US8157994B2 - Extraction with fractionation of oil and co-products from oleaginous material - Google Patents
Extraction with fractionation of oil and co-products from oleaginous material Download PDFInfo
- Publication number
- US8157994B2 US8157994B2 US13/116,610 US201113116610A US8157994B2 US 8157994 B2 US8157994 B2 US 8157994B2 US 201113116610 A US201113116610 A US 201113116610A US 8157994 B2 US8157994 B2 US 8157994B2
- Authority
- US
- United States
- Prior art keywords
- extraction
- reservoir
- diffusate
- water
- final
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 32
- 238000000605 extraction Methods 0.000 title claims description 92
- 238000005194 fractionation Methods 0.000 title description 9
- 150000002632 lipids Chemical class 0.000 claims abstract description 137
- 238000000926 separation method Methods 0.000 claims description 63
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 40
- 239000012465 retentate Substances 0.000 claims description 37
- 239000003021 water soluble solvent Substances 0.000 claims description 34
- 239000012528 membrane Substances 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 17
- 238000009835 boiling Methods 0.000 claims description 13
- 230000007723 transport mechanism Effects 0.000 claims description 10
- 239000004952 Polyamide Substances 0.000 claims description 8
- 239000004642 Polyimide Substances 0.000 claims description 8
- 229920002492 poly(sulfone) Polymers 0.000 claims description 8
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 8
- 229920002647 polyamide Polymers 0.000 claims description 8
- 229920001721 polyimide Polymers 0.000 claims description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 8
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 49
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 54
- 239000002904 solvent Substances 0.000 description 49
- 230000007935 neutral effect Effects 0.000 description 48
- 241000195493 Cryptophyta Species 0.000 description 42
- 239000002028 Biomass Substances 0.000 description 41
- 238000011084 recovery Methods 0.000 description 38
- 239000003921 oil Substances 0.000 description 28
- 235000019198 oils Nutrition 0.000 description 28
- 230000008569 process Effects 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- 239000007787 solid Substances 0.000 description 12
- 238000000638 solvent extraction Methods 0.000 description 11
- 235000015112 vegetable and seed oil Nutrition 0.000 description 11
- 239000008158 vegetable oil Substances 0.000 description 11
- 239000003876 biosurfactant Substances 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000003808 methanol extraction Methods 0.000 description 9
- 239000000284 extract Substances 0.000 description 8
- 239000003208 petroleum Substances 0.000 description 8
- 150000003626 triacylglycerols Chemical class 0.000 description 8
- 239000002551 biofuel Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 229930186217 Glycolipid Natural products 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 150000003904 phospholipids Chemical class 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 210000002421 cell wall Anatomy 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000287 crude extract Substances 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- -1 fatty acid esters Chemical class 0.000 description 3
- 238000000855 fermentation Methods 0.000 description 3
- 230000004151 fermentation Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000000787 lecithin Substances 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- 235000010445 lecithin Nutrition 0.000 description 3
- 238000005374 membrane filtration Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000000874 microwave-assisted extraction Methods 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000135 prohibitive effect Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- 150000003625 trehaloses Chemical class 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- BZANQLIRVMZFOS-ZKZCYXTQSA-N (3r,4s,5s,6r)-2-butoxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound CCCCOC1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O BZANQLIRVMZFOS-ZKZCYXTQSA-N 0.000 description 1
- JLPULHDHAOZNQI-ZTIMHPMXSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 241000220010 Rhode Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000011021 bench scale process Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- SIHHLZPXQLFPMC-UHFFFAOYSA-N chloroform;methanol;hydrate Chemical compound O.OC.ClC(Cl)Cl SIHHLZPXQLFPMC-UHFFFAOYSA-N 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- 239000001752 chlorophylls and chlorophyllins Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 244000038559 crop plants Species 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000469 ethanolic extract Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000002030 fractions by solvent Substances 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005373 pervaporation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 239000010913 used oil Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000010497 wheat germ oil Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B1/00—Production of fats or fatty oils from raw materials
- C11B1/10—Production of fats or fatty oils from raw materials by extracting
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B3/00—Refining fats or fatty oils
- C11B3/008—Refining fats or fatty oils by filtration, e.g. including ultra filtration, dialysis
Definitions
- Embodiments of the present invention relate generally to systems and methods for extracting lipids of varying polarity from a wet oleaginous material, including for example, an algal biomass.
- embodiments of the present invention concern the ability to both extract & fractionate the algae components by doing sequential extractions with a hydrophilic solvent/water mixture that becomes progressively less polar (i.e. water in solvent/water ratio is progressively reduced as one proceed from one extraction step to the next).
- the interstitial solvent in the algae (75% of its weight) is water initially and is replaced by the polar solvent gradually to the azeotrope of the organic solvent. This results in the extraction of components soluble in the polarity developed at each step, thereby leading to simultaneous fractionation of the extracted components.
- Algae have gained significant importance in the recent years given their inherent advantage in solving several critical issues of the world such as producing renewable fuels, reducing global climate change, wastewater treatment and sustainability. Algae's superiority as a biofuel feedstock arises from a variety of factors, viz, high per-acre productivity compared to typical terrestrial oil crop plants, non-food based feedstock resources, use of otherwise non-productive, non-arable land, utilization of a wide variety of water sources (fresh, brackish, saline, and wastewater), production of both biofuels and valuable co-products.
- the ability to easily recover and fractionate the various oil/byproducts produced by algae is critical to the economic success of the algae oil process.
- lipids produced by algae are similar in composition compared to the contemporary oil sources such as oil seeds, cereals, and nuts.
- the lipid composition and content vary at different stages of the life cycle and are affected by environmental and culture conditions.
- the strategies and approaches for extraction are rather different depending on individual algal species/strains employed.
- the conventional physical extraction processes such as extrusion, do not work well with algae given the thickness of the cell wall and the small size (2 ⁇ 20 nm) of algal cells.
- the large amounts of polar lipids in the algal oil compared to the typical oil seeds lead to refining issues. However, this can be a great opportunity to recover large amounts of polar lipids which have an existing market and add value to the process.
- Typical algal concentration in the culture upon harvesting is about 0.1 ⁇ 1.0% (w/v), thereby requiring the process to remove as high as 1000 times the amount of water to process a unit weight of algae.
- Conventional or the currently existing oil extraction methods for oleagenous materials strictly require almost completely dry biomass or feed to improve the yield and quality of the oil extracted, thereby rendering the feed to the biofuels process uneconomical and energy-intensive.
- the feed is extruded or flaked at high temperatures to enhance the extraction. These steps may not work with the existing equipment due to the single cell micrometric nature of algae.
- Algal oil extraction can be classified as disruptive and non-disruptive methods. Disruptive methods involve cell lysis by mechanical (see U.S. Pat. No.
- Algal oils contain a large percentage of polar lipids and proteins which enhance the emulsification of the neutral lipids further stabilized by the nutrient and salt components left in the solution. The resulting oil is a complex mixture requiring an extensive refining process to obtain neutral lipids (feed for conversion to biofuels).
- Non-Disruptive methods provide low yields. Milking is a variant of the proposed process. However, it may not work with some species of algae due to solvent toxicity and cell wall disruption. A specific process may be required for each algal strain, mutant and genetic modified organism. Further, the volumes of solvents required would be astronomical due to the maximum attainable concentration in the medium. Multiphase extractions (see U.S. Pat. No. 6,166,231) will require extensive distillations with complex solvent mixtures for solvent recovery and recycle.
- the proposed non-disruptive alcoholic extraction process results in over 90% extraction efficiency, and the small amount of polar lipids in the remaining biomass enhances its value.
- ethanol extracts can further be directly transesterified.
- it is a generic process for any algae, and recovers all the valuable components (polar lipids) in the algae with a gradient in alcohol-water mixture.
- the neutral lipids fraction has a low metal content to start with, thereby enhancing the stability and improving process economics in the subsequent steps.
- the proposed system and methods start with wet biomass, reducing the dying and dewatering costs. Compared to the contemporary processes, this process should have a relatively low operating cost due to the moderate temperature and pressure conditions along with the solvent recycle. In addition, continuous solvent extraction is a proven technology, and chlorophylls may be removed from the fuel-lipid fractions by solvent and solid interactions. Furthermore, the existing processes are cost prohibitive and cannot meet the demand of the market.
- the polar lipids are surfactants by nature due to their molecular structure.
- the world market of surfactants reached $23.9 billion in 2008, growing steadily at about 2.8%.
- biosurfactants could capture 10% of the surfactant market, reaching $2 billion in sales (Nitschke et al., 2005).
- the annual surfactant market in the U.S. is about 7.7 billion pounds, of which 60% is oleochemical based.
- biosurfactants are either derived directly from the vegetable oil refining processes, or from oil seeds, bacteria and yeast by extensive separation processes or enzymatic esterification.
- the U.S. food industry consumes over 100 million pounds per year of lecithin (soybean phospholipid, an anionic surfactant).
- lecithin an anionic surfactant
- the amount of phospholipids in the initial crude oil is at the most 3% (i.e., 3000 ppm).
- non-ionic synthetic surfactant consumption in the same market is four times the size of the lecithin market.
- Non-ionic biosurfactants such as glycolipids, if available in bulk, can potentially replace lecithin.
- rhamnolipids Some of the major glycolipid biosurfactants, rhamnolipids, sophorolipids, and trehalose lipids are produced by microbial fermentation.
- Rhamnolipids are produced intracellularly by the bacterium Pseudomonas sp.
- Sophorolipids are produced extracellularly by Candida sp.
- Trehalose lipids are cell wall components in Mycobacteria and Corynebacteria . These are major toxic components in the cell wall and reduce the permeability of the membranes conferring appreciable drug resistance to the organisms.
- These fermentation processes typically use hydrocarbons, glucose, vegetable oils as substrates (Gautam and Tyagi, 2006)
- each polar lipid has two fatty acid groups attached instead of three in the neutral lipid triacylglycerol, transesterification of the former may yield only two-thirds of the end product, i.e., esterified fatty acids, as compared to that of the latter, on a per mass basis.
- removal and recovery of the polar lipids would not only be highly beneficial in producing high quality biofuels or triglycerides from algae, but also generate value-added co-products glycolipids and phospholipids, which in turn can offset the cost associated with algae-based biofuel production.
- Biosurfactant recovery depends mainly on its ionic charge, water solubility, and location (intracellular, extracellular or membrane bound).
- Examples of strategies that can be used to separate and purify polar lipids in batch or continuous mode include (Gautam et al., 2006): (1) Batch mode: Precipitation (pH, organic solvent), solvent extraction and crystallization; (2) Continuous mode: centrifuging, adsorption, foam separation and precipitation, membranes (tangential flow filtration, diafiltration and precipitation, ultra filtration)
- exemplary embodiments of the present disclosure utilize a crude algal oil that is similar with a vegetable oil in terms of lipid and fatty acid composition.
- the differences between algal oil used in exemplary embodiments and vegetable oils used in previous embodiments include the percentage of individual classes of lipids.
- An exemplary algal crude oil composition is compared with vegetable oil shown in Table 1 below:
- Embodiments of the present invention relate generally to systems and methods for extracting lipids of varying polarities from an oleaginous material, including for example, an algal biomass.
- embodiments of the present invention concern extracting lipids of varying polarities from an algal biomass using a series of membrane filters.
- the recovery/extraction process can be done on a wet biomass.
- a major economic advantage of exemplary embodiments results from not having to dry and disrupt the cell. Data on extracting dry algae with many typical solvents (both polar & non polar) do not even come close to the recoveries/fractionations achieved with exemplary embodiments of the exemplary systems and methods. Disruption of wet biomass frequently results in emulsions and component separations are difficult.
- Exemplary embodiments may be applied to any algae or non-algae oleaginous material.
- Exemplary embodiments may use any water-miscible slightly non-polar solvent, including for example, MeOH, EtOH, IPA, Acetone, EtAc, AcN.
- Specific embodiments may use a green renewable solvent.
- extraction and fractionation can be performed in one step followed by membrane-based purification if needed. The resulting biomass is almost devoid of water and can be completely dried with lesser energy than aqueous algae slurry.
- Certain embodiments comprise a method of extracting lipids from an oleaginous material, where the method comprises: providing a plurality of inlet reservoirs and a plurality of separation devices and directing an oleaginous material and a water-soluble solvent through the plurality of inlet reservoirs and the plurality of separation devices.
- each of the plurality of separation devices separates the oleaginous material and the water-soluble solvent into a retentate portion and a diffusate portion.
- Particular embodiments also comprise directing the retentate portion to a subsequent inlet reservoir and separation device and recycling the diffusate portion to a prior inlet reservoir.
- the oleaginous material can be an algal biomass, and in certain embodiments the oleaginous material is wet.
- the water-soluble solvent can be selected from the group consisting of: MeOH, EtOH, IPA, acetone, EtAc, or AcN.
- cells of the oleaginous material may not be dried or disrupted.
- extraction and fractionation of the oleaginous material can be performed in a single step.
- a first separation device can separate the oleaginous material and the water-soluble solvent into a first retentate portion and a first diffusate portion.
- a second separation device can separate the oleaginous material and the water-soluble solvent into a first retentate portion and a first diffusate portion, where the first retentate portion comprises a higher concentration of polar lipids than the second retentate portion and where the second retentate portion comprises a higher concentration of neutral lipids than the first retentate portion.
- the neutral lipids can comprise triglycerides.
- the plurality of separation devices can comprise a first separation device and a second separation device.
- the first separation device can separate the oleaginous material and the water-soluble solvent into a first retentate portion and a first diffusate portion
- the second separation device can separate the oleaginous material and the water-soluble solvent into a first retentate portion and a first diffusate portion.
- the first retentate portion can have a higher polarity than the second retentate portion.
- the plurality of separation devices can comprise a plurality of membrane filters.
- the membrane can comprise one or more of the following materials: polyethersulfone (PES), polyamide (PA), polysulfone (PS), polyvinylidene difluoride (PVDF), polyimide (PI), and polyacrylonitrile (PAN).
- the water-soluble solvent can comprise an alcohol.
- the water-soluble solvent can be maintained at a temperature near the boiling point of the water-soluble solvent. In specific embodiments, the water-soluble solvent can be maintained at a temperature between 40 and 70 degrees Celsius.
- the plurality of separation devices can comprise: a first separation device configured to separate particles larger than 100 ⁇ m from particles smaller than 100 ⁇ m; a second separation device configured to separate particles larger than 10 ⁇ m from particles smaller than 10 ⁇ m; and a third separation device configured to separate particles larger than 1 ⁇ m from particles smaller than 1 ⁇ m.
- the plurality of inlet reservoirs can be maintained at a pressure of approximately 1-10 bars.
- the diffusate portion can be directed to a recycle reservoir and before being recycled to the prior inlet reservoir.
- Particular embodiments can comprise a recycle pump configured to recycle the diffusate portion to the prior inlet reservoir.
- Certain embodiments can comprise a system for extracting lipids from an oleaginous material, where the system comprises: a first, second, and third inlet reservoir, and a transport mechanism configured to move the oleaginous material and a water-soluble solvent from the first inlet reservoir to the second inlet reservoir, and from the second inlet reservoir to the third inlet reservoir.
- Particular embodiments may also comprise a first separation device between the first and second inlet reservoirs, where the first separation device is configured to separate the oleaginous material and the water-soluble solvent into a first retentate portion and a first diffusate portion.
- Specific embodiments can also comprise a second separation device between the second and third inlet reservoirs, where the second separation device is configured to separate the oleaginous material and the water-soluble solvent into a second retentate portion and a second diffusate portion.
- Certain embodiments of the system can also comprise a first recycle pump configured to pump the first diffusate portion to the first inlet reservoir, and a second recycle pump configured to pump the second diffusate portion to the second inlet reservoir.
- the first and second separation devices each comprise a membrane filter.
- the membrane filter of the first separation device can be configured to separate particles larger than 100 ⁇ m from particles smaller than 100 ⁇ m.
- the membrane filter of the second separation device can be configured to separate particles larger than 10 ⁇ m from particles smaller than 10 ⁇ m.
- the membrane filters of the first and second separation devices can comprise one or more of the following materials: polyethersulfone (PES), polyamide (PA), polysulfone (PS), polyvinylidene difluoride (PVDF), polyimide (PI), and polyacrylonitrile (PAN).
- the first retentate portion can comprise a higher concentration of polar lipids than the second retentate portion, and the second retentate portion comprises a higher concentration of neutral lipids than the first retentate portion.
- the water-soluble solvent can comprise an alcohol.
- the water-soluble solvent can be maintained at a temperature near the boiling point of the water-soluble solvent. In certain embodiments, the water-soluble solvent can be maintained at a temperature between 40 and 70 degrees Celsius.
- conduit or any variation thereof, when used in the claims and/or specification, includes any structure through which a fluid may be conveyed.
- Non-limiting examples of conduit include pipes, tubing, channels, or other enclosed structures.
- reservoir or any variation thereof, when used in the claims and/or specification, includes any body structure capable of retaining fluid.
- Non-limiting examples of reservoirs include ponds, tanks, lakes, tubs, or other similar structures.
- the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”), or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- FIG. 1 is a flowchart of steps involved in a method according to an exemplary embodiment of the present disclosure.
- FIG. 2 is a schematic diagram of an exemplary embodiment of an extraction system according to the present disclosure.
- FIG. 3 is a comparative chart showing Sohxlet extraction of freeze dried algae biomass using an array of solvents encompassing the complete polarity range showing maximum non-disruptive algae oil extraction efficiency and the effect of polarity on the polar and non-polar lipids extraction.
- FIG. 4 is a chart showing neutral lipids (a) Purity (b) Recovery in the two step solvent extraction process using methanol and petroleum ether at three different temperatures.
- FIG. 5 is a chart showing neutral lipids (a) Purity (b) Recovery in the two step solvent extraction process using aqueous methanol and petroleum ether at three different temperatures.
- FIG. 6 is a chart showing lipid recovery in the two step solvent extraction process using aqueous methanol and petroleum ether at three different temperatures.
- FIG. 7 is a chart showing the effect of solvents solid ratio on lipid recovery.
- FIG. 8 is a chart showing the effect of additives on a single step extraction recovery of aqueous methanol on dry biomass.
- FIG. 9 is a chart showing the effect of multiple step methanol extractions on the cumulative total lipid yield and the neutral lipids purity. (112 g wet biomass (25.6% dry weight) extracted with 350 mL pure methanol for 10 minutes at 160 W irradiance power in each step).
- FIG. 10 is a chart showing the cumulative recovery of lipids using wet biomass and ethanol.
- FIG. 11 is a chart showing comparison of the extraction times of the microwave assisted extraction and conventional extraction systems.
- FIG. 12 is a chart showing the effect of moisture content on extraction (Table 1: Comparison of algal oil to vegetable oil).
- the best case scenario is a solvent which selectively extracts triacylglycerols (TAG) and leaving all polar lipids and non-TAG neutral lipids such as waxes, sterols in the algal cell with high recoveries.
- TAG triacylglycerols
- the second option would be selectively extract polar lipids and then extract purer neutral lipids devoid of polar lipids, resulting in high recovery.
- the last option would be to extract all the lipids and achieve very high recovery in one or two steps.
- a flowchart 100 provides an overview of the steps involved in exemplary embodiments of methods used in the fractionation and purification of lipids from an algae-containing biomass.
- algal cells are harvested.
- water is removed from alga cells to yield a 10-25% solid biomass.
- a solvent-based extraction is performed on the biomass and the fractions are collected.
- membrane filtration may be performed in a step 140 to separate out smaller lipid components.
- the algae biomass when harvested in step 110 typically consists of 1-5 g/L of total solids.
- the biomass can be de-watered in step 120 using the techniques including, for example, dissolved air floatation, membrane filtration, flocculation, sedimentation, or centrifuging.
- the de-watered algae biomass resulting from step 120 typically consists of 10-30% solids.
- This biomass can then be extracted with water-soluble solvents (e.g., alcohols), in a multistage countercurrent solvent extraction process segregating the fractions at each stage.
- water-soluble solvents e.g., alcohols
- FIG. 2 a schematic diagram of an exemplary embodiment of an extraction system 200 one is provided.
- the wet or dry algal biomass is transported on a moving belt.
- the solvent for extraction is recirculated from a storage tank assigned to each biomass slot position.
- the extraction mixture is filtered returning the biomass solids back into the slot and the extract into the storage tank.
- the solids on the belt move periodically based on the residence time requirement for extraction.
- the extracts in each storage tanks may either be replenished at saturation or continuously replaced by fresh solvent. This would also reduce the downstream processing time and costs drastically.
- This embodiment comprises a primary reservoir 210 , a transport mechanism 220 , a plurality of separation devices 240 (e.g., membrane filtration devices), a plurality of extraction reservoirs 260 , and a plurality of recycle pumps 280 .
- primary reservoir 210 is divided up into a plurality of inlet reservoirs 211 - 218 .
- algal biomass (indicated by arrow 201 ) is placed a first inlet reservoir 211 near a first end 221 of transport mechanism 220 .
- solvent (indicated by arrow 205 ) is placed into inlet reservoir 218 near a second end 222 of transport mechanism 220 .
- Transport mechanism 220 directs the algal biomass along transport mechanism 220 from first end 221 towards second end 222 .
- the diffusate portions that pass through separation devices 241 - 248 are directed to reservoirs 261 - 268 .
- the diffusate portion of the algal biomass that passes through the first separation device 241 is directed to the first reservoir 261 .
- the diffusate portion can be recycled back to first inlet reservoir 201 .
- the retentate portion of the algal biomass that does not pass through first separation device 241 can then be directed by transport mechanism 220 to second inlet reservoir 212 and second separation device 242 , which can comprise a finer separation or filtration media than the first separation device 241 .
- the segment of the diffusate portion that passes through second separation device 242 can be directed to second reservoir 262 , and then recycled back to second inlet reservoir 212 via recycle pump 282 .
- the retentate or extracted portion of the algal biomass that does not pass through second separation device 242 can be directed by transport mechanism 220 to third inlet reservoir 213 . This process can be repeated for inlet reservoirs 213 - 218 and separation devices 243 - 248 such that the extracted portions at each stage are directed to the subsequent inlet reservoirs, while the diffusate portions are directed to the recycle reservoirs and recycled back to the current inlet reservoir.
- the last fraction extracted will be with the purest solvent and the first fraction with a saturated solvent.
- the process therefore extracts components in the order of decreasing polarity with the fraction.
- the function of the first fraction is to remove the residual water and facilitate the solvent extraction process.
- the fractions that follow are rich in polar lipids, while the final fractions are rich in neutral lipids.
- Methanol specifically could recover 67% of the total lipids and more than 90% of the polar lipids.
- methanol is a perfect proponent for our second option of selectively extracting polar lipids prior to extracting the neutral lipids using heptane or hexane.
- Other solvent classes tested did not show any selectivity towards lipids class since the neutral lipids purity was close to 49% (resembling the lipid composition in the biomass) and the total lipids recovery ranged from 15 to 35%, rendering these solvents not being suitable for a specific lipids class extraction or total lipids extraction.
- the results from the Sohxlet analysis were confirmed using the standard bench scale batch solvent extraction apparatus.
- the solvents selected were methanol for the first step to recover polar lipids and petroleum ether in the second step to recover neutral lipids. All the extractions were performed with a 1:10 solid:solvent ratio and with each step for 1 hour. The methanol extractions were performed at different temperatures as discussed below and the petroleum ether extraction was performed close to the boiling point of the solvent at 35 C throughout the following set of experiments. Petroleum ether was chosen because of its high selectivity to neutral lipids, low boiling point and the product quality observed after extraction. From FIG. 4 ( a ) we can observe that the neutral lipid purity in subsequent extraction after a methanol extraction step at 65° C. is over 80%. We can also see that the methanol extraction performed near the boiling point can significantly enhance the purity of the neutral lipids in the subsequent extraction.
- the polarity of the solvent can be increased by adding water to the solvent.
- the results are shown in FIG. 5 . From FIG. 5( a ) we can observe that the neutral lipid purity is much higher in the petroleum ether extraction than the previous case. Also, the loss of neutral lipids in the aqueous methanol extraction step is much lower than pure methanol. We also observed that higher temperature for methanol extraction improved the neutral lipid purity but slightly decreased the recovery in the subsequent step.
- FIG. 7 shows the effect of solvent solid ratio on the extraction recovery. Given the lower solubility of lipids in methanol compared to other commonly used oil extraction solvents such as hexane, we observed a drastic increase in the total lipid recovery by increasing the solvent to solid ratio.
- the extraction is effective close to the boiling point of the solvent used. At such temperatures, vapor phase penetration of the solvent into the algal cells is faster due to lesser mass transfer resistance. If the extraction temperature is allowed to significantly exceed the boiling point of the solvent, the solvent-water system can form an azeotrope. Thus maintaining the system at the boiling point of solvent would create enough vapors to enhance the extraction and not the capital costs. In addition, the solubility of oil is higher at higher temperatures, which can further increase the effectiveness at temperatures close to the solvent boiling point.
- FIG. 6 shows the total lipid recovery in the aqueous methanol-petroleum ether extraction scheme. Although performing the methanol extraction near its boiling temperature slightly decreases the neutral lipid recovery as observed in FIG. 5 b , it enhances the total lipid recovery.
- the solvent-to-solid ratio for the extraction is between 3-5 based on the dry weight of the solids in the biomass.
- the residual algal biomass is rich in carbohydrates (e.g., starch) and can be used as a feed stock to produce the solvent used for extraction.
- the boiling point of the aqueous ethanol is higher than aqueous methanol facilitating further recovery of lipids.
- the main advantages of this process would consist of the productivity of ethanol using the residual biomass after oil extraction, utilization of ethanol in the oil extract for transesterification. Further from FIG. 10 we can observe that the initial fractions are non-lipid rich followed by the lipid rich fractions and finally the neutral lipid fractions. Hence with a proper design of the extraction apparatus, one can recover all the three fractions in one process.
- FIG. 11( a ) is log-normal plot of the extraction time and total lipid recovery for the microwave and the conventional systems. As we can see the microwave system reduces the extraction time by 10 fold. Also from the slope of the curve we can see that the extraction rate for the microwave assisted system is about 4 times greater than that of the conventional method. However, the net recovery is higher for the conventional method due to higher recoveries of the polar lipids. Based on these results we have the best conditions for extraction of dry algal biomass using solvents with and without microwave assistance. Hence, we may need to modify the algal cells prior to extraction to enhance the productivity and efficiency.
- Moisture content is another important parameter of algae which will obviously influence the oil extraction performance.
- Algae sample with dry algae content at 10%, 25%, 33% were used to investigate the influence of moisture on extraction performance.
- the lipid evolution profile were largely influenced by the moisture content in the starting algae, when the dry weight decreased from 33% to 25% and 10%, the maximum lipid recovery step change to fourth extraction cycle from the third one.
- the overall lipid recovery from these three algae samples was quite similar, all above 95% of the reference value.
- the neutral lipid percentage in the crude extract of these three algae is shown in FIG. 12 . It can be found that the neutral lipid percentage in the first three steps is decreased as the dry weight algae decreased, while no difference was found in the last two cycles.
- the polar lipids rich fraction is further processed using membranes to separate smaller components such as triglycerides, fatty acids, carotenoids.
- membranes to separate smaller components such as triglycerides, fatty acids, carotenoids.
- the ability of polar lipids to aggregate can also been used to retain them on high-molecular-weight-cutoff membranes.
- Phospholipids are amphoteric molecules that can form reverse micelles in the medium with a molar mass above 20 kDa and molecular size from 20 to 200 nm (Koseoglu, 2002).
- Solvent stable ultrafiltration (UF) e.g., filtration of particles greater than approximately 10 ⁇ m
- nanofiltration (NF) e.g., filtration of particles greater than approximately 1 ⁇ m
- membranes can be made of polyethersulfone (PES), polyamide (PA), polysulfone (PS), polyvinylidene difluoride (PVDF), polyimide (PI), polyacrylonitrile (PAN) or suitable inorganic materials (Cheryan, 1988).
- PES polyethersulfone
- PA polyamide
- PS polysulfone
- PVDF polyvinylidene difluoride
- PI polyimide
- PAN polyacrylonitrile
- the separation is performed at low to moderate pressures (e.g., 1-10 bar), and the temperatures can be maintained between 40-70 C to reduce the viscosity of the lipids increasing the flux. In specific embodiments, greater than 90% rejection can be observed based on the membrane selected.
- the membrane separation results in a polar lipids fraction that is over 90% pure and is highly concentrated, which can minimize the additional steps to remove the solvent from the fraction.
- the fraction rich in neutral lipids e.g., triglycerides
- green microalga Scendesmus Dimorphus (SD) biomass samples with different lipid contents harvested from outdoor panel photobioreactor were used.
- the total lipids of algal samples were analyzed in a chloroform-methanol-water system according to Bligh and Dyer's method (ref) and used as reference for the lipid recovery calculation.
- Total lipids were further separated into neutral lipids and polar lipids by column chromatography using silica gel (60-200 mesh) (Merck Corp., Germany) as previously described: six volumes of chloroform to collect the neutral lipid class and 6 volumes of methanol to collect the polar lipids.
- Each lipid fraction was transferred into a pre-weighed vial, initially evaporated at (30° C.) using a rotary evaporator (Büchi, Switzerland) and then dried under high vacuum. The dried residuals were placed under nitrogen and then weighed.
- Fatty acid profile of lipids were quantified by GC-MS after derivatization into fatty acid methyl esters using heptadecanoic acid (C17:0) as the internal standard.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Fats And Perfumes (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
Systems and methods for extracting lipids of varying polarities from oleaginous material.
Description
This application is a continuation of International Application No. PCT/US2011/031353, filed Apr. 6, 2011, and entitled “Extraction With Fractionation of Oil and Co-Products From Oleaginous Material”, which claims priority to U.S. Provisional Patent App. No. 61/321,286, filed Apr. 6, 2010, entitled “Extraction With Fractionation of Oil and Co-Products From Oleaginous Material”, each of which is incorporated by reference herein in their entirety.
A. Field of the Invention
Embodiments of the present invention relate generally to systems and methods for extracting lipids of varying polarity from a wet oleaginous material, including for example, an algal biomass. In particular, embodiments of the present invention concern the ability to both extract & fractionate the algae components by doing sequential extractions with a hydrophilic solvent/water mixture that becomes progressively less polar (i.e. water in solvent/water ratio is progressively reduced as one proceed from one extraction step to the next). In other words, the interstitial solvent in the algae (75% of its weight) is water initially and is replaced by the polar solvent gradually to the azeotrope of the organic solvent. This results in the extraction of components soluble in the polarity developed at each step, thereby leading to simultaneous fractionation of the extracted components.
B. Description of Related Art
Algae have gained significant importance in the recent years given their inherent advantage in solving several critical issues of the world such as producing renewable fuels, reducing global climate change, wastewater treatment and sustainability. Algae's superiority as a biofuel feedstock arises from a variety of factors, viz, high per-acre productivity compared to typical terrestrial oil crop plants, non-food based feedstock resources, use of otherwise non-productive, non-arable land, utilization of a wide variety of water sources (fresh, brackish, saline, and wastewater), production of both biofuels and valuable co-products. However, the ability to easily recover and fractionate the various oil/byproducts produced by algae is critical to the economic success of the algae oil process.
Several thousand species of algae have been screened and studied for lipid production worldwide over the past several decades of which about 300 rich in lipid production have been identified. The lipids produced by algae are similar in composition compared to the contemporary oil sources such as oil seeds, cereals, and nuts. The lipid composition and content vary at different stages of the life cycle and are affected by environmental and culture conditions. Given considerable variability in biochemical composition and the physical properties of the algae cell wall, the strategies and approaches for extraction are rather different depending on individual algal species/strains employed. The conventional physical extraction processes such as extrusion, do not work well with algae given the thickness of the cell wall and the small size (2˜20 nm) of algal cells. Further, the large amounts of polar lipids in the algal oil compared to the typical oil seeds lead to refining issues. However, this can be a great opportunity to recover large amounts of polar lipids which have an existing market and add value to the process.
Typical algal concentration in the culture upon harvesting is about 0.1˜1.0% (w/v), thereby requiring the process to remove as high as 1000 times the amount of water to process a unit weight of algae. Conventional or the currently existing oil extraction methods for oleagenous materials strictly require almost completely dry biomass or feed to improve the yield and quality of the oil extracted, thereby rendering the feed to the biofuels process uneconomical and energy-intensive. The feed is extruded or flaked at high temperatures to enhance the extraction. These steps may not work with the existing equipment due to the single cell micrometric nature of algae. Algal oil extraction can be classified as disruptive and non-disruptive methods. Disruptive methods involve cell lysis by mechanical (see U.S. Pat. No. 6,750,048), thermal, enzymatic or chemical methods. Most disruptive methods result in emulsions and require an expensive cleanup process. Algal oils contain a large percentage of polar lipids and proteins which enhance the emulsification of the neutral lipids further stabilized by the nutrient and salt components left in the solution. The resulting oil is a complex mixture requiring an extensive refining process to obtain neutral lipids (feed for conversion to biofuels).
Non-Disruptive methods provide low yields. Milking is a variant of the proposed process. However, it may not work with some species of algae due to solvent toxicity and cell wall disruption. A specific process may be required for each algal strain, mutant and genetic modified organism. Further, the volumes of solvents required would be astronomical due to the maximum attainable concentration in the medium. Multiphase extractions (see U.S. Pat. No. 6,166,231) will require extensive distillations with complex solvent mixtures for solvent recovery and recycle.
The proposed non-disruptive alcoholic extraction process results in over 90% extraction efficiency, and the small amount of polar lipids in the remaining biomass enhances its value. In addition, ethanol extracts can further be directly transesterified. Furthermore, it is a generic process for any algae, and recovers all the valuable components (polar lipids) in the algae with a gradient in alcohol-water mixture. The neutral lipids fraction has a low metal content to start with, thereby enhancing the stability and improving process economics in the subsequent steps.
The proposed system and methods start with wet biomass, reducing the dying and dewatering costs. Compared to the contemporary processes, this process should have a relatively low operating cost due to the moderate temperature and pressure conditions along with the solvent recycle. In addition, continuous solvent extraction is a proven technology, and chlorophylls may be removed from the fuel-lipid fractions by solvent and solid interactions. Furthermore, the existing processes are cost prohibitive and cannot meet the demand of the market.
Another aspect of proposed systems and methods is the ability to separate the polar lipids from neutral lipids during the extraction process. The polar lipids along with metals result in processing difficulties for separation and utilization of neutral lipids. We take this opportunity to develop a value added aspect to the extraction process and at the same time separate the polar lipids. The polar lipids are surfactants by nature due to their molecular structure. The world market of surfactants reached $23.9 billion in 2008, growing steadily at about 2.8%. By the year of 2010, biosurfactants could capture 10% of the surfactant market, reaching $2 billion in sales (Nitschke et al., 2005). The annual surfactant market in the U.S. is about 7.7 billion pounds, of which 60% is oleochemical based. These biosurfactants are either derived directly from the vegetable oil refining processes, or from oil seeds, bacteria and yeast by extensive separation processes or enzymatic esterification. There is a large existing surfactants market for phospholipids. The U.S. food industry consumes over 100 million pounds per year of lecithin (soybean phospholipid, an anionic surfactant). These are co-products of soybean and other vegetable oil refining processes. However, the amount of phospholipids in the initial crude oil is at the most 3% (i.e., 3000 ppm). Also, non-ionic synthetic surfactant consumption in the same market is four times the size of the lecithin market. Non-ionic biosurfactants such as glycolipids, if available in bulk, can potentially replace lecithin.
Some of the major glycolipid biosurfactants, rhamnolipids, sophorolipids, and trehalose lipids are produced by microbial fermentation. Rhamnolipids are produced intracellularly by the bacterium Pseudomonas sp. Sophorolipids are produced extracellularly by Candida sp. Trehalose lipids are cell wall components in Mycobacteria and Corynebacteria. These are major toxic components in the cell wall and reduce the permeability of the membranes conferring appreciable drug resistance to the organisms. These fermentation processes typically use hydrocarbons, glucose, vegetable oils as substrates (Gautam and Tyagi, 2006)
Recently the synthesis of biosurfactants has been developed using microbial enzymes. There have been many reports on the synthesis of sugar fatty acid esters from sugars (glucose, fructose and sucrose) and sugar alcohols (glycerol, xylitol and sorbitol) catalyzed by lipases (Kitamoto et al., 2002). In the lipase-catalyzed esterification, which is a dehydration condensation, one of the major difficulties is how to efficiently remove water produced as the reaction progresses or how to properly regenerate the solvent. Several strategies are being used to surmount these problems, namely to perform the reaction under reduced pressure, to use water adsorbents like molecular sieves, or to employ membrane pervaporation techniques (Yahya et al., 1998; Yan et al., 2001). Further, there is a problem with stability and activity of the enzyme, and the solubility of substrates (especially solubility of sugars in organic solvents). An example of the industrial production of glycolipid biosurfactants using the enzyme method is synthesis of a butyl glucoside from maltose and n-butanol by glucose transferase with an annual yield of 240 kg (Bonsuet et al., 1999).
All the existing technologies for producing polar lipids are raw material or cost prohibitive. Other economical alternative feedstocks for glycolipids and phospholipids are mainly algae oil, oat oil, wheat germ oil and vegetable oil. Algae oil typically has 30-85% (w/w) polar lipids depending on the species, physiological status of the cell, culture conditions, time of harvest, and the solvent utilized for extraction. The biosurfactant properties that enable numerous commercial applications also increase the separation costs and losses at every processing step. Because the glycerol backbone of each polar lipid has two fatty acid groups attached instead of three in the neutral lipid triacylglycerol, transesterification of the former may yield only two-thirds of the end product, i.e., esterified fatty acids, as compared to that of the latter, on a per mass basis. Hence, removal and recovery of the polar lipids would not only be highly beneficial in producing high quality biofuels or triglycerides from algae, but also generate value-added co-products glycolipids and phospholipids, which in turn can offset the cost associated with algae-based biofuel production.
Biosurfactant recovery depends mainly on its ionic charge, water solubility, and location (intracellular, extracellular or membrane bound). Examples of strategies that can be used to separate and purify polar lipids in batch or continuous mode include (Gautam et al., 2006): (1) Batch mode: Precipitation (pH, organic solvent), solvent extraction and crystallization; (2) Continuous mode: centrifuging, adsorption, foam separation and precipitation, membranes (tangential flow filtration, diafiltration and precipitation, ultra filtration)
Most of the above listed technologies were utilized in separation and purification of biosurfactants either from fermentation media or vegetable oils. However, exemplary embodiments of the present disclosure utilize a crude algal oil that is similar with a vegetable oil in terms of lipid and fatty acid composition. The differences between algal oil used in exemplary embodiments and vegetable oils used in previous embodiments include the percentage of individual classes of lipids. An exemplary algal crude oil composition is compared with vegetable oil shown in Table 1 below:
Algal Crude Oil (w/w) | Vegetable Oil (w/w) | ||
Neutral lipids | 30-90% | 90-98% | ||
Phospholipids | 10-40% | 1-2% | ||
Glycolipids | 10-40% | <1% | ||
Free fatty acids | 1-10% | <3% | ||
Waxes | 2-5% | <2% | ||
Pigments | 1-4% | ppm | ||
In the vegetable oil industry, the product of chemical degumming to remove polar lipids (biosurfactants) retains a lot of the neutral lipid (triglycerides) fraction. This neutral lipid fraction is further removed from the degummed material using solvent extraction or supercritical/subcritical fluid extraction or membrane technology. Of these technologies, membrane technology may eliminate the preliminary chemical degumming step and directly result in polar lipids almost devoid of neutral lipids.
Embodiments of the present invention relate generally to systems and methods for extracting lipids of varying polarities from an oleaginous material, including for example, an algal biomass. In particular, embodiments of the present invention concern extracting lipids of varying polarities from an algal biomass using a series of membrane filters.
In particular embodiments, the recovery/extraction process can be done on a wet biomass. A major economic advantage of exemplary embodiments results from not having to dry and disrupt the cell. Data on extracting dry algae with many typical solvents (both polar & non polar) do not even come close to the recoveries/fractionations achieved with exemplary embodiments of the exemplary systems and methods. Disruption of wet biomass frequently results in emulsions and component separations are difficult.
Exemplary embodiments may be applied to any algae or non-algae oleaginous material. Exemplary embodiments may use any water-miscible slightly non-polar solvent, including for example, MeOH, EtOH, IPA, Acetone, EtAc, AcN. Specific embodiments may use a green renewable solvent. In exemplary embodiments, extraction and fractionation can be performed in one step followed by membrane-based purification if needed. The resulting biomass is almost devoid of water and can be completely dried with lesser energy than aqueous algae slurry.
Certain embodiments comprise a method of extracting lipids from an oleaginous material, where the method comprises: providing a plurality of inlet reservoirs and a plurality of separation devices and directing an oleaginous material and a water-soluble solvent through the plurality of inlet reservoirs and the plurality of separation devices. In specific embodiments, each of the plurality of separation devices separates the oleaginous material and the water-soluble solvent into a retentate portion and a diffusate portion. Particular embodiments also comprise directing the retentate portion to a subsequent inlet reservoir and separation device and recycling the diffusate portion to a prior inlet reservoir.
In specific embodiments, the oleaginous material can be an algal biomass, and in certain embodiments the oleaginous material is wet. In particular embodiments, the water-soluble solvent can be selected from the group consisting of: MeOH, EtOH, IPA, acetone, EtAc, or AcN. In specific embodiments, cells of the oleaginous material may not be dried or disrupted. In certain embodiments, extraction and fractionation of the oleaginous material can be performed in a single step.
In specific embodiments, a first separation device can separate the oleaginous material and the water-soluble solvent into a first retentate portion and a first diffusate portion. In particular embodiments, a second separation device can separate the oleaginous material and the water-soluble solvent into a first retentate portion and a first diffusate portion, where the first retentate portion comprises a higher concentration of polar lipids than the second retentate portion and where the second retentate portion comprises a higher concentration of neutral lipids than the first retentate portion.
In certain embodiments, the neutral lipids can comprise triglycerides. In particular embodiments, the plurality of separation devices can comprise a first separation device and a second separation device. In specific embodiments, the first separation device can separate the oleaginous material and the water-soluble solvent into a first retentate portion and a first diffusate portion, and the second separation device can separate the oleaginous material and the water-soluble solvent into a first retentate portion and a first diffusate portion. In particular embodiments, the first retentate portion can have a higher polarity than the second retentate portion. In certain embodiments, the plurality of separation devices can comprise a plurality of membrane filters. In specific embodiments, the membrane can comprise one or more of the following materials: polyethersulfone (PES), polyamide (PA), polysulfone (PS), polyvinylidene difluoride (PVDF), polyimide (PI), and polyacrylonitrile (PAN). In particular embodiments, the water-soluble solvent can comprise an alcohol. In certain embodiments, the water-soluble solvent can be maintained at a temperature near the boiling point of the water-soluble solvent. In specific embodiments, the water-soluble solvent can be maintained at a temperature between 40 and 70 degrees Celsius.
In particular embodiments, the plurality of separation devices can comprise: a first separation device configured to separate particles larger than 100 μm from particles smaller than 100 μm; a second separation device configured to separate particles larger than 10 μm from particles smaller than 10 μm; and a third separation device configured to separate particles larger than 1 μm from particles smaller than 1 μm. In specific embodiments, the plurality of inlet reservoirs can be maintained at a pressure of approximately 1-10 bars. In certain embodiments, the diffusate portion can be directed to a recycle reservoir and before being recycled to the prior inlet reservoir. Particular embodiments can comprise a recycle pump configured to recycle the diffusate portion to the prior inlet reservoir.
Certain embodiments can comprise a system for extracting lipids from an oleaginous material, where the system comprises: a first, second, and third inlet reservoir, and a transport mechanism configured to move the oleaginous material and a water-soluble solvent from the first inlet reservoir to the second inlet reservoir, and from the second inlet reservoir to the third inlet reservoir. Particular embodiments may also comprise a first separation device between the first and second inlet reservoirs, where the first separation device is configured to separate the oleaginous material and the water-soluble solvent into a first retentate portion and a first diffusate portion. Specific embodiments can also comprise a second separation device between the second and third inlet reservoirs, where the second separation device is configured to separate the oleaginous material and the water-soluble solvent into a second retentate portion and a second diffusate portion.
Certain embodiments of the system can also comprise a first recycle pump configured to pump the first diffusate portion to the first inlet reservoir, and a second recycle pump configured to pump the second diffusate portion to the second inlet reservoir. In particular embodiments, the first and second separation devices each comprise a membrane filter. In specific embodiments, the membrane filter of the first separation device can be configured to separate particles larger than 100 μm from particles smaller than 100 μm. In certain embodiments, the membrane filter of the second separation device can be configured to separate particles larger than 10 μm from particles smaller than 10 μm.
In particular embodiments of the system, the membrane filters of the first and second separation devices can comprise one or more of the following materials: polyethersulfone (PES), polyamide (PA), polysulfone (PS), polyvinylidene difluoride (PVDF), polyimide (PI), and polyacrylonitrile (PAN). In certain embodiments, the first retentate portion can comprise a higher concentration of polar lipids than the second retentate portion, and the second retentate portion comprises a higher concentration of neutral lipids than the first retentate portion. In particular embodiments, the water-soluble solvent can comprise an alcohol. In specific embodiments, the water-soluble solvent can be maintained at a temperature near the boiling point of the water-soluble solvent. In certain embodiments, the water-soluble solvent can be maintained at a temperature between 40 and 70 degrees Celsius.
It is contemplated that any embodiment discussed in this specification can be implemented with respect to any method or system of the invention, and vice versa. Furthermore, systems of the invention can be used to achieve methods of the invention.
The term “conduit” or any variation thereof, when used in the claims and/or specification, includes any structure through which a fluid may be conveyed. Non-limiting examples of conduit include pipes, tubing, channels, or other enclosed structures.
The term “reservoir” or any variation thereof, when used in the claims and/or specification, includes any body structure capable of retaining fluid. Non-limiting examples of reservoirs include ponds, tanks, lakes, tubs, or other similar structures.
The term “about” or “approximately” are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the terms are defined to be within 10%, preferably within 5%, more preferably within 1%, and most preferably within 0.5%.
The terms “inhibiting” or “reducing” or any variation of these terms, when used in the claims and/or the specification includes any measurable decrease or complete inhibition to achieve a desired result.
The term “effective,” as that term is used in the specification and/or claims, means adequate to accomplish a desired, expected, or intended result.
The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.”
The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.”
As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”), or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the examples, while indicating specific embodiments of the invention, are given by way of illustration only. Additionally, it is contemplated that changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
For solvent extraction of oil from algae the best case scenario is a solvent which selectively extracts triacylglycerols (TAG) and leaving all polar lipids and non-TAG neutral lipids such as waxes, sterols in the algal cell with high recoveries. The second option would be selectively extract polar lipids and then extract purer neutral lipids devoid of polar lipids, resulting in high recovery. The last option would be to extract all the lipids and achieve very high recovery in one or two steps.
Referring now to FIG. 1 , a flowchart 100 provides an overview of the steps involved in exemplary embodiments of methods used in the fractionation and purification of lipids from an algae-containing biomass. In a first step 110, algal cells are harvested. In a subsequent step 120, water is removed from alga cells to yield a 10-25% solid biomass. In step 130, a solvent-based extraction is performed on the biomass and the fractions are collected. Finally, membrane filtration may be performed in a step 140 to separate out smaller lipid components.
The algae biomass when harvested in step 110 typically consists of 1-5 g/L of total solids. The biomass can be de-watered in step 120 using the techniques including, for example, dissolved air floatation, membrane filtration, flocculation, sedimentation, or centrifuging. The de-watered algae biomass resulting from step 120 typically consists of 10-30% solids. This biomass can then be extracted with water-soluble solvents (e.g., alcohols), in a multistage countercurrent solvent extraction process segregating the fractions at each stage.
Referring now to FIG. 2 , a schematic diagram of an exemplary embodiment of an extraction system 200 one is provided. The wet or dry algal biomass is transported on a moving belt. The solvent for extraction is recirculated from a storage tank assigned to each biomass slot position. The extraction mixture is filtered returning the biomass solids back into the slot and the extract into the storage tank. The solids on the belt move periodically based on the residence time requirement for extraction. The extracts in each storage tanks may either be replenished at saturation or continuously replaced by fresh solvent. This would also reduce the downstream processing time and costs drastically. This embodiment comprises a primary reservoir 210, a transport mechanism 220, a plurality of separation devices 240 (e.g., membrane filtration devices), a plurality of extraction reservoirs 260, and a plurality of recycle pumps 280. In this embodiment, primary reservoir 210 is divided up into a plurality of inlet reservoirs 211-218.
During operation, algal biomass (indicated by arrow 201) is placed a first inlet reservoir 211 near a first end 221 of transport mechanism 220. In addition, solvent (indicated by arrow 205) is placed into inlet reservoir 218 near a second end 222 of transport mechanism 220. Transport mechanism 220 directs the algal biomass along transport mechanism 220 from first end 221 towards second end 222. As the algal biomass is transported, it passes through the plurality of separation devices 241-248 and is separated into fractions of varying polarity. The diffusate portions that pass through separation devices 241-248 are directed to reservoirs 261-268.
For example, the diffusate portion of the algal biomass that passes through the first separation device 241 (e.g., the portion containing liquid and particles small enough to pass through separation device 241) is directed to the first reservoir 261. From first reservoir 261, the diffusate portion can be recycled back to first inlet reservoir 201. The retentate portion of the algal biomass that does not pass through first separation device 241 can then be directed by transport mechanism 220 to second inlet reservoir 212 and second separation device 242, which can comprise a finer separation or filtration media than the first separation device 241.
The segment of the diffusate portion that passes through second separation device 242 can be directed to second reservoir 262, and then recycled back to second inlet reservoir 212 via recycle pump 282. The retentate or extracted portion of the algal biomass that does not pass through second separation device 242 can be directed by transport mechanism 220 to third inlet reservoir 213. This process can be repeated for inlet reservoirs 213-218 and separation devices 243-248 such that the extracted portions at each stage are directed to the subsequent inlet reservoirs, while the diffusate portions are directed to the recycle reservoirs and recycled back to the current inlet reservoir.
In exemplary embodiments, the last fraction extracted will be with the purest solvent and the first fraction with a saturated solvent. The process therefore extracts components in the order of decreasing polarity with the fraction. The function of the first fraction is to remove the residual water and facilitate the solvent extraction process. The fractions that follow are rich in polar lipids, while the final fractions are rich in neutral lipids.
The solvent selection and the theory of fractionation based on polarity were developed by extensive analysis of solvents and the effect on extraction using the Sohxlet extraction process. Sohxlet extraction system was utilized for rapid screening solvents for lipid class selectivity and recovery. Solvents from various chemical classes encompassing a wide range of polarities such as alkanes, cycloalkane, alkyl halides, esters, ketones, were tested. The lipid content and composition of the biomass was tested in triplicates using the standard methods in our lab prior to the Sohxlet extraction. The total lipids in the biomass utilized were 22.16% (dry weight basis) and the neutral lipid content was 49.52%. The results from the Sohxlet extraction are shown in FIG. 3 . We can achieve about 60-70% purity of neutral lipids and 15-45% of total lipids recovery depending on the chain length of the alkane without disruption and solvent extraction. The longest chain alkane tested, heptane showed 60% neutral lipids recovery and 42% recovery of total lipids. However, the maximum neutral lipids purity was less than 70%. Thereby indicating that use of single solvent for extraction of neutral lipids selectively may not be feasible. The lower carbon alcohols were more selective towards polar lipids. The neutral lipids purity was 22% for methanol and 45% for ethanol. Isopropyl alcohol did not show any selectivity to lipids class and the neutral lipids purity was 52%. Methanol specifically could recover 67% of the total lipids and more than 90% of the polar lipids. Thereby, methanol is a perfect proponent for our second option of selectively extracting polar lipids prior to extracting the neutral lipids using heptane or hexane. Other solvent classes tested did not show any selectivity towards lipids class since the neutral lipids purity was close to 49% (resembling the lipid composition in the biomass) and the total lipids recovery ranged from 15 to 35%, rendering these solvents not being suitable for a specific lipids class extraction or total lipids extraction.
The results from the Sohxlet analysis were confirmed using the standard bench scale batch solvent extraction apparatus. The solvents selected were methanol for the first step to recover polar lipids and petroleum ether in the second step to recover neutral lipids. All the extractions were performed with a 1:10 solid:solvent ratio and with each step for 1 hour. The methanol extractions were performed at different temperatures as discussed below and the petroleum ether extraction was performed close to the boiling point of the solvent at 35 C throughout the following set of experiments. Petroleum ether was chosen because of its high selectivity to neutral lipids, low boiling point and the product quality observed after extraction. From FIG. 4 (a) we can observe that the neutral lipid purity in subsequent extraction after a methanol extraction step at 65° C. is over 80%. We can also see that the methanol extraction performed near the boiling point can significantly enhance the purity of the neutral lipids in the subsequent extraction.
We can see from FIG. 4( b) that the total neutral lipid recovery is low and there is a significant amount of neutral lipid loss in the first step.
To minimize the loss of neutral lipids in the methanol extraction step, the polarity of the solvent can be increased by adding water to the solvent. The results are shown in FIG. 5 . From FIG. 5( a) we can observe that the neutral lipid purity is much higher in the petroleum ether extraction than the previous case. Also, the loss of neutral lipids in the aqueous methanol extraction step is much lower than pure methanol. We also observed that higher temperature for methanol extraction improved the neutral lipid purity but slightly decreased the recovery in the subsequent step. FIG. 7 shows the effect of solvent solid ratio on the extraction recovery. Given the lower solubility of lipids in methanol compared to other commonly used oil extraction solvents such as hexane, we observed a drastic increase in the total lipid recovery by increasing the solvent to solid ratio.
In exemplary embodiments, the extraction is effective close to the boiling point of the solvent used. At such temperatures, vapor phase penetration of the solvent into the algal cells is faster due to lesser mass transfer resistance. If the extraction temperature is allowed to significantly exceed the boiling point of the solvent, the solvent-water system can form an azeotrope. Thus maintaining the system at the boiling point of solvent would create enough vapors to enhance the extraction and not the capital costs. In addition, the solubility of oil is higher at higher temperatures, which can further increase the effectiveness at temperatures close to the solvent boiling point. FIG. 6 shows the total lipid recovery in the aqueous methanol-petroleum ether extraction scheme. Although performing the methanol extraction near its boiling temperature slightly decreases the neutral lipid recovery as observed in FIG. 5 b, it enhances the total lipid recovery.
In exemplary embodiments, the solvent-to-solid ratio for the extraction is between 3-5 based on the dry weight of the solids in the biomass. The residual algal biomass is rich in carbohydrates (e.g., starch) and can be used as a feed stock to produce the solvent used for extraction.
From FIG. 9 we can observe that it is possible to get high purity neutral lipid once the polar lipids are all extracted. In this case we can get 5% yield with over 90% neutral lipids purity in extraction steps 5 through 8. Also, based on the boiling point of the extraction mixture, we can assert that most of the water in the biomass is completely extracted in the first extraction step along with carbohydrates, proteins and metals. From FIG. 10 we can observe faster recovery of lipids using ethanol and wet biomass. The number of steps for over 80% total lipids recovery has been reduced from about 9 steps using methanol to 4 steps using ethanol. This increase in recovery may be attributed to greater lipids solubility in ethanol compared to methanol. Also, the boiling point of the aqueous ethanol is higher than aqueous methanol facilitating further recovery of lipids. The main advantages of this process would consist of the productivity of ethanol using the residual biomass after oil extraction, utilization of ethanol in the oil extract for transesterification. Further from FIG. 10 we can observe that the initial fractions are non-lipid rich followed by the lipid rich fractions and finally the neutral lipid fractions. Hence with a proper design of the extraction apparatus, one can recover all the three fractions in one process.
Another aspect of the current invention is the comparison of using microwave for extraction and the conventional extraction methods. FIG. 11( a) is log-normal plot of the extraction time and total lipid recovery for the microwave and the conventional systems. As we can see the microwave system reduces the extraction time by 10 fold. Also from the slope of the curve we can see that the extraction rate for the microwave assisted system is about 4 times greater than that of the conventional method. However, the net recovery is higher for the conventional method due to higher recoveries of the polar lipids. Based on these results we have the best conditions for extraction of dry algal biomass using solvents with and without microwave assistance. Hence, we may need to modify the algal cells prior to extraction to enhance the productivity and efficiency. In this direction we performed a small experiment comparing the effect of adding a base or another organic solvent in small amounts to chance the surface properties and enhancing extraction. As we can see from FIG. 8 , an addition of 5% DMSO increases the recovery 3 times. This may translate into reducing all the methanol extraction steps dramatically. However, these solution used in the above experiments may not be the best case scenario on a larger scale due to the formation of azeotropes. From our previous data we know that methanol is the best single solvent for extraction of all lipids from algae. Hence, we performed a single solvent multiple step extraction to study the possible one solvent microwave extraction system.
Moisture content is another important parameter of algae which will obviously influence the oil extraction performance. Algae sample with dry algae content at 10%, 25%, 33% were used to investigate the influence of moisture on extraction performance. As indicated in the FIG. 12 , the lipid evolution profile were largely influenced by the moisture content in the starting algae, when the dry weight decreased from 33% to 25% and 10%, the maximum lipid recovery step change to fourth extraction cycle from the third one. However, the overall lipid recovery from these three algae samples was quite similar, all above 95% of the reference value. The neutral lipid percentage in the crude extract of these three algae is shown in FIG. 12 . It can be found that the neutral lipid percentage in the first three steps is decreased as the dry weight algae decreased, while no difference was found in the last two cycles. The difference in oil extraction performance can again be explained from the difference of the solvent system. When higher moisture content of the algae was used, the ethanol concentration in the aqueous ethanol mixture was much lower, and consequently the neutral lipid percentage in the crude extract was also lower. It was reported that further dewater from algae paste with 90% water was a very energy intensive process. Hence it is interesting to see the overall lipid recovery was not obviously influenced even starting from the algae paste with 90% water, which means a cost much more acceptable dewater process is enough for our extraction system.
In exemplary embodiments, the polar lipids rich fraction is further processed using membranes to separate smaller components such as triglycerides, fatty acids, carotenoids. The ability of polar lipids to aggregate can also been used to retain them on high-molecular-weight-cutoff membranes. Phospholipids are amphoteric molecules that can form reverse micelles in the medium with a molar mass above 20 kDa and molecular size from 20 to 200 nm (Koseoglu, 2002). Solvent stable ultrafiltration (UF) (e.g., filtration of particles greater than approximately 10 μm) or nanofiltration (NF) (e.g., filtration of particles greater than approximately 1 μm) membranes can be made of polyethersulfone (PES), polyamide (PA), polysulfone (PS), polyvinylidene difluoride (PVDF), polyimide (PI), polyacrylonitrile (PAN) or suitable inorganic materials (Cheryan, 1988).
In exemplary embodiments, the separation is performed at low to moderate pressures (e.g., 1-10 bar), and the temperatures can be maintained between 40-70 C to reduce the viscosity of the lipids increasing the flux. In specific embodiments, greater than 90% rejection can be observed based on the membrane selected.
In exemplary embodiments, the membrane separation results in a polar lipids fraction that is over 90% pure and is highly concentrated, which can minimize the additional steps to remove the solvent from the fraction. The fraction rich in neutral lipids (e.g., triglycerides) and can be further used in various applications such as production of biofuels, food and feed, etc.
Example for Extraction:
In one example, green microalga Scendesmus Dimorphus (SD) biomass samples with different lipid contents harvested from outdoor panel photobioreactor were used. Algal samples, after removal of the bulk water by centrifugation, were kept as 3-5 cm algae cake at −80 degrees refrigerator until use. Pre-calculated amount of wet algal biomass (15 g dry algae weight equivalent), 90 ml ethanol solvent was added into a three-neck flask equipped with condensate, mechanical stirring and thermocouple. The mixture was reflux for 10 min under microwave irradiance or 1 h with electronic heating, respectively. After reflux time achieves the set value, the mixture was cooled down to room temperature, and separated into crude extract and residual by filtration. The total lipids of algal samples were analyzed in a chloroform-methanol-water system according to Bligh and Dyer's method (ref) and used as reference for the lipid recovery calculation. Total lipids were further separated into neutral lipids and polar lipids by column chromatography using silica gel (60-200 mesh) (Merck Corp., Germany) as previously described: six volumes of chloroform to collect the neutral lipid class and 6 volumes of methanol to collect the polar lipids. Each lipid fraction was transferred into a pre-weighed vial, initially evaporated at (30° C.) using a rotary evaporator (Büchi, Switzerland) and then dried under high vacuum. The dried residuals were placed under nitrogen and then weighed. Fatty acid profile of lipids were quantified by GC-MS after derivatization into fatty acid methyl esters using heptadecanoic acid (C17:0) as the internal standard.
The following references are herein incorporated by reference in their entirety:
- U.S. Pat. No. 4,062,882
- U.S. Pat. No. 4,787,981
- U.S. Pat. No. 5,374,657
- U.S. Pat. No. 5,440,028
- U.S. Pat. No. 5,545,329
- U.S. Pat. No. 7,148,366
- U.S. Patent Publication No. 2002/0209493
- Rossignol et al., Aquacultural Engineering, 20:191-208, 2009.
- de Morais Coutinho et al., Food Res. Internatl., 42:536-550, 2009.
- Huang et al., Applied Energy, 1-8, 2009.
- Koris and Vatai, Desalination, 148:149-153, 2002.
- Mata et al., In: Renewable and Sustainable Energy Reviews, RSER-757:1-16, 1009.
- Rhodes, Science Progress, 92(1):39-90, 2009.
- Amin, Energy Convers. Manage., 50:1834-1840, 2009.
- Catchpole et al., J. of Supercritical Fluids, 47:591-597, 2009.
- Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, tubes, and fermenters.
J Biotechnol 70, 313-321. - Chisti, Y. (2007). Biodiesel from microalgae.
Biotechnol Adv 25, 294-306. - Daigger, G. T, B. E. Rittmann, S. S. Adham, and G. Andreottola (2005). Are membrane bioreactors ready for widespread application? Environ. Sci. Technol. 39: 399A-406A.
- Rittmann, B. E. (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnol. Bioengr. 100: 203-212.
- Rittmann, B. E. and P. L. McCarty (2001). Environmental Biotechnology: Principles and Applications. McGraw-Hill Book Co., New York.
Claims (9)
1. A system for extracting lipids from an oleaginous material, the system comprising:
a first inlet reservoir;
a second inlet reservoir;
a final inlet reservoir;
a first extraction reservoir;
a second extraction reservoir;
a final extraction reservoir;
a first separation device between the first inlet reservoir and the first extraction reservoir, wherein the first separation device is configured to separate an oleaginous material and a first water-soluble solvent into a first retentate portion and a first diffusate portion, wherein the first retentate portion comprises at least a portion of the oleaginous material and the first diffusate portion comprises at least a portion of the first water-soluble solvent, and wherein the first diffusate portion is collected in the first extraction reservoir;
a second separation device between the second inlet reservoir and the second extraction reservoir, wherein the second separation device is configured to separate the first retentate portion and a second water-soluble solvent into a second retentate portion and a second diffusate portion, wherein the second retentate portion comprises at least a portion of the first retentate portion and the second diffusate portion comprises at least a portion of the second water-soluble solvent, and wherein the second diffusate portion is collected in the second extraction reservoir;
a final separation device between the final inlet reservoir and the final extraction reservoir, wherein the final separation device is configured to separate at least a portion of the second retentate portion and a third water-soluble solvent into a final retentate portion and a final diffusate portion, wherein the final retentate portion comprises at least a portion of the oleaginous material and the final diffusate portion comprises at least a portion of the final water-soluble solvent, wherein the final diffusate portion is collected in the final extration reservoir;
a first recycle pump configured to pump at least a portion of the first diffusate portion from the first extraction reservoir to the first inlet reservoir, the first diffusate forming at least a portion of the first water-soluble solvent;
a second recycle pump configured to pump at least a portion of the second diffusate portion from the second extraction reservoir to the second inlet reservoir, the second diffusate forming at least a portion of the second water-soluble solvent; and
a transport mechanism configured to
(a) move the first retentate portion from the first separation device to the second inlet reservoir,
(b) move at least a portion of the second retentate portion from the second separation device to the final inlet reservoir; and
(c) remove the final retentate portion from the final separation device.
2. The system of claim 1 wherein the first, second, and final separation devices each comprise a membrane filter.
3. The system of claim 2 wherein the membrane filter of the first separation device is configured to separate particles larger than 100 μm from particles smaller than 100 μm.
4. The system of claim 2 wherein the membrane filter of the second separation device is configured to separate particles larger than 10 μm from particles smaller than 10 μm.
5. The system of claim 2 , wherein one or more of the membrane filters comprises one or more of the following materials: polyethersulfone (PES), polyamide (PA), polysulfone (PS), polyvinylidene difluoride (PVDF), polyimide (PI), and polyacrylonitrile (PAN).
6. The system of claim 1 , wherein the first and second separation devices are configured to use a water-soluble solvent comprising an alcohol.
7. The system of claim 1 , wherein the first and second separation devices are configured to use a water-soluble solvent maintained at a temperature near the boiling point of the water-soluble solvent.
8. The system of claim 1 , wherein the first and second separation devices are configured to use a water-soluble solvent maintained at a temperature between 40 and 70 degrees Celsius.
9. The system of claim 1 , further comprising:
a third inlet reservoir;
a third extraction reservoir;
a third separation device between the third inlet reservoir and the third extraction reservoir, wherein the third separation device is configured to separate the second retentate portion and a third water-soluble solvent into a third retentate portion and a third diffusate portion, wherein the third retentate portion comprises at least a portion of the oleaginous material and the third diffusate portion comprises at least a portion of the third water-soluble solvent, and wherein the third diffusate portion is collected in the third extraction reservoir; and
a third recycle pump configured to pump at least a portion of the third diffusate portion from the third extraction reservoir to the third inlet reservoir, the third diffusate forming at least a portion of the third water-soluble solvent;and
wherein the transport mechanism is further configured to
(a) move the second retentate portion from the second separation device to the third inlet reservoir; and
(b) move the third retentate portion from the third separation device to the final inlet reservoir.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/116,610 US8157994B2 (en) | 2010-04-06 | 2011-05-26 | Extraction with fractionation of oil and co-products from oleaginous material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32128610P | 2010-04-06 | 2010-04-06 | |
PCT/US2011/031353 WO2011127127A2 (en) | 2010-04-06 | 2011-04-06 | Extraction with fractionation of oil and co-products from oleaginous material |
US13/116,610 US8157994B2 (en) | 2010-04-06 | 2011-05-26 | Extraction with fractionation of oil and co-products from oleaginous material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/031353 Continuation WO2011127127A2 (en) | 2010-04-06 | 2011-04-06 | Extraction with fractionation of oil and co-products from oleaginous material |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110253612A1 US20110253612A1 (en) | 2011-10-20 |
US8157994B2 true US8157994B2 (en) | 2012-04-17 |
Family
ID=44763519
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/116,610 Expired - Fee Related US8157994B2 (en) | 2010-04-06 | 2011-05-26 | Extraction with fractionation of oil and co-products from oleaginous material |
US13/116,602 Expired - Fee Related US8212060B2 (en) | 2010-04-06 | 2011-05-26 | Extraction with fractionation of oil and co-products from oleaginous material |
US13/273,159 Expired - Fee Related US8222437B2 (en) | 2010-04-06 | 2011-10-13 | Extraction of lipids from oleaginous material |
US13/493,586 Expired - Fee Related US8318963B2 (en) | 2010-04-06 | 2012-06-11 | Extraction with fractionation of lipids and co-products from oleaginous material |
US13/653,595 Expired - Fee Related US8524929B2 (en) | 2010-04-06 | 2012-10-17 | Extraction with fractionation of lipids and proteins from oleaginous material |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/116,602 Expired - Fee Related US8212060B2 (en) | 2010-04-06 | 2011-05-26 | Extraction with fractionation of oil and co-products from oleaginous material |
US13/273,159 Expired - Fee Related US8222437B2 (en) | 2010-04-06 | 2011-10-13 | Extraction of lipids from oleaginous material |
US13/493,586 Expired - Fee Related US8318963B2 (en) | 2010-04-06 | 2012-06-11 | Extraction with fractionation of lipids and co-products from oleaginous material |
US13/653,595 Expired - Fee Related US8524929B2 (en) | 2010-04-06 | 2012-10-17 | Extraction with fractionation of lipids and proteins from oleaginous material |
Country Status (2)
Country | Link |
---|---|
US (5) | US8157994B2 (en) |
WO (1) | WO2011127127A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8318963B2 (en) * | 2010-04-06 | 2012-11-27 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Extraction with fractionation of lipids and co-products from oleaginous material |
US9629820B2 (en) | 2012-12-24 | 2017-04-25 | Qualitas Health, Ltd. | Eicosapentaenoic acid (EPA) formulations |
US10123986B2 (en) | 2012-12-24 | 2018-11-13 | Qualitas Health, Ltd. | Eicosapentaenoic acid (EPA) formulations |
US10245526B2 (en) | 2014-09-18 | 2019-04-02 | Bridgestone Corporation | Extractor and related methods |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8313648B2 (en) | 2010-04-06 | 2012-11-20 | Heliae Development, Llc | Methods of and systems for producing biofuels from algal oil |
US8475660B2 (en) | 2010-04-06 | 2013-07-02 | Heliae Development, Llc | Extraction of polar lipids by a two solvent method |
US8202425B2 (en) * | 2010-04-06 | 2012-06-19 | Heliae Development, Llc | Extraction of neutral lipids by a two solvent method |
US8211309B2 (en) | 2010-04-06 | 2012-07-03 | Heliae Development, Llc | Extraction of proteins by a two solvent method |
BR112012025641A2 (en) | 2010-04-06 | 2019-09-24 | Heliae Dev Llc | methods and systems for producing biofuels. |
US8115022B2 (en) | 2010-04-06 | 2012-02-14 | Heliae Development, Llc | Methods of producing biofuels, chlorophylls and carotenoids |
US8273248B1 (en) | 2010-04-06 | 2012-09-25 | Heliae Development, Llc | Extraction of neutral lipids by a two solvent method |
US8211308B2 (en) | 2010-04-06 | 2012-07-03 | Heliae Development, Llc | Extraction of polar lipids by a two solvent method |
US8308951B1 (en) | 2010-04-06 | 2012-11-13 | Heliae Development, Llc | Extraction of proteins by a two solvent method |
WO2013075116A2 (en) | 2011-11-17 | 2013-05-23 | Heliae Development, Llc | Omega 7 rich compositions and methods of isolating omega 7 fatty acids |
US9651304B1 (en) | 2013-03-14 | 2017-05-16 | Green Recovery Technologies, LLC | Pretreatment of biomass prior to separation of saturated biomass |
CN103570198B (en) * | 2013-11-22 | 2015-12-09 | 沈阳工业大学 | A kind of processing method utilizing sanitary sewage to cultivate fast-growing algae production biofuel |
CN106414754B (en) * | 2014-04-23 | 2021-11-26 | 艾尼股份公司 | Method for producing lipids from biomass using oleaginous yeast |
CN105330124B (en) * | 2015-11-25 | 2018-04-24 | 东南大学 | A kind of method and device of microwave radiation solvent extraction combination deep dehydration for biosolids material |
EP3282675B1 (en) | 2016-08-11 | 2020-01-29 | Nxp B.V. | Network node and method for identifying a node in transmissions between neighbouring nodes of a network |
US11638731B2 (en) | 2019-11-20 | 2023-05-02 | Nooter/Eriksen, Inc. | Medical compositions with Omega-3 containing excipients |
CN111548930A (en) * | 2020-06-01 | 2020-08-18 | 齐鲁工业大学 | A microwave-assisted microalgae algae flocculation harvesting system |
US11298387B1 (en) | 2020-11-20 | 2022-04-12 | Nooter/Eriksen, Inc. | Omega-3 containing compositions |
US11730782B2 (en) | 2020-11-20 | 2023-08-22 | Nooter/Eriksen, Inc | Processes for producing omega-3 containing compositions from algae and related extractions |
Citations (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3850802A (en) | 1972-08-03 | 1974-11-26 | Bermoid Irrigation Controls | Self-cleaning filter |
US3856569A (en) * | 1972-08-16 | 1974-12-24 | Uniroyal Ltd | Process for the purification and concentration of solutions derived from marine algae |
US3875052A (en) * | 1971-07-30 | 1975-04-01 | Inst Francais Du Petrole | Process for separating microscopic algae |
US4062882A (en) | 1974-05-16 | 1977-12-13 | Lever Brothers Company | Process for refining crude glyceride oils by membrane filtration |
US4190538A (en) | 1978-09-22 | 1980-02-26 | E. I. Du Pont De Nemours And Company | Pump seal flush |
US4264452A (en) | 1978-09-22 | 1981-04-28 | E. I. Du Pont De Nemours And Company | Pump seal flush |
US4341038A (en) * | 1979-07-03 | 1982-07-27 | Bloch Moshe R | Oil products from algae |
US4439629A (en) * | 1980-11-20 | 1984-03-27 | Hoffmann-La Roche Inc. | Extraction process for beta-carotene |
US4787981A (en) | 1982-05-10 | 1988-11-29 | Pinoru Oil Mills Co. | Process for purification of crude glyceride oil compositions |
US4925557A (en) | 1989-04-14 | 1990-05-15 | Ahlberg Jr Walter F | Multi-purpose rotating membrane filter |
US5130242A (en) | 1988-09-07 | 1992-07-14 | Phycotech, Inc. | Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids |
US5338673A (en) | 1992-01-28 | 1994-08-16 | Commissariat A L'energie Atomique | Process for the selective production of polyunsaturated fatty acids from a culture of microalgae of the porphyridium cruentum |
US5374657A (en) | 1991-01-24 | 1994-12-20 | Martek Corporation | Microbial oil mixtures and uses thereof |
US5378369A (en) * | 1993-02-11 | 1995-01-03 | Sasol Chemical Industries (Proprietary) Limited | Solvent extraction |
US5440028A (en) | 1990-09-25 | 1995-08-08 | Hoechst Aktiengesellschaft | Process for preparing purified glycolipids by membrane separation processes |
US5539133A (en) | 1992-06-12 | 1996-07-23 | Milupa Aktiengesellschaft | Process for extracting lipids with a high production of long-chain highly unsaturated fatty acids |
US5545329A (en) | 1995-05-08 | 1996-08-13 | Rochem Separation Systems | Method of refining oil |
US5658767A (en) | 1991-01-24 | 1997-08-19 | Martek Corporation | Arachidonic acid and methods for the production and use thereof |
CA2249103A1 (en) | 1997-10-27 | 1999-04-27 | Samir S. Badour | Novel hyaluronic acid produced from algae |
US6000551A (en) * | 1996-12-20 | 1999-12-14 | Eastman Chemical Company | Method for rupturing microalgae cells |
EP1057833A1 (en) | 1998-02-17 | 2000-12-06 | Takara Shuzo Co, Ltd. | Sulfated saccharides |
US6166231A (en) | 1998-12-15 | 2000-12-26 | Martek Biosciences Corporation | Two phase extraction of oil from biomass |
US6180376B1 (en) | 1995-07-18 | 2001-01-30 | Zeneca Limited | Extraction of triglycerides from microorganisms |
US20020009493A1 (en) | 1999-12-15 | 2002-01-24 | Schwendeman Steven P. | Methods for stabilizing biologically active agents encapsulated in biodegradable controlled-release polymers |
US6372460B1 (en) | 1997-08-01 | 2002-04-16 | Martek Biosciences | DHA-containing nutritional compositions and methods for their production |
JP2002220402A (en) | 2001-01-26 | 2002-08-09 | Space Shoji:Kk | Simple production method of fucoidan-containing extract |
US6441208B2 (en) | 1996-03-28 | 2002-08-27 | Dsm N.V. | Preparation of microbial polyunsaturated fatty acid containing oil from pasteurized biomass |
US6524486B2 (en) | 2000-12-27 | 2003-02-25 | Sepal Technologies Ltd. | Microalgae separator apparatus and method |
US6579714B1 (en) | 1999-09-29 | 2003-06-17 | Micro Gaia Co., Ltd. | Method of culturing algae capable of producing phototrophic pigments, highly unsaturated fatty acids, or polysaccharides at high concentration |
US6750048B2 (en) | 2000-01-19 | 2004-06-15 | Martek Biosciences Corporation | Solventless extraction process |
US20040131580A1 (en) | 2002-12-26 | 2004-07-08 | Shirako Co., Ltd. | Cosmetics |
US20050164192A1 (en) | 2002-03-16 | 2005-07-28 | Graham Ian A. | Transgenic plants expressing enzymes involved in fatty acid biosynthesis |
US20050170479A1 (en) | 2002-05-03 | 2005-08-04 | Weaver Craig A. | Method for producing lipids by liberation from biomass |
US20060122410A1 (en) | 2004-10-22 | 2006-06-08 | Martek Biosciences Corporation | Process for preparing materials for extraction |
WO2006095964A1 (en) | 2005-03-08 | 2006-09-14 | Hyun Jin Jin | Method for abstract of liquid extract from chlorella |
US7148366B2 (en) | 1999-05-18 | 2006-12-12 | The Board Of Trustees Of The University Of Illinois | Method and system for extraction of oil from corn |
US20070025976A1 (en) | 2005-08-01 | 2007-02-01 | Cargill, Inc. | Process for the purification of coenzyme Q10 |
US20080038290A1 (en) | 2006-08-11 | 2008-02-14 | Lvmh Recherche | Cosmetic slimming composition containing an extract of biomass of the alga neochloris oleoabundans |
WO2008031092A2 (en) | 2006-09-08 | 2008-03-13 | University Of Mississippi | Immunostimulatory composition comprising lipoprotein in microalgae extract |
EP1920777A1 (en) | 2006-11-13 | 2008-05-14 | Aslieh Dr. Nookandeh-Baumgärtner | Extraction method for the fractioned preparation and separation of plant ingredients and use thereof |
US20080118964A1 (en) | 2005-06-07 | 2008-05-22 | Mark Edward Huntley | Continuous-Batch Hybrid Process for Production of Oil and Other Useful Products from Photosynthetic Microbes |
WO2008060571A2 (en) | 2006-11-13 | 2008-05-22 | Aurora Biofuels, Inc. | Methods and compositions for production and purification of biofuel from plants and microalgae |
US20080160593A1 (en) | 2006-12-29 | 2008-07-03 | Oyler James R | Two-stage process for producing oil from microalgae |
WO2008144583A1 (en) | 2007-05-16 | 2008-11-27 | Arizona Board Of Regents | Advanced algal photosynthesis-driven bioremediation coupled with renewable biomass and bioenergy production |
US20090029445A1 (en) | 2007-07-28 | 2009-01-29 | Nicholas Eckelberry | Algae growth system for oil production |
EP2030626A1 (en) | 2007-08-29 | 2009-03-04 | Development Center For Biotechnology | Process for the preparation of plant extracts for treating skin disorders and enhancing healing of wounds |
US20090148931A1 (en) | 2007-08-01 | 2009-06-11 | Bionavitas, Inc. | Illumination systems, devices, and methods for biomass production |
US20090148918A1 (en) | 2007-06-01 | 2009-06-11 | Solazyme, Inc. | Glycerol Feedstock Utilization for Oil-Based Fuel Manufacturing |
WO2009082696A1 (en) | 2007-12-21 | 2009-07-02 | Aurora Biofuels, Inc. | Methods for concentrating microalgae |
US20090181463A1 (en) | 2006-05-03 | 2009-07-16 | Ncl New Concept Lab Gmbh | Device and method for chemical, biochemical, biological and physical analysis, re-action, assay and more |
US20090234146A1 (en) | 2008-03-14 | 2009-09-17 | University Of Hawaii | Methods and compositions for extraction and transesterification of biomass components |
WO2009158658A2 (en) | 2008-06-27 | 2009-12-30 | Sapphire Energy, Inc. | Induction of flocculation in photosynthetic organisms |
US20100055741A1 (en) | 2008-08-27 | 2010-03-04 | Edeniq, Inc. | Materials and methods for converting biomass to biofuel |
US20100068772A1 (en) | 2008-09-04 | 2010-03-18 | Robert Downey | Solubilization of algae and algal materials |
WO2010036334A1 (en) | 2008-09-23 | 2010-04-01 | LiveFuels, Inc. | Systems and methods for producing biofuels from algae |
US7695626B2 (en) | 2001-12-12 | 2010-04-13 | Martek Biosciences Corp. | Extraction and winterization of lipids from oilseed and microbial sources |
US20100233761A1 (en) | 2009-03-10 | 2010-09-16 | Czartoski Thomas J | Algae biomass fractionation |
US20100261922A1 (en) | 2009-10-30 | 2010-10-14 | Daniel Fleischer | Systems and Methods for Extracting Lipids from and Dehydrating Wet Algal Biomass |
US7816570B2 (en) | 2006-12-01 | 2010-10-19 | North Carolina State University | Process for conversion of biomass to fuel |
WO2010120939A2 (en) | 2009-04-14 | 2010-10-21 | Solazyme, Inc. | Methods of microbial oil extraction and separation |
WO2010123903A1 (en) | 2009-04-20 | 2010-10-28 | Originoil, Inc. | Systems, apparatus and methods for obtaining intracellular products and cellular mass and debris from algae and derivative products and process of use thereof |
WO2010132414A1 (en) | 2009-05-11 | 2010-11-18 | Phycal Llc | Biofuel production from algae |
WO2010138620A1 (en) | 2009-05-26 | 2010-12-02 | Solazyme, Inc. | Fractionation of oil-bearing microbial biomass |
US20100317088A1 (en) | 2009-06-15 | 2010-12-16 | Guido Radaelli | Systems and Methods for Extracting Lipids from Wet Algal Biomass |
WO2010151606A1 (en) | 2009-06-24 | 2010-12-29 | Solix Biofuels, Inc. | Systems and methods for harvesting algae from photobioreactors |
US20110086386A1 (en) | 2009-03-10 | 2011-04-14 | Czartoski Thomas J | Algae biomass fractionation |
US20110124034A1 (en) | 2009-11-25 | 2011-05-26 | Kuehnle Adelheid R | Enrichment of process feedstock |
US20110192073A1 (en) | 2010-04-06 | 2011-08-11 | Heliae Development, Llc | Extraction with fractionation of oil and proteinaceous material from oleaginous material |
WO2011127127A2 (en) | 2010-04-06 | 2011-10-13 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Extraction with fractionation of oil and co-products from oleaginous material |
US20110253605A1 (en) | 2010-03-19 | 2011-10-20 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Algae filtration systems and methods |
US20110263886A1 (en) | 2010-04-06 | 2011-10-27 | Heliae Development, Llc | Methods of producing biofuels, chlorophylls and carotenoids |
US20110258920A1 (en) | 2011-05-31 | 2011-10-27 | Licamele Jason D | V-Trough Photobioreactor System and Method of Use |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1689277A (en) | 1927-09-24 | 1928-10-30 | Foist Kay | Cleaner for filtering elements |
US3850807A (en) | 1971-10-15 | 1974-11-26 | Amoco Prod Co | System for removing floating oil from water |
US5198111A (en) | 1991-01-10 | 1993-03-30 | Delaware Capital Formation, Inc. | Filter with reciprocating cleaner unit |
US5569383A (en) | 1994-12-15 | 1996-10-29 | Delaware Capital Formation, Inc. | Filter with axially and rotatably movable wiper |
US5804072A (en) | 1997-09-29 | 1998-09-08 | Yang; Chi-Hua | Water filter with strainer scraping means |
US6676834B1 (en) | 1998-01-28 | 2004-01-13 | James Benenson, Jr. | Self-cleaning water filter |
US6267879B1 (en) | 1999-08-11 | 2001-07-31 | Odis Irrigation Equipment Ltd. | Continuous liquid filtering apparatus with multi-layer sintered filtering element |
US6443312B1 (en) | 2001-11-26 | 2002-09-03 | Tech-O-Filtre Inc. | Self-cleaning filter |
US7001505B2 (en) | 2002-04-30 | 2006-02-21 | Pinnacle West Capital Corporation | Slurry monitoring system |
US6833071B2 (en) | 2002-05-15 | 2004-12-21 | Sean R. Duby | Displacement filter apparatus |
ES2625483T3 (en) | 2008-10-02 | 2017-07-19 | Nieves Gonzalez Ramon | Microalgae extract containing omega 3-polyunsaturated fatty acids and method to extract oil from microorganisms |
US8361623B2 (en) | 2009-02-02 | 2013-01-29 | Iowa State University Research Foundation, Inc. | Sequestration of compounds from microorganisms |
JP2012531917A (en) | 2009-07-01 | 2012-12-13 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Extraction method of extracellular terpenoids from microalgal colonies |
US9359580B2 (en) | 2010-08-16 | 2016-06-07 | The Johns Hopkins University | Method for extraction and purification of oils from microalgal biomass using high-pressure CO2 as a solute |
-
2011
- 2011-04-06 WO PCT/US2011/031353 patent/WO2011127127A2/en active Application Filing
- 2011-05-26 US US13/116,610 patent/US8157994B2/en not_active Expired - Fee Related
- 2011-05-26 US US13/116,602 patent/US8212060B2/en not_active Expired - Fee Related
- 2011-10-13 US US13/273,159 patent/US8222437B2/en not_active Expired - Fee Related
-
2012
- 2012-06-11 US US13/493,586 patent/US8318963B2/en not_active Expired - Fee Related
- 2012-10-17 US US13/653,595 patent/US8524929B2/en not_active Expired - Fee Related
Patent Citations (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3875052A (en) * | 1971-07-30 | 1975-04-01 | Inst Francais Du Petrole | Process for separating microscopic algae |
US3850802A (en) | 1972-08-03 | 1974-11-26 | Bermoid Irrigation Controls | Self-cleaning filter |
US3856569A (en) * | 1972-08-16 | 1974-12-24 | Uniroyal Ltd | Process for the purification and concentration of solutions derived from marine algae |
US4062882A (en) | 1974-05-16 | 1977-12-13 | Lever Brothers Company | Process for refining crude glyceride oils by membrane filtration |
US4190538A (en) | 1978-09-22 | 1980-02-26 | E. I. Du Pont De Nemours And Company | Pump seal flush |
US4264452A (en) | 1978-09-22 | 1981-04-28 | E. I. Du Pont De Nemours And Company | Pump seal flush |
US4341038A (en) * | 1979-07-03 | 1982-07-27 | Bloch Moshe R | Oil products from algae |
US4439629A (en) * | 1980-11-20 | 1984-03-27 | Hoffmann-La Roche Inc. | Extraction process for beta-carotene |
US4787981A (en) | 1982-05-10 | 1988-11-29 | Pinoru Oil Mills Co. | Process for purification of crude glyceride oil compositions |
US5130242A (en) | 1988-09-07 | 1992-07-14 | Phycotech, Inc. | Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids |
US4925557A (en) | 1989-04-14 | 1990-05-15 | Ahlberg Jr Walter F | Multi-purpose rotating membrane filter |
US5440028A (en) | 1990-09-25 | 1995-08-08 | Hoechst Aktiengesellschaft | Process for preparing purified glycolipids by membrane separation processes |
US5374657A (en) | 1991-01-24 | 1994-12-20 | Martek Corporation | Microbial oil mixtures and uses thereof |
US5658767A (en) | 1991-01-24 | 1997-08-19 | Martek Corporation | Arachidonic acid and methods for the production and use thereof |
US5338673A (en) | 1992-01-28 | 1994-08-16 | Commissariat A L'energie Atomique | Process for the selective production of polyunsaturated fatty acids from a culture of microalgae of the porphyridium cruentum |
US5539133A (en) | 1992-06-12 | 1996-07-23 | Milupa Aktiengesellschaft | Process for extracting lipids with a high production of long-chain highly unsaturated fatty acids |
US5378369A (en) * | 1993-02-11 | 1995-01-03 | Sasol Chemical Industries (Proprietary) Limited | Solvent extraction |
US5545329A (en) | 1995-05-08 | 1996-08-13 | Rochem Separation Systems | Method of refining oil |
US6180376B1 (en) | 1995-07-18 | 2001-01-30 | Zeneca Limited | Extraction of triglycerides from microorganisms |
US6441208B2 (en) | 1996-03-28 | 2002-08-27 | Dsm N.V. | Preparation of microbial polyunsaturated fatty acid containing oil from pasteurized biomass |
US6000551A (en) * | 1996-12-20 | 1999-12-14 | Eastman Chemical Company | Method for rupturing microalgae cells |
US6372460B1 (en) | 1997-08-01 | 2002-04-16 | Martek Biosciences | DHA-containing nutritional compositions and methods for their production |
CA2249103A1 (en) | 1997-10-27 | 1999-04-27 | Samir S. Badour | Novel hyaluronic acid produced from algae |
EP1057833A1 (en) | 1998-02-17 | 2000-12-06 | Takara Shuzo Co, Ltd. | Sulfated saccharides |
US6166231A (en) | 1998-12-15 | 2000-12-26 | Martek Biosciences Corporation | Two phase extraction of oil from biomass |
US7148366B2 (en) | 1999-05-18 | 2006-12-12 | The Board Of Trustees Of The University Of Illinois | Method and system for extraction of oil from corn |
US6579714B1 (en) | 1999-09-29 | 2003-06-17 | Micro Gaia Co., Ltd. | Method of culturing algae capable of producing phototrophic pigments, highly unsaturated fatty acids, or polysaccharides at high concentration |
US20020009493A1 (en) | 1999-12-15 | 2002-01-24 | Schwendeman Steven P. | Methods for stabilizing biologically active agents encapsulated in biodegradable controlled-release polymers |
US6750048B2 (en) | 2000-01-19 | 2004-06-15 | Martek Biosciences Corporation | Solventless extraction process |
US6524486B2 (en) | 2000-12-27 | 2003-02-25 | Sepal Technologies Ltd. | Microalgae separator apparatus and method |
JP2002220402A (en) | 2001-01-26 | 2002-08-09 | Space Shoji:Kk | Simple production method of fucoidan-containing extract |
US7695626B2 (en) | 2001-12-12 | 2010-04-13 | Martek Biosciences Corp. | Extraction and winterization of lipids from oilseed and microbial sources |
US20050164192A1 (en) | 2002-03-16 | 2005-07-28 | Graham Ian A. | Transgenic plants expressing enzymes involved in fatty acid biosynthesis |
US20050170479A1 (en) | 2002-05-03 | 2005-08-04 | Weaver Craig A. | Method for producing lipids by liberation from biomass |
US20040131580A1 (en) | 2002-12-26 | 2004-07-08 | Shirako Co., Ltd. | Cosmetics |
US20060122410A1 (en) | 2004-10-22 | 2006-06-08 | Martek Biosciences Corporation | Process for preparing materials for extraction |
US7678931B2 (en) | 2004-10-22 | 2010-03-16 | Martek Biosciences Corporation | Process for preparing materials for extraction |
WO2006095964A1 (en) | 2005-03-08 | 2006-09-14 | Hyun Jin Jin | Method for abstract of liquid extract from chlorella |
KR20060097947A (en) | 2005-03-08 | 2006-09-18 | 진현진 | How to extract liquid extract from chlorella |
US20080118964A1 (en) | 2005-06-07 | 2008-05-22 | Mark Edward Huntley | Continuous-Batch Hybrid Process for Production of Oil and Other Useful Products from Photosynthetic Microbes |
US20070025976A1 (en) | 2005-08-01 | 2007-02-01 | Cargill, Inc. | Process for the purification of coenzyme Q10 |
US20090181463A1 (en) | 2006-05-03 | 2009-07-16 | Ncl New Concept Lab Gmbh | Device and method for chemical, biochemical, biological and physical analysis, re-action, assay and more |
US20080038290A1 (en) | 2006-08-11 | 2008-02-14 | Lvmh Recherche | Cosmetic slimming composition containing an extract of biomass of the alga neochloris oleoabundans |
WO2008031092A2 (en) | 2006-09-08 | 2008-03-13 | University Of Mississippi | Immunostimulatory composition comprising lipoprotein in microalgae extract |
WO2008060571A2 (en) | 2006-11-13 | 2008-05-22 | Aurora Biofuels, Inc. | Methods and compositions for production and purification of biofuel from plants and microalgae |
US20080155888A1 (en) | 2006-11-13 | 2008-07-03 | Bertrand Vick | Methods and compositions for production and purification of biofuel from plants and microalgae |
EP1920777A1 (en) | 2006-11-13 | 2008-05-14 | Aslieh Dr. Nookandeh-Baumgärtner | Extraction method for the fractioned preparation and separation of plant ingredients and use thereof |
US7816570B2 (en) | 2006-12-01 | 2010-10-19 | North Carolina State University | Process for conversion of biomass to fuel |
US20080160593A1 (en) | 2006-12-29 | 2008-07-03 | Oyler James R | Two-stage process for producing oil from microalgae |
WO2008144583A1 (en) | 2007-05-16 | 2008-11-27 | Arizona Board Of Regents | Advanced algal photosynthesis-driven bioremediation coupled with renewable biomass and bioenergy production |
US20090148918A1 (en) | 2007-06-01 | 2009-06-11 | Solazyme, Inc. | Glycerol Feedstock Utilization for Oil-Based Fuel Manufacturing |
US20090029445A1 (en) | 2007-07-28 | 2009-01-29 | Nicholas Eckelberry | Algae growth system for oil production |
US20090148931A1 (en) | 2007-08-01 | 2009-06-11 | Bionavitas, Inc. | Illumination systems, devices, and methods for biomass production |
EP2030626A1 (en) | 2007-08-29 | 2009-03-04 | Development Center For Biotechnology | Process for the preparation of plant extracts for treating skin disorders and enhancing healing of wounds |
WO2009082696A1 (en) | 2007-12-21 | 2009-07-02 | Aurora Biofuels, Inc. | Methods for concentrating microalgae |
US20090234146A1 (en) | 2008-03-14 | 2009-09-17 | University Of Hawaii | Methods and compositions for extraction and transesterification of biomass components |
WO2009158658A2 (en) | 2008-06-27 | 2009-12-30 | Sapphire Energy, Inc. | Induction of flocculation in photosynthetic organisms |
US20100055741A1 (en) | 2008-08-27 | 2010-03-04 | Edeniq, Inc. | Materials and methods for converting biomass to biofuel |
US20100068772A1 (en) | 2008-09-04 | 2010-03-18 | Robert Downey | Solubilization of algae and algal materials |
WO2010036334A1 (en) | 2008-09-23 | 2010-04-01 | LiveFuels, Inc. | Systems and methods for producing biofuels from algae |
US20100233761A1 (en) | 2009-03-10 | 2010-09-16 | Czartoski Thomas J | Algae biomass fractionation |
US20110086386A1 (en) | 2009-03-10 | 2011-04-14 | Czartoski Thomas J | Algae biomass fractionation |
WO2010120939A2 (en) | 2009-04-14 | 2010-10-21 | Solazyme, Inc. | Methods of microbial oil extraction and separation |
WO2010123903A1 (en) | 2009-04-20 | 2010-10-28 | Originoil, Inc. | Systems, apparatus and methods for obtaining intracellular products and cellular mass and debris from algae and derivative products and process of use thereof |
WO2010132414A1 (en) | 2009-05-11 | 2010-11-18 | Phycal Llc | Biofuel production from algae |
WO2010138620A1 (en) | 2009-05-26 | 2010-12-02 | Solazyme, Inc. | Fractionation of oil-bearing microbial biomass |
US20100317088A1 (en) | 2009-06-15 | 2010-12-16 | Guido Radaelli | Systems and Methods for Extracting Lipids from Wet Algal Biomass |
WO2010151606A1 (en) | 2009-06-24 | 2010-12-29 | Solix Biofuels, Inc. | Systems and methods for harvesting algae from photobioreactors |
US7868195B2 (en) | 2009-10-30 | 2011-01-11 | Daniel Fleischer | Systems and methods for extracting lipids from and dehydrating wet algal biomass |
US20100261922A1 (en) | 2009-10-30 | 2010-10-14 | Daniel Fleischer | Systems and Methods for Extracting Lipids from and Dehydrating Wet Algal Biomass |
US20110124034A1 (en) | 2009-11-25 | 2011-05-26 | Kuehnle Adelheid R | Enrichment of process feedstock |
US20110253605A1 (en) | 2010-03-19 | 2011-10-20 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Algae filtration systems and methods |
US20110253646A1 (en) | 2010-03-19 | 2011-10-20 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Algae filtration systems and methods |
US20110192073A1 (en) | 2010-04-06 | 2011-08-11 | Heliae Development, Llc | Extraction with fractionation of oil and proteinaceous material from oleaginous material |
US20110195484A1 (en) | 2010-04-06 | 2011-08-11 | Heliae Development, Llc | Methods of and Systems for Dewatering Algae and Recycling Water Therefrom |
US20110195485A1 (en) | 2010-04-06 | 2011-08-11 | Heliae Development, Llc | Methods of and Systems for Producing Biofuels |
US20110196131A1 (en) | 2010-04-06 | 2011-08-11 | Heliae Development, Llc | Selective extraction of proteins from freshwater algae |
US20110196132A1 (en) | 2010-04-06 | 2011-08-11 | Heliae Development, Llc | Selective extraction of proteins from freshwater or saltwater algae |
US20110196135A1 (en) | 2010-04-06 | 2011-08-11 | Heliae Development, Llc | Selective extraction of proteins from saltwater algae |
WO2011127127A2 (en) | 2010-04-06 | 2011-10-13 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Extraction with fractionation of oil and co-products from oleaginous material |
US20110195085A1 (en) | 2010-04-06 | 2011-08-11 | Heliae Development, Llc | Methods of and Systems for Isolating Nutraceutical Products from Algae |
US20110192075A1 (en) | 2010-04-06 | 2011-08-11 | Heliae Development, Llc | Methods of and Systems for Producing Biofuels |
US20110253612A1 (en) | 2010-04-06 | 2011-10-20 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Extraction With Fractionation of Oil and Co-Products From Oleaginous Material |
US20110263886A1 (en) | 2010-04-06 | 2011-10-27 | Heliae Development, Llc | Methods of producing biofuels, chlorophylls and carotenoids |
US20110263883A1 (en) | 2010-04-06 | 2011-10-27 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Extraction With Fractionation of Oil and Co-Products from Oleaginous Material |
US20110258920A1 (en) | 2011-05-31 | 2011-10-27 | Licamele Jason D | V-Trough Photobioreactor System and Method of Use |
Non-Patent Citations (56)
Title |
---|
"Algae Oil Extraction," Diversified Technologies, Inc., Bioscience Technology, Jan. 3, 2011 New Source Web Content-US. |
Agboola, S. et al., "Characterisation and functional properties of Australian rice protein isolates," Journal of Cereal Science 41 (2005) 283-290. |
Amin, S. "Review on biofuel oil and gas production processes from microalgae," Energy Conversion and Management 50 (2009) 1834-1840. |
Berberoglu, H. et al., "Radiation characteristics of Chlamydomonas reinhardtii CC125 and its truncated chlorophyll antenna transformants tla1, tlaX and tla1-CW+" International Journal of Hydrogen Energy 33 (2008) 6467-6483. |
Bligh, E.G. et al., "A Rapid Method of Total Lipid Extraction and Purification," Canadian Journal of Biochemstry and Physiology, vol. 37, Aug. 1959, No. 8, pp. 911-917. |
Borowitzka, M.A. "Commercial production of microalgae: ponds, tanks, tubes and ferments," Journal of Biotechnology 70 (1999) 313-321. |
Brennnan, L. et al., "Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews 14 (2010) 557-577. |
Catchpole, O.J. et al. "The extraction and fractionation of specialty lipids using near critical fluids," J. of Supercritical Fluids 47 (2009) 591-597. |
Chisti, Y. "Biodiesel from microalgae," Biotechnology Advances 25 (2007) 294-306. |
Christie, W.W., Lipid Analysis, 3rd ed., Oily Press, Bridgewater, UK, 2003, pp. 97-102. |
Communication Relating to the Results of the Partial International Search for corresponding International Patent Application No. PCT/US2011/031412 mailed Aug. 9, 2011. |
Cooney, et al., "Extraction of Bio-Oils from Microalgae," Separation and Purification Reviews, vol. 38(4): 291-325 (Oct. 1, 2009). |
Daigger, G.T. et al., "Are Membrane Bioreactors Ready for Widespread Application?" Environmental Sciene & Technology, Oct. 1, 2005, pp. 399A-406A. |
Database WPI, Week 200326, Thomson Scientific, London, GB; AN 2003-259841 & JP 2002 220402 A (Oriental Bio KK) Aug. 9, 2002, abstract. |
de Morais Coutinho, C. et al., "State of art of the application of membrane technology to vegetable oils: A review," Food Research International 42 (2009) 536-550. |
Grima, E.M. et al., "Recovery of microalgal biomass and metabolites: process options and economics," Biotechnology Advances 20 (2003) 491-515. |
Harun, R. et al., "Bioprocess engineering of microlagae to produce a variety of consumer products," Renewable and Sustainable Energy Reviews 14 (2010) 1037-1047. |
Hejazi, M.A. et al., "Milking of microalgae," Trends in Biotechnology vol. 22, No. 4, Apr. 2004, pp. 189-194. |
Herfindal, L. et al., "A high proportion of Baltic Sea benthic cynaobacterial isolates contain apoptogens able to induce rapid death of isolated rat hepatocytes," Toxicon 46 (2005) 252-260. |
Herrero, M. et al., "Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae-A Review," Food Chemistry 98 (2006) 136-148. |
Huang, G. et al., "Biodiesel production by microalgal biotechnology," Applied Energy 87 (2010) 38-46. |
Huang, G. et al., "Rapid screening method for lipid production in alga based on Nile red fluorescence," Biomass and Bioenergy 33 (2009) 1386-1392. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2011/031404 mailed Aug. 3, 2011. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2011/031408 mailed Aug. 9, 2011. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2011/031414 mailed Aug. 5, 2011. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2011/031417 mailed Aug. 3, 2011. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2011/031419 mailed Sep. 5, 2011. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2011/031421 mailed Aug. 3, 2011. |
International Search Report and Written Opinoin for International Patent Application No. PCT/US2011/031407 mailed Aug. 9, 2011. |
International Search Report issued for PCT/US2011/031353, dated Jan. 2, 2012 (2 pages). |
Ju, Z.Y. et al., "Extraction, Denaturation and Hydrophobic Properties of Rice Flour Proteins," Journal of Food Science, vol. 66, No. 2, 2001, pp. 229-232. |
Knuckey, R.M. et al., "Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds," Aquaculural Engineering 35 (2006) 300-313. |
Koris, A. et al., "Dry degumming of vegetable oils by membrane filtration," Desalination 148 (2002) 149-153. |
Kumari, P. et al., "Tropical marine macroalgae as potential sources of nutritionally important PUFAs," Food Chemistry 120 (2010) 749-757. |
Lee, M. et al., "Isolation and Characterization of a Xanthophyll Aberrant Mutant of the Green Alga Nannochloropsis oculata," Marine Biotechnology, 2006, pp. 238-245. |
Mata, Teresa M. et al., "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews (2009), 16 pages. |
Mercer, P. et al., "Developments in oil extraction from microalgae," Eur. J. Lipid Sci. Technol. 2011, 113, 539-547. |
Plaza, M. et al., "Screening for bioactive compounds from algae," Journal of Pharmaceuticals and Biomedical Analysis 51 (2010) 450-455. |
Ramirez, A. et al., "Lipid extraction from the microalga Phaeodactylum tricornutum," Eur. J. Lipid. Technol. 109 (2007) 120-126. |
Raynie, D.E., "Modern Extraction Techniques," Anal. Chem. 2006, 78, 3997-4003. |
Rhodes, C.J. "Oil from algae; salvation from peak oil?" Science Progress (2009), 92(1), 39-90. |
Rittmann, B.E. "Opportunities for Renewable Bioenergy Using Microorganisms," Biotechnology and Bioengineering, vol. 100, No. 2, Jun. 1, 2008, pp. 203-212. |
Rittmann, B.E. et al., Environmental Biotechnology: Principles and Applications. McGraw-Hill Book Co., New York, pp. 24-34, 45, 57, 353-378. |
Rossignol, N. et al., "Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration," Aquacultutal Engineering 20 (1999) 191-208. |
Shahidi, "Extraction and Measurement of Total Lipids," Curr. Protocols in Food Analy. Chemistry, John Wiley & Sons, D1.1.1-D.1.11 (2001). |
Spolaore, P. et al. "Commercial Applications of Microalgae," Journal of Bioscience and Bioengineering, vol. 101, No. 2, 87-96, 2006. |
Steinitz, Y. et al., "A Mutant of the Cyanobacterium Plectonema Boryanum Resistant to Photooxidation," Plant Science Letters, vol. 16, Issues 2-3, p. 327-335, Oct. 1979. |
U.S. Appl. No. 13/116,602, filed May 26, 2011. |
U.S. Appl. No. 13/149,463, filed May 31, 2011. |
U.S. Appl. No. 13/149,524, filed May 31, 2011. |
U.S. Appl. No. 13/149,531, filed May 31, 2011. |
U.S. Appl. No. 13/149,595, filed May 31, 2011. |
Uduman, N. et al. "Dewatering of microalgal cultures: A major bottleneck to algae-based fuels," Journal of Renewable and Sustainable Energy 2, 2010, 012701-1-012701-15. |
Voorhees, K.J. et al., "Analysis of Insoluble Carbonaceous Materials from Airborne Particles Collected in Pristine Region of Colorado," Journal of Analytical and Applied Pyrolysis, 18 (1991) 189-205. |
Wachowicz, M. et al. "The protein of the alga Spirulina platensis. (translated)." Database FSTA [Online] International Food Information Service (IFIS), Frankfurt-Main, DE; 1974. |
Webvitamins (2011, updated) "Globulin Protein Concentrate", www.webvitamins.com/Nutrientaspx?id=2007, p. 1. |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8318963B2 (en) * | 2010-04-06 | 2012-11-27 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Extraction with fractionation of lipids and co-products from oleaginous material |
US9629820B2 (en) | 2012-12-24 | 2017-04-25 | Qualitas Health, Ltd. | Eicosapentaenoic acid (EPA) formulations |
US10039734B2 (en) | 2012-12-24 | 2018-08-07 | Qualitas Health, Ltd. | Eicosapentaenoic acid (EPA) formulations |
US10123986B2 (en) | 2012-12-24 | 2018-11-13 | Qualitas Health, Ltd. | Eicosapentaenoic acid (EPA) formulations |
US10245526B2 (en) | 2014-09-18 | 2019-04-02 | Bridgestone Corporation | Extractor and related methods |
US10843103B2 (en) | 2014-09-18 | 2020-11-24 | Bridgestone Corporation | Extractor and related methods |
US11458415B2 (en) | 2014-09-18 | 2022-10-04 | Bridgestone Corporation | Extractor and related methods |
Also Published As
Publication number | Publication date |
---|---|
US20130041168A1 (en) | 2013-02-14 |
US20120065418A1 (en) | 2012-03-15 |
US8318963B2 (en) | 2012-11-27 |
WO2011127127A2 (en) | 2011-10-13 |
US20110263883A1 (en) | 2011-10-27 |
WO2011127127A3 (en) | 2012-03-01 |
US20110253612A1 (en) | 2011-10-20 |
US20120264958A1 (en) | 2012-10-18 |
US8222437B2 (en) | 2012-07-17 |
US8524929B2 (en) | 2013-09-03 |
US8212060B2 (en) | 2012-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8157994B2 (en) | Extraction with fractionation of oil and co-products from oleaginous material | |
KR20140002753A (en) | Extraction of proteins from algae | |
KR20140020285A (en) | Extraction of polar lipids by a two solvent method | |
KR20140014219A (en) | Extraction of neutral lipids by a two solvent method | |
JP2013523156A (en) | Selective extraction of proteins from freshwater algae | |
US8273248B1 (en) | Extraction of neutral lipids by a two solvent method | |
CA2874710C (en) | Method for continuously enriching an oil produced by microalgae with ethyl esters of dha | |
US20120271038A1 (en) | Extraction of proteins by a two solvent method | |
KR20140010972A (en) | Methods of producing biofuels, chlorophylls and carotenoids | |
WO2012109642A1 (en) | Aqueous extraction methods for high lipid microorganisms | |
WO2013142687A1 (en) | Method of extracting polar lipids and neutral lipids with two solvents | |
WO2013142694A1 (en) | Method of extracting neutral lipids with two solvents | |
US20150105546A1 (en) | Separation process of oil and sugars from biomass | |
EP3275981B1 (en) | Continuous process for fractionating a suspension | |
US20130338384A1 (en) | Process for the release of lipids from microalgae | |
KR102549752B1 (en) | Method for extracting lipid from microalgae | |
US20130109079A1 (en) | Method for separating an organic component from a mixture containing the organic component | |
NZ615225B2 (en) | Methods of producing biofuels, chlorophylls and carotenoids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ARIZONA BOARD OF REGENTS FOR AND ON BEHALF OF ARIZ Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KALE, ANIKET;HU, QIANG;SOMMERFELD, MILTON;SIGNING DATES FROM 20110620 TO 20110630;REEL/FRAME:026562/0751 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20160417 |