US7981639B2 - Starch-derived products - Google Patents
Starch-derived products Download PDFInfo
- Publication number
- US7981639B2 US7981639B2 US10/782,287 US78228704A US7981639B2 US 7981639 B2 US7981639 B2 US 7981639B2 US 78228704 A US78228704 A US 78228704A US 7981639 B2 US7981639 B2 US 7981639B2
- Authority
- US
- United States
- Prior art keywords
- starch
- glucose
- syrup
- produce
- rich
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 229920002472 Starch Polymers 0.000 title claims abstract description 78
- 239000008107 starch Substances 0.000 title claims abstract description 78
- 235000019698 starch Nutrition 0.000 title claims abstract description 78
- 239000006188 syrup Substances 0.000 claims abstract description 52
- 235000020357 syrup Nutrition 0.000 claims abstract description 52
- 239000008103 glucose Substances 0.000 claims abstract description 41
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 40
- 102000004190 Enzymes Human genes 0.000 claims abstract description 32
- 108090000790 Enzymes Proteins 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 28
- 238000000855 fermentation Methods 0.000 claims abstract description 22
- 230000004151 fermentation Effects 0.000 claims abstract description 22
- 239000002002 slurry Substances 0.000 claims abstract description 19
- 230000003301 hydrolyzing effect Effects 0.000 claims abstract description 15
- 229920001542 oligosaccharide Polymers 0.000 claims abstract description 14
- 150000002482 oligosaccharides Chemical class 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 229940088598 enzyme Drugs 0.000 claims description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 22
- 239000000413 hydrolysate Substances 0.000 claims description 19
- 239000000047 product Substances 0.000 claims description 16
- 108090000637 alpha-Amylases Proteins 0.000 claims description 13
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 claims description 11
- 102100022624 Glucoamylase Human genes 0.000 claims description 11
- 240000007594 Oryza sativa Species 0.000 claims description 11
- 235000007164 Oryza sativa Nutrition 0.000 claims description 11
- 102000004139 alpha-Amylases Human genes 0.000 claims description 11
- 229940024171 alpha-amylase Drugs 0.000 claims description 11
- 235000009566 rice Nutrition 0.000 claims description 10
- 239000002198 insoluble material Substances 0.000 claims description 6
- 235000013312 flour Nutrition 0.000 claims description 5
- 102000004169 proteins and genes Human genes 0.000 claims description 5
- 108090000623 proteins and genes Proteins 0.000 claims description 5
- 240000006439 Aspergillus oryzae Species 0.000 claims description 4
- 235000002247 Aspergillus oryzae Nutrition 0.000 claims description 4
- 235000014101 wine Nutrition 0.000 claims description 4
- 244000005700 microbiome Species 0.000 abstract description 18
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 abstract description 17
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 abstract description 17
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 abstract description 17
- 150000002772 monosaccharides Chemical class 0.000 abstract description 9
- 150000002016 disaccharides Chemical class 0.000 abstract description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 13
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 13
- 108010019077 beta-Amylase Proteins 0.000 description 9
- 229930091371 Fructose Natural products 0.000 description 8
- 239000005715 Fructose Substances 0.000 description 8
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 8
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 108010045348 trehalose synthase Proteins 0.000 description 6
- AYRXSINWFIIFAE-SCLMCMATSA-N Isomaltose Natural products OC[C@H]1O[C@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)[C@@H](O)[C@@H](O)[C@@H]1O AYRXSINWFIIFAE-SCLMCMATSA-N 0.000 description 5
- 108700040099 Xylose isomerases Proteins 0.000 description 5
- DLRVVLDZNNYCBX-RTPHMHGBSA-N isomaltose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)C(O)O1 DLRVVLDZNNYCBX-RTPHMHGBSA-N 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 150000008163 sugars Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 244000017020 Ipomoea batatas Species 0.000 description 3
- 235000002678 Ipomoea batatas Nutrition 0.000 description 3
- 241000952054 Rhizopus sp. Species 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 235000021419 vinegar Nutrition 0.000 description 3
- 239000000052 vinegar Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 241000192091 Deinococcus radiodurans Species 0.000 description 2
- 239000004386 Erythritol Substances 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 2
- 108010093096 Immobilized Enzymes Proteins 0.000 description 2
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 2
- 235000019414 erythritol Nutrition 0.000 description 2
- 229940009714 erythritol Drugs 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 229960001855 mannitol Drugs 0.000 description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 229960002920 sorbitol Drugs 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000000811 xylitol Substances 0.000 description 2
- 235000010447 xylitol Nutrition 0.000 description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 2
- 229960002675 xylitol Drugs 0.000 description 2
- 229960003487 xylose Drugs 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 241000186226 Corynebacterium glutamicum Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 108010028688 Isoamylase Proteins 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000908267 Moniliella Species 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 235000015505 Sorghum bicolor subsp. bicolor Nutrition 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 241000219094 Vitaceae Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000021021 grapes Nutrition 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 235000013324 preserved food Nutrition 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 235000020095 red wine Nutrition 0.000 description 1
- 235000019991 rice wine Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/20—Preparation of compounds containing saccharide radicals produced by the action of an exo-1,4 alpha-glucosidase, e.g. dextrose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/22—Preparation of compounds containing saccharide radicals produced by the action of a beta-amylase, e.g. maltose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/24—Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
Definitions
- Starch-derived products include sugars and fermentation goods.
- starch A variety of sugars, which find their use in food and pharmaceutical industries, can be prepared from starch. Generally, the starch is first isolated from starch-containing produce by a tedious and costly process. Further, the process involves use of undesirable chemicals.
- Fermentation goods such as wine and vinegar also have great commercial value.
- Traditional production methods require a long fermentation time due to the slow rate of converting starch to fermentable sugars by microorganisms.
- this invention features a method for producing a monosaccharide-rich syrup from starch-containing produce.
- the method includes treating a starch-containing produce slurry with a first starch hydrolyzing enzyme (e.g., ⁇ -amylase, isoamylase, pullulanase, and amylopullulanase) that hydrolyzes starch to oligosaccharide and a second starch hydrolyzing enzyme (e.g., glucoamylase) that hydrolyzes starch or oligosaccharide to glucose.
- a first starch hydrolyzing enzyme e.g., ⁇ -amylase, isoamylase, pullulanase, and amylopullulanase
- a second starch hydrolyzing enzyme e.g., glucoamylase
- the starch-containing produce slurry can also be treated with a converting enzyme (e.g., glucose isomerase) or a microorganism (e.g., Moniliella PTA-2862) that converts glucose to other monosaccharides.
- a converting enzyme e.g., glucose isomerase
- a microorganism e.g., Moniliella PTA-2862
- monosaccharide refers to saccharides that contain three to seven carbons, including sugars and their derivatives (e.g., sugar alcohols).
- examples of a monosaccharide include, but are not limited to, glucose, fructose, sorbose, xylose, mannitol, erythritol, sorbitol, and xylitol.
- a monosaccharide-rich syrup may contain more than 3% (e.g., 5% or 10%) monosaccharide.
- converting enzyme refers to enzymes that convert one saccharide to another saccharide.
- starch hydrolyzing enzymes and converting enzymes can be isolated from different natural sources, such as microorganisms, animals, or plants, or can be prepared by recombinant technology.
- starch-containing produce refers to any produce that contains starch. Examples include, but are not limited to, rice, tapioca, grain sorghum, potato, sweet potato, wheat, barley, corn, and legumes.
- starch-containing produce slurry refers to a slurry formed by stirring in water starch-containing produce (e.g., milled rice), which has not been chemically or otherwise processed.
- An example of practicing the above-described method follows: One first treats a starch-containing produce slurry with ⁇ -amylase and then remove insoluble materials from the slurry to obtain a starch hydrolysate-containing solution. The solution thus obtained is subsequently treated with glucoamylase to obtain a glucose-rich syrup. The glucose-rich syrup can be further treated with glucose isomerase to obtain a fructose-rich syrup. Alternatively, the glucose-rich syrup can be treated with a microorganism to obtain a syrup rich in sorbose, xylose, mannitol, erythritol, sorbitol, or xylitol.
- this invention features a method for preparing a fermentation product from starch-containing produce.
- the method includes treating a starch-containing produce slurry with a first starch hydrolyzing enzyme (e.g., ⁇ -amylase) that hydrolyzes starch to oligosaccharide, a second starch hydrolyzing enzyme (e.g., glucoamylase) that hydrolyzes starch or oligosaccharide to glucose, and a microorganism (e.g., Aspergillus oryzae ) that converts glucose to a fermentation product.
- a starch hydrolyzing enzyme e.g., ⁇ -amylase
- glucoamylase glucoamylase
- microorganism e.g., Aspergillus oryzae
- Examples include, but are not limited to, wine, vinegar, lactic acid, citric acid, and amino acids.
- a starch-containing produce slurry with ⁇ -amylase and then remove insoluble materials from the slurry to obtain a starch hydrolysate-containing solution, then treat the solution with glucoamylase to obtain a glucose-rich syrup, and finally treat the syrup with a microorganism to obtain a fermentation product.
- the invention features a method for producing a trehalose-rich syrup from starch-containing produce.
- the method includes treating a starch-containing produce slurry with a first starch hydrolyzing enzyme (e.g., ⁇ -amylase) that hydrolyzes starch to oligosaccharide, a second starch hydrolyzing enzyme (e.g., ⁇ -amylase) that hydrolyzes starch or oligosaccharide to maltose, and a converting enzyme (e.g., trehalose synthase) that converts maltose to trehalose.
- a first starch hydrolyzing enzyme e.g., ⁇ -amylase
- a second starch hydrolyzing enzyme e.g., ⁇ -amylase
- a converting enzyme e.g., trehalose synthase
- a trehalose-rich syrup may contain more than 0.3% (e.g., 0.5%) trehalose.
- a starch-containing produce slurry with ⁇ -amylase and then remove insoluble materials from the slurry to obtain a starch hydrolysate-containing solution, then treat the solution with ⁇ -amylase to obtain a maltose-rich syrup, and finally treat the syrup with trehalose synthase to obtain a trehalose-rich syrup.
- the invention features a method for preparing an isomaltose-rich syrup from starch-containing produce.
- the method includes treating a starch-containing produce slurry with a first starch hydrolyzing enzyme (e.g., ⁇ -amylase) that hydrolyzes starch to oligosaccharide, a second starch hydrolyzing enzyme (e.g., ⁇ -amylase) that hydrolyzes starch or oligosaccharide to maltose, and a converting enzyme (e.g., ⁇ -isomaltosyltransferase) that converts maltose to isomaltose.
- a first starch hydrolyzing enzyme e.g., ⁇ -amylase
- ⁇ -amylase e.g., ⁇ -amylase
- a converting enzyme e.g., ⁇ -isomaltosyltransferase
- the method includes growing the microorganism in a starch hydrolysate-containing solution or a glucose-rich syrup prepared from starch-containing produce by the methods described herein.
- This invention relates to methods for preparing syrups and fermentation products by treating starch-containing produce with enzymes or microorganisms. These enzymes and the microorganisms can be either purchased from a commercial source or prepared by the methods well known in the art.
- a solution containing a starch hydrolysate can be obtained after removing insoluble materials (e.g., coagulated proteins) from the slurry.
- the starch hydrolysate contains mostly oligosaccharides.
- the solution thus obtained can be subsequently treated with glucoamylase to obtain a glucose-rich syrup.
- the yield of the glucose in the syrup may vary depending from the temperature, the pH, the reaction time, and the nature and quantity of the enzymes used in the above processes.
- the glucose-rich syrup can be further treated with glucose isomerase to obtain a fructose-rich syrup.
- the fructose-rich syrup can be used as a sweetener in beverages, baked or canned foods, and dairy products.
- Other monosaccharides can also be obtained by treating the glucose-rich syrup or the fructose-rich syrup with a microorganism. See, e.g., Lin et al., U.S. Pat. No. 6,455,301 and Ojamo et al., U.S. Pat. No. 6,602,691.
- the glucose-rich syrup can be treated with a microorganism to obtain a fermentation product, such as wine, vinegar, lactic acid, citric acid, or amino acids.
- the glucose-rich syrup prepared from rice can be used to produce rice wine directly or can also be mixed with grapes to facilitate the production of red wine.
- one or more nitrogen sources should be present in the glucose-rich syrup.
- 1-Glutamic acid can be produced from glucose using the bacteria Brevibacterium divaricatum nov. sp. See, e.g., Su, et al., Bulletin of the Association of Agricultural Chemical Society of Japan, 1960, 24(2):140-146.
- a starch hydrolysate-containing solution mentioned above can be further treated with ⁇ -amylase to obtain a maltose-rich syrup.
- the maltose-rich syrup can be treated with trehalose synthase to obtain a trehalose-rich syrup.
- a trehalose-rich syrup can be used directly as an ingredient in foods. Also, high purity trehalose can be isolated from it for use in pharmaceuticals.
- the maltose-rich syrup can also be treated with other converting enzymes (e.g., ⁇ -isomaltosyltransferase) to obtain a syrup rich in other disaccharides (e.g., isomaltose).
- the starch hydrolysate-containing solution can be treated with an enzyme that has the functions of both ⁇ -amylase and trehalose synthase to obtain a trehalose-rich syrup directly from the starch hydrolysate-containing solution.
- This enzyme can be prepared by standard recombinant technology.
- the above-described reactions can be conducted either continuously (in a reactor containing immobilized enzymes or microorganisms) or discontinuously (via a batch process). Either free or immobilized enzymes or microorganisms may be used to practice the methods of this invention.
- the enzymes or the microorganisms can be added sequentially or simultaneously. Preferably, different enzymes or microorganisms are used separately under optimal operative conditions.
- the insoluble materials mentioned above can be removed either before or after a syrup or a fermentation product is formed.
- the removal process can be carried out by filtration, centrifugation, and decantation.
- the yields and compositions of the sugars and fermentation products prepared by the methods of this invention can be determined by suitable analytical methods, such as high-performance liquid chromatography and gas chromatography.
- the starch hydrolysate-containing solution and the glucose-rich syrup obtained above can be used to as culture media to grow microorganisms. They can be used as is, or, they can be dried first and then dissolved in a solution containing other ingredients before use.
- Milled rice ( Oryza sativa L.) of Tainung 67 cultivar was obtained from Taichung Agricultural Experimental Station (Changhua, Taiwan).
- Thermostable ⁇ -amylase 120 U/g, 1.20 g/mL; TERMAMYL 120 L was obtained from Novo Nordisk Biochem (Bagsvaerd, Denmark).
- Rhizopus sp. glucoamylase 5,000 units/g solid) was obtained from Sigma Chemical Co. (St. Louis, Mo.). Standard samples of glucose, fructose, trehalose, and ethanol were obtained from Sigma Chemical Co.
- the concentrations of glucose in the syrup obtained were measured by high-performance liquid chromatography (a HITACHI L6250 HPLC system equipped with BISCHOFF RI detector) at a flow rate of 1 mL/min on a ThermoHyoersil HS APS2 column (particle size, 5 ⁇ m; 250 ⁇ 4.6 mm).
- the mobile phase was acetonitrile/distilled water/formic acid (80:20:1).
- the presence of the glucose was confirmed by comparing the retention times with those of the standard samples (e.g., 7.75 minutes for glucose, 12.21 minutes for maltose, and 13.7 minutes for trehalose).
- a slurry containing 10% rice flour (>100 mesh) in deionized water was thoroughly mixed with thermostable ⁇ -amylase (0.1% of dry solid) at 90° C.
- the starch was hydrolyzed into soluble hydrolysate, which was monitored by calorimetric methods based on the formation of amylose-iodine complex. All the proteins in the rice flour were essentially heat-coagulated by this process and precipitated from the starch hydrolysate solution. The precipitate was collected by filtration and dried to give high-protein rice flour.
- About 0.9 g of the soluble starch hydrolysate and about 0.1 g of high-protein rice flour was produced from 1 g of dry rice under the above-mentioned conditions.
- the starch hydrolysate (containing mostly oligosaccharide mixtures, DP ⁇ 7) was further treated with Rhizopus sp. glucoamylase to produce the high-glucose syrup.
- Rhizopus sp. glucoamylase 0.5 mg/mL was added to the soluble starch hydrolysate and incubated at 55° C.
- the glucose concentration of the solution remained 11 mg/mL after 150 minutes.
- the glucose concentration increased rapidly to 105 mg/mL in 60 minutes and reached the maximum concentration 114 mg/mL in 120 minutes.
- Glucose isomerase can be obtained from Novo Nordisk Biochem (Bagsvaerd, Denmark). The sources of other materials and the conditions of the instruments used in this example are described in Example 1 above.
- a fructose-rich syrup is prepared by treating a glucose-rich syrup obtained in Example 1 above with glucose isomerase. The concentrations of fructose are measured in a manner similar to that of glucose.
- ⁇ -Amylase Type I-B from sweet potato (ammonium sulfate suspension, 980 units/mg protein) was obtained from Sigma Chemical Co. (St. Louis, Mo.).
- Recombinant Deinococcus radiodurans trehalose synthase was heterologously expressed from Escherichia coli BL21(DE3). The sources of other materials and the conditions of the instruments used in this Example are described in Example 1 above. The concentrations of trehalose were measured in a manner similar to that of glucose.
- the starch hydrolysate obtained above (maltose concentration: 34 mg/mL) was saccharified using ⁇ -amylase (25 ⁇ g/mL) from sweet potato at 55° C. for 10 minutes to obtain a syrup rich in maltose (maltose concentration: 77 mg/mL).
- the syrup thus obtained was further treated with recombinant trehalose synthase (75 ⁇ g/mL) from Deinococcus radiodurans at 15° C.
- the concentration of trehalose reached 12 mg/mL in 60 minutes.
- the concentration of trehalose was only 5 mg/mL during the same period of time.
- the ⁇ -amylase treatment which enriched maltose (the substrate for trehalose), unexpectedly increased the yield of trehalose by 2.4 folds.
- Aspergillus oryzae CCRC30884 was purchased from the Bioresource Collection and Research Center (Hsinchu, Taiwan). The sources of other materials and the conditions of the instruments used in this Example are described in Example 1 above unless otherwise specified.
- Aspergillus oryzae (10 mg/mL) was added to the syrup rich in glucose obtained in Example 1 (glucose concentration: 105 mg/mL) under anaerobic condition at 30° C.
- the concentrations of ethanol in the fermentation products were measured by gas chromatography. Quantitative analysis was carried out on a Hitachi gas chromatograph model G-3000 equipped with a flame ionization detector. Ethanol produced by fermentation was separated on a RTX-1 cross-linked 100% dimethyl polysiloxane capillary column (30 m ⁇ 0.25 mm ⁇ 0.25 ⁇ m; RESTEK Corp., Bellefonte, Pa.) using nitrogen as the carrier gas at a flow rate of 1.0 mL/min. The split ratio was 1:10. The temperatures of the injector and the flame ionization detector were both at 200° C. The column temperature was held at 90° C. for 6 minutes. The retention time for ethanol was 2.28 minutes. Peak areas were calculated using a Hitachi integrator (model D-2000
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Alcoholic Beverages (AREA)
- Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
- Jellies, Jams, And Syrups (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/782,287 US7981639B2 (en) | 2003-02-19 | 2004-02-19 | Starch-derived products |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44881403P | 2003-02-19 | 2003-02-19 | |
US10/782,287 US7981639B2 (en) | 2003-02-19 | 2004-02-19 | Starch-derived products |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040161829A1 US20040161829A1 (en) | 2004-08-19 |
US7981639B2 true US7981639B2 (en) | 2011-07-19 |
Family
ID=33029851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/782,287 Expired - Fee Related US7981639B2 (en) | 2003-02-19 | 2004-02-19 | Starch-derived products |
Country Status (3)
Country | Link |
---|---|
US (1) | US7981639B2 (en) |
JP (1) | JP2004248673A (en) |
TW (1) | TWI284151B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4945096B2 (en) * | 2004-10-29 | 2012-06-06 | 松谷化学工業株式会社 | Method for producing indigestible dextrin containing isomerized sugar |
KR20050010986A (en) * | 2005-01-03 | 2005-01-28 | 류화원 | Method for manufacturing of lactic acid using tapioca starch |
DE102005042541A1 (en) * | 2005-09-07 | 2007-03-08 | Basf Ag | Fermentative production of nonvolatile microbial metabolites in solid form |
JP2008000100A (en) * | 2006-06-26 | 2008-01-10 | Gun Ei Chem Ind Co Ltd | Novel saccharified product and production method thereof |
JP5020740B2 (en) * | 2007-08-22 | 2012-09-05 | 株式会社はくばく | Process for producing vinegar containing water-soluble dietary fiber mainly composed of β-glucan |
EA023409B1 (en) * | 2011-10-04 | 2016-06-30 | Товарищество С Ограниченной Ответственностью "Казахский Научно-Исследовательский Институт Переработки Сельскохозяйственной Продукции" | Sugary starch products of rice and methods for preparation thereof |
JP5981885B2 (en) * | 2013-06-13 | 2016-08-31 | 加賀谷 光夫 | Method for producing honey composition |
JP6576031B2 (en) * | 2014-10-29 | 2019-09-18 | イチビキ株式会社 | Amazake's foods and drinks, and methods for producing strawberry foods and strawberry seasonings |
CN114107041A (en) * | 2021-12-26 | 2022-03-01 | 浙江华康药业股份有限公司 | A system and method for preparing erythritol and polydextrose by utilizing corn starch |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3551293A (en) * | 1967-03-31 | 1970-12-29 | Staley Mfg Co A E | Method for enzymatically hydrolyzing starch |
US3922196A (en) * | 1974-01-28 | 1975-11-25 | Cpc International Inc | Enzymatic hydrolysis of granular starch |
US4322569A (en) | 1980-08-01 | 1982-03-30 | Hydrocarbon Research, Inc. | Catalytic hydrogenation of glucose to produce sorbitol |
US4861381A (en) | 1986-07-09 | 1989-08-29 | Sucre Recherches Et Developpements | Process for the enzymatic preparation from sucrose of a mixture of sugars having a high content of isomaltose, and products obtained |
JPH0276592A (en) | 1988-08-10 | 1990-03-15 | Rhone Poulenc Chim | Production of lactic acid |
US5312739A (en) | 1992-05-28 | 1994-05-17 | National Science Council | Production of high-maltose syrup and high-protein byproduct from materials that contain starch and protein by enzymatic process |
US5512464A (en) | 1992-01-03 | 1996-04-30 | American Air Liquide | Method of producing high fructose corn syrup from glucose using noble gases |
JPH08154665A (en) | 1994-12-01 | 1996-06-18 | Shizuoka Prefecture | Muscat-like fragrance-producing yeast, and muscat-like fragrance-bearing food/beverage and its production |
JPH099986A (en) | 1994-07-19 | 1997-01-14 | Hayashibara Biochem Lab Inc | Trehalose and its production and use |
JPH10248562A (en) * | 1997-03-10 | 1998-09-22 | Tax Adm Agency | Exogenous enzyme for brewing and brewing by using the same |
JP2002017337A (en) | 2000-05-02 | 2002-01-22 | Biofuerumin Seiyaku Kk | Dried microbial cell by spray-drying |
JP2002520066A (en) | 1998-07-15 | 2002-07-09 | キシロフィン オイ | Method for producing mannitol using immobilized microorganisms |
US20020132313A1 (en) | 2001-01-12 | 2002-09-19 | Shie-Jea Lin | Erythritol - producing moniliella strains |
US6570043B2 (en) | 1999-09-03 | 2003-05-27 | Battelle Memorial Institute | Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation |
-
2004
- 2004-02-19 TW TW093104290A patent/TWI284151B/en not_active IP Right Cessation
- 2004-02-19 JP JP2004042464A patent/JP2004248673A/en active Pending
- 2004-02-19 US US10/782,287 patent/US7981639B2/en not_active Expired - Fee Related
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3551293A (en) * | 1967-03-31 | 1970-12-29 | Staley Mfg Co A E | Method for enzymatically hydrolyzing starch |
US3922196A (en) * | 1974-01-28 | 1975-11-25 | Cpc International Inc | Enzymatic hydrolysis of granular starch |
US4322569A (en) | 1980-08-01 | 1982-03-30 | Hydrocarbon Research, Inc. | Catalytic hydrogenation of glucose to produce sorbitol |
US4861381A (en) | 1986-07-09 | 1989-08-29 | Sucre Recherches Et Developpements | Process for the enzymatic preparation from sucrose of a mixture of sugars having a high content of isomaltose, and products obtained |
JPH0276592A (en) | 1988-08-10 | 1990-03-15 | Rhone Poulenc Chim | Production of lactic acid |
US5512464A (en) | 1992-01-03 | 1996-04-30 | American Air Liquide | Method of producing high fructose corn syrup from glucose using noble gases |
US5312739A (en) | 1992-05-28 | 1994-05-17 | National Science Council | Production of high-maltose syrup and high-protein byproduct from materials that contain starch and protein by enzymatic process |
JPH099986A (en) | 1994-07-19 | 1997-01-14 | Hayashibara Biochem Lab Inc | Trehalose and its production and use |
JPH08154665A (en) | 1994-12-01 | 1996-06-18 | Shizuoka Prefecture | Muscat-like fragrance-producing yeast, and muscat-like fragrance-bearing food/beverage and its production |
JPH10248562A (en) * | 1997-03-10 | 1998-09-22 | Tax Adm Agency | Exogenous enzyme for brewing and brewing by using the same |
JP2002520066A (en) | 1998-07-15 | 2002-07-09 | キシロフィン オイ | Method for producing mannitol using immobilized microorganisms |
US6602691B1 (en) | 1998-07-15 | 2003-08-05 | Xyrofin Oy | Process for the production of mannitol by immobilized micro-organisms |
US6570043B2 (en) | 1999-09-03 | 2003-05-27 | Battelle Memorial Institute | Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation |
JP2002017337A (en) | 2000-05-02 | 2002-01-22 | Biofuerumin Seiyaku Kk | Dried microbial cell by spray-drying |
US20020132313A1 (en) | 2001-01-12 | 2002-09-19 | Shie-Jea Lin | Erythritol - producing moniliella strains |
US6455301B1 (en) | 2001-01-12 | 2002-09-24 | Food Industry Research And Develpment Institute | Erythritol—producing Moniliella strains |
Non-Patent Citations (13)
Title |
---|
A-amylase and glucoamylase from Aspergillus oryzae, var. (http://www.fao.org/ag/agn/jecfa-additives/specs/Monograph1/Additive-028.pdf). * |
Bhat, Mahalingeshwara K., "Enzymatic Processing of Starch: Present and Potential Benefits," Int. Sugar Jnl. vol. 100, p. 372-376. 426-427 (1998). |
Cadmus et al. 1966. Enzymatic Production of Glucose Syrup From Grains and Its Use in Fermentations. Cereal Chem 43:658-669. * |
Javanainen et al. 1995. Lactic Acid Fermentation on Barley Flour Without Additional Nutrients. Biotechnology Techniques. vol. 9 No. 8. pp. 543-548. * |
Jones et al. 1927. The Globulins of Rice, Oryza sativa. J. Biol. Chem. 74:415-426. * |
Nutrition Facts of white glutinous rice. 2009. http://www.nutrientfacts.com/searchfood.exe?keyword=Rice+White+Glutinous+Raw&var=5. p. 1. * |
Shaw et al. 1992. Production of high-maltose syrup and high-protein flour from rice by an enzymatic method. Biocsi. Biotech. Biochem. 56(7):1071-1073. * |
Skory et al. 1997. Screening for ethanol-producing blamentous fungi. Biotechnology Letters, vol. 19, No. 3, Mar. 1997, pp. 203-206. * |
Starch, vol. 37, p. 92-98 (1992). |
Steinkraus. Classification of fermented foods: worldwide view of household fermentation techniques. 1997. Food Control. vol. 8:311-317 (p. 314). * |
Takasaki, Yoshiyuki, "Development of Thermostable and/or Acid Stable alpha-Amylase, Glucose Isomerase and Mannose Isomerase," Nippon Shokuhin Kagaku Kaishi, vol. 48, No. 2, p. 150-156 (2001). |
Takasaki, Yoshiyuki, "Development of Thermostable and/or Acid Stable α-Amylase, Glucose Isomerase and Mannose Isomerase," Nippon Shokuhin Kagaku Kaishi, vol. 48, No. 2, p. 150-156 (2001). |
Third Party comments regarding Japanese Publication No. 02-076592 (15 pages, English Translation, 18 pages; Verification of Translation, 1 page), Jan. 5, 2009. |
Also Published As
Publication number | Publication date |
---|---|
US20040161829A1 (en) | 2004-08-19 |
TW200502403A (en) | 2005-01-16 |
JP2004248673A (en) | 2004-09-09 |
TWI284151B (en) | 2007-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yadav et al. | α-L-Rhamnosidase: A review | |
US4618579A (en) | Raw starch saccharification | |
EP0171218B1 (en) | Enzymatic hydrolysis of granular starch directly to glucose | |
US3565765A (en) | Preparation of high maltose conversion products | |
CN1323167A (en) | Enzyme-modified cereal suspensions | |
US20080138864A1 (en) | Starch Process | |
US7981639B2 (en) | Starch-derived products | |
CN104204216A (en) | Method for making high maltose syrup | |
JP2012016309A (en) | Maltotriose-forming amylase, production method and use thereof | |
CN110257455B (en) | Preparation process of resistant dextrin | |
CN1231593C (en) | Technology for producing glucomannan using neutral beta-mannase to degradate fine konjaku flour | |
JPH01256394A (en) | Enzymatic production of celloligosaccharide | |
JPS6318480B2 (en) | ||
Chang et al. | Integrated biocatalytic process for trehalose production and separation from rice hydrolysate using a bioreactor system | |
JPH0870842A (en) | Saccharide for brewing use and its production | |
JPS6258983A (en) | Production of beer of high fermentation degree | |
JP6823862B2 (en) | How to make beer | |
JPH10271992A (en) | Purified alpha-amylase stable to acid and obtained from fungi | |
CN109852640B (en) | Seed culture medium for preparing fermented citric acid from full starch, culture medium for fermenting citric acid and method for preparing citric acid from full starch | |
JP2933960B2 (en) | Method for producing branched oligosaccharide | |
Saman et al. | Prebiotic isomalto-oligosaccharide production from economic crops of Thailand | |
JP2004261132A (en) | Pullulan degrading enzyme, its production method and use | |
JP3512623B2 (en) | Method for producing ethyl-α-D-glucoside | |
JP2002125692A (en) | METHOD FOR PRODUCING ETHYL-alpha-D-GLUCOSIDE | |
JP5961339B2 (en) | Liquid sugar for low sugar beer flavored alcoholic beverage and method for producing the same, and method for producing low sugar beer flavored alcoholic beverage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ACADEMIA SINICA, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAW, JEI-FU;LEE, GUAN-CHIUN;CHEN, JEN-JYE;REEL/FRAME:015011/0691 Effective date: 20040219 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230719 |