming apparatus, and recording medium |
US11052682B2 (en) | 2017-02-03 | 2021-07-06 | Hewlett-Packard Development Company, L.P. | Identifying printing substrate types |
US10962913B2 (en) * | 2019-08-16 | 2021-03-30 | Konica Minolta, Inc. | Image forming apparatus, sheet type determination method and program in the apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20090074435A1 (en) | 2009-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090136246A1 (en) | Image forming apparatus having paper type detection section and paper type confirmation method of the same | |
US8238771B2 (en) | Image forming apparatus having paper-type detecting unit | |
US8050579B2 (en) | Image forming apparatus capable of changing fixing temperature and image forming method therefor | |
US20090057995A1 (en) | Image forming apparatus with paper thickness detection unit and image forming method of the same | |
US8433235B2 (en) | Fixing device and image forming apparatus | |
US7817957B2 (en) | Double feed sensing device, double feed determining method and image forming apparatus | |
US20110164887A1 (en) | Image forming apparatus | |
TWI762646B (en) | Printer for security paper | |
US20100310261A1 (en) | Image forming apparatus and sheet conveying method for the image forming apparatus | |
CN101377631B (en) | Image forming device and printing method thereof | |
JP2011013678A (en) | Image forming apparatus and image forming method | |
US20080205912A1 (en) | Image forming apparatus and control method thereof | |
US9116497B2 (en) | Image forming apparatus and control method | |
JP5112182B2 (en) | Automatic document feeder | |
CN101295151A (en) | image forming device | |
US7164881B2 (en) | Apparatus and method for establishing a default media size for an imaging device | |
JP2007223688A (en) | Sheet carrying device, and image forming device | |
US8079590B2 (en) | Image forming apparatus | |
JP5148312B2 (en) | Image forming apparatus | |
JP4627191B2 (en) | Image forming apparatus | |
JP6969251B2 (en) | Paper feed device and image forming device | |
JP7131129B2 (en) | IMAGE FORMING APPARATUS, PROGRAM AND LIFE JUDGMENT METHOD | |
JP6897201B2 (en) | Paper feed device, document reader, image forming device and post-processing device | |
JP5149882B2 (en) | Recording material discriminating method, recording material discriminating apparatus, image forming method, and image forming apparatus | |
US20250019192A1 (en) | Sheet feeding apparatus and image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MURAKAMI, REIJI;REEL/FRAME:021632/0525 Effective date: 20080911 Owner name: TOSHIBA TEC KAUBUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MURAKAMI, REIJI;REEL/FRAME:021632/0525 Effective date: 20080911 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |