US8212172B2 - Vapor plasma burner - Google Patents
Vapor plasma burner Download PDFInfo
- Publication number
- US8212172B2 US8212172B2 US11/990,814 US99081406A US8212172B2 US 8212172 B2 US8212172 B2 US 8212172B2 US 99081406 A US99081406 A US 99081406A US 8212172 B2 US8212172 B2 US 8212172B2
- Authority
- US
- United States
- Prior art keywords
- cathode
- vapor plasma
- plasma burner
- burner according
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3457—Nozzle protection devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3489—Means for contact starting
Definitions
- the present invention relates to a vapor plasma burner comprising a burner handle and a burner base, wherein inside the burner base a liquid feed pipe, a heating device, a burner chamber, a cathode connected to a cathode support, and an anode which is configured as a nozzle and has an exit opening are arranged.
- the present invention relates to a cathode and a nozzle for such vapor plasma burner.
- vapor plasma burners of the present type an arc between a negatively charged cathode and a positively charged anode, which is configured as a nozzle at the burner tip, is ignited via a source of electric power.
- Liquid or water is conducted via a liquid feed pipe from a tank to the burner, where it is vaporized by means of a heating device and conducted to the burner chamber via channels, in which chamber it is used as a plasma producing medium and produces plasma.
- Said plasma beam exits the nozzle currentless and may be used to melt work pieces due to its high energy density.
- a vapor plasma burner may also be used to join work pieces.
- DE 100 08 255 A1 describes a vapor plasma burner specifically formed to achieve lower energy levels at the plasma burner tip for other applications.
- EP 1 050 200 B1 describes a vapor plasma burner specifically formed to make the operating time for cutting processes as long as possible.
- the object of the present invention is to provide a vapor plasma burner as mentioned above which allows ignition of the arc to be as exact a possible and which may be cooled as well as possible for optimum operation.
- Another object of the present invention is to provide a cathode and a nozzle for a vapor plasma burner as mentioned above which allow optimum ignition and may be well cooled for optimum operation conditions and operation as long as possible.
- Said first object of the present invention is achieved by a vapor plasma burner as mentioned above, wherein the cathode support is configured together with the cathode as an axially displaceable piston and is connected to a spring element, so that the cathode, in the rest position, is forced against the nozzle, and wherein the cathode support communicates with the liquid feed pipe in such a manner that, during operation, the cathode is lifted off the nozzle when liquid or water is supplied, so that an electric arc may be ignited between the cathode and the anode.
- the present vapor plasma burner is characterized by an axially displaceable cathode, thus allowing contact ignition.
- the cathode In the rest position, the cathode contacts the anode, thus producing an electric short circuit.
- the cathode is automatically lifted off by the water, thus producing an electric potential between the cathode and the anode allowing an arc to be produced between the cathode and the anode.
- Another advantage is that hardly any water may leak from the burner in the rest position because the nozzle is almost completely sealed. Because the cathode is lifted off from the anode by the working medium of the plasma burner, the arc may only be ignited if medium is present.
- the object of the present invention is achieved also by a vapor plasma burner as mentioned above, wherein the liquid feed pipe towards the burner chamber located in the burner base is configured in such a way that the supplied liquid first runs along the cathode support via a cooling channel and then along the heating device towards the burner chamber.
- a vapor plasma burner is provided wherein the cathode is better cooled by the liquid or water. As the liquid absorbs the heat, it requires less energy for subsequent vaporization.
- a space limited by a piston element is arranged around the cathode support, which space is connected to the liquid feed pipe, so that said space is filled as liquid is supplied and said cathode support is lifted off said nozzle together with said cathode.
- the shape of the cathode tip preferably corresponds to the shape of the inside of the nozzle. Preferably, sharp edges or corners are avoided when shaping said cathode and nozzle.
- the spring element forcing the cathode against the nozzle in the rest position is preferably formed by a helical spring. This is a simple, solid, and cost-efficient solution.
- sealing rings are preferably arranged on said cathode support.
- Said sealing rings are made of elastic material tolerating the usual vapor plasma burner temperatures, e.g. silicone or Teflon composite materials.
- Said sealing ring(s) may also serve to center said cathode support in the surrounding cylinder of said vapor plasma burner.
- the cathode support has an electrically insulating coating. Said coating should provide good electric insulation but also good thermal conductivity to conduct off the resulting heat. In addition, said insulating coating is preferably sealed.
- the cathode of the vapor plasma burner is made of copper or a copper alloy.
- said cathode In order to protect said cathode from high temperatures, it may be, at least partially, provided with an electric insulation, particularly a ceramic coating.
- the cathode is preferably connected to the cathode support via a thread to allow swift exchange of said cathode.
- Said thread is relatively long to allow good heat transfer from said cathode to said cathode support.
- Said cathode preferably has a stop flange which keeps said cathode from being screwed too far into said cathode support, which might lead to thread damage. Moreover, said stop flange seals the connection between cathode and cathode support and keeps the working medium from entering.
- an anti-distortion means is arranged on the cathode support to keep said cathode support from being distorted when mounting or removing said cathode.
- Said means is e.g. formed by an axis arranged in a transverse hole of said cathode support.
- the cathode support is surrounded by at least one cooling channel communicating with the liquid feed pipe, so that a liquid, particularly water or a suitable water mixture, may be used as a cooling agent.
- the liquid feed pipe conducts said liquid into a chamber around said cathode support and along said at least one cooling channel, resulting in said cathode support being cooled by said liquid.
- the liquid of said vapor plasma burner is used as the cooling medium, it is not necessary to provide a separate cooling circuit having its own cooling medium.
- Said at least one cooling channel runs along and around said cathode support, preferably in a spiral way. This ensures that the water is evenly distributed around said cathode support.
- a small annular gap around the entire cathode support remains free for said cooling medium to enter. This ensures wetting of the entire cathode support surface and avoids local overheating of said cathode support.
- the liquid flowing around said cathode support for cooling is returned to the heating device via a return channel.
- Said heating device preferably has a spiral channel to conduct said liquid, in which channel it is vaporized.
- Said spiral channel has the advantage that the liquid, which is vaporized using a heating device usually comprising an electrical heater, is vortexed and arrives in said burner chamber is this vortexed state.
- a protective switch may be provided which may only be actuated when the housing is properly arranged.
- Said protective switch may be formed by a micro-push button actuated by the housing properly screwed on or mounted. It is possible to supply liquid and switch on electricity only if said protective switch is closed.
- said nozzle may also have cooling channels to conduct a cooling fluid.
- Said nozzle may also be cooled to a certain extent by connecting said nozzle to the housing via a thread. Thus, the heat produced at said nozzle may be conducted to said housing via said thread.
- a spacer may be arranged on said nozzle.
- Said spacer is preferably arranged as a ring around the exit opening.
- Said spacer may also be prepared integrally with the nozzle.
- Said spacer may also be formed by an attachable wire bow. This is a particularly simple and cost-efficient solution. Said spacer may also be formed by an attachable protective tube.
- Said spacer is made of or coated with electrically insulating material.
- the current-carrying anode will be insulated from its environment in case the arc is not transmitted.
- the object of the present invention is achieved by a cathode as mentioned above for a vapor plasma burner as mentioned above, wherein the shape of the cathode tip essentially corresponds to the shape of the inside of the nozzle.
- a nozzle for a vapor plasma burner as mentioned above having an opening for the plasma beam to exit, wherein a spacer is arranged in the vicinity of said exit.
- FIG. 1 is a schematic representation of a vapor cutter
- FIGS. 2 a and 2 b are schematic representations of a vapor plasma burner having an axially displaceable cathode according to the present invention in the rest position and in the operating position;
- FIGS. 3 a and 3 b are sections through one embodiment of a vapor plasma burner in the rest position and in the operating position;
- FIG. 4 is a schematic representation of a vapor plasma burner having a burner handle and a burner base.
- FIG. 1 shows a vapor cutter 1 having a basic device 1 a for vapor cutting.
- Said basic device 1 a comprises a current source 2 , a control device 3 , and a blocking element 4 assigned to said control device 3 .
- Said blocking element 4 is connected to a container 5 and a vapor plasma burner 6 , which vapor plasma.
- burner 6 comprises a burner handle 6 a and a burner base 6 b , via a supply pipe 7 so that said vapor plasma burner 6 may be supplied with liquid 8 located in said container 5 .
- Said vapor plasma burner 6 is supplied with electric energy from said current source 2 via cables 9 , 10 .
- said vapor plasma burner 6 is connected to a liquid container 13 via a cooling circuit 11 optionally equipped with a flow control device 12 .
- said cooling circuit 11 may be started by said control device 3 , thus cooling said burner 6 via said cooling circuit 11 .
- Said burner 6 is connected to said liquid container 13 via cooling pipes 14 , 15 to form said cooling circuit 11 .
- said basic device 1 a may have an input and/or display device 16 for setting and displaying various parameters and modes of operation of said vapor cutter 1 .
- the parameters set via said input and/or display device 16 are communicated to said control device 3 , which will activate the individual vapor cutter 1 components accordingly.
- said vapor plasma burner 6 may have at least one operating element 17 , particularly a push button 18 . From said operating element 17 , particularly said push button 18 , a user may order said control device 3 from said burner 6 to start or conduct a vapor cutting process by activating and/or de-activating said push button 18 .
- said input and/or display device 16 may e.g. be used for pre-setting, particularly pre-defining the material to be cut, the liquid to be used, and e.g. current and voltage characteristics.
- Said burner 6 may of course be equipped with further operation elements for setting one or more operation parameters of said vapor cutter 1 from said burner 6 .
- Said operating elements may be connected to said basic device 1 a , particularly said control device 3 , directly via lines or via a bus system.
- said control device 3 When said push button 18 is actuated, said control device 3 will activate the individual components necessary for vapor cutting. For example, first a pump (not shown), said blocking element 4 , and said current source 2 are activated, thus starting supply of said burner 6 with liquid 6 and electric power. Subsequently, said control device 3 will activate said cooling circuit 11 , thus allowing cooling of said burner 6 . As said burner 6 is supplied with liquid 8 and energy, particularly current and voltage, said liquid 8 in said burner 6 is transformed into high temperature gas 19 , particularly plasma, so that said gas 19 exiting said burner 6 may be used to cut a work piece 20 .
- FIGS. 2 a and 2 b are schematic representations of a vapor plasma burner 6 according to the present invention, particularly of a burner nozzle 23 , in the rest position and in the operating position.
- Said vapor plasma burner 6 has a housing 21 containing a cathode 22 connected to a current source 2 .
- the anode 24 configured as a nozzle 23 , is connected to the positive pole of said current source 2 .
- said cathode 22 which is axially displaceable according to the present invention, is forced against said nozzle 23 . In this state, no arc may be ignited between said cathode 22 and said anode 24 , because they are short-circuited.
- the heating device 25 contained in said plasma burner 6 to vaporize the water may already be switched on to pre-heat the working medium.
- working fluid (liquid 8 in the present invention) supply is switched on as shown in FIG. 2 b , thus lifting said axially displaceable cathode 22 from said nozzle 23 , and an arc will be ignited between said cathode 22 and said anode 24 if the electric power supply is sufficient.
- the water vaporized in said heating device is conducted into a burner chamber 27 , where it serves as the medium for a plasma beam. Said plasma beam is forced out through the opening 25 of said nozzle 23 and may be used for cutting or joining work pieces 20 due to its high energy density.
- FIGS. 3 a and 3 b are sections through an embodiment of a vapor plasma burner 6 , particularly a burner insert.
- said vapor plasma burner 6 is in the rest position, i.e. said cathode 22 is forced against said anode 24 configured as a nozzle 23 .
- Said vapor plasma burner comprises a housing 21 , a heating device 26 , and a burner chamber 27 , where said vaporized liquid 8 is produced as a medium for said plasma beam exiting through said exit opening 25 of said nozzle 23 .
- Said cathode 22 is connected to a cathode support 28 , preferably via a screw thread 29 .
- Said cathode support 28 is forced against said nozzle 23 via a spring 30 (broken line).
- Said vapor plasma burner 6 is supplied with said liquid 8 via a liquid feed pipe 32 .
- Said cathode 22 is axially displaceable together with said cathode support 28 .
- Said liquid feed pipe 32 is connected to said cathode support 28 in such a way that said cathode 22 is lifted off said nozzle 23 when liquid is supplied, so that an arc may be ignited between said cathode 22 and said anode 24 . This is effected by conducting said liquid 8 from said liquid feed pipe 32 into a space around said cathode support 28 , which space is. limited by a piston element 31 . Due to water pressure, said piston element 31 is forced backwards against the force of said spring 30 together with said cathode support 28 and said cathode 22 as shown in FIG. 3 b.
- a cooling channel 33 which is preferably arranged like a spiral around said cathode support 28 , said liquid 8 subsequently arrives at a turn-around element 34 , which is configured as a sealing ring 35 .
- Said sealing ring 35 also allows central positioning of said axially displaceable cathode support 28 .
- a return channel 36 said liquid 8 is returned to said heating device 26 where it is vaporized in a spiral channel 37 . Due to the spiral arrangement of said channel 37 , said vaporized liquid 8 is vortexed in an annular space 38 , which merges into said burner chamber 27 .
- the medium which may be turned into plasma, is turned into a plasma beam by the arc between said cathode 22 and said anode 24 , which beam exits via said exit opening 25 of said nozzle.
- the thread 29 connecting said cathode 22 and said cathode support 28 is shaped as long as possible in order to guarantee optimum heat transfer from said cathode 22 to said cathode support 28 .
- Said cathode 22 is equipped with a stop flange 39 keeping said cathode 22 from being screwed too far into said cathode support 28 .
- Said cathode 22 may be made of copper or a copper alloy, optionally with a ceramic coating.
- An anti-distortion means may be provided to protect said cathode support 28 from being distorted when said cathode 22 is screwed on or off.
- Said anti-distortion means may e.g. be formed by an axis 40 in a transverse hole 41 .
- Said nozzle 23 is another expendable part that may be connected to said housing 21 or any other part of said vapor plasma burner 6 e.g. via a thread 42 for easy exchange. Said nozzle 23 is sealed against said burner chamber 27 by a sealing ring 43 . Said nozzle 23 may be equipped with a spacer 44 that is arranged around said exit opening 25 and protects said nozzle 23 from damage by contacting work piece 20 (not shown). Preferably, said spacer 44 , which may be formed by an attachable wire bow or an attachable protective tube, is made of or coated with electrically insulating material.
- a protective switch 45 may be provided in said vapor plasma burner 6 which may only be actuated when the housing 21 is properly arranged. This will ensure that said vapor plasma burner 6 can only be operated if said housing 21 is properly attached, thus effectively preventing injuries resulting e.g. from touching said heating device 26 .
- FIG. 4 is a schematic representation, partially sectioned, of said entire vapor plasma burner 6 , i.e. said burner handle 6 a and said burner base 6 b , including the connection of a hose pack 46 (only schematically outlined) comprising all lines and leads.
- a closed cooling circuit 11 is provided in said burner handle 6 a according to the present invention by connecting cooling circuit feed pipe 47 with cooling circuit return pipe 48 , e.g. via a connecting element 49 .
- said connecting element 49 is equipped with a bypass pipe 50 , which is connected to said liquid feed pipe 32 inside said burner base 6 b , as shown schematically.
- said bypass pipe 50 is of a smaller diameter than said cooling circuit feed pipe 47 and said cooling circuit return pipe 48 , so that only a small portion of liquid 8 is taken from said closed cooling circuit 11 inside said burner handle 6 a .
- this embodiment allows considerably higher flow-through velocity in the cooling circuit because said cooling circuit feed pipe 47 and said cooling circuit return pipe 48 may be of a larger diameter than if said cooling circuit 11 were conducted via said burner base 6 b , because there is less space inside said burner base 6 a . This also allows more returned heat to be transported off.
- Said bypass pipe 50 may also be of the same cross section or diameter as said cooling circuit feed pipe 47 and said cooling circuit return pipe 48 , because the cross section or diameter will be reduced in the burner base 6 b , particularly in said liquid feed pipe 32 , so that only as much of said liquid 8 will reach said burner chamber 27 as is required for a cutting or welding process.
- the amount of said liquid 8 may be controlled by the pressure.
- FIG. 4 shows that said switch 18 is configured as a protective switch 51 , thus ensuring that said protective switch 51 may not be actuated when said vapor burner 6 is put down.
- Said protective switch 51 is equipped with a safety hook 52 arranged above a switch element 53 . Any user intending to actuate said switch element 53 has to first press said safety hook 52 down and forward in order to reach said switch element 53 with his finger. The movement of said safety hook 52 activates a release device, e.g. in the form of a micro-switch (not shown), so that upon actuating said switch element 53 a signal is sent to said control device 3 . Said release device ensures that said switch element 53 may only be activated when said safety hook 52 is actuated, and if said safety hook 52 is broken off, said switch element 53 can not be activated.
- a release device e.g. in the form of a micro-switch (not shown)
- said cathode 22 is e.g. shaped accordingly to allow heat to be conducted from the burner chamber 27 area to the area behind said cathode support 28 .
- said cathode 22 has a plane or even front surface in the area of said cathode support 28 , and preferably this entire surface is connected to the cathode support 28 material when said cathode support 28 is screwed in.
- the back stop of said cathode 22 serves to optimally conduct off the heat together with said cathode support 28 , thus allowing transfer of more thermal energy via said screw thread 29 and the back stop of said cathode 22 .
- said cathode support 28 has a coating, particularly a ceramic coating with an additional sealing layer, thus allowing even better heat transfer from said cathode support 28 to said liquid 8 in the parallel cooling canal.
- Said ceramic coating serves to insulate said cathode support 28 against said liquid 8 or any other contacting parts, while said sealing layer serves to seal said ceramic layer against said liquid 8 , keeping any liquid 8 from permeating through said ceramic layer towards said cathode support.
- Said sealing layer is e.g. resin based, thus providing high temperature resistance.
- said ceramic layer is between 100 ⁇ m and 400 ⁇ m thick, particularly 200 ⁇ m.
- the surface of said ceramic coating may have a certain structure, in particular, it may be as rough as possible (surface roughness) to increase its surface area and thus allow better heat transfer.
- said surface roughness in the area of said cathode support 28 is 0.2 ⁇ m to 1 ⁇ m, preferably 0.5 ⁇ m.
- said cathode 22 has a cylindrical part at the thread shoulder, which is between 2 mm and 5 mm long and has an outer diameter corresponding to the inner diameter of said screw thread 29 in said cathode support 28 .
- This allows centering and alignment when said cathode 22 is attached to said cathode support 28 , so that said cathode may be easily screwed into said cathode support 28 by simply twisting and applying pressure.
- said cathode 22 has a centering plane in the area of said thread, which is located in the end part of said thread in the direction of said burner chamber 27 , which means that said thread is formed between said cylindrical area and said centering plane.
- Said centering plane has a certain length of between 2 mm and 8 mm, preferably 4.5 mm.
- transverse hole 40 does not only serve as an anti-distortion means but also as a defined shoulder to lift off said cathode 22 , particularly said cathode support 28 .
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Arc Welding Control (AREA)
Abstract
Description
Claims (37)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0147705A AT502448B1 (en) | 2005-09-09 | 2005-09-09 | WATER VAPOR PLASMA BURNER |
ATA1477/2005 | 2005-09-09 | ||
PCT/AT2006/000366 WO2007028183A2 (en) | 2005-09-09 | 2006-09-06 | Vapor plasma burner |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090230096A1 US20090230096A1 (en) | 2009-09-17 |
US8212172B2 true US8212172B2 (en) | 2012-07-03 |
Family
ID=37395990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/990,814 Expired - Fee Related US8212172B2 (en) | 2005-09-09 | 2006-09-06 | Vapor plasma burner |
Country Status (6)
Country | Link |
---|---|
US (1) | US8212172B2 (en) |
EP (1) | EP1922909B1 (en) |
JP (1) | JP2009507347A (en) |
CN (1) | CN101258785B (en) |
AT (1) | AT502448B1 (en) |
WO (1) | WO2007028183A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9151487B2 (en) | 2010-12-29 | 2015-10-06 | Fronius International Gmbh | Heating element, steam cutting device, and burner of a power-generating device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8975555B2 (en) | 2010-07-16 | 2015-03-10 | Hypertherm, Inc. | Protective shell for a hand held plasma cutting torch |
DE102014117860B4 (en) * | 2014-12-04 | 2016-09-01 | Jochen Zierhut | Method of igniting a plasma torch and plasma torch |
FR3132413A1 (en) * | 2022-01-31 | 2023-08-04 | Akryvia | IMPROVED ELECTRODE FOR A PLASMA CUTTING TORCH |
FR3132408A1 (en) * | 2022-01-31 | 2023-08-04 | Akryvia | PLASMA CUTTING TORCH WITH INDIRECT CONSUMABLE COOLING |
CN115625471B (en) * | 2022-10-31 | 2024-05-28 | 陕西风润智能制造研究院有限公司 | Device for realizing lifting and overturning of large-sized workpiece by utilizing gear rack |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3004189A (en) | 1959-10-05 | 1961-10-10 | Plasmadyne Corp | Combination automatic-starting electrical plasma torch and gas shutoff valve |
US3217133A (en) | 1962-02-14 | 1965-11-09 | Saint Gobain | Plasma torch |
US3242305A (en) | 1963-07-03 | 1966-03-22 | Union Carbide Corp | Pressure retract arc torch |
WO1988005704A1 (en) | 1987-01-30 | 1988-08-11 | Hypertherm, Inc. | Arc plasma torch and method using contact starting |
US4902871A (en) | 1987-01-30 | 1990-02-20 | Hypertherm, Inc. | Apparatus and process for cooling a plasma arc electrode |
DE4138897A1 (en) | 1990-11-29 | 1992-06-25 | Trafimet Trafilerie Metalliche | PLASMA CUTTING TORCH WITH CONTACT IGNITION |
EP0640426A1 (en) | 1993-02-23 | 1995-03-01 | APUNEVICH, Alexandr Ivanovich | Electric arc plasma torch |
WO1999038365A1 (en) | 1998-01-23 | 1999-07-29 | Fronius Schweissmaschinen Produktion Gmbh & Co. Kg | Torch for cutting processes |
DE19825555A1 (en) | 1998-06-08 | 1999-12-09 | Plasma Scorpion Schneiden Und | Arc plasma generator |
US6084199A (en) | 1997-08-01 | 2000-07-04 | Hypertherm, Inc. | Plasma arc torch with vented flow nozzle retainer |
DE10008255A1 (en) | 1999-08-03 | 2001-02-15 | Peter Puschner | Plasma burner used in plasma arc welding comprises a vapor outlet opening arranged between a vaporizer for producing water vapor and an ionization chamber |
CN2544872Y (en) | 2002-03-25 | 2003-04-16 | 上海波宝仟赫科技有限公司 | Handheld plasma cutting welder |
JP2004268089A (en) | 2003-03-07 | 2004-09-30 | Reitekku:Kk | Steam plasma torch |
US6815632B2 (en) | 2003-01-14 | 2004-11-09 | Cebora S.P.A. | Contact start plasma torch |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1589207A1 (en) * | 1967-01-20 | 1970-05-14 | Leitz Ernst Gmbh | Plasma torch |
CH493183A (en) * | 1969-06-05 | 1970-06-30 | Lonza Ag | Method for regulating the flow in a liquid-stabilized plasma generator |
US4775774A (en) * | 1985-11-29 | 1988-10-04 | Caneer Jr Clifford | Plasma arc welding apparatus |
JPH0688597B2 (en) * | 1988-09-12 | 1994-11-09 | 松下電器産業株式会社 | Cartridge tank |
JP3390788B2 (en) * | 1993-09-13 | 2003-03-31 | 独立行政法人産業技術総合研究所 | Method of generating high-frequency induction thermal plasma and method of decomposing organic halogen compound |
AUPM470994A0 (en) * | 1994-03-25 | 1994-04-21 | Commonwealth Scientific And Industrial Research Organisation | Plasma torch condition monitoring |
AT411442B (en) * | 2001-02-09 | 2004-01-26 | Fronius Schweissmasch Prod | METHOD FOR SOLDERING WORKPIECES |
JP2004111137A (en) * | 2002-09-17 | 2004-04-08 | Fujimura Tadamasa | Manufacturing method and manufacturing device of hydrogen by plasma reaction method |
-
2005
- 2005-09-09 AT AT0147705A patent/AT502448B1/en not_active IP Right Cessation
-
2006
- 2006-09-06 CN CN2006800326531A patent/CN101258785B/en not_active Expired - Fee Related
- 2006-09-06 WO PCT/AT2006/000366 patent/WO2007028183A2/en active Application Filing
- 2006-09-06 US US11/990,814 patent/US8212172B2/en not_active Expired - Fee Related
- 2006-09-06 EP EP06774764.2A patent/EP1922909B1/en not_active Not-in-force
- 2006-09-06 JP JP2008529412A patent/JP2009507347A/en active Pending
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3004189A (en) | 1959-10-05 | 1961-10-10 | Plasmadyne Corp | Combination automatic-starting electrical plasma torch and gas shutoff valve |
US3217133A (en) | 1962-02-14 | 1965-11-09 | Saint Gobain | Plasma torch |
US3242305A (en) | 1963-07-03 | 1966-03-22 | Union Carbide Corp | Pressure retract arc torch |
WO1988005704A1 (en) | 1987-01-30 | 1988-08-11 | Hypertherm, Inc. | Arc plasma torch and method using contact starting |
US4902871A (en) | 1987-01-30 | 1990-02-20 | Hypertherm, Inc. | Apparatus and process for cooling a plasma arc electrode |
JPH02501904A (en) | 1987-01-30 | 1990-06-28 | ハイパーサーム,インコーポレイテッド | How to use arc plasma torch and contact start |
EP0490882A1 (en) | 1987-01-30 | 1992-06-17 | Hypertherm, Inc. | Arc plasma torch and method using contact starting |
US5164569A (en) | 1990-11-29 | 1992-11-17 | Trafimet Sas | Plasma-operated cutting torch with contact starting |
DE4138897A1 (en) | 1990-11-29 | 1992-06-25 | Trafimet Trafilerie Metalliche | PLASMA CUTTING TORCH WITH CONTACT IGNITION |
EP0640426A1 (en) | 1993-02-23 | 1995-03-01 | APUNEVICH, Alexandr Ivanovich | Electric arc plasma torch |
US6084199A (en) | 1997-08-01 | 2000-07-04 | Hypertherm, Inc. | Plasma arc torch with vented flow nozzle retainer |
WO1999038365A1 (en) | 1998-01-23 | 1999-07-29 | Fronius Schweissmaschinen Produktion Gmbh & Co. Kg | Torch for cutting processes |
EP1050200A1 (en) | 1998-01-23 | 2000-11-08 | FRONIUS Schweissmaschinen Produktion GmbH & Co. KG | Torch for cutting processes |
US6326581B1 (en) | 1998-01-23 | 2001-12-04 | Fronius Schweissmaschinen Produktion Gmbh & Co. Kg | Torch for cutting processes |
DE19825555A1 (en) | 1998-06-08 | 1999-12-09 | Plasma Scorpion Schneiden Und | Arc plasma generator |
DE10008255A1 (en) | 1999-08-03 | 2001-02-15 | Peter Puschner | Plasma burner used in plasma arc welding comprises a vapor outlet opening arranged between a vaporizer for producing water vapor and an ionization chamber |
CN2544872Y (en) | 2002-03-25 | 2003-04-16 | 上海波宝仟赫科技有限公司 | Handheld plasma cutting welder |
US6815632B2 (en) | 2003-01-14 | 2004-11-09 | Cebora S.P.A. | Contact start plasma torch |
JP2004268089A (en) | 2003-03-07 | 2004-09-30 | Reitekku:Kk | Steam plasma torch |
Non-Patent Citations (3)
Title |
---|
Chinese Office action dated Apr. 29, 2011 in Chinese Patent Application No. 200680032653.1 (With English translation of same). |
International Search Report. |
Japanese Examination Report dated Mar. 13, 2012 in JP 2008-529412 with English Translation. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9151487B2 (en) | 2010-12-29 | 2015-10-06 | Fronius International Gmbh | Heating element, steam cutting device, and burner of a power-generating device |
Also Published As
Publication number | Publication date |
---|---|
EP1922909A2 (en) | 2008-05-21 |
JP2009507347A (en) | 2009-02-19 |
US20090230096A1 (en) | 2009-09-17 |
WO2007028183A2 (en) | 2007-03-15 |
WO2007028183A3 (en) | 2007-07-26 |
AT502448B1 (en) | 2007-06-15 |
CN101258785A (en) | 2008-09-03 |
EP1922909B1 (en) | 2016-11-16 |
AT502448A1 (en) | 2007-03-15 |
CN101258785B (en) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090045174A1 (en) | Device for exchanging a nozzle of a vapor plasma burner and nozzle and guard ring | |
US8212172B2 (en) | Vapor plasma burner | |
CN101390454B (en) | Transferred-arc plasma torch | |
US8575510B2 (en) | Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap, and liquid-cooled plasma burner comprising such an arrangement | |
US8389887B2 (en) | Apparatus and method for a liquid cooled shield for improved piercing performance | |
EP2393343B1 (en) | Apparatus and method for a cooled retaining cap of a plasma arc torch | |
JP5285782B2 (en) | Device for jetting fluid liquid having high temperature | |
EP0196612B1 (en) | Plasma arc apparatus | |
WO2009099463A2 (en) | Plasma arc torch cutting component with optimized water cooling | |
US20040028396A1 (en) | Electric heating device | |
CN113195143B (en) | Gas nozzle for protecting gas flow and burner neck piece with same | |
EP2029309A2 (en) | Plasma arc torch cutting component with optimized water cooling | |
JP6073475B2 (en) | Tungsten inert gas welding | |
EP2651591B1 (en) | Tungsten inert gas welding torch with improved liquid cooling | |
CN101288347B (en) | Method for operation of a steam plasma burner and steam cutting device | |
US20090277892A1 (en) | cooling of a welding implement | |
CN207071495U (en) | A kind of glue rifle heater | |
JPH1128554A (en) | Plasma torch and molten steel heating tundish utilizing the same | |
CN111107955A (en) | Welding torch body for thermal joining | |
EP1522372A1 (en) | Temperature indicating consumable | |
JP2007125568A (en) | Plasma torch | |
JP2007128677A (en) | Plasma torch | |
CN107000129B (en) | Vacuum insulated welding torch | |
CN107321566A (en) | A kind of glue rifle heater | |
RU2802612C2 (en) | Gas nozzle for release of shielding gas flow and burner with gas nozzle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FRONIUS INTERNATIONAL GMBH, AUSTRIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HABERLER, WOLFGANG;HEINRICH, MICHAL;LANGEDER, HARALD;AND OTHERS;REEL/FRAME:020588/0407;SIGNING DATES FROM 20071105 TO 20071112 Owner name: FRONIUS INTERNATIONAL GMBH, AUSTRIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HABERLER, WOLFGANG;HEINRICH, MICHAL;LANGEDER, HARALD;AND OTHERS;SIGNING DATES FROM 20071105 TO 20071112;REEL/FRAME:020588/0407 |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240703 |