US8236341B2 - Poly(tetrafluoroethylene) polymer with nitric oxide donating surface - Google Patents
Poly(tetrafluoroethylene) polymer with nitric oxide donating surface Download PDFInfo
- Publication number
- US8236341B2 US8236341B2 US12/417,335 US41733509A US8236341B2 US 8236341 B2 US8236341 B2 US 8236341B2 US 41733509 A US41733509 A US 41733509A US 8236341 B2 US8236341 B2 US 8236341B2
- Authority
- US
- United States
- Prior art keywords
- medical device
- donating
- nitric oxide
- implantable medical
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 134
- 229920001343 polytetrafluoroethylene Polymers 0.000 title claims abstract description 121
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 103
- -1 Poly(tetrafluoroethylene) Polymers 0.000 title claims abstract description 33
- 238000013270 controlled release Methods 0.000 claims abstract description 14
- MUMXDRRTIYLYMY-YJKCNMNRSA-N (Z)-[dodecyl-[6-(dodecylazaniumyl)hexyl]amino]-oxido-oxidoiminoazanium Chemical compound CCCCCCCCCCCC[NH2+]CCCCCCN(CCCCCCCCCCCC)[N+](\[O-])=N\[O-] MUMXDRRTIYLYMY-YJKCNMNRSA-N 0.000 claims description 26
- 150000001875 compounds Chemical class 0.000 claims description 23
- 239000012867 bioactive agent Substances 0.000 claims description 20
- 230000002792 vascular Effects 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 15
- 239000010410 layer Substances 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 150000003512 tertiary amines Chemical group 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 229910052731 fluorine Inorganic materials 0.000 claims description 11
- 239000011737 fluorine Substances 0.000 claims description 11
- 108010016731 PPAR gamma Proteins 0.000 claims description 10
- 239000003242 anti bacterial agent Substances 0.000 claims description 10
- 229940088710 antibiotic agent Drugs 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 10
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 claims description 10
- 239000003112 inhibitor Substances 0.000 claims description 10
- 102000039446 nucleic acids Human genes 0.000 claims description 10
- 108020004707 nucleic acids Proteins 0.000 claims description 10
- 150000007523 nucleic acids Chemical class 0.000 claims description 10
- 239000000137 peptide hydrolase inhibitor Substances 0.000 claims description 10
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 10
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 8
- 125000003342 alkenyl group Chemical group 0.000 claims description 8
- 125000000304 alkynyl group Chemical group 0.000 claims description 8
- 125000001153 fluoro group Chemical group F* 0.000 claims description 8
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 7
- 230000001028 anti-proliverative effect Effects 0.000 claims description 7
- 229940122361 Bisphosphonate Drugs 0.000 claims description 5
- 102400001368 Epidermal growth factor Human genes 0.000 claims description 5
- 101800003838 Epidermal growth factor Proteins 0.000 claims description 5
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 claims description 5
- YACHGFWEQXFSBS-UHFFFAOYSA-N Leptomycin B Natural products OC(=O)C=C(C)CC(C)C(O)C(C)C(=O)C(C)C=C(C)C=CCC(C)C=C(CC)C=CC1OC(=O)C=CC1C YACHGFWEQXFSBS-UHFFFAOYSA-N 0.000 claims description 5
- 108010006519 Molecular Chaperones Proteins 0.000 claims description 5
- 102000000536 PPAR gamma Human genes 0.000 claims description 5
- 102000012132 Peroxisome proliferator-activated receptor gamma Human genes 0.000 claims description 5
- 229940079156 Proteasome inhibitor Drugs 0.000 claims description 5
- SSNQAUBBJYCSMY-UHFFFAOYSA-N aigialomycin A Natural products C12OC2CC(O)C(O)C(=O)C=CCC(C)OC(=O)C=2C1=CC(OC)=CC=2O SSNQAUBBJYCSMY-UHFFFAOYSA-N 0.000 claims description 5
- 229940035676 analgesics Drugs 0.000 claims description 5
- 239000000730 antalgic agent Substances 0.000 claims description 5
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 5
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 5
- 230000000692 anti-sense effect Effects 0.000 claims description 5
- 239000002246 antineoplastic agent Substances 0.000 claims description 5
- 150000004663 bisphosphonates Chemical class 0.000 claims description 5
- 239000011247 coating layer Substances 0.000 claims description 5
- 239000000824 cytostatic agent Chemical class 0.000 claims description 5
- 230000001085 cytostatic effect Effects 0.000 claims description 5
- 229940127089 cytotoxic agent Drugs 0.000 claims description 5
- 229940116977 epidermal growth factor Drugs 0.000 claims description 5
- 229940011871 estrogen Drugs 0.000 claims description 5
- 239000000262 estrogen Substances 0.000 claims description 5
- 239000003102 growth factor Substances 0.000 claims description 5
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 claims description 5
- SSNQAUBBJYCSMY-KNTMUCJRSA-N hypothemycin Chemical compound O([C@@H](C)C\C=C/C(=O)[C@@H](O)[C@@H](O)C[C@H]1O[C@@H]11)C(=O)C=2C1=CC(OC)=CC=2O SSNQAUBBJYCSMY-KNTMUCJRSA-N 0.000 claims description 5
- YACHGFWEQXFSBS-XYERBDPFSA-N leptomycin B Chemical compound OC(=O)/C=C(C)/C[C@H](C)[C@@H](O)[C@H](C)C(=O)[C@H](C)/C=C(\C)/C=C/C[C@@H](C)/C=C(/CC)\C=C\[C@@H]1OC(=O)C=C[C@@H]1C YACHGFWEQXFSBS-XYERBDPFSA-N 0.000 claims description 5
- 239000003446 ligand Substances 0.000 claims description 5
- 239000002502 liposome Substances 0.000 claims description 5
- 239000002773 nucleotide Substances 0.000 claims description 5
- 125000003729 nucleotide group Chemical group 0.000 claims description 5
- 229920001184 polypeptide Polymers 0.000 claims description 5
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 5
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 5
- 239000003207 proteasome inhibitor Substances 0.000 claims description 5
- 231100000167 toxic agent Toxicity 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 5
- 239000005483 tyrosine kinase inhibitor Substances 0.000 claims description 5
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 claims description 5
- 239000013598 vector Substances 0.000 claims description 5
- 239000011859 microparticle Substances 0.000 claims description 4
- 239000000523 sample Substances 0.000 claims description 4
- 125000001302 tertiary amino group Chemical group 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 20
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 17
- 239000000463 material Substances 0.000 description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 0 [1*]C([3*])(C)C([2*])([4*])C Chemical compound [1*]C([3*])(C)C([2*])([4*])C 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 8
- 229960002930 sirolimus Drugs 0.000 description 8
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 8
- BTQOCKNCAOIVGY-UHFFFAOYSA-N CC(C)N(CCC(=O)C(C)(C)C)CCC(=O)C(C)(C)C Chemical compound CC(C)N(CCC(=O)C(C)(C)C)CCC(=O)C(C)(C)C BTQOCKNCAOIVGY-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 6
- 230000009885 systemic effect Effects 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 208000037803 restenosis Diseases 0.000 description 5
- 102100027913 Peptidyl-prolyl cis-trans isomerase FKBP1A Human genes 0.000 description 4
- 108010006877 Tacrolimus Binding Protein 1A Proteins 0.000 description 4
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229960005167 everolimus Drugs 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229960000235 temsirolimus Drugs 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- CGTADGCBEXYWNE-JUKNQOCSSA-N zotarolimus Chemical compound N1([C@H]2CC[C@@H](C[C@@H](C)[C@H]3OC(=O)[C@@H]4CCCCN4C(=O)C(=O)[C@@]4(O)[C@H](C)CC[C@H](O4)C[C@@H](/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C3)OC)C[C@H]2OC)C=NN=N1 CGTADGCBEXYWNE-JUKNQOCSSA-N 0.000 description 4
- 229950009819 zotarolimus Drugs 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 2
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 2
- 206010047141 Vasodilatation Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002769 anti-restenotic effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 210000001772 blood platelet Anatomy 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229950003499 fibrin Drugs 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000003120 macrolide antibiotic agent Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229960003753 nitric oxide Drugs 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 238000009958 sewing Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- QFJCIRLUMZQUOT-UHFFFAOYSA-N temsirolimus Natural products C1CC(O)C(OC)CC1CC(C)C1OC(=O)C2CCCCN2C(=O)C(=O)C(O)(O2)C(C)CCC2CC(OC)C(C)=CC=CC=CC(C)CC(C)C(=O)C(OC)C(O)C(C)=CC(C)C(=O)C1 QFJCIRLUMZQUOT-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 230000024883 vasodilation Effects 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- UZPDKLGPANSZTM-UHFFFAOYSA-N 4-acetylbenzoyl chloride Chemical compound CC(=O)C1=CC=C(C(Cl)=O)C=C1 UZPDKLGPANSZTM-UHFFFAOYSA-N 0.000 description 1
- CMIFWXAVCXHFRL-UHFFFAOYSA-N C.C.CC(=O)C1=CC=C(C(=O)Cl)C=C1.CN.CNC(=O)C1=CC=C(C(=O)C/[N+](O)=N/[O-])C=C1.CNC(=O)C1=CC=C(C(C)=O)C=C1.N.[CH3+] Chemical compound C.C.CC(=O)C1=CC=C(C(=O)Cl)C=C1.CN.CNC(=O)C1=CC=C(C(=O)C/[N+](O)=N/[O-])C=C1.CNC(=O)C1=CC=C(C(C)=O)C=C1.N.[CH3+] CMIFWXAVCXHFRL-UHFFFAOYSA-N 0.000 description 1
- ZULFFXGNEDDDRK-MKWAYWHRSA-M C.CC(C)/[N+]([O-])=N/[O-] Chemical compound C.CC(C)/[N+]([O-])=N/[O-] ZULFFXGNEDDDRK-MKWAYWHRSA-M 0.000 description 1
- DKZCAYIOOXAUCX-QPJUJXOLSA-N C/N([O-])=[N+](\C)[O-].CC(=O)OC(C)=O.CC(=O)OCCN(C)CCOC(C)=O.CN.CN(CCO)CCO.N.N=O.OCCCl.[2H][2H]C([2H][2H])([2H][2H])C(=O)OCCN(C)CCOC(=O)C([2H][2H])([2H][2H])[2H][2H] Chemical compound C/N([O-])=[N+](\C)[O-].CC(=O)OC(C)=O.CC(=O)OCCN(C)CCOC(C)=O.CN.CN(CCO)CCO.N.N=O.OCCCl.[2H][2H]C([2H][2H])([2H][2H])C(=O)OCCN(C)CCOC(=O)C([2H][2H])([2H][2H])[2H][2H] DKZCAYIOOXAUCX-QPJUJXOLSA-N 0.000 description 1
- PLXVZDBNBMBIQE-UHFFFAOYSA-N CC(=O)CCN(C)CCC(C)=O Chemical compound CC(=O)CCN(C)CCC(C)=O PLXVZDBNBMBIQE-UHFFFAOYSA-N 0.000 description 1
- QSZQUHROHQVAKU-YVWJPPAQSA-K CC(C)C(=O)C(/[N+]([O-])=N/[O-])(/[N+]([O-])=N/[O-])/[N+]([O-])=N/[O-].[CH3+].[CH3+].[CH3+] Chemical compound CC(C)C(=O)C(/[N+]([O-])=N/[O-])(/[N+]([O-])=N/[O-])/[N+]([O-])=N/[O-].[CH3+].[CH3+].[CH3+] QSZQUHROHQVAKU-YVWJPPAQSA-K 0.000 description 1
- VJDIKWUIHSMKFT-UHFFFAOYSA-N CC(C)N(COC(=O)C(C)(C)C)COC(=O)C(C)(C)C Chemical compound CC(C)N(COC(=O)C(C)(C)C)COC(=O)C(C)(C)C VJDIKWUIHSMKFT-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N CN.N Chemical compound CN.N BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 206010052804 Drug tolerance Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920001244 Poly(D,L-lactide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 210000000702 aorta abdominal Anatomy 0.000 description 1
- 208000007474 aortic aneurysm Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920001727 cellulose butyrate Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920006211 poly(glycolic acid-co-trimethylene carbonate) Polymers 0.000 description 1
- 229920001849 poly(hydroxybutyrate-co-valerate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920006216 polyvinyl aromatic Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229920006215 polyvinyl ketone Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920006214 polyvinylidene halide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
- 229940117958 vinyl acetate Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F114/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F114/18—Monomers containing fluorine
- C08F114/26—Tetrafluoroethene
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
- A61L29/085—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/02—Alkylation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/10—Acylation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/14—Esterification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
- C08F8/32—Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/10—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
- A61L2300/114—Nitric oxide, i.e. NO
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
- A61L2300/608—Coatings having two or more layers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/18—Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/14—Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
Definitions
- nitric oxide (NO)-donating poly(tetrafluoroethene) (PTFE) polymers for medical devices.
- NO nitric oxide
- a simple diatomic signaling molecule including fields of vascular surgery and interventional cardiology.
- NO is a signaling molecule with properties such as anti-inflammation, anti-restenosis, vasodilatation and promotion of endothelization.
- NO has been shown to significantly reduce thrombocyte aggregation and adhesion. Thrombocyte aggregation occurs within minutes following the initial vascular insult and once the cascade of events leading to restenosis is initiated, irreparable damage can result.
- the risk of thrombogenesis and restenosis persists until the endothelium lining the vessel lumen has been repaired. Therefore, it is essential that NO, or any anti-restenotic agent, reach the injury site immediately.
- One approach for providing a therapeutic level of NO at an injury site is to increase systemic NO levels prophylactically. This can be accomplished by stimulating endogenous NO production or using exogenous NO sources. Exogenous NO sources such as pure NO gas are highly toxic, short-lived and relatively insoluble in physiological fluids. Consequently, systemic exogenous NO delivery is generally accomplished using organic nitrate prodrugs such as nitroglycerin tablets, intravenous suspensions, sprays and transdermal patches. The human body rapidly converts nitroglycerin into NO; however, enzyme levels and co-factors required to activate the prodrug are rapidly depleted, resulting in drug tolerance. Moreover, systemic NO administration can have devastating side effects including hypotension and free radical cell damage. Therefore, using organic nitrate prodrugs to maintain systemic anti-restenotic therapeutic blood levels is not currently possible.
- Implantable medical devices coated with NO-releasing compounds have been evaluated.
- Implantable medical device coatings or substances used as medical devices need to be biocompatible yet function as a reservoir for the bioactive agent and sustain an appropriate controlled release of the bioactive agent.
- PTFE Poly(tetrafluoroethylene)
- implantable medical devices in conjunction with a medical device or as a device itself.
- PTFE as an implantable material generally shows biocompatibility.
- surface engineering involves the introduction of poly(ethylene glycol) groups on the surface. This procedure adds hydrophilicity to the material, thereby increasing its biocompatibility.
- an implantable material such as PTFE with an engineered surface with increased biocompatibility coupled with the local delivery of NO may prove to be beneficial.
- the present disclosure attempts to fulfill this shortcoming by providing modified PTFE surfaces which can bind and controllably release NO to the surrounding tissues.
- NO-donating poly(tetrafluoroethylene) (PTFE) polymers and polymer surfaces and methods of making and using the same.
- the NO-donating PTFE polymers can be used in implantable medical devices, to form implantable medical devices or to fabricate at least a portion of an implantable medical device.
- the NO-donating PTFE polymers provide controlled release of NO once implanted at or within the target site.
- nitric oxide (NO)-donating polymers comprising: a poly(tetrafluoroethylene) polymer having the structure:
- n is an integer between 1 and 25,000 and wherein each of R 1 -R 4 is independently fluorine or a tertiary amine having the structure:
- X 1 and X 2 are each independently O or not present
- Y 1 and Y 2 are each independently selected from C 1 to C 10 alkyl, C 1 to C 10 alkenyl, C 1 to C 10 alkynyl, C 3 to C 8 cyclic alkyl, or any combination thereof
- each of B 1 -B 6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B 1 -B 6 is a DD group; wherein at least one of B 1 -B 6 is a tertiary amine of the structure of Formula 2.
- Y 1 and Y 2 are —CH 2 —.
- the polymer is associated with an implantable medical device, the medical device being selected from stents, catheters, micro-particles, probes, vascular grafts, and combinations thereof.
- implantable medical devices comprising an NO-donating polytetrafluoroethylene polymer having a polymeric surface comprising the structure:
- n is an integer between 1 and 25,000 and wherein each of R 1 -R 4 is independently fluorine or a tertiary amine having the structure:
- X 1 and X 2 are each independently O or not present, Y 1 and Y 2 are each independently selected from C 1 to C 10 alkyl, C 1 to C 10 alkenyl, C 1 to C 10 alkynyl, C 3 to C 8 cyclic alkyl, or any combination thereof, and each of B 1 -B 6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B 1 -B 6 is a DD group;
- DD diazeniumdiolate
- R 1 -R 4 is a tertiary amine of the structure of Formula 2.
- the medical device is selected from stents, catheters, micro-particles, probes, vascular grafts, and combinations thereof.
- the medical device further comprises a parlyene primer layer and/or a cap coat.
- the polymer comprises one or more bioactive agents selected from anti-proliferatives, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated receptor gamma ligands (PPAR ⁇ ), hypothemycin, bisphosphonates, epidermal growth factor inhibitors, antibodies, proteasome inhibitors, antibiotics, anti-inflammatories, anti-sense nucleotides and transforming nucleic acids, cytostatic compounds, toxic compounds, chemotherapeutic agents, analgesics, antibiotics, protease inhibitors, statins, nucleic acids, polypeptides, growth factors and delivery vectors, liposomes, and combinations thereof.
- bioactive agents selected from anti-proliferatives, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated
- a method of making a NO releasing PTFE polymer comprising the steps of: providing a PTFE polymer; plasma treating the PTFE polymer with ammonia thereby forming an amino functionalized PTFE polymer; treating the amino functionalized polymer with an acetyl functionalized compound thereby forming an acetyl functionalized PTFE polymer; and subjecting the acetyl functionalized PTFE polymer to NO thereby forming a diazeniumdiolated PTFE polymer.
- the plasma treatment is at an energy of about 20 W.
- the one or more acetyl functionalized compounds is ethyl acetate or methyl acetate.
- the diazeniumdiolated PTFE polymer has the structure:
- n is an integer between 1 and 25,000 and wherein each of R 1 -R 4 is independently fluorine or a tertiary amine having the structure:
- Y 1 and Y 2 are each independently selected from C 1 to C 10 alkyl, C 1 to C 10 alkenyl, C 1 to C 10 alkynyl, C 3 to C 8 cyclic alkyl, or any combination thereof, and each of B 1 -B 6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B 1 -B 6 is a DD group; wherein at least one of R 1 -R 4 is a tertiary amine of the structure of Formula 5.
- DD diazeniumdiolate
- the method further comprises the step of coating the PTFE polymer on a medical device or forming a medical device out of the PTFE polymer.
- an NO-donating vascular stent comprising: a stent; and an NO-donating polytetrafluoroethylene polymer coating disposed upon the stent wherein the polymer has the structure:
- n is an integer between 1 and 25,000 and wherein each of R 1 -R 4 is independently fluorine or a tertiary amine having the structure:
- X 1 and X 2 are each independently O or not present, Y 1 and Y 2 are each independently selected from C 1 to C 10 alkyl, C 1 to C 10 alkenyl, C 1 to C 10 alkynyl, C 3 to C 8 cyclic alkyl, or any combination thereof, and each of B 1 -B 6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B 1 -B 6 is a DD group; wherein at least one of R 1 -R 4 is a tertiary amine of the structure of Formula 2.
- DD diazeniumdiolate
- Bioactive Agent(s) shall include any compound or drug having a therapeutic effect in an animal.
- anti-proliferatives including, but not limited to, macrolide antibiotics including FKBP-12 binding compounds, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated receptor gamma ligands (PPAR ⁇ ), hypothemycin, nitric oxide, bisphosphonates, epidermal growth factor inhibitors, antibodies, proteasome inhibitors, antibiotics, anti-inflammatories, anti-sense nucleotides and transforming nucleic acids.
- macrolide antibiotics including FKBP-12 binding compounds, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated receptor gamma ligands (PPAR ⁇ ), hypothemycin, nitric oxide, bis
- Drugs can also refer to bioactive agents including anti-proliferative compounds, cytostatic compounds, toxic compounds, anti-inflammatory compounds, chemotherapeutic agents, analgesics, antibiotics, protease inhibitors, statins, nucleic acids, polypeptides, growth factors and delivery vectors including recombinant micro-organisms, liposomes, and the like.
- Exemplary FKBP-12 binding agents include sirolimus (rapamycin), tacrolimus (FK506), everolimus (certican or RAD-001), temsirolimus (CCI-779 or amorphous rapamycin 42-ester with 3-hydroxy-2-(hydroxymethyl)-2-methylpropionic acid as disclosed in U.S. patent Ser. No. 10/930,487) and zotarolimus (ABT-578; see U.S. Pat. Nos. 6,015,815 and 6,329,386). Additionally, other rapamycin hydroxyesters as disclosed in U.S. Pat. No. 5,362,718 may be used in combination with the polymers of the present invention.
- compatible refers to a composition possessing the optimum, or near optimum combination of physical, chemical, biological and drug release kinetic properties suitable for a controlled-release coating made in accordance with the teachings of the present disclosure. Physical characteristics include durability and elasticity/ductility, chemical characteristics include solubility and/or miscibility and biological characteristics include biocompatibility.
- the drug release kinetic should be either near zero-order or a combination of first and zero-order kinetics.
- controlled release refers to the release of a bioactive compound from a medical device surface at a predetermined rate. Controlled release implies that the bioactive compound does not come off the medical device surface sporadically in an unpredictable fashion and does not “burst” off of the device upon contact with a biological environment (also referred to herein a first order kinetics) unless specifically intended to do so. However, the term “controlled release” as used herein does not preclude a “burst phenomenon” associated with deployment. In some embodiments an initial burst of drug may be desirable followed by a more gradual release thereafter.
- the release rate may be steady state (commonly referred to as “timed release” or zero order kinetics), that is the drug is released in even amounts over a predetermined time (with or without an initial burst phase) or may be a gradient release.
- a gradient release implies that the concentration of drug released from the device surface changes over time.
- Copolymer As used herein, a “copolymer” will be defined as a macromolecule produced by the simultaneous chain addition polymerization of two or more dissimilar units such as monomers. Copolymer shall include bipolymers (two dissimilar units), terpolymers (three dissimilar units), etc.
- Glass Transition Temperature As used herein “glass transition temperature” or T g refers to a temperature wherein a polymer structurally transitions from a elastic pliable state to a rigid and brittle state.
- NO-donating poly(tetrafluoroethylene) (PTFE) polymers and polymer surfaces and methods of making and using the same.
- the NO-donating PTFE polymers can be used to fabricate at least a portion of an implantable medical device, coat at least a portion of an implantable medical device or form at least a portion of an implantable medical device.
- the NO-donating PTFE polymers provide controlled release of NO once implanted at or within the target site.
- a NO-donating PTFE polymer according to the present description has a structure
- n is an integer between 1 and 25,000 and wherein each of R 1 -R 4 is independently fluorine or a tertiary amine having the structure
- X 1 and X 2 are each independently O or not present
- Y 1 and Y 2 are each independently selected from C 1 to C 10 alkyl, C 1 to C 10 alkenyl, C 1 to C 10 alkynyl, C 3 to C 8 cyclic alkyl, or any combination thereof
- each of B 1 -B 6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B 1 -B 6 is a DD group.
- the acetyl group can be attached to Y 1 or Y 2 at any position thereon.
- a DD group is a complex capable of releasing NO once implanted at a target site in situ.
- One or more DD group is bound to an ⁇ -carbon adjacent to a carbonyl group and have the general structure.
- M is a metal or other cationic molecule with the appropriate charge to stabilize the DD group.
- the charge on M matches the valence of the DD group.
- at least one, but as many as three of the hydrogen can be replaced by a DD group. If all three hydrogen are replaced, the general structure will be:
- n can be an integer between about 1 and about 5,000, or about 1 and about 1,000, or about 1 and about 500, or about 1 and about 100.
- the NO-donating PTFE polymers can be used to form at least a portion of an implantable medical device.
- the NO-donating PTFE polymers can be used to form a sleeve or a pouch for an implantable medical device such as a stent graft.
- a stent graft, as described herein, is composed of a NO-donating PTFE polymer supported by a rigid structure such as metal scaffolding.
- the NO-donating PTFE polymers can also be formed into a medical device with structural support such as a stent itself, or a portion thereof.
- the PTFE material can be extruded or formed into an appropriate shape. Specific shapes can be extruded such as, but not limited to, boxes, cylinders, rods, fibers or sheets. Additionally, PTFE material can be stretched into shapes such as fibers. Fibers, for example, can be woven into polymeric “fabrics” similar to polyester equivalents. These fabrics can be useful in many aspects of implantable medical device manufacturing, including grafting material.
- the NO-donating PTFE polymers described herein are used to coat medical devices deployed in a hemodynamic environment. As such, the NO-donating PTFE polymers possess excellent adhesive properties. That is, the coating has the ability to be stably coated on the medical device surface.
- the medical devices used may be permanent medical implants, temporary implants, or removable devices.
- the medical devices may include stents, catheters, micro-particles, probes, and vascular grafts (also known as stent graft).
- the medical device is a stent or stents.
- the stents may be vascular stents, urethral stents, biliary stents, or stents intended for use in other ducts and organ lumens.
- Vascular stents for example, may be used in peripheral, cerebral, or coronary applications.
- the stents may be rigid expandable stents or pliable self-expanding stents.
- implantable medical devices including, but not limited to, stainless steel, nitinol, aluminum, chromium, titanium, gold, cobalt, ceramics, and a wide range of synthetic polymeric and natural materials including, but not limited to, collagen, fibrin and plant fibers. All of these materials, and others, may be used with the polymeric coatings made in accordance with the teachings disclosed herein. Furthermore, the polymers described herein can be used to fabricate an entire medical device.
- Vascular stents are implanted into coronary arteries immediately following angioplasty. In another embodiment, vascular stents are implanted into the abdominal aorta to treat an abdominal aneurysm.
- the NO-donating PTFE polymers described herein can be applied to medical device surfaces, either primed or bare, in any manner known to those skilled in the art.
- PTFE is a solid or white powder at room temperature and pressure.
- Application methods for the NO-donating PTFE polymers include, but are not limited to, spraying, dipping, brushing, vacuum-deposition, and others. As such, it is not uncommon for the solid PTFE to be heated to temperatures exceeding 500° C. thereby creating a molten PTFE. The molten PTFE can then be used to subsequently coat an implantable medical device using any means known in the art.
- the NO-donating PTFE polymer can be modified, pre-treated or functionalized before coating onto a medical device or thereafter to allow one or more additional coatings to properly “stick” or bond to the NO-donating PTFE polymer or medical device.
- Suited pre-treatment methods can be found in the vacuum deposition or irradiation technologies; moreover, wet chemical modification of PTFE has been described comprising reduction of the carbon-fluorine bonds with the purpose of modifying its adhesive and wetting surface properties, as well as allowing subsequent surface modification reactions to take place.
- One or more additional polymer coatings may be applied to the medical device in any position relative to the medical device surface.
- the NO-donating PTFE polymer layer is applied over a primer layer.
- the additional layer may be between the primer layer and the NO-donating PTFE polymer layer or may be between the NO-donating PTFE polymer layer and the cap coat. Further, the additional layer may be on top of the cap coat.
- the NO-donating PTFE polymers may optionally be used with a cap coat.
- a cap coat as used herein refers to the outermost coating layer applied over another coating.
- a NO-donating PTFE polymer is applied over a bare medical device surface or a primer coat on the surface of the medical device. Then, a polymer cap coat can be applied over the NO-donating PTFE polymeric coating.
- the cap coat may optionally serve as a diffusion barrier to control the NO release.
- the cap coat may be merely a biocompatible polymer applied to the surface of the sent to protect the stent and have no effect on the NO release rates.
- the polymer chosen for a primer layer or as a cap coat is preferably a polymer that is biocompatible and minimizes irritation to the vessel wall when the medical device is implanted.
- the polymer may be either a biostable or a bioabsorbable polymer depending on the desired rate, when used as a cap coat, of release or the desired degree of polymer stability.
- Bioabsorbable polymers that can be used include poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(ethylene-vinyl acetate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), copoly(ether-esters) (e.g. PEO/PLA), polyalkylene oxalates, polyphosphazenes and biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid.
- PEO/PLA polyalkylene oxalates
- polyphosphazenes such as fibrin,
- biostable polymers with a relatively low chronic tissue response such as polyurethanes, silicones, and polyesters could be used and other polymers could also be used if they can be dissolved and cured or polymerized on the medical device such as polyolefins, polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers, ethylene-co-vinylacetate, polybutylmethacrylate, vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile, polyvinyl ketones; polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as o
- the primer coat is parlyene applied to a metal stent.
- Parylene can provide scaffolding on the medical device for other polymers or polymer systems.
- the NO-donating PTFE polymers can be directly applied to the primer layer or to one or more layers applied to the primer layer.
- the additional coating may further comprise one or more additional bioactive agents.
- the bioactive agent may further be incorporated into the NO-donating PTFE polymer layer.
- the choice of bioactive agent to incorporate, or how much to incorporate, will have a great deal to do with the polymer selected to coat or form the implantable medical device.
- hydrophobic agents prefer hydrophobic polymers and hydrophilic agents prefer hydrophilic polymers. Therefore, coatings and medical devices can be designed for agent or agent combinations with immediate release, sustained release or a combination of the two.
- bioactive agents that can be incorporated into the NO-donating PTFE polymer described herein include anti-proliferatives including, but not limited to, macrolide antibiotics including FKBP-12 binding compounds, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated receptor gamma ligands (PPAR ⁇ ), hypothemycin, nitric oxide, bisphosphonates, epidermal growth factor inhibitors, antibodies, proteasome inhibitors, antibiotics, anti-inflammatories, anti-sense nucleotides and transforming nucleic acids.
- macrolide antibiotics including FKBP-12 binding compounds, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated receptor gamma ligands (PPAR ⁇ ), hypothemycin, nitric oxide, bisphospho
- Drugs can also refer to bioactive agents including anti-proliferative compounds, cytostatic compounds, toxic compounds, anti-inflammatory compounds, chemotherapeutic agents, analgesics, antibiotics, protease inhibitors, statins, nucleic acids, polypeptides, growth factors and delivery vectors including recombinant micro-organisms, liposomes, and the like.
- Exemplary FKBP-12 binding agents include sirolimus (rapamycin), tacrolimus (FK506), everolimus (certican or RAD-001), temsirolimus (CCI-779 or amorphous rapamycin 42-ester with 3-hydroxy-2-(hydroxymethyl)-2-methylpropionic acid as disclosed in U.S. patent Ser. No. 10/930,487) and zotarolimus (ABT-578; see U.S. Pat. Nos. 6,015,815 and 6,329,386). Additionally, other rapamycin hydroxyesters as disclosed in U.S. Pat. No. 5,362,718 may be used in combination with the polymers described herein.
- a NO-donating PTFE polymer can alleviate the need for additional bioactive agents.
- the NO-donating PTFE polymers described herein have the effect of providing cardiovascular effects such as, but not limited to, vasodilatation, anti-inflammation and anti-restenosis. Therefore, medical devices incorporating these polymers or polymeric systems can have the benefit of alleviating the need for supplemental bioactive agents to treat vasoconstriction, inflammation and restenosis. Removing such bioactive agents from a patient's post implantation treatment can help reduce side effects associated with the systemic, or even local, administration of such agents.
- removing such agents from systemic administration or local delivery from the same medical device can reduce the complexity of the treatment. For example, some bioactive agents may not work well together or may require separate polymer systems in order to achieve controlled release from the implanted device.
- PTFE is highly hydrophobic as a result of its symmetrically arranged fluorine. It is this symmetrical arrangement of the fluorine that gives PTFE “non-sticky,” robust properties, which make Teflon® (Du Pont, Wilmington, Del.) such a popular product. This properly aids in the PTFE polymer's biocompatibility.
- a PTFE polymer has the general structure:
- n is an integer between 1 and 25,000 and wherein each of R 1 -R 4 is independently fluorine or a tertiary amine.
- the polymer will attain a more hydrophilic properties and may be more useful depending on the application. Additionally, varying n will change the physical properties of the PTFE polymer. A smaller n will result in a less rigid polymer with a lower melting point and T g . A larger n will result in a more rigid polymer with a higher melting point and T g .
- the PTFE polymer In order to form the NO-donating PTFE polymers described herein, the PTFE polymer must first be plasma treated.
- Plasma treatment can occur in the presence of a gas selected from the group consisting of hydrogen, nitrogen, ammonia, oxygen, carbon dioxide, C 2 F 6 , C 2 F 4 , C 3 F 6 , C 2 H 4 C 2 H 2 , CH 4 , and mixtures thereof.
- the plasma may be generated using microwave, DC, inductive ratio frequency power source, or combinations thereof.
- the energy used for plasma is generally in the range of about 10 W to about 50 W, preferably about 20 W.
- Plasma treatment can be used to functionalize a surface for subsequent chemical reaction or modification of the substantially un-reactive PTFE polymer.
- the PTFE polymer is plasma treated with ammonia gas to create an amino functionalized PTFE polymer as depicted below in Reaction 1.
- the functionalized amino groups can be substituted with virtually any compound capable of reacting with an amino group.
- a halogenated compound is reacted with the functionalized amino group.
- Compounds useful in creating DD-loadable scaffolding include C 1 to C 10 alkyl, C 1 to C 10 alkenyl, C 1 to C 10 alkynyl, C 3 to C 8 cyclic alkyl, or any combination thereof. Any of the above compounds can be substituted with a halogen in order to more easily attain a reaction with the amino group.
- the scaffolding includes at least one acetyl group or the ability to accept an acetyl group through further substitution.
- the amino functionalized PTFE polymer includes primary amines on its surface, the primary amines can be substituted twice at each amino group.
- an acetyl functionalized PTFE polymer is formed. Such an acetyl functionalized PTFE polymer is illustrated below in Formula 5.
- X 1 and X 2 are each independently O or not present, Y 1 and Y 2 are selected from the compounds listed supra.
- an acetyl functionalized PTFE polymer it can be diazeniumdiolated. At least one of the up to six hydrogen on the acetyl ⁇ -carbon (labeled B 1 -B 6 ) is diazeniumdiolated.
- Diazeniumdiolation can be accomplished by either a wet or dry means.
- a wet means the acetyl functionalized PTFE polymer, whether alone or associated with an implantable medical device, is immersed within an appropriate solvent and subjected to NO gas which is bubbled through the solution. After a predetermined amount of time, the NO gas is suspended. This exposure to NO forms a NO-donating PTFE polymer cable of controlled release of NO in situ.
- the acetyl functionalized PTFE polymer is subjected to NO gas which is filled into an evacuated chamber and allowed to sit for a given period of time. After a predetermined amount of time, the NO gas removed from the chamber.
- NO gas is filled into an evacuated chamber and allowed to sit for a given period of time. After a predetermined amount of time, the NO gas removed from the chamber.
- This exposure to NO gas in a dry state forms a NO-donating PTFE polymer cable of controlled release of NO in situ, much the same as the wet process described supra.
- the PTFE polymer may be converted to a NO-donating PTFE polymer before or after being associated with an implantable medical device.
- the PTFE polymer can be coated onto a medical device and then converted to a NO-donating PTFE polymer.
- cylindrical sheets of PTFE polymer can be converted to a NO-donating PTFE polymer and then sown onto metal scaffolding forming a stent graft, or the cylindrical sheets of PTFE polymer can be sewn onto the scaffolding and then converted to a NO-donating PTFE polymer.
- the point of conversion is taken on a case by case basis and one skilled in the art will know which method will work best for a given medical device.
- a suitable metallic stent is the Medtronic/AVE S670TM 316L stainless steel coronary stent.
- a sheet of 5 in ⁇ 5 in PTFE polymer is placed in a plasma reaction chamber.
- the process is outlined in Scheme 1.
- the sheet of PTFE polymer is subjected to 2 min of ammonia plasma with 20 W of RF power, thereby enriching the PTFE surface with amino functional groups.
- the amino function groups are reacted with 2-chloroethanol, creating hydroxyl functionalized PTFE polymers.
- the hydroxyl functionalized PTFE polymers are then reacted with acetic anhydride thereby converting the exposed hydroxyl groups to fictionalized acetyl groups.
- the PTFE polymer, now with acetyl functionalized groups are subjected to NO gas at 80 psi for 24 hr. After 24 hr, the sheet of PTFE polymer is removed can now donate and controllably release NO in situ.
- a sheet of 5 in ⁇ 5 in PTFE polymer is placed in a plasma reaction chamber.
- the process is outlined in Scheme 2.
- the sheet of PTFE polymer is subjected to 2 min of ammonia plasma with 20 W of RF power, thereby enriching the PTFE surface with amino functional groups.
- the amino function groups are reacted with excess 4-acetyl benzoyl chloride with a base such as triethylamine for 4 hours.
- the PTFE polymer, now with acetyl functionalized groups are subjected to NO gas at 80 psi for 24 hr. After 24 hr, the sheet of PTFE polymer is removed can now donate and controllably release NO in situ.
- Cylindrical sheets of PTFE are subjected to the methods of Example 1 or 2 to form cylindrical sheets of NO-donating PTFE polymer.
- the cylindrical sheets are then attached to support scaffolding by sewing to form a NO-donating PTFE stent graft.
- the cylindrical sheets of PTFE polymer are attached to support scaffolding by sewing and then subjected to the methods of Examples 1 or 2 to form a NO-donating PTFE stent graft.
- the support scaffolding is the NO-donating PTFE polymer stent, and the scaffolding and the graft material can donate and controllably release NO.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Polymers & Plastics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
Described herein are nitric oxide (NO)-donating poly(tetrafluoroethylene) (PTFE) polymers and polymer surfaces and methods of making and using the same. The NO-donating PTFE polymers can be used to fabricate at least a portion of an implantable medical device, coat at least a portion of an implantable medical device or form at least a portion of an implantable medical device. The NO-donating PTFE polymers provide controlled release of NO once implanted at or within the target site.
Description
Described herein are nitric oxide (NO)-donating poly(tetrafluoroethene) (PTFE) polymers for medical devices.
Medical research is rapidly discovering therapeutic applications for nitric oxide (NO), a simple diatomic signaling molecule, including fields of vascular surgery and interventional cardiology. It has been known for some time now that NO is a signaling molecule with properties such as anti-inflammation, anti-restenosis, vasodilatation and promotion of endothelization. Recently, however, NO has been shown to significantly reduce thrombocyte aggregation and adhesion. Thrombocyte aggregation occurs within minutes following the initial vascular insult and once the cascade of events leading to restenosis is initiated, irreparable damage can result. Moreover, the risk of thrombogenesis and restenosis persists until the endothelium lining the vessel lumen has been repaired. Therefore, it is essential that NO, or any anti-restenotic agent, reach the injury site immediately.
One approach for providing a therapeutic level of NO at an injury site is to increase systemic NO levels prophylactically. This can be accomplished by stimulating endogenous NO production or using exogenous NO sources. Exogenous NO sources such as pure NO gas are highly toxic, short-lived and relatively insoluble in physiological fluids. Consequently, systemic exogenous NO delivery is generally accomplished using organic nitrate prodrugs such as nitroglycerin tablets, intravenous suspensions, sprays and transdermal patches. The human body rapidly converts nitroglycerin into NO; however, enzyme levels and co-factors required to activate the prodrug are rapidly depleted, resulting in drug tolerance. Moreover, systemic NO administration can have devastating side effects including hypotension and free radical cell damage. Therefore, using organic nitrate prodrugs to maintain systemic anti-restenotic therapeutic blood levels is not currently possible.
Therefore, considerable attention has been focused on localized, or site specific, NO delivery to ameliorate the disadvantages associated with systemic prophylaxis. Implantable medical devices coated with NO-releasing compounds have been evaluated. Implantable medical device coatings or substances used as medical devices need to be biocompatible yet function as a reservoir for the bioactive agent and sustain an appropriate controlled release of the bioactive agent.
Poly(tetrafluoroethylene) (PTFE) is widely used in implantable medical devices, in conjunction with a medical device or as a device itself. PTFE as an implantable material generally shows biocompatibility. However, as with any implantable material, there are continued efforts to improve the biocompatibility of PTFE through surface engineering. One common surface engineering procedure involves the introduction of poly(ethylene glycol) groups on the surface. This procedure adds hydrophilicity to the material, thereby increasing its biocompatibility.
Consequently, an implantable material such as PTFE with an engineered surface with increased biocompatibility coupled with the local delivery of NO may prove to be beneficial. The present disclosure attempts to fulfill this shortcoming by providing modified PTFE surfaces which can bind and controllably release NO to the surrounding tissues.
Described herein are NO-donating poly(tetrafluoroethylene) (PTFE) polymers and polymer surfaces and methods of making and using the same. The NO-donating PTFE polymers can be used in implantable medical devices, to form implantable medical devices or to fabricate at least a portion of an implantable medical device. The NO-donating PTFE polymers provide controlled release of NO once implanted at or within the target site.
In one embodiment described herein are nitric oxide (NO)-donating polymers comprising: a poly(tetrafluoroethylene) polymer having the structure:
wherein n is an integer between 1 and 25,000 and wherein each of R1-R4 is independently fluorine or a tertiary amine having the structure:
wherein X1 and X2 are each independently O or not present, Y1 and Y2 are each independently selected from C1 to C10 alkyl, C1 to C10 alkenyl, C1 to C10 alkynyl, C3 to C8 cyclic alkyl, or any combination thereof, and each of B1-B6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B1-B6 is a DD group; wherein at least one of B1-B6 is a tertiary amine of the structure of Formula 2. In another embodiment, Y1 and Y2 are —CH2—.
In other embodiments, the polymer is associated with an implantable medical device, the medical device being selected from stents, catheters, micro-particles, probes, vascular grafts, and combinations thereof.
Further described herein are implantable medical devices comprising an NO-donating polytetrafluoroethylene polymer having a polymeric surface comprising the structure:
wherein n is an integer between 1 and 25,000 and wherein each of R1-R4 is independently fluorine or a tertiary amine having the structure:
wherein X1 and X2 are each independently O or not present, Y1 and Y2 are each independently selected from C1 to C10 alkyl, C1 to C10 alkenyl, C1 to C10 alkynyl, C3 to C8 cyclic alkyl, or any combination thereof, and each of B1-B6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B1-B6 is a DD group;
wherein at least one of R1-R4 is a tertiary amine of the structure of Formula 2.
In another embodiment, the medical device is selected from stents, catheters, micro-particles, probes, vascular grafts, and combinations thereof. In yet another embodiment, the medical device further comprises a parlyene primer layer and/or a cap coat. In still further embodiments, the polymer comprises one or more bioactive agents selected from anti-proliferatives, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated receptor gamma ligands (PPARγ), hypothemycin, bisphosphonates, epidermal growth factor inhibitors, antibodies, proteasome inhibitors, antibiotics, anti-inflammatories, anti-sense nucleotides and transforming nucleic acids, cytostatic compounds, toxic compounds, chemotherapeutic agents, analgesics, antibiotics, protease inhibitors, statins, nucleic acids, polypeptides, growth factors and delivery vectors, liposomes, and combinations thereof.
Further still, described herein is a method of making a NO releasing PTFE polymer comprising the steps of: providing a PTFE polymer; plasma treating the PTFE polymer with ammonia thereby forming an amino functionalized PTFE polymer; treating the amino functionalized polymer with an acetyl functionalized compound thereby forming an acetyl functionalized PTFE polymer; and subjecting the acetyl functionalized PTFE polymer to NO thereby forming a diazeniumdiolated PTFE polymer. In one embodiment, the plasma treatment is at an energy of about 20 W.
In another embodiment, the one or more acetyl functionalized compounds is ethyl acetate or methyl acetate. Further, the diazeniumdiolated PTFE polymer has the structure:
wherein n is an integer between 1 and 25,000 and wherein each of R1-R4 is independently fluorine or a tertiary amine having the structure:
wherein Y1 and Y2 are each independently selected from C1 to C10 alkyl, C1 to C10 alkenyl, C1 to C10 alkynyl, C3 to C8 cyclic alkyl, or any combination thereof, and each of B1-B6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B1-B6 is a DD group; wherein at least one of R1-R4 is a tertiary amine of the structure of Formula 5.
In another embodiment, the method further comprises the step of coating the PTFE polymer on a medical device or forming a medical device out of the PTFE polymer.
In still a further embodiment, described herein is an NO-donating vascular stent comprising: a stent; and an NO-donating polytetrafluoroethylene polymer coating disposed upon the stent wherein the polymer has the structure:
wherein n is an integer between 1 and 25,000 and wherein each of R1-R4 is independently fluorine or a tertiary amine having the structure:
wherein X1 and X2 are each independently O or not present, Y1 and Y2 are each independently selected from C1 to C10 alkyl, C1 to C10 alkenyl, C1 to C10 alkynyl, C3 to C8 cyclic alkyl, or any combination thereof, and each of B1-B6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B1-B6 is a DD group; wherein at least one of R1-R4 is a tertiary amine of the structure of Formula 2.
The following definition of terms is provided as a helpful reference for the reader. The terms used in this patent have specific meanings as they related to the present invention. Every effort has been made to use terms according to their ordinary and common meaning. However, where a discrepancy exists between the common ordinary meaning and the following definitions, these definitions supersede common usage.
Bioactive Agent(s): As used herein, “bioactive agent” shall include any compound or drug having a therapeutic effect in an animal. Exemplary, non limiting examples include anti-proliferatives including, but not limited to, macrolide antibiotics including FKBP-12 binding compounds, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated receptor gamma ligands (PPARγ), hypothemycin, nitric oxide, bisphosphonates, epidermal growth factor inhibitors, antibodies, proteasome inhibitors, antibiotics, anti-inflammatories, anti-sense nucleotides and transforming nucleic acids. Drugs can also refer to bioactive agents including anti-proliferative compounds, cytostatic compounds, toxic compounds, anti-inflammatory compounds, chemotherapeutic agents, analgesics, antibiotics, protease inhibitors, statins, nucleic acids, polypeptides, growth factors and delivery vectors including recombinant micro-organisms, liposomes, and the like.
Exemplary FKBP-12 binding agents include sirolimus (rapamycin), tacrolimus (FK506), everolimus (certican or RAD-001), temsirolimus (CCI-779 or amorphous rapamycin 42-ester with 3-hydroxy-2-(hydroxymethyl)-2-methylpropionic acid as disclosed in U.S. patent Ser. No. 10/930,487) and zotarolimus (ABT-578; see U.S. Pat. Nos. 6,015,815 and 6,329,386). Additionally, other rapamycin hydroxyesters as disclosed in U.S. Pat. No. 5,362,718 may be used in combination with the polymers of the present invention.
Compatible: As used herein, “compatible” refers to a composition possessing the optimum, or near optimum combination of physical, chemical, biological and drug release kinetic properties suitable for a controlled-release coating made in accordance with the teachings of the present disclosure. Physical characteristics include durability and elasticity/ductility, chemical characteristics include solubility and/or miscibility and biological characteristics include biocompatibility. The drug release kinetic should be either near zero-order or a combination of first and zero-order kinetics.
Controlled release: As used herein “controlled release” refers to the release of a bioactive compound from a medical device surface at a predetermined rate. Controlled release implies that the bioactive compound does not come off the medical device surface sporadically in an unpredictable fashion and does not “burst” off of the device upon contact with a biological environment (also referred to herein a first order kinetics) unless specifically intended to do so. However, the term “controlled release” as used herein does not preclude a “burst phenomenon” associated with deployment. In some embodiments an initial burst of drug may be desirable followed by a more gradual release thereafter. The release rate may be steady state (commonly referred to as “timed release” or zero order kinetics), that is the drug is released in even amounts over a predetermined time (with or without an initial burst phase) or may be a gradient release. A gradient release implies that the concentration of drug released from the device surface changes over time.
Copolymer: As used herein, a “copolymer” will be defined as a macromolecule produced by the simultaneous chain addition polymerization of two or more dissimilar units such as monomers. Copolymer shall include bipolymers (two dissimilar units), terpolymers (three dissimilar units), etc.
Glass Transition Temperature (Tg): As used herein “glass transition temperature” or Tg refers to a temperature wherein a polymer structurally transitions from a elastic pliable state to a rigid and brittle state.
Mn: As used herein, Mn refers to number-average molecular weight. Mathematically it is represented by the following formula:
M n=Σi N i M i/Σi N i,
wherein the Ni is the number of moles whose weight is Mi.
M n=Σi N i M i/Σi N i,
wherein the Ni is the number of moles whose weight is Mi.
Mw: As used herein, Mw refers to weight average molecular weight that is the average weight that a given polymer may have. Mathematically it is represented by the following formula:
M w=Σi N i M i 2/Σi N i M i,
wherein Ni is the number of molecules whose weight is Mi.
M w=Σi N i M i 2/Σi N i M i,
wherein Ni is the number of molecules whose weight is Mi.
Described herein are NO-donating poly(tetrafluoroethylene) (PTFE) polymers and polymer surfaces and methods of making and using the same. The NO-donating PTFE polymers can be used to fabricate at least a portion of an implantable medical device, coat at least a portion of an implantable medical device or form at least a portion of an implantable medical device. The NO-donating PTFE polymers provide controlled release of NO once implanted at or within the target site.
A NO-donating PTFE polymer according to the present description has a structure
wherein n is an integer between 1 and 25,000 and wherein each of R1-R4 is independently fluorine or a tertiary amine having the structure
wherein X1 and X2 are each independently O or not present, Y1 and Y2 are each independently selected from C1 to C10 alkyl, C1 to C10 alkenyl, C1 to C10 alkynyl, C3 to C8 cyclic alkyl, or any combination thereof, and each of B1-B6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B1-B6 is a DD group. The acetyl group can be attached to Y1 or Y2 at any position thereon.
A DD group is a complex capable of releasing NO once implanted at a target site in situ. One or more DD group is bound to an α-carbon adjacent to a carbonyl group and have the general structure.
wherein M is a metal or other cationic molecule with the appropriate charge to stabilize the DD group. In one embodiment, the charge on M matches the valence of the DD group. Depending on the number of hydrogen on the α-carbon adjacent to a carbonyl group, at least one, but as many as three of the hydrogen can be replaced by a DD group. If all three hydrogen are replaced, the general structure will be:
Generally, n can be an integer between about 1 and about 5,000, or about 1 and about 1,000, or about 1 and about 500, or about 1 and about 100.
The NO-donating PTFE polymers can be used to form at least a portion of an implantable medical device. For example, the NO-donating PTFE polymers can be used to form a sleeve or a pouch for an implantable medical device such as a stent graft. A stent graft, as described herein, is composed of a NO-donating PTFE polymer supported by a rigid structure such as metal scaffolding.
The NO-donating PTFE polymers can also be formed into a medical device with structural support such as a stent itself, or a portion thereof. The PTFE material can be extruded or formed into an appropriate shape. Specific shapes can be extruded such as, but not limited to, boxes, cylinders, rods, fibers or sheets. Additionally, PTFE material can be stretched into shapes such as fibers. Fibers, for example, can be woven into polymeric “fabrics” similar to polyester equivalents. These fabrics can be useful in many aspects of implantable medical device manufacturing, including grafting material.
The NO-donating PTFE polymers described herein are used to coat medical devices deployed in a hemodynamic environment. As such, the NO-donating PTFE polymers possess excellent adhesive properties. That is, the coating has the ability to be stably coated on the medical device surface.
The medical devices used may be permanent medical implants, temporary implants, or removable devices. For example, and not intended as a limitation, the medical devices may include stents, catheters, micro-particles, probes, and vascular grafts (also known as stent graft).
In one embodiment, the medical device is a stent or stents. The stents may be vascular stents, urethral stents, biliary stents, or stents intended for use in other ducts and organ lumens. Vascular stents, for example, may be used in peripheral, cerebral, or coronary applications. The stents may be rigid expandable stents or pliable self-expanding stents. Many different materials can be used to fabricate the implantable medical devices including, but not limited to, stainless steel, nitinol, aluminum, chromium, titanium, gold, cobalt, ceramics, and a wide range of synthetic polymeric and natural materials including, but not limited to, collagen, fibrin and plant fibers. All of these materials, and others, may be used with the polymeric coatings made in accordance with the teachings disclosed herein. Furthermore, the polymers described herein can be used to fabricate an entire medical device.
Vascular stents are implanted into coronary arteries immediately following angioplasty. In another embodiment, vascular stents are implanted into the abdominal aorta to treat an abdominal aneurysm.
There are many theories that attempt to explain, or contribute to our understanding of how polymers adhere to surfaces. The most important forces include electrostatic and hydrogen bonding. However, other factors including wettability, absorption and resiliency also determine how well a polymer will adhere to different surfaces. Therefore, polymer base coats, or primers are often used in order to create a more uniform coating surface.
The NO-donating PTFE polymers described herein can be applied to medical device surfaces, either primed or bare, in any manner known to those skilled in the art. Commonly, PTFE is a solid or white powder at room temperature and pressure. Application methods for the NO-donating PTFE polymers include, but are not limited to, spraying, dipping, brushing, vacuum-deposition, and others. As such, it is not uncommon for the solid PTFE to be heated to temperatures exceeding 500° C. thereby creating a molten PTFE. The molten PTFE can then be used to subsequently coat an implantable medical device using any means known in the art.
The NO-donating PTFE polymer can be modified, pre-treated or functionalized before coating onto a medical device or thereafter to allow one or more additional coatings to properly “stick” or bond to the NO-donating PTFE polymer or medical device. Suited pre-treatment methods can be found in the vacuum deposition or irradiation technologies; moreover, wet chemical modification of PTFE has been described comprising reduction of the carbon-fluorine bonds with the purpose of modifying its adhesive and wetting surface properties, as well as allowing subsequent surface modification reactions to take place.
One or more additional polymer coatings may be applied to the medical device in any position relative to the medical device surface. In one embodiment, the NO-donating PTFE polymer layer is applied over a primer layer. In another embodiment, the additional layer may be between the primer layer and the NO-donating PTFE polymer layer or may be between the NO-donating PTFE polymer layer and the cap coat. Further, the additional layer may be on top of the cap coat.
The NO-donating PTFE polymers may optionally be used with a cap coat. A cap coat as used herein refers to the outermost coating layer applied over another coating. A NO-donating PTFE polymer is applied over a bare medical device surface or a primer coat on the surface of the medical device. Then, a polymer cap coat can be applied over the NO-donating PTFE polymeric coating. The cap coat may optionally serve as a diffusion barrier to control the NO release. The cap coat may be merely a biocompatible polymer applied to the surface of the sent to protect the stent and have no effect on the NO release rates.
The polymer chosen for a primer layer or as a cap coat is preferably a polymer that is biocompatible and minimizes irritation to the vessel wall when the medical device is implanted. The polymer may be either a biostable or a bioabsorbable polymer depending on the desired rate, when used as a cap coat, of release or the desired degree of polymer stability. Bioabsorbable polymers that can be used include poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(ethylene-vinyl acetate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), copoly(ether-esters) (e.g. PEO/PLA), polyalkylene oxalates, polyphosphazenes and biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid.
Also, biostable polymers with a relatively low chronic tissue response such as polyurethanes, silicones, and polyesters could be used and other polymers could also be used if they can be dissolved and cured or polymerized on the medical device such as polyolefins, polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers, ethylene-co-vinylacetate, polybutylmethacrylate, vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile, polyvinyl ketones; polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers; polyamides, such as Nylon 66 and polycaprolactam; alkyd resins; polycarbonates; polyoxymethylenes; polyimides; polyethers; epoxy resins, polyurethanes; rayon; rayon-triacetate; cellulose, cellulose acetate, cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; and carboxymethyl cellulose.
In an exemplary embodiment, the primer coat is parlyene applied to a metal stent. Parylene can provide scaffolding on the medical device for other polymers or polymer systems. In such an embodiment, the NO-donating PTFE polymers can be directly applied to the primer layer or to one or more layers applied to the primer layer.
The additional coating may further comprise one or more additional bioactive agents. The bioactive agent may further be incorporated into the NO-donating PTFE polymer layer. The choice of bioactive agent to incorporate, or how much to incorporate, will have a great deal to do with the polymer selected to coat or form the implantable medical device. A person skilled in the art will appreciate that hydrophobic agents prefer hydrophobic polymers and hydrophilic agents prefer hydrophilic polymers. Therefore, coatings and medical devices can be designed for agent or agent combinations with immediate release, sustained release or a combination of the two.
Exemplary, non limiting examples of bioactive agents that can be incorporated into the NO-donating PTFE polymer described herein include anti-proliferatives including, but not limited to, macrolide antibiotics including FKBP-12 binding compounds, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated receptor gamma ligands (PPARγ), hypothemycin, nitric oxide, bisphosphonates, epidermal growth factor inhibitors, antibodies, proteasome inhibitors, antibiotics, anti-inflammatories, anti-sense nucleotides and transforming nucleic acids. Drugs can also refer to bioactive agents including anti-proliferative compounds, cytostatic compounds, toxic compounds, anti-inflammatory compounds, chemotherapeutic agents, analgesics, antibiotics, protease inhibitors, statins, nucleic acids, polypeptides, growth factors and delivery vectors including recombinant micro-organisms, liposomes, and the like.
Exemplary FKBP-12 binding agents include sirolimus (rapamycin), tacrolimus (FK506), everolimus (certican or RAD-001), temsirolimus (CCI-779 or amorphous rapamycin 42-ester with 3-hydroxy-2-(hydroxymethyl)-2-methylpropionic acid as disclosed in U.S. patent Ser. No. 10/930,487) and zotarolimus (ABT-578; see U.S. Pat. Nos. 6,015,815 and 6,329,386). Additionally, other rapamycin hydroxyesters as disclosed in U.S. Pat. No. 5,362,718 may be used in combination with the polymers described herein.
Although it is within the scope of the present disclosure that additional bioactive agents can be useful in treating a plethora of medical conditions, in some exemplary embodiments, the use of a NO-donating PTFE polymer can alleviate the need for additional bioactive agents. The NO-donating PTFE polymers described herein have the effect of providing cardiovascular effects such as, but not limited to, vasodilatation, anti-inflammation and anti-restenosis. Therefore, medical devices incorporating these polymers or polymeric systems can have the benefit of alleviating the need for supplemental bioactive agents to treat vasoconstriction, inflammation and restenosis. Removing such bioactive agents from a patient's post implantation treatment can help reduce side effects associated with the systemic, or even local, administration of such agents.
Additionally, removing such agents from systemic administration or local delivery from the same medical device can reduce the complexity of the treatment. For example, some bioactive agents may not work well together or may require separate polymer systems in order to achieve controlled release from the implanted device.
Further described herein are methods of forming NO-donating PTFE polymers. Initially, the method begins by providing a PTFE polymer. As one skilled in the art is aware, PTFE is highly hydrophobic as a result of its symmetrically arranged fluorine. It is this symmetrical arrangement of the fluorine that gives PTFE “non-sticky,” robust properties, which make Teflon® (Du Pont, Wilmington, Del.) such a popular product. This properly aids in the PTFE polymer's biocompatibility.
A PTFE polymer has the general structure:
wherein n is an integer between 1 and 25,000 and wherein each of R1-R4 is independently fluorine or a tertiary amine. On skilled in the art will understand that by varying one or more of the fluorine to a more hydrophilic constituent, the polymer will attain a more hydrophilic properties and may be more useful depending on the application. Additionally, varying n will change the physical properties of the PTFE polymer. A smaller n will result in a less rigid polymer with a lower melting point and Tg. A larger n will result in a more rigid polymer with a higher melting point and Tg.
In order to form the NO-donating PTFE polymers described herein, the PTFE polymer must first be plasma treated. Plasma treatment can occur in the presence of a gas selected from the group consisting of hydrogen, nitrogen, ammonia, oxygen, carbon dioxide, C2F6, C2F4, C3F6, C2H4C2H2, CH4, and mixtures thereof. The plasma may be generated using microwave, DC, inductive ratio frequency power source, or combinations thereof. The energy used for plasma is generally in the range of about 10 W to about 50 W, preferably about 20 W. Plasma treatment can be used to functionalize a surface for subsequent chemical reaction or modification of the substantially un-reactive PTFE polymer. In one embodiment, the PTFE polymer is plasma treated with ammonia gas to create an amino functionalized PTFE polymer as depicted below in Reaction 1.
Once an amino functionalized PTFE polymer has been created, the functionalized amino groups can be substituted with virtually any compound capable of reacting with an amino group. Preferably, a halogenated compound is reacted with the functionalized amino group. Compounds useful in creating DD-loadable scaffolding include C1 to C10 alkyl, C1 to C10 alkenyl, C1 to C10 alkynyl, C3 to C8 cyclic alkyl, or any combination thereof. Any of the above compounds can be substituted with a halogen in order to more easily attain a reaction with the amino group. Regardless of the scaffolding chosen, the scaffolding includes at least one acetyl group or the ability to accept an acetyl group through further substitution.
Further, since the amino functionalized PTFE polymer includes primary amines on its surface, the primary amines can be substituted twice at each amino group. Once the amino functionalized PTFE polymer is substituted with at least one acetyl containing compound, an acetyl functionalized PTFE polymer is formed. Such an acetyl functionalized PTFE polymer is illustrated below in Formula 5.
wherein X1 and X2 are each independently O or not present, Y1 and Y2 are selected from the compounds listed supra.
Then, after an acetyl functionalized PTFE polymer is formed, it can be diazeniumdiolated. At least one of the up to six hydrogen on the acetyl α-carbon (labeled B1-B6) is diazeniumdiolated.
Diazeniumdiolation can be accomplished by either a wet or dry means. For a wet means, the acetyl functionalized PTFE polymer, whether alone or associated with an implantable medical device, is immersed within an appropriate solvent and subjected to NO gas which is bubbled through the solution. After a predetermined amount of time, the NO gas is suspended. This exposure to NO forms a NO-donating PTFE polymer cable of controlled release of NO in situ.
In contrast, for a dry means, the acetyl functionalized PTFE polymer, whether alone or associated with an implantable medical; device, is subjected to NO gas which is filled into an evacuated chamber and allowed to sit for a given period of time. After a predetermined amount of time, the NO gas removed from the chamber. This exposure to NO gas in a dry state forms a NO-donating PTFE polymer cable of controlled release of NO in situ, much the same as the wet process described supra.
The PTFE polymer may be converted to a NO-donating PTFE polymer before or after being associated with an implantable medical device. For example, the PTFE polymer can be coated onto a medical device and then converted to a NO-donating PTFE polymer. On the other hand, cylindrical sheets of PTFE polymer can be converted to a NO-donating PTFE polymer and then sown onto metal scaffolding forming a stent graft, or the cylindrical sheets of PTFE polymer can be sewn onto the scaffolding and then converted to a NO-donating PTFE polymer. The point of conversion is taken on a case by case basis and one skilled in the art will know which method will work best for a given medical device.
The following Examples are intended to illustrate non-limiting processes for forming NO-donating PTFE polymers and associated implantable medical devices according to the present description. One non-limiting example of a suitable metallic stent is the Medtronic/AVE S670™ 316L stainless steel coronary stent.
A sheet of 5 in×5 in PTFE polymer is placed in a plasma reaction chamber. The process is outlined in Scheme 1. The sheet of PTFE polymer is subjected to 2 min of ammonia plasma with 20 W of RF power, thereby enriching the PTFE surface with amino functional groups. The amino function groups are reacted with 2-chloroethanol, creating hydroxyl functionalized PTFE polymers. The hydroxyl functionalized PTFE polymers are then reacted with acetic anhydride thereby converting the exposed hydroxyl groups to fictionalized acetyl groups. The PTFE polymer, now with acetyl functionalized groups, are subjected to NO gas at 80 psi for 24 hr. After 24 hr, the sheet of PTFE polymer is removed can now donate and controllably release NO in situ.
A sheet of 5 in×5 in PTFE polymer is placed in a plasma reaction chamber. The process is outlined in Scheme 2. The sheet of PTFE polymer is subjected to 2 min of ammonia plasma with 20 W of RF power, thereby enriching the PTFE surface with amino functional groups. The amino function groups are reacted with excess 4-acetyl benzoyl chloride with a base such as triethylamine for 4 hours. The PTFE polymer, now with acetyl functionalized groups, are subjected to NO gas at 80 psi for 24 hr. After 24 hr, the sheet of PTFE polymer is removed can now donate and controllably release NO in situ.
Cylindrical sheets of PTFE are subjected to the methods of Example 1 or 2 to form cylindrical sheets of NO-donating PTFE polymer. The cylindrical sheets are then attached to support scaffolding by sewing to form a NO-donating PTFE stent graft. In an alternate method, the cylindrical sheets of PTFE polymer are attached to support scaffolding by sewing and then subjected to the methods of Examples 1 or 2 to form a NO-donating PTFE stent graft. In one embodiment, the support scaffolding is the NO-donating PTFE polymer stent, and the scaffolding and the graft material can donate and controllably release NO.
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
The terms “a” and “an” and “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on those preferred embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above cited references and printed publications are herein individually incorporated by reference in their entirety.
In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.
Specific embodiments disclosed herein may be further limited in the claims using consisting of or and consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.
Claims (15)
1. An implantable medical device comprising a nitric oxide-donating polytetrafluoroethylene polymer having a polymeric surface comprising the structure:
wherein n is an integer between 1 and 25,000 and wherein each of R1, R2, R3, and R4 is independently fluorine or a tertiary amine having the structure:
wherein X1 and X2 are each independently O or not present, Y1 and Y2 are each independently selected from C1 to C10 alkyl, C1 to C10 alkenyl, C1 to C10 alkynyl, C3 to C8 cyclic alkyl, or any combination thereof, and each of B1, B2, B3, B4, B5, and B6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B1, B2, B3, B4, B5, and B6 is a DD group;
wherein at least one of R1, R2, R3, and R4 is a tertiary amine of the structure of Formula 2.
2. The implantable medical device of claim 1 wherein said implantable medical device is selected from the group consisting of stents, catheters, micro-particles, probes, vascular grafts, and combinations thereof.
3. The implantable medical device of claim 1 wherein said polymer comprises one or more bioactive agents other than the nitric oxide.
4. The implantable medical device of claim 3 wherein said at least one bioactive agent is selected from the group consisting of anti-proliferatives, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated receptor gamma ligands (PPARγ), hypothemycin, bisphosphonates, epidermal growth factor inhibitors, antibodies, proteasome inhibitors, antibiotics, anti-inflammatories, anti-sense nucleotides and transforming nucleic acids, cytostatic compounds, toxic compounds, chemotherapeutic agents, analgesics, antibiotics, protease inhibitors, statins, nucleic acids, polypeptides, growth factors and delivery vectors, and liposomes.
5. The implantable medical device of claim 1 wherein Y1 and Y2 are each —CH2—.
6. The implantable medical device of claim 1 wherein said nitric oxide-donating polytetrafluoroethylene polymer provides controlled release of nitric oxide once implanted at or within the target site.
7. The implantable medical device of claim 1 wherein said nitric oxide-donating polytetrafluoroethylene polymer forms a coating layer on at least a portion of a surface of the implantable medical device.
8. The implantable medical device of claim 7 further comprising a parlyene primer layer between the implantable medical device surface and the nitric oxide-donating polytetrafluoroethylene polymer coating layer.
9. The implantable medical device of claim 8 further comprising a cap coat disposed over the nitric oxide-donating polytetrafluoroethylene polymer coating layer.
10. A nitric oxide-donating vascular stent comprising:
a stent; and
a polymer coating disposed upon said stent wherein said polymer is a nitric oxide-donating polytetrafluoroethylene polymer having a polymeric surface comprising the structure:
wherein n is an integer between 1 and 25,000 and wherein each of R1, R2, R3, and R4 is independently fluorine or a tertiary amine having the structure:
wherein X1 and X2 are each independently O or not present, Y1 and Y2 are each independently selected from C1 to C10 alkyl, C1 to C10 alkenyl, C1 to C10 alkynyl, C3 to C8 cyclic alkyl, or any combination thereof, and each of B1, B2, B3, B4, B5, and B6 is independently hydrogen or a diazeniumdiolate (DD) group, with the proviso that at least one of B1, B2, B3, B4, B5, and B6 is a DD group;
wherein at least one of R1, R2, R3, and R4 is a tertiary amine of the structure of Formula 2.
11. The vascular stent of claim 10 wherein said polymer comprises one or more bioactive agents other than the nitric oxide.
12. The vascular stent of claim 11 wherein said at least one bioactive agent is selected from the group consisting of anti-proliferatives, estrogens, chaperone inhibitors, protease inhibitors, protein-tyrosine kinase inhibitors, leptomycin B, peroxisome proliferator-activated receptor gamma ligands (PPARγ), hypothemycin, bisphosphonates, epidermal growth factor inhibitors, antibodies, proteasome inhibitors, antibiotics, anti-inflammatories, anti-sense nucleotides and transforming nucleic acids, cytostatic compounds, toxic compounds, chemotherapeutic agents, analgesics, antibiotics, protease inhibitors, statins, nucleic acids, polypeptides, growth factors and delivery vectors, and liposomes.
13. The vascular stent of claim 10 wherein said nitric oxide-donating polytetrafluoroethylene polymer provides controlled release of nitric oxide once implanted at or within the target site.
14. The vascular stent of claim 10 wherein Y1 and Y2 are each —CH2—.
15. The vascular stent of claim 10 wherein said nitric oxide-donating polytetrafluoroethylene polymer forms a coating layer on at least a portion of a surface of the vascular stent.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/417,335 US8236341B2 (en) | 2009-04-02 | 2009-04-02 | Poly(tetrafluoroethylene) polymer with nitric oxide donating surface |
PCT/US2010/026266 WO2010114669A1 (en) | 2009-04-02 | 2010-03-04 | A poly (tetrafluoroethene) polymer with nitric oxide donating surface |
EP10706894A EP2414404A1 (en) | 2009-04-02 | 2010-03-04 | A poly (tetrafluoroethene) polymer with nitric oxide donating surface |
US13/537,791 US20120269897A1 (en) | 2009-04-02 | 2012-06-29 | Poly(tetrafluoroethylene) polymer with nitric oxide donating surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/417,335 US8236341B2 (en) | 2009-04-02 | 2009-04-02 | Poly(tetrafluoroethylene) polymer with nitric oxide donating surface |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/537,791 Division US20120269897A1 (en) | 2009-04-02 | 2012-06-29 | Poly(tetrafluoroethylene) polymer with nitric oxide donating surface |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100256755A1 US20100256755A1 (en) | 2010-10-07 |
US8236341B2 true US8236341B2 (en) | 2012-08-07 |
Family
ID=42104508
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/417,335 Expired - Fee Related US8236341B2 (en) | 2009-04-02 | 2009-04-02 | Poly(tetrafluoroethylene) polymer with nitric oxide donating surface |
US13/537,791 Abandoned US20120269897A1 (en) | 2009-04-02 | 2012-06-29 | Poly(tetrafluoroethylene) polymer with nitric oxide donating surface |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/537,791 Abandoned US20120269897A1 (en) | 2009-04-02 | 2012-06-29 | Poly(tetrafluoroethylene) polymer with nitric oxide donating surface |
Country Status (3)
Country | Link |
---|---|
US (2) | US8236341B2 (en) |
EP (1) | EP2414404A1 (en) |
WO (1) | WO2010114669A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2006249323B2 (en) | 2005-05-27 | 2012-08-30 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
CN102695528B (en) | 2009-08-21 | 2016-07-13 | 诺万公司 | Wound dressing, its using method and forming method thereof |
CA3062005C (en) | 2009-08-21 | 2022-02-15 | Novan, Inc. | Topical gels comprising nitric oxide-releasing polysiloxane macromolecules and uses thereof |
US20110301299A1 (en) * | 2010-06-08 | 2011-12-08 | Medtronic Vascular, Inc. | Medical Devices and Polymers Therefor Having PTFE Surfaces Modified With Nitric Oxide-Releasing Polymers |
US8591876B2 (en) | 2010-12-15 | 2013-11-26 | Novan, Inc. | Methods of decreasing sebum production in the skin |
ES2695173T3 (en) | 2011-02-28 | 2019-01-02 | Novan Inc | Silica particles modified with S-nitrosothiol that release nitric oxide and methods of manufacturing them |
CN109735819B (en) * | 2019-03-14 | 2020-01-31 | 西南交通大学 | Biomaterial with NO catalytic release and EPCs capture function and preparation method thereof |
US20230108186A1 (en) * | 2020-02-07 | 2023-04-06 | Know Bio, Llc | Nitric oxide-releasing antibacterial compounds, formulations, and methods pertaining thereto |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5362718A (en) | 1994-04-18 | 1994-11-08 | American Home Products Corporation | Rapamycin hydroxyesters |
US6015815A (en) | 1997-09-26 | 2000-01-18 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
US20060134165A1 (en) * | 2004-12-22 | 2006-06-22 | Pacetti Stephen D | Polymers of fluorinated monomers and hydrocarbon monomers |
US7201935B1 (en) | 2002-09-17 | 2007-04-10 | Advanced Cardiovascular Systems, Inc. | Plasma-generated coatings for medical devices and methods for fabricating thereof |
US20070264225A1 (en) | 2006-05-15 | 2007-11-15 | Medtronic Vascular, Inc. | Hindered Amine Nitric Oxide Donating Polymers for Coating Medical Devices |
WO2009014829A2 (en) | 2007-07-24 | 2009-01-29 | Medtronic Vascular Inc. | Methods for introducing reactive secondary amines pendant to polymer backbones that are useful for diazeniumdiolation |
WO2009117183A1 (en) | 2008-03-17 | 2009-09-24 | Medtronic Vascular Inc. | Nitric oxide releasing polymer composition |
WO2009117182A2 (en) | 2008-03-17 | 2009-09-24 | Medtronic Vascular Inc. | Biodegradable carbon diazeniumdiolate based nitric oxide donating polymers |
-
2009
- 2009-04-02 US US12/417,335 patent/US8236341B2/en not_active Expired - Fee Related
-
2010
- 2010-03-04 EP EP10706894A patent/EP2414404A1/en not_active Withdrawn
- 2010-03-04 WO PCT/US2010/026266 patent/WO2010114669A1/en active Application Filing
-
2012
- 2012-06-29 US US13/537,791 patent/US20120269897A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5362718A (en) | 1994-04-18 | 1994-11-08 | American Home Products Corporation | Rapamycin hydroxyesters |
US6015815A (en) | 1997-09-26 | 2000-01-18 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
US6329386B1 (en) | 1997-09-26 | 2001-12-11 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
US7201935B1 (en) | 2002-09-17 | 2007-04-10 | Advanced Cardiovascular Systems, Inc. | Plasma-generated coatings for medical devices and methods for fabricating thereof |
US20060134165A1 (en) * | 2004-12-22 | 2006-06-22 | Pacetti Stephen D | Polymers of fluorinated monomers and hydrocarbon monomers |
US20070264225A1 (en) | 2006-05-15 | 2007-11-15 | Medtronic Vascular, Inc. | Hindered Amine Nitric Oxide Donating Polymers for Coating Medical Devices |
WO2009014829A2 (en) | 2007-07-24 | 2009-01-29 | Medtronic Vascular Inc. | Methods for introducing reactive secondary amines pendant to polymer backbones that are useful for diazeniumdiolation |
WO2009117183A1 (en) | 2008-03-17 | 2009-09-24 | Medtronic Vascular Inc. | Nitric oxide releasing polymer composition |
WO2009117182A2 (en) | 2008-03-17 | 2009-09-24 | Medtronic Vascular Inc. | Biodegradable carbon diazeniumdiolate based nitric oxide donating polymers |
Also Published As
Publication number | Publication date |
---|---|
US20100256755A1 (en) | 2010-10-07 |
US20120269897A1 (en) | 2012-10-25 |
EP2414404A1 (en) | 2012-02-08 |
WO2010114669A1 (en) | 2010-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8236341B2 (en) | Poly(tetrafluoroethylene) polymer with nitric oxide donating surface | |
US7811600B2 (en) | Nitric oxide donating medical devices and methods of making same | |
US20090232863A1 (en) | Biodegradable Carbon Diazeniumdiolate Based Nitric Oxide Donating Polymers | |
US8273828B2 (en) | Methods for introducing reactive secondary amines pendant to polymers backbones that are useful for diazeniumdiolation | |
JP5557373B2 (en) | Use of terpolymers of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride in drug-eluting coatings | |
US20090222088A1 (en) | Secondary Amine Containing Nitric Oxide Releasing Polymer Composition | |
US7442721B2 (en) | Durable biocompatible controlled drug release polymeric coatings for medical devices | |
US20090022769A1 (en) | Medical Devices Comprising Polymeric Drug Delivery Systems With Drug Solubility Gradients | |
US20090232868A1 (en) | Nitric Oxide Releasing Polymer Composition | |
US20070237803A1 (en) | Biodegradable Biocompatible Amphiphilic Copolymers for Coating and Manufacturing Medical Devices | |
US20110150966A1 (en) | Degradable polymers incorporating gamma-butyrolactone | |
EP2134384A2 (en) | Terpolymers for controlled release of bioactive agents from implantable medical devices | |
US9056153B2 (en) | Biocompatible polymers for coating or fabricating implantable medical devices | |
US8182830B2 (en) | Hydrogen sulfide generating polymers | |
US20100198338A1 (en) | Hydrogen Sulfide Donating Polymers | |
US20110301299A1 (en) | Medical Devices and Polymers Therefor Having PTFE Surfaces Modified With Nitric Oxide-Releasing Polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDTRONIC VASCULAR, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, MINGFEI;HEZI-YAMIT, AYALA;SIGNING DATES FROM 20090316 TO 20090402;REEL/FRAME:022497/0587 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20160807 |