US8101303B2 - Lithium battery with lithium salt mixture - Google Patents
Lithium battery with lithium salt mixture Download PDFInfo
- Publication number
- US8101303B2 US8101303B2 US11/889,176 US88917607A US8101303B2 US 8101303 B2 US8101303 B2 US 8101303B2 US 88917607 A US88917607 A US 88917607A US 8101303 B2 US8101303 B2 US 8101303B2
- Authority
- US
- United States
- Prior art keywords
- group
- lithium
- compound
- active material
- combinations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/1315—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a rechargeable lithium battery. More particularly, the present invention relates to a rechargeable lithium battery having high capacity, excellent cycle-life, and reliability at a high temperature.
- Lithium rechargeable batteries have has recently drawn attention as power sources for small portable electronic devices. They use an organic electrolyte solution and thereby have twice the discharge voltage of a conventional battery using an alkali aqueous solution, and accordingly have high energy density.
- lithium-transition element composite oxides being capable of intercalating lithium such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 1-x Co x O 2 (0 ⁇ x ⁇ 1), LiMnO 2 , and so on have been researched.
- Graphite of the carbon-based material increases discharge voltage and energy density for a battery because it has a low discharge potential of ⁇ 0.2V, compared to lithium.
- a battery using graphite as a negative active material has a high average discharge potential of 3.6V and excellent energy density.
- graphite is most comprehensively used among the aforementioned carbon-based materials since graphite guarantees a better cycle life for a battery due to its outstanding reversibility.
- a graphite active material has low density and consequently low capacity in terms of energy density per unit volume when using the graphite as a negative active material. Further, it involves some dangers such as explosion or combustion when a battery is misused or overcharged and the like, because graphite is likely to react with an organic electrolyte at a high discharge voltage.
- amorphous tin oxide developed by Japan Fuji Film. Co., Ltd. has a high capacity per weight (800 mAh/g).
- it resulted in some critical defects such as a high initial irreversible capacity of up to 50%.
- a part of the tin oxide tended to be reduced into tin metal during the charge or discharge reaction, which exacerbates its acceptance for use in a battery.
- a negative active material of Li a Mg b VO c (0.05 ⁇ 3, 0.12 ⁇ b ⁇ 2, 2 ⁇ 2c-a-2b ⁇ 5) is disclosed in Japanese Patent Publication No. 2002-216753.
- the characteristics of a lithium secondary battery including Li 1.1 V 0.9 O 2 were also presented in the 2002 Japanese Battery Conference (Preview No. 3B05).
- One embodiment of the present invention provides a positive electrode for a rechargeable lithium battery that has high capacity, excellent cycle-life, and excellent reliability at a high temperature.
- a rechargeable lithium battery that includes a positive electrode including a positive active material being capable of intercalating and deintercalating lithium ions; a negative electrode including a negative active material being capable of intercalating and deintercalating lithium ions; and an electrolyte including a non-aqueous organic solvent and a lithium salt.
- the positive electrode has a positive active mass density of 3.65 g/cc or more, and the lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and a lithium imide-based compound.
- the lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and a lithium imide-based compound.
- the lithium imide-based compound is selected from the group consisting of Li[N(SO 2 CF 3 ) 2 ], Li[N(SO 2 CF 2 CF 3 ) 2 ], and a combination thereof.
- the lithium imide-based compound is present at a 0.1 to 0.7M concentration in the electrolyte.
- the LiPF 6 is present at a 0.7 to 1.5M concentration in the electrolyte.
- the LiBF 4 is present in an amount of 0.05 to 0.5 wt % based on the total weight of the electrolyte.
- the electrolyte further includes at least one lithium salt selected from the group consisting of LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiSO 3 CF 3 , LiCl, LiI, LiB(C 2 O 4 ) 2 , and combinations thereof.
- at least one lithium salt selected from the group consisting of LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiSO 3 CF 3 , LiCl, LiI, LiB(C 2 O 4 ) 2 , and combinations thereof.
- the positive active material may be a compound selected from the group consisting of the compounds represented by the following Formulas 1 to 24. Li a A 1-b B b D 2 Formula 1
- the positive active material is a material that is surface-treated with the compound of the following Formula 25: MXO k Formula 25
- M is at least one selected from the group consisting of an alkali metal, an alkaline-earth metal, a Group 13 element, a Group 14 element, a transition element, and a rare earth element
- X is an element being capable of forming a double bond with oxygen
- k ranges from 2 to 4.
- the element M is selected from the group consisting of Na, K, Mg, Ca, Sr, Ni, Co, Si, Ti, B, Al, Sn, Mn, Cr, Fe, V, Zr, and combinations thereof.
- X is selected from the group consisting of P, S, W, and combinations thereof.
- the negative active material may include at least one selected from the group consisting of lithium, a metal being capable of alloying with lithium, a carbonaceous material, a composite material including the metal and carbonaceous material, and combinations thereof.
- the metal being capable of alloying with lithium may include at least one selected from the group consisting of Al, Si, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Ag, Ge, Ti, and combinations thereof.
- the non-aqueous organic solvent may include a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent.
- a rechargeable lithium battery includes: a positive electrode including a positive active material being capable of intercalating and deintercalating lithium ions; a negative electrode including a negative active material being capable of intercalating and deintercalating lithium ions; and an electrolyte including a non-aqueous organic solvent and a lithium salt, the lithium salt including lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and a lithium imide-based compound.
- a positive electrode including a positive active material being capable of intercalating and deintercalating lithium ions
- a negative electrode including a negative active material being capable of intercalating and deintercalating lithium ions
- an electrolyte including a non-aqueous organic solvent and a lithium salt, the lithium salt including lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and a lithium imide-based compound.
- a rechargeable lithium battery includes: a positive electrode including a positive active material being capable of intercalating and deintercalating lithium ions, the positive electrode including a lithiated intercalation compound, a surface-treatment layer on the lithiated intercalation compound, the surface-treatment layer including a compound of Formula 25 and a solid-solution compound between the lithiated intercalation compound and the compound of Formula 25, the solid-solution compound including Li, M′, M, and X: MXO k (25)
- M is at least one selected from the group consisting of an alkali metal, an alkaline-earth metal, a Group 13 element, a Group 14 element, a transition element, and a rare earth element
- X is an element being capable of forming a double bond with oxygen
- k ranges from 2 to 4
- M′ is at least one selected from the group consisting of Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare-earth element and a combination thereof
- a negative electrode including a negative active material being capable of intercalating and deintercalating lithium ions
- an electrolyte including a non-aqueous organic solvent and a lithium salt, the lithium salt including lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and a lithium imide-based compound, the concentration of the LiPF 6 in the electrolyte ranging from 0.7 to 1.5M, the concentration of the LiBF 4 in the electro
- FIG. 1 is a schematic cross-sectional view of a rechargeable lithium battery according to one embodiment of the present invention.
- positive and negative electrodes are thermally instable so that an electrolyte salt, an organic solvent, and active materials of the positive and negative electrodes may decompose and thereby cell cycle-life and safety may be deteriorated.
- an optimal combinatorial lithium salt is used to provide a rechargeable lithium battery having excellent cycle-life characteristics and safety even when using a positive electrode with a high active mass density.
- FIG. 1 is a schematic cross-sectional view of a rechargeable lithium battery according to one embodiment of the present invention.
- the rechargeable lithium battery 1 is generally constructed of a negative electrode 2 , a positive electrode 3 , a separator interposed between the positive electrode 3 and the negative electrode 2 , and an electrolyte in which the separator 4 is immersed, and in addition, a cell case 5 and a sealing member 6 sealing the cell case 5 .
- the positive electrode 2 includes a current collector and the positive active material layer disposed on the current collector.
- the positive active material layer includes a positive active material being capable of performing an electrochemical redox reaction.
- the positive active material includes a lithiated intercalation compound that is capable of reversibly intercalating and deintercalating lithium.
- a lithiated intercalation compound that is capable of reversibly intercalating and deintercalating lithium.
- the lithiated intercalation compound may be a composite oxide including lithium and a metal selected from the group consisting of cobalt, manganese, nickel, and combinations thereof.
- the lithiated intercalation compound may be a compound selected from the group consisting of the compounds represented by the following Formulas 1 to 24. Li a A 1-b T b D 2 Formula 1
- S 8 elemental sulfur
- the positive active material may be surface-treated with the compound of the following Formula 25: MXO k Formula 25
- M is at least one selected from the group consisting of an alkali metal, an alkaline-earth metal, a Group 13 element, a Group 14 element, a transition element, and a rare earth element
- X is an element being capable of forming a double bond with oxygen
- k ranges from 2 to 4.
- the Groups 13 and 14 respectively refer to an Al-containing group and a Si-containing group according to a new IUPAC system in the periodic table.
- M is Na, K, Mg, Ca, Sr, Ni, Co, Si, Ti, B, Al, Sn, Mn, Cr, Fe, V, Zr, or combinations thereof
- X is P, S, W, or combinations thereof.
- the element M of the compound of the above Formula 25 is present in an amount of 0.1 to 15 wt % based on the total weight of the positive active material. According to one embodiment, the element M is present in an amount of 0.1 to 6 wt % based on the total weight of the positive active material.
- the element X that is capable of forming a double bond with oxygen is present in an amount of 0.1 to 15 wt % based on the total weight of the positive active material. According to one embodiment, the element X is present in an amount of 0.1 to 6 wt % based on the total weight of the positive active material.
- the active material to be surface treated is a lithiated intercalation compound
- a solid-solution compound is formed from the lithiated intercalation compound and the MXO k compound on the surface of the active material in addition to the MXO k compound of Formula 25.
- a surface-treatment layer of the active material includes both the solid-solution compound and the MXO k compound.
- the solid-solution compound includes Li, M′ where M′ is at least one selected from the group consisting of Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare-earth element and a combination thereof, that originates from the lithiated intercalation compound, M where M is at least one selected from the group consisting of an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, a rare-earth element, and combinations thereof, X which is an element capable of forming a double bond with oxygen, and O (oxygen).
- the elements M and X have a concentration gradient from the surface of the active material toward the center of the active material particle grain. That is, M and X have a high concentration at the surface of the active material and the concentration gradually decreases as it goes toward the inside of the particle.
- the surface-treatment layer including the MXO k compound is formed according to the method disclosed in Korean Patent No. 424646, which is incorporated herein by reference.
- the active material that is surface-treated with MXO k shows excellent structural stability and high average discharge voltages both at high and low rates, and an excellent cycle-life and capacity, due to its structural stability. Its excellent thermal stability improves the safety of the cells in various categories indicating combustion, heat exposure, and overcharge tests.
- the positive active material including a compound of the above Formulas 1 to 15 that is surface-treated with the compound of the above Formula 25 may be appropriate.
- the positive active material layer may further include a binder for improving adherence between the positive active material layer and a current collector, or a conductive agent for improving electrical conductivity.
- the binder may be selected from the group consisting of polyvinylchloride, polyvinyldifluoride, an ethylene oxide-containing polymer, polyvinylalcohol, carboxylated polyvinylchloride, polyvinylidenefluoride, polyimide, polyurethane, an epoxy resin, nylon, carboxymethyl cellulose, hydroxypropylene cellulose, diacetylene cellulose, polyvinyl pyrrolidone, polytetrafluoroethylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, copolymers thereof, and combinations thereof.
- any electrically conductive material can be used as a conductive agent unless it causes any chemical change.
- the conductive agent include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, a metal powder or a metal fiber including copper, nickel, aluminum, silver, and so on, or a polyphenylene derivative.
- the positive electrode 2 can be fabricated as follows.
- a positive active material composition is prepared by mixing a positive active material, a binder, and optionally a conductive agent in a solvent, and then the composition is applied on a positive current collector followed by drying and compression.
- the positive electrode manufacturing method is well known, and thus it is not described in detail in the present specification.
- the positive active material, the binder, and the conductive agent are the same as above-described.
- the solvent used in preparing the positive active material composition can be N-methylpyrrolidone, but it is not limited thereto.
- the current collector may be selected from the group consisting of an aluminum foil, a nickel foil, a stainless steel foil, a titanium foil, a nickel foam, a copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
- an aluminum foil may be appropriate.
- the active mass density of the positive electrode 2 may be adjusted in the fabrication of the positive electrode 2 by controlling the pressure, and the frequency and temperature of compression.
- the compression pressure, compression frequency number, and the compression temperature are not specifically limited. They may be adjusted such that the fabricated positive electrode may have an active mass density of 3.65 g/cc or more, and more specifically from 3.7 to 4.1 g/cc.
- the active mass density of the positive electrode obtained after a charged and discharged rechargeable lithium battery is disassembled decreases relative to that before charge and discharge.
- the positive electrode has an active mass density of 3.6 to 3.9 g/cc after charge and discharge.
- the active mass density of an electrode is a value obtained by dividing the mass of the components (active material, conductive agent, and binder) excluding a current collector in the electrode by the volume.
- the unit of the active mass density is g/cc.
- the active mass density of a positive electrode used in a generally-used rechargeable lithium battery is about 3.6 g/cc.
- the rechargeable lithium battery suggested in the embodiment of the present invention includes a positive electrode of a high active mass density and can implement excellent capacity characteristics without deterioration of cycle-life by optimally including combinatorial lithium salts.
- the active mass density of the positive electrode is less than 3.65 g/cc, the capacity is not significantly increased within a limited volume.
- the negative electrode 3 includes a current collector and a negative active material layer disposed on the current collector.
- the negative active material layer includes electrochemically redox materials that can reversibly intercalate and deintercalate lithium ions.
- the negative active material may include at least one selected from the group consisting of lithium, a metal being capable of alloying with lithium, a carbonaceous material, a composite material including the metal and carbonaceous material, and combinations thereof.
- the metal being capable of alloying with lithium may include Al, Si, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Ag, Ge, or Ti.
- the carbonaceous material may include artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, fullerene, amorphous carbon, and so on.
- the amorphous carbon may be a soft carbon (carbon obtained by firing at a low temperature) or a hard carbon (carbon obtained by firing at a high temperature), and the crystalline carbon may be sheet-shaped, spherical-shaped, or fiber-shaped natural graphite or artificial graphite.
- the active material layer of the negative electrode 3 may further include a binder for improving adherence between the negative active material layer and a current collector, and/or a conductive agent for improving electrical conductivity as in the positive electrode 2 .
- the binder and the conductive agent are the same as described above.
- the negative electrode 3 can be fabricated as follows: a negative active material composition is prepared by mixing a negative active material, a binder, and optionally a conductive agent in a solvent, and then the composition is applied on a negative current collector such as copper.
- a negative active material composition is prepared by mixing a negative active material, a binder, and optionally a conductive agent in a solvent, and then the composition is applied on a negative current collector such as copper.
- the negative electrode manufacturing method is well known, and thus it is not described in detail in the present specification.
- the solvent used in preparing the negative active material composition can be N-methylpyrrolidone, but it is not limited thereto.
- the current collector may be selected from the group consisting of a copper foil, a nickel foil, a stainless steel foil, a titanium foil, a nickel foam, a copper foam, a polymer substrate coated with a conductive metal, and combinations thereof. According to one embodiment, a copper foil or a nickel foil may be appropriate.
- the electrolyte includes a non-aqueous organic solvent and a lithium salt.
- the lithium salts act as a lithium-ion source, helping basic battery operation.
- the lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and a lithium imide-based compound.
- the LiPF 6 provides excellent ion conductivity and is present at a 0.7 to 1.5M concentration in the electrolyte. According to one embodiment, the LiPF 6 is present at a 0.8 to 1.2M concentration. When the concentration of LiPF 6 is less than 0.7M, electrolyte ion conductivity decreases, whereas when it is more than 1.5M, excessive salts may be present in the electrolyte.
- the LiBF 4 provides stability at a high temperature.
- the LiBF 4 is present in an amount of 0.05 to 0.5 wt % based on the total weight of the electrolyte.
- the LiBF 4 is present in an amount of 0.1 to 0.3 wt % based on the total weight of the electrolyte.
- the amount of LiBF 4 is less than 0.05 wt %, the LiBF 4 use effect is not sufficient, whereas when it is more than 0.5 wt %, battery performance may deteriorate.
- the lithium imide-based compound also endows stability at a high temperature.
- the lithium imide-based compound include at least one lithium salt selected from the group consisting of Li[N(SO 2 CF 3 ) 2 ], Li[N(SO 2 CF 2 CF 3 ) 2 ], and combinations thereof.
- the lithium imide-based compound is present at a 0.1 to 0.7M concentration in the electrolyte. According to one embodiment, the lithium imide-based compound is present at a 0.3 to 0.6M concentration. When the concentration of the lithium imide-based compound is less than 0.1M, high temperature characteristics are not improved, whereas when it is more than 0.7M, battery performance may deteriorate because of an excessive amount of the lithium imide based compound.
- the above LiPF 6 , the LiBF 4 , and the lithium imide-based compound are lithium salts acting as a lithium ion source in a conventional electrolyte of a rechargeable lithium battery.
- the LiPF 6 has good ion conductivity, but has low high temperature stability, whereas LiBF 4 has somewhat reduced ion conductivity but relatively better high temperature stability than LiPF 6 .
- the lithium imide-based compound has excellent high temperature stability.
- the three component salts are mixed with a specific combination as a lithium salt, and thereby cycle-life characteristics at normal and high temperatures may be improved, even when using a positive electrode having a high active mass density.
- the electrolyte may further include a conventional lithium salt as a lithium ion source.
- the conventional lithium salt may include at least one selected from the group consisting of LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiSO 3 CF 3 , LiCl, LiI, LiB(C 2 O 4 ) 2 , and combinations thereof.
- the lithium salt may be used at a 0.6 to 2.0M concentration. According to one embodiment, the lithium salt may be used at a 0.7 to 1.6 M concentration. When the lithium salt concentration is less than 0.6M, electrolyte performance may be deteriorated due to low electrolyte conductivity, whereas when it is more than 2.0M, lithium ion mobility may be reduced due to an increase of electrolyte viscosity.
- the non-aqueous organic solvent acts as a medium for transmitting ions taking part in the electrochemical reaction of the battery.
- the non-aqueous organic solvent may include a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent.
- Examples of the carbonate-based solvent may include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and so on.
- DMC dimethyl carbonate
- DEC diethyl carbonate
- DPC dipropyl carbonate
- MPC methylpropyl carbonate
- EPC methylethylpropyl carbonate
- MEC methylethyl carbonate
- EMC ethylmethyl carbonate
- EMC ethylmethyl carbonate
- EC ethylene carbonate
- PC propylene carbonate
- BC butylene carbonate
- ester-based solvent may include n-methyl acetate, n-ethyl acetate, n-propyl acetate, dimethylacetate, methylpropionate, ethylpropionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, and so on.
- ether-based solvent examples include dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, and so on.
- ketone-based solvent include cyclohexanone and so on.
- Examples of the alcohol-based solvent include ethanol, isopropyl alcohol, and so on.
- Examples of the aprotic solvent include a nitrile such as X—CN (wherein R is a C2 to C20 linear, branched, or cyclic hydrocarbon, a double bond, an aromatic ring, or an ether bond), an amide such as dimethylformamide, a dioxolane such as 1,3-dioxolane, sulfolane, and so on.
- the non-aqueous organic solvent may be used singularly or as a mixture.
- the mixture ratio can be controlled in accordance with a desirable battery performance.
- the carbonate-based solvent may include a mixture of a cyclic carbonate and a linear carbonate.
- the cyclic carbonate and the chain carbonate are mixed together in a volume ratio of 1:1 to 1:9, and the mixture is used as an electrolyte, the electrolyte performance may be enhanced.
- the electrolyte according to one embodiment of the present invention may include mixtures of carbonate-based solvents and aromatic hydrocarbon-based solvents.
- the carbonate-based solvents and the aromatic hydrocarbon-based solvents are preferably mixed together in the volume ratio of 1:1 to 30:1.
- the aromatic hydrocarbon-based organic solvent may be represented by the following Formula 26:
- R 1 to R 6 are independently selected from the group consisting of hydrogen, a halogen, a C1 to C10 alkyl, a haloalkyl, and combinations thereof.
- the aromatic hydrocarbon-based organic solvent may include, but is not limited to, at least one selected from the group consisting of benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, 1,4-diiodobenzene, 1,2,3-triiodobenzene, 1,2,4-triiodobenzene, toluene, fluorotoluene, 1,2-difluor
- the electrolyte may further include an additive to improve cell characteristics.
- an additive to improve cell characteristics.
- Specific examples of the additive include an ethylene carbonate-based compound represented by the following Formula 27 to improve thermal stability of a rechargeable lithium battery:
- X and Y are independently selected from the group consisting of hydrogen, a halogen, cyano (CN), nitro (NO 2 ), and a fluorinated C1 to C5 alkyl, provided that at least one of X and Y is selected from the group consisting of a halogen, a cyano (CN), a nitro (NO 2 ), and a fluorinated C1 to C5 alkyl.
- the ethylene carbonate-based compound may be selected from the group consisting of ethylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, and combinations thereof.
- fluoroethylene carbonate may be appropriate.
- the ethylene carbonate-based additive is not limited to a specific amount, and may be added in an appropriate amount to obtain thermal stability.
- the rechargeable lithium battery generally includes a separator between the positive electrode and the negative electrode.
- the separator may include polyethylene, polypropylene, or polyvinylidene fluoride, or a multilayer thereof such as a polyethylene/polypropylene bilayered separator, a polyethylene/polypropylene/polyethylene three-layered separator, or a polypropylene/polyethylene/polypropylene three-layered separator.
- a lithium salt described in the following Table 1 was added to a non-aqueous organic solvent including ethylene carbonate/dimethyl carbonate/ethylmethyl carbonate (EC/DMC/EMC) in a volume ratio of 3/3/4 to prepare an electrolyte.
- EC/DMC/EMC ethylene carbonate/dimethyl carbonate/ethylmethyl carbonate
- LiCoO 2 with an average particle diameter of 10 ⁇ m as a positive active material, polyvinylidene fluoride (PVDF) as a binder, and carbon (Super-P) as a conductive agent were mixed with a weight ratio of 94/3/3, and dispersed in N-methyl-2-pyrrolidone to prepare a positive active material composition.
- the composition was coated on an aluminum foil with a thickness of 15 ⁇ m, dried, and compressed, and thereby a positive electrode was fabricated.
- Positive electrodes having various active mass densities as shown in the following Table 1 were fabricated by controlling the compression pressure, compression frequency number, and compression temperature.
- a carbon negative active material and a PVDF binder were mixed in a weight ratio of 94:6, and dispersed in N-methyl-2-pyrrolidone, respectively, to prepare a negative electrode slurry.
- the slurry was coated on a copper foil with a thickness of 10 ⁇ m, dried, and compressed, and thereby a negative electrode was fabricated.
- a polyethylene separator was interposed between the fabricated electrodes, spirally wound, compressed, and then an electrolyte was injected to fabricate a 18650 cylindrical battery.
- LiTFSI denotes lithium bis(trimethanesulfonyl)imide (Li[N(SO 2 CF 3 ) 2 ])
- LiBETI denotes lithium bis(perfluoroethylsulfonyl) imide (Li[N(SO 2 CF 2 CF 3 ) 2 ]).
- a rechargeable lithium battery cell was fabricated according to the same method as in Example 1, except that the prepared positive active material was used.
- a rechargeable lithium battery cell was fabricated according to the same method as in Example 16, except that LiMn 2 O 4 with an average particle diameter of 13 ⁇ m was used instead of LiCoO 2 .
- a rechargeable lithium battery cell was fabricated according to the same method as in Example 16, except that LiNi 0.9 Co 0.1 Sr 0.002 O 2 with an average particle diameter of 13 ⁇ m was used instead of LiCoO 2 .
- a rechargeable lithium battery was fabricated according to the same method as in Example 16, except that 20 g of a SnO 2 active material with an average particle diameter of 10 ⁇ m was added to 20Ml of a coating liquid. The total amount of the Al and P was 2 wt % of the active material.
- the rechargeable lithium battery cells fabricated according to the Examples 1 to 15 and Comparative Examples 1 to 23 were estimated with respect to cycle-life characteristics at both room temperature and a high temperature.
- the rechargeable lithium battery cells according to Examples 1 to 15 and Comparative Examples 1 to 23 were charged at 0.2 C, and then discharged at 0.2 C for a formation charge and discharge, and then charging at 0.5 C and discharging at 0.2 C were performed for a standard charge and discharge.
- the rechargeable lithium battery cells were charged at 1.0 C and discharged at 1.0 C, and capacities at the 300th cycles at 25° C. and 45° C. were measured to evaluate cycle-life characteristics.
- the measurement results are shown in the following Table 2.
- Example 21 60 58 Comp. Ex. 22 73 67 Comp. Ex. 23 72 65
- Example 1 72
- Example 2 78 75
- Example 3 83
- Example 4 85
- Example 5 82
- Example 6 81
- Example 7 80
- Example 8 68
- Example 9 62
- Example 10 50
- Example 11 72
- Example 12 61
- Example 13 70
- Example 14 68
- Example 15 65 0
- the lithium rechargeable battery cells including the LiPF 6 , LiBF 4 , and the lithium imide-based compound as a lithium salt according to Examples 1 to 10 showed excellent cycle-life characteristics at room temperature and a high temperature, even though they used a positive electrode with a high active mass density. Further, the battery cells according to Examples 11 to 15 where the content of LiPF 6 , LiBF 4 , and the lithium imide-based compound were out of the range of the present invention showed reduced cycle-life characteristics at room temperature and/or a high temperature.
- the rechargeable lithium battery cells according to Examples 16 to 19 were estimated with respect to cycle-life characteristics at room temperature and a high temperature with the same method as above. Results showed that they had the same cycle-life characteristics as in Example 3.
- the rechargeable lithium battery has high capacity, and excellent cycle-life characteristics, particularly at a high temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
LiaA1-bBbD2 Formula 1
LiaE1-bBbO2-cLc
LiE2-bBbO4-cLc Formula 3
LiaNi1-b-cCobBcDα
LiaNi1-b-cCobBcO2-αLα Formula 5
LiaNi1-b-cCobBcO2-αL2 Formula 6
LiaNi1-b-cMnbBcDα Formula 7
LiaNi1-b-cMnbBcO2-αLα Formula 8
LiaNi1-b-cMnbBcO2-αL2 Formula 9
LiaNibEcGdO2 Formula 10
LiaNibCocMndGeO2 Formula 11
LiaNiGbO2 Formula 12
LiaCoGbO2 Formula 13
LiaMnGbO2 Formula 14
LiaMn2GbO4 Formula 15
QO2. Formula 16
QS2. Formula 17
LiQS2. Formula 18
V2O5. Formula 19
LiV2O5. Formula 20
LiZO2. Formula 21
LiNiVO4. Formula 22
Li3-fJ2(PO4)3 (0≦f≦3). Formula 23
Li3-fFe2(PO4)3 (0≦f≦2). Formula 24
MXOk Formula 25
MXOk (25)
LiaA1-bTbD2 Formula 1
LiaE1-bTbO2-cLc Formula 2
LiE2-bTbO4-cLc Formula 3
LiaNi1-b-cCobTcDα Formula 4
LiaNi1-b-cCobTcO2-αLα Formula 5
LiaNi1-b-cCobTcO2-αL2 Formula 6
LiaNi1-b-cMnbTcDα Formula 7
LiaNi1-b-cMnbTcO2-αLα Formula 8
LiaNi1-b-cMnbTcO2-αL2 Formula 9
LiaNibEcGdO2 Formula 10
LiaNibCocMndGeO2 Formula 11
LiaNiGbO2 Formula 12
LiaCoGbO2 Formula 13
LiaMnGbO2 Formula 14
LiaMn2GbO4 Formula 15
QO2. Formula 16
QS2. Formula 17
LiQS2. Formula 18
V2O5. Formula 19
LiV2O5. Formula 20
LiZO2. Formula 21
LiNiVO4. Formula 22
Li3-fJ2(PO4)3 (0≦f≦3). Formula 23
Li3-fFe2(PO4)3 (0≦f≦2). Formula 24
MXOk Formula 25
TABLE 1 | |||
Positive active mass | |||
density (g/cc) | Lithium salt | ||
Comp. Ex. 1 | 3.60 | 1.3M LiPF6 |
Comp. Ex. 2 | 3.65 | 1.3M LiPF6 |
Comp. Ex. 3 | 3.70 | 1.3M LiPF6 |
Comp. Ex. 4 | 3.75 | 1.3M LiPF6 |
Comp. Ex. 5 | 3.80 | 1.3M LiPF6 |
Comp. Ex. 6 | 3.85 | 1.3M LiPF6 |
Comp. Ex. 7 | 3.90 | 1.3M LiPF6 |
Comp. Ex. 8 | 3.95 | 1.3M LiPF6 |
Comp. Ex. 9 | 4.00 | 1.3M LiPF6 |
Comp. Ex. 10 | 4.05 | 1.3M LiPF6 |
Comp. Ex. 11 | 4.10 | 1.3M LiPF6 |
Comp. Ex. 12 | 3.80 | 1.5M LiPF6 |
Comp. Ex. 13 | 3.80 | 1.4M LiPF6 + 0.1M LiTFSI |
Comp. Ex. 14 | 3.80 | 1.3M LiPF6 + 0.2M LiTFSI |
Comp. Ex. 15 | 3.80 | 1.2M LiPF6 + 0.3M LiTFSI |
Comp. Ex. 16 | 3.80 | 1.1M LiPF6 + 0.4M LiTFSI |
Comp. Ex. 17 | 3.80 | 1.0M LiPF6 + 0.5M LiTFSI |
Comp. Ex. 18 | 3.80 | 0.8M LiPF6 + 0.7M LiTFSI |
Comp. Ex. 19 | 3.90 | 1.0M LiPF6 + 0.5M LiTFSI |
Comp. Ex. 20 | 4.00 | 1.0M LiPF6 + 0.5M LiTFSI |
Comp. Ex. 21 | 4.10 | 1.0M LiPF6 + 0.5M LiTFSI |
Comp. Ex. 22 | 3.80 | 1.0M LiPF6 + 0.5M LiBETI |
Comp. Ex. 23 | 3.80 | 1.0M LiPF6 + LiBF4 |
0.05 wt % | ||
Example 1 | 3.80 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.05 wt % | ||
Example 2 | 3.80 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.1 wt % | ||
Example 3 | 3.80 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.15 wt % | ||
Example 4 | 3.80 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.2 wt % | ||
Example 5 | 3.80 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.3 wt % | ||
Example 6 | 3.80 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.4 wt % | ||
Example 7 | 3.80 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.5 wt % | ||
Example 8 | 3.90 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.2 wt % | ||
Example 9 | 4.00 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.2 wt % | ||
Example 10 | 4.10 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.2 wt % | ||
Example 11 | 4.10 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.6 wt % | ||
Example 12 | 4.10 | 0.7M LiPF6 + 0.8M LiTFSI + |
LiBF4 0.05 wt % | ||
Example 13 | 3.80 | 1.6M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.05 wt % | ||
Example 14 | 3.80 | 1.5M LiPF6 + 0.5M LiTFSI + |
LiBF4 0.04 wt % | ||
Example 15 | 3.80 | 1.0M LiPF6 + 0.5M LiTFSI + |
LiBF4 1.0 wt % | ||
TABLE 2 | |||
300th cycle-life at 25° C. | 300th cycle-life at 45° C. | ||
Comp. Ex. 1 | 80 | 0 |
Comp. Ex. 2 | 79 | 0 |
Comp. Ex. 3 | 77 | 0 |
Comp. Ex. 4 | 72 | 0 |
Comp. Ex. 5 | 70 | 0 |
Comp. Ex. 6 | 68 | 0 |
Comp. Ex. 7 | 32 | 0 |
Comp. Ex. 8 | 60 | 0 |
Comp. Ex. 9 | 55 | 0 |
Comp. Ex. 10 | 47 | 0 |
Comp. Ex. 11 | 43 | 0 |
Comp. Ex. 12 | 71 | 0 |
Comp. Ex. 13 | 72 | 40 |
Comp. Ex. 14 | 72 | 49 |
Comp. Ex. 15 | 73 | 55 |
Comp. Ex. 16 | 73 | 64 |
Comp. Ex. 17 | 74 | 68 |
Comp. Ex. 18 | 70 | 66 |
Comp. Ex. 19 | 63 | 60 |
Comp. Ex. 20 | 62 | 60 |
Comp. Ex. 21 | 60 | 58 |
Comp. Ex. 22 | 73 | 67 |
Comp. Ex. 23 | 72 | 65 |
Example 1 | 72 | 70 |
Example 2 | 78 | 75 |
Example 3 | 83 | 80 |
Example 4 | 85 | 81 |
Example 5 | 82 | 79 |
Example 6 | 81 | 76 |
Example 7 | 80 | 74 |
Example 8 | 68 | 72 |
Example 9 | 62 | 71 |
Example 10 | 50 | 71 |
Example 11 | 72 | 68 |
Example 12 | 61 | 59 |
Example 13 | 70 | 64 |
Example 14 | 68 | 60 |
Example 15 | 65 | 0 |
Claims (20)
LiaA1-bTbD2 (1)
LiaE1-bTbO2-cLc (2)
LiE2-bTbO4-cLc (3)
LiaNi1-b-cCobTcDα (4)
LiaNi1-b-cCobTcO2-αLα (5)
LiaNi1-b-cCobTcO2-αL2 (6)
LiaNi1-b-cMnbTcDα (7)
LiaNi1-b-cMnbTcO2-αLα (8)
LiaNi1-b-cMnbTcO2-αLhd 2 (9)
LiaNibEcGdO2 (10)
LiaNibCocMndGeO2 (11)
LiaNiGbO2 (12)
LiaCoGbO2 (13)
LiaMnGbO2 (14)
Li aMn2GbO4 (15)
QO2, (16);
QS2, (17);
LiQS2, (18);
V2O5, (19);
LiV2O5, (20);
LiZO2, (21);
LiNiVO4, (22);
Li 3-fJ2(PO4)3 (0≦f≦3), and (23);
Li3-fFe2(PO4)3(0≦f≦2), (24)
MXOk (25)
MXOk (25)
MXOk (25)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070019124A KR101342509B1 (en) | 2007-02-26 | 2007-02-26 | Lithium secondary battery |
KR10-2007-0019124 | 2007-02-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080206650A1 US20080206650A1 (en) | 2008-08-28 |
US8101303B2 true US8101303B2 (en) | 2012-01-24 |
Family
ID=39339792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/889,176 Active 2030-10-08 US8101303B2 (en) | 2007-02-26 | 2007-08-09 | Lithium battery with lithium salt mixture |
Country Status (5)
Country | Link |
---|---|
US (1) | US8101303B2 (en) |
EP (1) | EP1962364B1 (en) |
JP (1) | JP4859746B2 (en) |
KR (1) | KR101342509B1 (en) |
CN (1) | CN101257131A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11271242B2 (en) | 2016-04-15 | 2022-03-08 | Kabushiki Kaisha Toyota Jidoshokki | Lithium ion secondary battery |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100814831B1 (en) * | 2006-11-20 | 2008-03-20 | 삼성에스디아이 주식회사 | Lithium secondary battery |
JP5392133B2 (en) * | 2010-02-12 | 2014-01-22 | 三菱化学株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
KR101292757B1 (en) | 2011-01-05 | 2013-08-02 | 한양대학교 산학협력단 | Cathod active material of full gradient, method for preparing the same, lithium secondary battery comprising the same |
KR102061631B1 (en) | 2011-01-31 | 2020-01-02 | 미쯔비시 케미컬 주식회사 | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same |
JP5906762B2 (en) * | 2011-02-08 | 2016-04-20 | 三菱化学株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
US9249524B2 (en) | 2011-08-31 | 2016-02-02 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of composite oxide and manufacturing method of power storage device |
EP2629352A1 (en) | 2012-02-17 | 2013-08-21 | Oxis Energy Limited | Reinforced metal foil electrode |
ES2546609T3 (en) | 2013-03-25 | 2015-09-25 | Oxis Energy Limited | A method to charge a lithium-sulfur cell |
EP2784850A1 (en) | 2013-03-25 | 2014-10-01 | Oxis Energy Limited | A method of cycling a lithium-sulphur cell |
EP2784852B1 (en) | 2013-03-25 | 2018-05-16 | Oxis Energy Limited | A method of charging a lithium-sulphur cell |
GB2517228B (en) | 2013-08-15 | 2016-03-02 | Oxis Energy Ltd | Laminate cell |
EP2887441B1 (en) * | 2013-10-31 | 2017-04-05 | LG Chem, Ltd. | Electrolyte additive for lithium secondary battery, non-aqueous electrolyte comprising electrolyte additive, and lithium secondary battery |
KR101620214B1 (en) * | 2013-10-31 | 2016-05-12 | 주식회사 엘지화학 | Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary battery comprising the same |
WO2015083901A1 (en) * | 2013-12-02 | 2015-06-11 | 주식회사 엘앤에프신소재 | Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same |
CN103647109A (en) * | 2013-12-06 | 2014-03-19 | 华瑞(新乡)化工有限公司 | High-temperature electrolyte of lithium ion battery |
WO2015092380A1 (en) | 2013-12-17 | 2015-06-25 | Oxis Energy Limited | Electrolyte for a lithium-sulphur cell |
CA2932973A1 (en) * | 2013-12-17 | 2015-06-25 | Oxis Energy Limited | A lithium-sulphur cell |
CN103794781A (en) * | 2014-02-27 | 2014-05-14 | 北京国能电池科技有限公司 | Lithium battery as well as preparation method thereof |
KR101644684B1 (en) * | 2014-02-28 | 2016-08-01 | 주식회사 엘지화학 | Lithium-nikel based cathod active material, preparation method thereof and lithium secondary battery comprising the same |
US10109885B2 (en) * | 2014-05-07 | 2018-10-23 | Sila Nanotechnologies, Inc. | Complex electrolytes and other compositions for metal-ion batteries |
CA2950513C (en) | 2014-05-30 | 2023-04-04 | Oxis Energy Limited | Lithium-sulphur cell comprising dinitrile solvent |
CN106575742B (en) * | 2014-07-24 | 2020-08-18 | 长园科技实业股份有限公司 | Method and system for manufacturing electrodes free of polymer binder |
KR102521323B1 (en) * | 2015-12-09 | 2023-04-13 | 에스케이온 주식회사 | Lithium secondary battery |
KR102636057B1 (en) * | 2016-05-30 | 2024-02-08 | 삼성에스디아이 주식회사 | Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same |
US10388959B2 (en) * | 2017-06-15 | 2019-08-20 | GM Global Technology Operations LLC | PEO-PVA based binder for lithium-sulfur batteries |
KR102479725B1 (en) * | 2017-08-03 | 2022-12-21 | 삼성에스디아이 주식회사 | Electrolytic solution for lithium battery and lithium battery including the same |
US20220393165A1 (en) | 2019-09-30 | 2022-12-08 | Panasonic Intellectual Property Management Co., Ltd. | Non-aqueous electrolyte secondary battery |
JPWO2022138031A1 (en) | 2020-12-25 | 2022-06-30 | ||
CN118266117A (en) * | 2021-11-18 | 2024-06-28 | 株式会社村田制作所 | Secondary battery, battery pack, electronic device, electric tool, electric aircraft, and electric vehicle |
CN115286803B (en) * | 2022-09-30 | 2023-06-20 | 宁德时代新能源科技股份有限公司 | BAB type block copolymer, preparation method, binder, positive electrode plate, secondary battery and electric device |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11185807A (en) | 1997-12-17 | 1999-07-09 | Sanyo Electric Co Ltd | Lithium secondary battery |
JP2001307774A (en) | 2000-04-21 | 2001-11-02 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
EP1178555A2 (en) | 2000-08-02 | 2002-02-06 | Samsung SDI Co., Ltd. | Lithium-sulfur batteries |
JP2002216753A (en) | 2001-01-15 | 2002-08-02 | Sumitomo Metal Ind Ltd | Lithium secondary battery, negative electrode material thereof, and manufacturing method |
EP1291941A2 (en) | 2001-09-05 | 2003-03-12 | Samsung SDI Co., Ltd. | Active material for battery and method of preparing the same |
US20030068562A1 (en) | 2001-04-09 | 2003-04-10 | Jin-Sung Kim | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same |
CN1458704A (en) | 2002-05-13 | 2003-11-26 | 三星Sdi株式会社 | Process for preparing battery active matter and battery active matter prepared therefrom |
KR100424646B1 (en) | 2001-06-14 | 2004-03-31 | 삼성에스디아이 주식회사 | Active material for battery and a method of preparing same |
JP2004363086A (en) | 2003-05-13 | 2004-12-24 | Mitsubishi Chemicals Corp | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery |
CN1698232A (en) | 2003-02-27 | 2005-11-16 | 三菱化学株式会社 | Non-aqueous electrolyte solution and lithium secondary battery |
EP1598895A1 (en) | 2003-02-27 | 2005-11-23 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and lithium secondary battery |
EP1619741A1 (en) | 2004-07-23 | 2006-01-25 | Saft, Sa | Lithium secondary battery for use at high temperature |
JP2006164742A (en) | 2004-12-07 | 2006-06-22 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery |
JP2006286603A (en) | 2005-03-09 | 2006-10-19 | Sony Corp | Positive active material and battery |
US20060246356A1 (en) | 2003-08-11 | 2006-11-02 | Ube Industries, Ltd. | Lithium secondary cell and its nonaqueous electrolyte |
EP2061115A1 (en) | 2006-08-22 | 2009-05-20 | Mitsubishi Chemical Corporation | Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same |
-
2007
- 2007-02-26 KR KR1020070019124A patent/KR101342509B1/en active IP Right Grant
- 2007-05-02 JP JP2007121919A patent/JP4859746B2/en active Active
- 2007-08-09 US US11/889,176 patent/US8101303B2/en active Active
- 2007-10-09 EP EP07253996.8A patent/EP1962364B1/en active Active
- 2007-10-15 CN CNA2007101524803A patent/CN101257131A/en active Pending
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11185807A (en) | 1997-12-17 | 1999-07-09 | Sanyo Electric Co Ltd | Lithium secondary battery |
JP2001307774A (en) | 2000-04-21 | 2001-11-02 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
EP1178555A2 (en) | 2000-08-02 | 2002-02-06 | Samsung SDI Co., Ltd. | Lithium-sulfur batteries |
CN1336696A (en) | 2000-08-02 | 2002-02-20 | 三星Sdi株式会社 | Lithium sulphur accumulator |
JP2002216753A (en) | 2001-01-15 | 2002-08-02 | Sumitomo Metal Ind Ltd | Lithium secondary battery, negative electrode material thereof, and manufacturing method |
US20030068562A1 (en) | 2001-04-09 | 2003-04-10 | Jin-Sung Kim | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same |
KR100424646B1 (en) | 2001-06-14 | 2004-03-31 | 삼성에스디아이 주식회사 | Active material for battery and a method of preparing same |
EP1291941A2 (en) | 2001-09-05 | 2003-03-12 | Samsung SDI Co., Ltd. | Active material for battery and method of preparing the same |
CN1458704A (en) | 2002-05-13 | 2003-11-26 | 三星Sdi株式会社 | Process for preparing battery active matter and battery active matter prepared therefrom |
CN1698232A (en) | 2003-02-27 | 2005-11-16 | 三菱化学株式会社 | Non-aqueous electrolyte solution and lithium secondary battery |
EP1598895A1 (en) | 2003-02-27 | 2005-11-23 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and lithium secondary battery |
JP2004363086A (en) | 2003-05-13 | 2004-12-24 | Mitsubishi Chemicals Corp | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery |
US20060246356A1 (en) | 2003-08-11 | 2006-11-02 | Ube Industries, Ltd. | Lithium secondary cell and its nonaqueous electrolyte |
EP1619741A1 (en) | 2004-07-23 | 2006-01-25 | Saft, Sa | Lithium secondary battery for use at high temperature |
JP2006164742A (en) | 2004-12-07 | 2006-06-22 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery |
JP2006286603A (en) | 2005-03-09 | 2006-10-19 | Sony Corp | Positive active material and battery |
EP2061115A1 (en) | 2006-08-22 | 2009-05-20 | Mitsubishi Chemical Corporation | Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same |
Non-Patent Citations (4)
Title |
---|
European Office Action issued by European Patent Office on Jun. 15, 2011, corresponding to European Patent Application No. 07253996.8 attached herewith. |
Japanese Office Action dated Sep. 7, 2010 for a corresponding Japanese patent application No. 2007-121919 and Request for Entry of the Accompanying Office Action herewith. |
Search Report from the European Patent Office issued in Applicant's corresponding European Patent Application No. 07253996.8dated Jun. 10, 2008. |
Yamamoto et al., 2002 Japanese Battery Conference Preview No. 3B05. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11271242B2 (en) | 2016-04-15 | 2022-03-08 | Kabushiki Kaisha Toyota Jidoshokki | Lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2008210767A (en) | 2008-09-11 |
KR20080079072A (en) | 2008-08-29 |
CN101257131A (en) | 2008-09-03 |
JP4859746B2 (en) | 2012-01-25 |
US20080206650A1 (en) | 2008-08-28 |
KR101342509B1 (en) | 2013-12-17 |
EP1962364A1 (en) | 2008-08-27 |
EP1962364B1 (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8101303B2 (en) | Lithium battery with lithium salt mixture | |
US8268486B2 (en) | Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same | |
US8389162B2 (en) | Electrolyte for rechargeable lithium battery including additives, and rechargeable lithium battery including the same | |
US8349492B2 (en) | Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same | |
US9203108B2 (en) | Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same | |
US8524394B2 (en) | Negative electrode and negative active material for rechargeable lithium battery, and rechargeable lithium battery including same | |
US8808915B2 (en) | Rechargeable lithium battery | |
US20090325072A1 (en) | Rechargeable lithium battery | |
US20110293990A1 (en) | Rechargeable lithium battery | |
US8802300B2 (en) | Rechargeable lithium battery | |
US9893348B2 (en) | Positive active material for lithium secondary battery and lithium secondary battery | |
US8535826B2 (en) | Rechargeable lithium battery | |
KR102217753B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
US9590267B2 (en) | Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same | |
US9318746B2 (en) | Positive electrode having current collector with carbon layer for rechargeable lithium battery and rechargeable lithium battery including same | |
US10177384B2 (en) | Positive active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery using the same | |
US9123957B2 (en) | Rechargeable lithium battery | |
CN104282943B (en) | Additive and electrolyte and lithium secondary battery for electrolyte | |
US20130288114A1 (en) | Positive active material for rechargeable lithium battery and rechargeable lithium battery | |
US20140120410A1 (en) | Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same | |
US11289733B2 (en) | Rechargeable lithium battery | |
CN109314279B (en) | Lithium secondary battery electrolyte and lithium secondary battery comprising same | |
US20180026266A1 (en) | Positive Active Material For Lithium Secondary Battery, Method For Producing Same, And Lithium Secondary Battery Comprising Same | |
US7960049B2 (en) | Electrode assembly for a rechargeable lithium battery | |
US20110293991A1 (en) | Rechargeable lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG SDI CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JEOM-SOO;KIM, JIN-BUM;PARK, YONG-CHUL;AND OTHERS;REEL/FRAME:020027/0326 Effective date: 20070807 Owner name: SAMSUNG SDI CO., LTD.,KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JEOM-SOO;KIM, JIN-BUM;PARK, YONG-CHUL;AND OTHERS;REEL/FRAME:020027/0326 Effective date: 20070807 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |