US7918734B2 - Gaming server providing on demand quality of service - Google Patents
Gaming server providing on demand quality of service Download PDFInfo
- Publication number
- US7918734B2 US7918734B2 US10/261,245 US26124502A US7918734B2 US 7918734 B2 US7918734 B2 US 7918734B2 US 26124502 A US26124502 A US 26124502A US 7918734 B2 US7918734 B2 US 7918734B2
- Authority
- US
- United States
- Prior art keywords
- gaming
- service
- quality
- game
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/30—Interconnection arrangements between game servers and game devices; Interconnection arrangements between game devices; Interconnection arrangements between game servers
- A63F13/35—Details of game servers
-
- A63F13/12—
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/30—Interconnection arrangements between game servers and game devices; Interconnection arrangements between game devices; Interconnection arrangements between game servers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/30—Interconnection arrangements between game servers and game devices; Interconnection arrangements between game devices; Interconnection arrangements between game servers
- A63F13/33—Interconnection arrangements between game servers and game devices; Interconnection arrangements between game devices; Interconnection arrangements between game servers using wide area network [WAN] connections
- A63F13/335—Interconnection arrangements between game servers and game devices; Interconnection arrangements between game devices; Interconnection arrangements between game servers using wide area network [WAN] connections using Internet
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/70—Game security or game management aspects
- A63F13/73—Authorising game programs or game devices, e.g. checking authenticity
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/70—Game security or game management aspects
- A63F13/79—Game security or game management aspects involving player-related data, e.g. identities, accounts, preferences or play histories
- A63F13/792—Game security or game management aspects involving player-related data, e.g. identities, accounts, preferences or play histories for payment purposes, e.g. monthly subscriptions
Definitions
- the present invention relates to methods for providing enhanced quality-of-service (QoS) to online gaming users of game networks. More specifically, it relates to a method for supporting network-based gaming with quality-of-service assigned to an address in computer networks supporting dynamic allocation of QoS.
- QoS quality-of-service
- Video gaming has long been the province of individual game systems such as personal computers with stored games, Nintendo® and PS-2® systems that interact on a user's television or on an integral screen. Such systems can also interact with one another (as in the Gameboy® systems) thereby allowing users on different systems to interact with another on a particular game. For purposes of these applications, such systems are collectively referred to as “game consoles.”
- Network-based gaming involves one or more persons playing a game using Customer Premises Equipment (CPE) (such as a personal computer or game consoles) where those CPEs are connected together by a carrier network to a gaming web server.
- CPE Customer Premises Equipment
- a “Carrier Network” generally refers to a computer network through which users communicate with various service providers (e.g. gaming web servers).
- the Carrier Network extends from the location of each user to an intermediate switched/routed network (hereinafter “Intermediate Network”).
- a gaming web server is connected to the Intermediate Network, either directly or indirectly via the Internet, for communications with the users.
- the Carrier Network is maintained by a “Carrier,” which also may serve as a service provider for certain services.
- a Carrier or a related entity may serve as an Internet service provider (ISP).
- ISP Internet service provider
- Carrier Networks include “Shared Access Carrier Networks,” in which data of multiple users are conveyed together over a shared communications medium between the users and the Intermediate Network, and “Dedicated Connection Carrier Networks,” in which data of each user are conveyed alone between the user and the Intermediate Network and are not combined with data of other users.
- DOC Data-Over-Cable
- HFC hybrid fiber coaxial
- Other Shared Access Carrier Networks include wireless and digital subscriber line (xDSL) networks (the xDSL lines typically being aggregated onto an oversubscribed backhaul trunk into the Intermediate Network, with the trunk defining the shared communications medium).
- DOC Carriers have adopted industry standards such as the Data Over Cable Service Interface Specification (DOCSIS).
- DOCSIS version 1.0 was issued in 1997 with hardware devices being certified starting in 1999.
- DOCSIS version 1.1 replaced version 1.0 in 1999-2001.
- DOSIS version 2.0 is not yet widely available.
- networks conforming to DOCSIS i.e. DOCSIS-compliant
- FIG. 1 illustrates an example of such a typical DOCSIS-compliant network.
- Data packets are transmitted in a downstream direction from a cable modem termination system (CMTS) 21 , which is located in headend 31 (or distribution hub) of a Carrier, over a coaxial cable 22 to respective cable modems (CMs) 14 of users.
- CMTS cable modem termination system
- All of CMs 14 are attached by the coaxial cable 22 to the CMTS 21 in an inverted tree configuration, and each CM 14 connected to the coaxial cable 22 listens to all broadcasts from the CMTS 21 transmitted through the coaxial cable 22 for data packets addressed to it, and ignores all other data packets addressed to other CMs 14 .
- a CM 14 is capable of receiving data in the downstream direction over a 6 MHz channel with a maximum connection speed of 30-40 Mbps.
- Data packets also are transmitted in the upstream direction over a 2 MHz channel by the CMs 14 to the CMTS 21 typically using time division multiplexing (TDM) and at a maximum connection speed of 1.5-10 Mbps (up to 30 Mbps when DOCSIS version 2.0 is available)
- TDM time division multiplexing
- the headend 31 in the DOCSIS Network includes a plurality of CMTSs, with each CMTS supporting multiple groups of CMs each connected together by a respective coaxial cable. Each such group of CMs connected to a CMTS defines a Shared Access Carrier Network, with the coaxial cable in each representing the shared communications medium.
- This arrangement of a group of CMs connected to a CMTS by a coaxial cable is referred to herein as a “Cable Network.”
- the DOCSIS network includes a plurality of Cable Networks 20 originating from CMTSs at the headend 31 of the Carrier, with a particular Cable Network 21 being illustrated in an expanded view in FIG. 1 .
- the DOCSIS network may also include multiple headends, for example, 31 , 32 and 33 .
- Game playability for participants is often affected by the speed and quality of their respective network connections. This results in many participants preferring high-speed network connections, for example, cable networks (see FIG. 1 ) and digital subscriber link (xDSL) networks. In many of the popular game programs, game playability is ultimately limited by the player with the slowest and lowest quality network connection. As a result, many game participants (“gamers”) opt for the higher speeds available of DOCSIS networks.
- Data transmission over a DOCSIS network can be thought of as a downstream data path and an upstream data path.
- Downstream paths normally refer to transmission from a web server to a workstation or personal computer user.
- Upstream data transmission is the opposite with data originating in the workstation 11 or personal computer 12 .
- downstream data packets originate with a gaming web server.
- data comprises Internet protocol packaged graphic images, audio signals and textual information.
- Upstream flowing Internet packets comprise authenticating and “sign-in” information, as well as cursor and game control instructions.
- At least one downstream path typically 6 MHz wide, from the cable-modem-termination system 21 to cable modem 14 is set up.
- the allocation is made so as to ensure coexistence of television broadcasts and data connections.
- at least one upstream path is established.
- the upstream path even when within the cable network, does not usually have a bandwidth of 6 MHz.
- Downstream paths are typically in the range of 50 MHz to approximately 1 GHz while the upstream paths are within 5 MHz to 42 MHz with a specific slot defined by the cable-modem-termination system.
- a cable modem 14 As a cable modem 14 is initialized in a DOCSIS network, it registers with a cable-modem-termination system 21 . As part of a registration request message, the cable modem forwards configuration information to the CMTS. This exchange also establishes the properties of the CM to the CMTS. If the data over cable network supports Quality-of-Service, the DOCSIS network may allocate resources to the cable modem in the course of registration.
- DOCSIS version 1.1 and version 1.1 compliant hardware have significant quality-of-service (QoS) enhancements as compared to version 1.0.
- QoS quality-of-service
- DOCSIS version 1.0 uses a static QoS model that is based on a class of service (CoS) that is preprovisioned in the TFTP configuration file for the cable modem.
- CoS class of service
- the CoS is a bi-directional QoS profile that has limited control, such as peak rate limits in either direction, and relative priority on the upstream data stream.
- DOCSIS version 1.0 defines the concept of a service identifier (SID), that specifies the devices allowed to transmit and provides device identification and CoS.
- SID service identifier
- each CM is assigned only one SID, creating a one-to-one correspondence between a cable modem and the SID. All traffic originating from, or destined for, a cable modem is mapped to that cable modem's SID.
- a DOCSIS version 1.0 cable modem has one CoS and treats all traffic the same, which means that data traffic on a cable modem can interfere with the quality of other traffic.
- the CMTS can prioritize downstream traffic based on IP precedent type-of-service (ToS) bits. For example, voice calls using higher IP precedence bits receive a higher queuing priority (but without a guaranteed bandwidth or rate of service).
- a DOCSIS version 1.0 cable modem could increase voice call quality by permanently reserving bandwidth for voice calls, but then that bandwidth would be wasted whenever a voice call is not in progress.
- DOCSIS version 1.1 implemented a number of changes to allow great flexibility in the ability of a cable modem and service provider to transmit almost any combination of data traffic and real-time traffic. These changes required a fundamental shift in how a cable modem requests service and how traffic can be transmitted across the cable network.
- a service flow gets created at the time of cable modem registration (a static service flow) or as a result of a dynamic Media Access Control layer (“MAC”) message handshake between the cable modem and the CMTS (a dynamic service flow).
- MAC Media Access Control layer
- a service flow might be in one of three states (provisioned, admitted, or active). Only active flows are allowed to pass traffic on the DOCSIS link.
- Every service flow has a unique (unique per DOCSIS MAC domain) identifier called the service flow identifier (SFID).
- SFID service flow identifier
- the upstream flows in the admitted and active state have an extra Layer 2 SID associated with them.
- the SID is the identifier used by the MAC scheduler when specifying time-slot scheduling for different service flows.
- a packet When a packet is presented to the DOCSIS MAC layer at the CMTS or cable modem, it is compared to a set of packet classifiers until a matching classifier is found. The SFID from this classifier is used to identify the service flow on which the packet will be sent. The packet is then transferred to the service flow manager for rate shaping and output queuing.
- the output queues at the cable modem are remotely served by the CMTS MAC scheduler, based on DOCSIS version 1.1 slot scheduling constraints such as grant-interval and grant-jitter.
- the CMTS packet scheduler serves the flow queues depending on the flow attributes like traffic priority, guaranteed rate, and delay bound.
- a service flow is a MAC-layer transport service that provides unidirectional transport of packets to upstream packets transmitted by the cable modem or to downstream packets transmitted by the CMTS.
- DOCSIS version 1.1 adds several new MAC scheduling disciplines to provide guaranteed QoS for real-time service flows on the multiple access upstream channel.
- CMTS Compute resource pool
- CIR committed information rate
- QoS-game collectively specifies the performance of a gaming network service that a device expects on a network.
- QoS parameters include transit delay expected to deliver data to a specific destination, the level of protection from unauthorized monitoring or modification of data, cost for delivery of data, expected residual error probability, the relative priority associated with the data and other parameters.
- FIG. 2 illustrates a simplified view of a typical gaming network.
- Downstream data packets originate in gaming web server 47 , are transmitted over the Internet and routed to CMTS 21 in headend 31 .
- CMTS 21 the downstream packets are routed over cable 22 to cable modem 14 via the cable network.
- Cable modem 14 is connected to game console 11 (or other device performing as a game console, for example a personal computer).
- upstream data packets originate in game console 11 and are routed to gaming web server 47 via cable network 20 and Internet connection 50 .
- Downstream QoS in turn, depends upon the QoS between game console 14 and CMTS 21 and also the QoS between CMTS 21 and gaming web server 47 .
- upstream QoS depends on the QoS between gaming web server 47 and CMTS 21 along with QoS between CMTS 21 and game console 14 .
- gaming networks have asymmetrical needs. Downstream feeds of video and audio signals need high downstream bandwidth for near real-time performance. In contrast, upstream control instructions have low bandwidth overhead but require low latency routing. In order to economically allocate network resources it is desirable to provide gaming networks with QoS custom fitted to gaming needs. For example, a gamer might want a higher QoS during a gaming session but will not require enhanced QoS for other functions not associated with the game in question (i.e. instant chat, web surfing etc).
- Cable network providers need a means to provide premium quality-of-service limited to subscribers paying for the premium service and further limiting the premium QoS to the times such premium service is selected by cable network subscribers.
- the present invention satisfies this need for on-demand premium QoS network gaming by utilizing a “gaming agent” (GA) through which a participant can request reserved bandwidth with QoS guarantees for the purpose of playing network games.
- GA gaming agent
- the present invention comprises a gaming network having dynamically reserved enhanced game quality-of-service (QoS-game).
- QoS-game enhanced game quality-of-service
- a gaming agent restricts access to enhanced QoS-game to those participants opting for a higher cost subscription network service.
- the gaming agent monitors the time a game participant is utilizing enhanced QoS-game in order to limit charges to actual QoS-game usage.
- the gaming agent is maintained by the gaming web server.
- the gaming agent further comprises parental controls. Parental controls are well known in the art and provide means for a user to determine what games on a gaming server are accessible from a game console. By way of illustration and not as a limitation, games may be rated for content and a parental control may be established to permit only games having a rating equal to or less than a prescribed rating be accessed.
- FIG. 1 illustrates a typical gaming network as known in the art and using cable network connectivity
- FIG. 2 is a simplified schematic illustrating a gaming network in a data-over-cable environment
- FIG. 3 a illustrates a simplified schematic illustrating a gaming network of the present invention in a data-over-cable environment
- FIG. 3 b illustrates a simplified schematic illustrating a gaming network of the present invention in a data-over-cable environment without any non-DOC network connectivity;
- FIG. 3 c illustrates a simplified schematic illustrating a gaming network of the present invention in a data-over-cable environment wherein the gaming agent is integrated with the gaming web server;
- FIG. 3 d illustrates a simplified schematic illustrating a gaming network of the present invention in a data-over-cable environment wherein the gaming agent and gaming web server are located in the headend;
- FIG. 4 illustrates a flowchart for requesting enhanced QoS-game.
- the present invention relates to methods for providing enhanced quality-of-service to online gaming users of game networks. More specifically, it relates to a method for supporting network-based gaming with quality-of-service (QoS) assigned to an address in a computer network supporting dynamic allocation of quality-of-service.
- QoS quality-of-service
- the QoS for gaming is customized to the game being played; the duration of time desired by a gamer, and in some cases the overall network connections that exist between the gamer and the game server.
- FIG. 2 depicts for network connectivity a cable network 20 , cable modem 14 , cable network cable 22 , cable management termination system (CMTS) 21 and other Internet connectivity.
- gaming network connectivity is not limited to the devices and means of FIG. 2 . Any computer network with suitable bandwidth may be utilized. Examples of other suitable network connectivity include dial-up networks, XDSL, ISDN, local area network, etc.
- downstream data packets originate in gaming web server 47 , are transmitted over the Internet and routed to CMTS 21 in cable network carrier headend 31 . From CMTS 21 , the downstream packets are routed over cable 22 to cable modem 14 via the cable network. Cable modem 14 is connected to game console 11 (or other device performing as a game console, for example a personal computer). In similar fashion upstream data packets originate in game console 11 and are routed to gaming web server 47 via cable network 20 and Internet connection 50 .
- Downstream QoS in turn, depends upon the QoS between game console 14 and CMTS 21 and also the QoS between CMTS 21 and gaming web server 47 .
- upstream QoS depends on the QoS between gaming web server 47 and CMTS 21 along with QoS between CMTS 21 and game console 14 .
- Game console 11 may be a special purpose game terminal or a computer (e.g. personal computer) running gaming or graphic emulation programs.
- special purpose game terminal includes, for example Microsoft X-box® gaming system and Sony PlayStation2® gaming system.
- Suitable computers for use as game console 11 include “IBM compatible” personal computers, Apple Macintosh® computers, and the like.
- FIG. 3 a , FIG. 3 b , FIG. 3 c and FIG. 3 d illustrate how a gaming network is modified to incorporate the features of the present invention.
- Gaming agent 45 is added to the traditional gaming network of FIG. 2 to obtain the desirable features of dynamic QoS-game provisioning and QoS activity tracking.
- the embodiment illustrated in FIG. 3 a illustrates the general case where gaming agent 45 is remotely attached to the gaming network.
- FIG. 3 b illustrates having the gaming network residing on a single carrier's cable network.
- gaming agent 45 has been integrated into gaming web server 47 .
- FIG. 3 d illustrates gaming agent 45 in headend 31 and connected to the gaming network via headend network 29 .
- gaming agent 45 have secure, trusted communication with gaming web server 47 . Secure communication techniques are known in the art and include public and private key encryption schemes as well as restricted access and physical isolation schemes.
- QoS Quality-of-service
- a network needs to make long-term assumptions on the statistical characteristics of its traffic. But network traffic comprises various connections with their own respective characteristics. Additionally, assumptions made by a network regarding a specific connection must be valid for its entire duration. Traffic profiles of interactive multimedia connections are generally unknown when it is setup. Therefore, long-term statistical representations are in general unsuitable for such interactive multimedia connections. Specifically, parameters used in long-term statistical representations do not represent the specific QoS requirements of multimedia applications. It is generally accepted that distributed multimedia applications require a network service that can match the dynamic and heterogeneous bandwidth requirements that are typical of such applications.
- Gaming networks have many of the same QoS considerations as interactive multimedia. However such considerations are further complicated by the diversity in the types of online game offerings. Further, QoS for gaming networks is best analyzed from a user's perception. Users associate high QoS for gaming (QoS-game) with game playability. Playability criteria are also functions of the type of online game. As a result, in certain preferred embodiments of the present invention, the gaming agent (illustrated as 45 in FIG. 3 a , FIG. 3 b , FIG. 3 c and FIG. 3 d ) incorporates a database of desired enhanced QoS criteria that are related to a specific game. Alternatively, QoS criteria can be related to a class of online game. Although a database is a convenient means to relate QoS parameters to a specific game or class of game, other means of identifying enhanced QoS criteria to a game are possible. Such means include look-up tables, firmware encoding, and the like.
- Enhanced network QoS is associated with higher costs to network carriers. To offset this cost, carriers desire means to both restrict access to users who wish to “opt in” to the enhanced QoS as well as track and charge fees for use of enhanced gaming. For this reason gaming agent 45 may incorporate a tracking means to charge subscribers for enhanced QoS-game. Charges can be based upon either successful enhanced QoS-game initiation, duration of active enhanced QoS-game, duration of enhanced QoS-game reserved or any combination thereof. Network carriers may also opt to not charge premium network subscribers for using enhanced QoS-game. In this situation gaming agent 45 can either restrict enhanced QoS-game to identified premium subscribers, or in the alternative apply a zero amount charge to identified premium subscribers.
- Users who are allowed to utilize enhanced QoS-game are preferably first authenticated. Authentication may occur on a user or game console basis.
- One form of user authentication requires the user to transmit a user identification and password to the authenticating device.
- user authentication can occur at the gaming web server, at the gaming agent or at both devices.
- Console authentication requires that the game console transmit a user identification and/or password. Once again, either the gaming web server or the gaming agent may perform the authenticating function. Console identification may be embedded in firmware, disguised in software keys, or entered by the console user. Transmission may be initiated by console user or transmitted automatically, for example upon booting of the console, or upon requesting online gaming.
- Authentication may also occur on a cable modem basis. Such authentication has the advantage of being controlled by the cable services carrier. However, cable modem authentication may inadvertently authorize multiple users connected to a cable modem router.
- Gaming web servers and gaming agents may be physically connected to the same network segment as the game console.
- gaming web server, gaming agent and game console may be connected to a single cable network, CMTS, or same headend router.
- gaming web server 47 is separated from the game console by an Internet connection 50 and cable network 20 . It is apparent that for these gaming networks the playability quality-of-service (QoS-game) is dependent upon quality-of-service provided in two different network segments: Segment 1—Internet network 50 connection between headend 31 and gaming web server 51 ; and Segment 2—network connection 22 , 20 between headend 31 and game console 11 .
- Segment 1 Internet network 50 connection between headend 31 and gaming web server 51
- Segment 2 network connection 22 , 20 between headend 31 and game console 11 .
- FIG. 3 b illustrates the use of a single cable network carrier.
- this is not to be considered limiting, as the techniques are equally suitable to other networks, for example XDSL or local area networks.
- IntServ Integrated Services
- DiffServ Differentiated Services
- IntServ follows the signaled-QoS model, where the end-hosts signal their QoS need to the network
- DiffServ works on a provisioned-QoS model with network elements set up to service multiple classes of traffic of varying QoS requirements.
- IntServ and DiffServ can be driven off a policy base, using the Common Open Policy Server protocol. (CoPS).
- the IntServ model relies on Resource Reservation Protocol (RSVP) to signal and reserve the desired QoS for each flow in the network.
- RSVP Resource Reservation Protocol
- An lntServ flow is defined as an individual, unidirectional data stream between two applications.
- Two types of service can be requested via RSVP (assuming adequate network devices).
- the first type is a very strict guaranteed service that provides for firm bounds on end-to-end delay and assured bandwidth for traffic that conforms to the reserved specifications.
- the second type is a controlled load service that provides for a better than best-effort and low delay service under light to moderate network loads.
- DiffServ uses a relatively simple and coarse method of categorizing network traffic into different classes, and applying QoS parameters to those classes. To accomplish this, packets are first divided into classes by marking the type of service (ToS) byte in the IP header. Once packets are classified at the edge of the network, specific forwarding treatments, formally called Per-Hop Behavior (PHB), are applied on each network element, providing the packet the appropriate delay-bound, jitter-bound, bandwidth, etc. This combination of packet marking and well-defined PHBs results in a scalable QoS solution for any given packet.
- ToS type of service
- PHB Per-Hop Behavior
- the gaming agent For enhanced QoS in a gaming network, appropriate support for QoS requests to IntServ or DiffServ must be provided. In the present invention, the gaming agent provides this support. When requesting enhanced QoS-game, the gaming agent requests the appropriate QoS service (IntServ, DiffServ or other service protocol).
- the appropriate QoS service IntServ, DiffServ or other service protocol.
- Gaming network connectivity from the network carrier to a game console may take various forms including those of lntServ and DiffServ, discussed above. This connectivity may also take place over a cable network, as exemplified in FIG. 3 a , FIG. 3 b and FIG. 3 c .
- Cable networks are preferably DOCSIS compliant and more preferably DOCSIS version 1.1 or higher compliant.
- DOCSIS version 1.1 has for the basic unit of QoS the service flow, which is a unidirectional sequence of packets transported across between the cable modem and CMTS.
- a service flow is characterized by a set of QoS parameters such as latency, jitter, and throughput assurances.
- Every cable modem establishes a primary service flow in both the upstream and downstream directions.
- the primary flows maintain connectivity between the cable modem and CMTS at all times.
- a DOCSIS version 1.1 cable modem can establish multiple secondary service flows.
- the secondary service flows either can be permanently created (they persist until the cable modem is reset or powered off) or can be created dynamically to meet the needs of the on-demand traffic being transmitted.
- Each service flow has a set of QoS attributes associated with it. These QoS attributes define a particular class of service and determine characteristics such as the maximum bandwidth for the service flow and the priority of its traffic.
- the class of service attributes can be inherited from a preconfigured CMTS local service class (class-based flows), or they can be individually specified at the time of the creation of the service flow.
- the QoS attributes of a service flow can be specified in two ways: either explicitly by defining all attributes, or implicitly by specifying a service class name.
- a service class name is a string that the CMTS associates with a QoS parameter set.
- Any service flow can have its QoS parameter set specified in any of three ways:
- the service classes When using service-class-based provisioning, the service classes must be configured at the CMTS before cable modems attempt to make a connection.
- max-concat- Specifies the maximum concatenation burst burst (0-65535 bytes).
- max-latency Specifies the maximum latency allowed (0-4294967295 micro-seconds).
- max-rate Specifies the maximum rate (0-4294967295 bps).
- min-packet- Specifies the minimum packet size for reserved rate size (0-65535 bytes).
- min-rate Specifies the minimum rate (0-4294967295 bps).
- name Specifies the service-class name string.
- poll-interval Specifies the poll interval (0-4294967295 microseconds).
- poll-jitter Specifies the poll jitter (0-4294967295 microseconds).
- priority Specifies the priority (0-7, where 7 is the highest priority).
- req-trans- Specifies the request transmission policy bit field (0x0- policy 0xFFFFFFF in hexadecimal).
- sched-type Specifies the service class schedule type: 2-Best-Effort Schedule Type 3-Non Real-Time Polling Service Schedule Type (not supported in Cisco IOS Release 12.1 CX) 4-Real-Time Polling Service Schedule Type 5-Unsolicited Grant Service with Activity Detection Schedule Type 6-Unsolicited Grant Service Schedule Type tos-overwrite Overwrites the type-of-service (ToS) byte by setting the mask bits to specific value (0x1-0xFF in hexadecimal).
- ToS type-of-service
- Integral to the gaming networks of the present invention is the gaming agent.
- FIG. 3 a , FIG. 3 b , FIG. 3 c and FIG. 3 d illustrate various preferred embodiments of the present invention.
- CMTS cable management termination system
- the downstream packets are routed over cable 22 to cable modem (CM) 14 via the cable network.
- Cable modem (CM) 14 is connected to game console 11 (or other device performing as a game console, for example a personal computer).
- CM cable management termination system
- CM cable modem
- upstream data packets originate in game console 11 and are routed to gaming web server 47 via cable network 20 and other intervening networks (for example, in FIG. 3 a over Internet 50 ).
- Gaming agent 45 is connected to the game network and provides desired game functions not available in other networks.
- FIG. 3 a gaming agent 45 is remotely attached to the gaming network.
- FIG. 3 c illustrates gaming agent 45 as being integrated into gaming web server 47 .
- FIG. 3 b illustrates gaming agent 45 attached to a single cable network carrier's network.
- gaming agent 45 may also be integrated into gaming web server 47 . Such a modification is included in the scope of the present invention.
- Gaming agent 45 and gaming web server 47 may also be located in headend 31 , as illustrated in FIG. 3 d.
- gaming agent 45 has secure, trusted communication with gaming web server 47 .
- Secure communication techniques are known in the art and include techniques such as public and private key encryption schemes as well as restricted access and physical isolation schemes. With the embodiments such as illustrated in FIG. 3 c , secure communication between gaming agent 45 and gaming web server 47 is inherent. In situations where the inherent security suffices, encryption may be eliminated.
- Gaming agent 45 provides four major functions: 1) authorizing use of enhanced QoS-game; 2) polling game network service availability; 3) requesting enhanced network QoS, tailored for the specific game selected; and optionally 4) tracking durations for use of enhanced QoS-game. Tracking durations is needed in order to charge game users for the amount of time using enhanced QoS-game. When the network carrier does not separately charge for enhanced QoS-game time, this function can be omitted.
- Another optional function of the gaming agent is a scheduler.
- a scheduler function a game user is allowed to enter reservation times for enhanced QoS-game.
- the gaming agent billing routines can then be tailored to charge different fees for reserved-and-activated enhanced QoS-game as well as reserved-but-not-activated enhanced QoS-game.
- the gaming agent implementation may utilize common computer and software components, including, but not limited to, computer servers with UNIX operating system software.
- VoIP voice over Internet
- VoIP gateway or other means for making requests for enhanced voice quality-of-service.
- the VoIP gateway and gaming agent are required to coordinate requests for enhanced QoS.
- One solution is to integrate the gaming agent and VoIP gateway into a single hardware and software system.
- An integrated VoIP/gaming agent would respond, coordinate and prioritize QoS requests for both enhanced gaming and VoIP. It is envisioned that the VoIP/gaming agent would have database entries to support VoIP as well as VoIP combined with enhanced QoS-game. Such an integrated VoIP/gaming agent would then separately perform call signalling functions (e.g. notification of receiving a call).
- FIG. 4 is a flow chart of a typical process for obtaining enhanced QoS-game that illustrates one example of how gaming agent 45 interacts with other components of the gaming network.
- process begins at process start 60 and continues to process end 73 . It is to be understood that FIG. 4 is exemplary and it is expected that modification to the flow chart is normally required to accommodate various network configurations and network carrier business policies.
- An online game participant transmits game session initiation 61 .
- a game participant views game web page 62 , authenticates himself, provides information on game to be played, and billing information. Information entered 62 is then transmitted to the gaming agent 63 . It is important that transmittal of game participant information to the gaming agent take place over a secure connection in order to prevent fraud, prevent theft of services and prevent theft of participant identity.
- Means of secure transmission are known in the art and include encryption techniques as well as methods of limiting the transmitted information to non-sensitive information (e.g. partial customer account number and password).
- CMTS cable management termination system
- the gaming agent Upon receipt of valid authorizing information about the game participant 63 , the gaming agent requests reservation of the necessary Quality-of-Service from the appropriate cable management termination system (CMTS) 64 .
- CMTSs are used in data-over-cable networks, for example DOCSIS version 1.1 compliant networks.
- the gaming agent makes the appropriate request to reserve QoS in other network segments. In general separate requests are required for downstream DOCSIS quality-of-service vs. downstream non-DOCSIS quality-of-service.
- the gaming agent is needed for efficient and user transparent requests for quality-of-service.
- Multiple QoS requests often with multiple QoS parameters are made automatically by the gaming agent and include: downstream DOCSIS QoS request; upstream DOCSIS QoS request; downstream Internet QoS request; and upstream Internet QoS request.
- Each request may comprise numerous parameters, as for example illustrated in Table 1.
- the gaming agent may use default enhanced QoS gaming parameters or optionally comprise a database containing QoS parameters related to selected game identification words. When present, this database feature can be used to “tune” QoS requests so that gaming network resources can be most efficiently allocated.
- the CMTS Upon receipt of a QoS request, the CMTS polls the cable network and attempts to reserve sufficient QoS 64 . Similarly, other network segment QoS controllers receiving gaming agent requests attempt to reserve sufficient QoS. The other network segment controllers may include IntServ as well as DiffServ protocol controllers. The CMTS along with other network segment QoS controllers, if any, then report back to the gaming agent whether or not sufficient QoS was reserved.
- the gaming agent will decide to either request the enhanced QoS 66 or transmit a query for instructions to the game participant 70 .
- the transmitted query allows the game participant to either play the game over best-effort QoS 71 - 72 or, in the alternative, to abandon the game and end the game session 73 .
- CMTS and other network segment QoS controllers, if any commit the reserved QoS resources to the gaming session 66 .
- the QoS-game characteristics may be based upon protocol type, port number, packet size, etc.
- the gaming agent may comprise a database of quality-of-service parameters related to game identifiers. If network QoS availability is only slightly limited, then the use of a parameter database may be unnecessary. For example, in the gaming network of FIG. 3 c , sufficient bandwidth and other QoS parameters may be available for 99% or more of the time. Enhanced QoS-game in this situation may be simplified to a set of high QoS settings compatible with all online games, eliminating the need for a QoS-game database.
- Game participant then starts game 68 .
- Network data packets for the game application are routed with enhanced QoS-game.
- Non-game packets receive best-effort or other QoS service (for example QoS for Voice-over-IP traffic).
- the CMTS can end the enhanced QoS-game routing after a defined amount of time, after a defined amount of gaming inactivity, or upon game participant's request (via the Gaming Web Server) 69 .
- a notification is transmitted to the gaming agent. This notification triggers an end-of-session tracking event (e.g. for charging fees to subscribers) in the gaming agent.
- the gaming agent triggers the transmittal of requests to stop enhanced QoS in other non-cable network segments, thereby ending charges to the user for the enhanced QoS.
- the gaming agent may also initiate a shutdown of the enhanced QoS-game session at the end of the reserved game period by requesting best-effort class QoS.
- the gaming agent can alert game participants of impending loss of enhanced QoS by transmitting a cautionary message prior to releasing best-effort class QoS requests.
- the gaming agent may also enforce business policies of network carriers and gaming web service providers. For example, the gaming agent may allow short trial periods of enhanced QoS-game to entice potential online game participants to agree to higher subscription fees. Another envisioned business policy the gaming agent may enforce is terminating enhanced QoS-game service when unpaid charges accumulated for a game participant exceed credit limits.
- an enhanced QoS-game session ends after a defined amount of time, after a defined amount of gaming inactivity, upon game participant's request (via the Gaming Web Server) or upon requests originating in the gaming agent 73 .
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Computer Security & Cryptography (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Software Systems (AREA)
- Small-Scale Networks (AREA)
Abstract
Description
-
- 1. Explicitly including all traffic parameters;
- 2. Indirectly referring to a set of traffic parameters by specifying a service class name; or
- 3. Specifying a service class name along with modifying parameters.
TABLE 1 |
DOCSIS version 1.1 Compliant Cable Modem - Service |
Class Parameters |
activity-timeout | Specifies the quality of service parameter set activity |
timeout (0-65535). | |
admission- | Specifies the admitted quality of service parameter set |
timeout | timeout (0-65535). |
grant-interval | Specifies the grant interval (0-4294967295 micro- |
seconds). | |
grant-jitter | Specifies the grant jitter (0-4294967295 micro-seconds). |
grant-size | Specifies the grant size (0-65535 bytes). |
grants-per- | Specifies the grants per interval (0-127 grants). |
interval | |
max-burst | Specifies the maximum transmission burst |
(1522-4294967295 bytes). | |
max-concat- | Specifies the maximum concatenation burst |
burst | (0-65535 bytes). |
max-latency | Specifies the maximum latency allowed (0-4294967295 |
micro-seconds). | |
max-rate | Specifies the maximum rate (0-4294967295 bps). |
min-packet- | Specifies the minimum packet size for reserved rate |
size | (0-65535 bytes). |
min-rate | Specifies the minimum rate (0-4294967295 bps). |
name | Specifies the service-class name string. |
poll-interval | Specifies the poll interval (0-4294967295 microseconds). |
poll-jitter | Specifies the poll jitter (0-4294967295 microseconds). |
priority | Specifies the priority (0-7, where 7 is the highest |
priority). | |
req-trans- | Specifies the request transmission policy bit field (0x0- |
policy | 0xFFFFFFF in hexadecimal). |
sched-type | Specifies the service class schedule type: |
2-Best-Effort Schedule Type | |
3-Non Real-Time Polling Service Schedule Type (not | |
supported in Cisco IOS Release 12.1 CX) | |
4-Real-Time Polling Service Schedule Type | |
5-Unsolicited Grant Service with Activity Detection | |
Schedule Type | |
6-Unsolicited Grant Service Schedule Type | |
tos-overwrite | Overwrites the type-of-service (ToS) byte by setting the |
mask bits to specific value (0x1-0xFF in hexadecimal). | |
Claims (74)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/261,245 US7918734B2 (en) | 2002-09-30 | 2002-09-30 | Gaming server providing on demand quality of service |
US12/951,129 US8475280B2 (en) | 2002-09-30 | 2010-11-22 | Gaming server providing on demand quality of service |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/261,245 US7918734B2 (en) | 2002-09-30 | 2002-09-30 | Gaming server providing on demand quality of service |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/951,129 Continuation US8475280B2 (en) | 2002-09-30 | 2010-11-22 | Gaming server providing on demand quality of service |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040063497A1 US20040063497A1 (en) | 2004-04-01 |
US7918734B2 true US7918734B2 (en) | 2011-04-05 |
Family
ID=32029918
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/261,245 Active 2028-07-22 US7918734B2 (en) | 2002-09-30 | 2002-09-30 | Gaming server providing on demand quality of service |
US12/951,129 Expired - Lifetime US8475280B2 (en) | 2002-09-30 | 2010-11-22 | Gaming server providing on demand quality of service |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/951,129 Expired - Lifetime US8475280B2 (en) | 2002-09-30 | 2010-11-22 | Gaming server providing on demand quality of service |
Country Status (1)
Country | Link |
---|---|
US (2) | US7918734B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070155469A1 (en) * | 2003-10-20 | 2007-07-05 | Sam Johnson | Automatic funding of paragames on electronic gaming platform |
US20070243934A1 (en) * | 2006-04-13 | 2007-10-18 | Igt | Remote content management and resource sharing on a gaming machine and method of implementing same |
US20070243925A1 (en) * | 2006-04-13 | 2007-10-18 | Igt | Method and apparatus for integrating remotely-hosted and locally rendered content on a gaming device |
US20080009344A1 (en) * | 2006-04-13 | 2008-01-10 | Igt | Integrating remotely-hosted and locally rendered content on a gaming device |
US20080113775A1 (en) * | 2006-11-13 | 2008-05-15 | Igt | Three-dimensional paylines for gaming machines |
US20090233705A1 (en) * | 2006-04-13 | 2009-09-17 | Igt | Presentation of remotely-hosted and locally rendered content for gaming systems |
US20110116461A1 (en) * | 2003-05-15 | 2011-05-19 | At&T Intellectual Property I, L.P. | Methods, systems, and computer program products for allocating different quality of service/bandwidth allocation to subscribers having different levels of subscription service for interactive gaming |
US8968077B2 (en) | 2006-04-13 | 2015-03-03 | Idt | Methods and systems for interfacing with a third-party application |
US9129469B2 (en) | 2012-09-11 | 2015-09-08 | Igt | Player driven game download to a gaming machine |
US9331933B2 (en) | 2004-10-13 | 2016-05-03 | CSC Holdings, LLC | Method and system for redirecting networked traffic |
US9401065B2 (en) | 2011-09-30 | 2016-07-26 | Igt | System and method for remote rendering of content on an electronic gaming machine |
US9564004B2 (en) | 2003-10-20 | 2017-02-07 | Igt | Closed-loop system for providing additional event participation to electronic video game customers |
US9613491B2 (en) | 2004-12-16 | 2017-04-04 | Igt | Video gaming device having a system and method for completing wagers and purchases during the cash out process |
US9824536B2 (en) | 2011-09-30 | 2017-11-21 | Igt | Gaming system, gaming device and method for utilizing mobile devices at a gaming establishment |
US10013134B1 (en) * | 2011-12-19 | 2018-07-03 | Electronic Arts Inc. | System and method for determining quality of service in a video game based on priority |
US10055930B2 (en) | 2015-08-11 | 2018-08-21 | Igt | Gaming system and method for placing and redeeming sports bets |
US10152846B2 (en) | 2006-11-10 | 2018-12-11 | Igt | Bonusing architectures in a gaming environment |
US11229850B2 (en) * | 2016-04-13 | 2022-01-25 | Roblox Corporation | User-controlled, on-demand gaming channel |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080318685A9 (en) * | 2005-09-12 | 2008-12-25 | Oak Steven R | Controlled access layer system and method |
US8224985B2 (en) * | 2005-10-04 | 2012-07-17 | Sony Computer Entertainment Inc. | Peer-to-peer communication traversing symmetric network address translators |
US8060626B2 (en) * | 2008-09-22 | 2011-11-15 | Sony Computer Entertainment America Llc. | Method for host selection based on discovered NAT type |
US20050227763A1 (en) * | 2004-03-31 | 2005-10-13 | Microsoft Corporation | Game controller power management |
US7684315B1 (en) * | 2002-11-08 | 2010-03-23 | Juniper Networks, Inc. | Ordered switchover of cable modems |
US20040235563A1 (en) * | 2003-02-26 | 2004-11-25 | Blackburn Christopher W. | Game update service in a service-oriented gaming network environment |
CA2458793A1 (en) * | 2003-02-26 | 2004-08-26 | Wms Gaming Inc. | Gaming management service in the service-oriented gaming network environment |
US20060142086A1 (en) * | 2003-02-26 | 2006-06-29 | Blackburn Christopher W | Progressive service in a service-oriented gaming network environment |
JP2004255187A (en) * | 2003-02-26 | 2004-09-16 | Wms Gaming Inc | Network surroundings for service pointed game |
US20040242328A1 (en) * | 2003-03-05 | 2004-12-02 | Blackburn Christopher W. | Boot service in a service-oriented gaming network environment |
US8308567B2 (en) * | 2003-03-05 | 2012-11-13 | Wms Gaming Inc. | Discovery service in a service-oriented gaming network environment |
US20040243848A1 (en) * | 2003-03-06 | 2004-12-02 | Blackburn Christopher W. | Authentication service in a service-oriented gaming network environment |
US7668752B2 (en) * | 2003-03-13 | 2010-02-23 | Realnetworks, Inc. | System and method for the distribution of software products |
US20040242330A1 (en) * | 2003-03-17 | 2004-12-02 | Blackburn Christopher W. | Name service in a service-oriented gaming network environment |
US20040242331A1 (en) * | 2003-03-17 | 2004-12-02 | Blackburn Christopher W. | Time service in a service-oriented gaming network environment |
US7927210B2 (en) * | 2003-03-17 | 2011-04-19 | Wms Gaming Inc. | Accounting service in a service-oriented gaming network environment |
US20050032577A1 (en) * | 2003-03-17 | 2005-02-10 | Blackburn Christopher W. | Message director service in a service-oriented gaming network environment |
US20040266532A1 (en) * | 2003-03-27 | 2004-12-30 | Blackburn Christopher W. | Event management service in a service-oriented gaming network environment |
US8032619B2 (en) * | 2003-04-16 | 2011-10-04 | Sony Computer Entertainment America Llc | Environment information server |
US20050227768A1 (en) * | 2003-05-27 | 2005-10-13 | Blackburn Christopher W | Gaming network environment having a language translation service |
US7603464B2 (en) * | 2003-06-04 | 2009-10-13 | Sony Computer Entertainment Inc. | Method and system for identifying available resources in a peer-to-peer network |
US20070173322A1 (en) * | 2003-06-23 | 2007-07-26 | Wms Gaming Inc. | Gaming network environment providing a cashless gaming service |
US7411971B2 (en) * | 2003-09-09 | 2008-08-12 | Avaya Inc. | Systems and methods for the schedule alignment of packet flow |
US8616967B2 (en) | 2004-02-25 | 2013-12-31 | Cfph, Llc | System and method for convenience gaming |
US7811172B2 (en) | 2005-10-21 | 2010-10-12 | Cfph, Llc | System and method for wireless lottery |
US20070060358A1 (en) | 2005-08-10 | 2007-03-15 | Amaitis Lee M | System and method for wireless gaming with location determination |
US7637810B2 (en) | 2005-08-09 | 2009-12-29 | Cfph, Llc | System and method for wireless gaming system with alerts |
US7534169B2 (en) | 2005-07-08 | 2009-05-19 | Cfph, Llc | System and method for wireless gaming system with user profiles |
US8092303B2 (en) | 2004-02-25 | 2012-01-10 | Cfph, Llc | System and method for convenience gaming |
US8630225B2 (en) * | 2004-04-16 | 2014-01-14 | Broadcom Corporation | Over the air programming via a broadband access gateway |
US7339913B2 (en) * | 2004-08-17 | 2008-03-04 | Intel Corporation | Method and system of network management and service provisioning for broadband wireless networks |
US20060043170A1 (en) * | 2004-09-02 | 2006-03-02 | Weaver Howard C | Personal account protection system |
US8488612B2 (en) * | 2004-11-01 | 2013-07-16 | At&T Intellectual Property Ii, L.P. | System and method for method for providing quality-of service in a local loop |
US20060262737A1 (en) * | 2005-03-11 | 2006-11-23 | Interdigital Technology Corporation | QoS management in wireless mesh networks |
US7680038B1 (en) * | 2005-04-25 | 2010-03-16 | Electronic Arts, Inc. | Dynamic bandwidth detection and response for online games |
US10510214B2 (en) | 2005-07-08 | 2019-12-17 | Cfph, Llc | System and method for peer-to-peer wireless gaming |
US8070604B2 (en) | 2005-08-09 | 2011-12-06 | Cfph, Llc | System and method for providing wireless gaming as a service application |
US7836192B2 (en) * | 2005-07-15 | 2010-11-16 | Microsoft Corporation | Parental controls for a media console |
US8139606B2 (en) * | 2005-08-02 | 2012-03-20 | Cox Communications, Inc. | Methods and systems for providing switched broadband |
WO2007061998A2 (en) * | 2005-11-22 | 2007-05-31 | Wms Gaming Inc. | A service-oriented gaming network environment |
WO2007092542A2 (en) * | 2006-02-07 | 2007-08-16 | Wms Gaming Inc. | Wager gaming network with wireless hotspots |
US8360887B2 (en) * | 2006-02-09 | 2013-01-29 | Wms Gaming Inc. | Wagering game server availability broadcast message system |
US7549576B2 (en) | 2006-05-05 | 2009-06-23 | Cfph, L.L.C. | Systems and methods for providing access to wireless gaming devices |
US7644861B2 (en) | 2006-04-18 | 2010-01-12 | Bgc Partners, Inc. | Systems and methods for providing access to wireless gaming devices |
US8939359B2 (en) | 2006-05-05 | 2015-01-27 | Cfph, Llc | Game access device with time varying signal |
US9419843B2 (en) * | 2006-07-06 | 2016-08-16 | Broadcom Corporation | Custom ASIC combining VoIP and security IP |
WO2008021079A2 (en) | 2006-08-08 | 2008-02-21 | Wms Gaming Inc. | Configurable wagering game manager |
US20080078826A1 (en) * | 2006-09-18 | 2008-04-03 | Scott David Siebers | Authentication system and method for sports memorabilia |
US9306952B2 (en) | 2006-10-26 | 2016-04-05 | Cfph, Llc | System and method for wireless gaming with location determination |
US8292741B2 (en) | 2006-10-26 | 2012-10-23 | Cfph, Llc | Apparatus, processes and articles for facilitating mobile gaming |
US8510567B2 (en) | 2006-11-14 | 2013-08-13 | Cfph, Llc | Conditional biometric access in a gaming environment |
US9411944B2 (en) | 2006-11-15 | 2016-08-09 | Cfph, Llc | Biometric access sensitivity |
US8645709B2 (en) | 2006-11-14 | 2014-02-04 | Cfph, Llc | Biometric access data encryption |
US8319601B2 (en) | 2007-03-14 | 2012-11-27 | Cfph, Llc | Game account access device |
US9183693B2 (en) | 2007-03-08 | 2015-11-10 | Cfph, Llc | Game access device |
US8581721B2 (en) | 2007-03-08 | 2013-11-12 | Cfph, Llc | Game access device with privileges |
US8944917B2 (en) * | 2007-03-30 | 2015-02-03 | Microsoft Corporation | Multi-tier online game play |
US7995478B2 (en) | 2007-05-30 | 2011-08-09 | Sony Computer Entertainment Inc. | Network communication with path MTU size discovery |
US8179875B2 (en) | 2007-06-25 | 2012-05-15 | Alvarion Ltd. | Provisioning of non real time services in accordance with network resources availability |
US7856501B2 (en) * | 2007-12-04 | 2010-12-21 | Sony Computer Entertainment Inc. | Network traffic prioritization |
EP2096798B1 (en) * | 2008-02-29 | 2012-12-12 | Accenture Global Services Limited | Dynamic profile system for resource access control |
US7856506B2 (en) * | 2008-03-05 | 2010-12-21 | Sony Computer Entertainment Inc. | Traversal of symmetric network address translator for multiple simultaneous connections |
JP4650516B2 (en) * | 2008-04-09 | 2011-03-16 | ソニー株式会社 | Imaging data management method and imaging apparatus |
WO2009152124A1 (en) * | 2008-06-10 | 2009-12-17 | Dolby Laboratories Licensing Corporation | Concealing audio artifacts |
US8787182B2 (en) | 2009-05-18 | 2014-07-22 | Comcast Cable Holdings, Llc | Configuring network devices |
US8370389B1 (en) * | 2010-03-31 | 2013-02-05 | Emc Corporation | Techniques for authenticating users of massive multiplayer online role playing games using adaptive authentication |
US8956231B2 (en) | 2010-08-13 | 2015-02-17 | Cfph, Llc | Multi-process communication regarding gaming information |
US8974302B2 (en) | 2010-08-13 | 2015-03-10 | Cfph, Llc | Multi-process communication regarding gaming information |
US8605589B2 (en) * | 2010-09-01 | 2013-12-10 | Sonus Networks, Inc. | Dynamic classification and grouping of network traffic for service application |
US8352630B2 (en) * | 2010-09-01 | 2013-01-08 | Sonus Networks, Inc. | Dynamic classification and grouping of network traffic for service application across multiple nodes |
US8797865B2 (en) * | 2011-06-30 | 2014-08-05 | Broadcom Corporation | Providing quality of service for sub-flows in a multiple grants per interval service flow |
US8712389B2 (en) * | 2011-11-22 | 2014-04-29 | T-Mobile Usa, Inc. | User-initiated quality of service modification in a mobile device |
WO2013162582A1 (en) * | 2012-04-26 | 2013-10-31 | Empire Technology Development Llc | Multimedia application rental and billing |
US10044834B2 (en) | 2013-02-15 | 2018-08-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Systems, methods and computer program products for enabling a communication device to provide session improvement requests to a server of a network operator's access network |
US9788139B2 (en) | 2013-10-15 | 2017-10-10 | Voyetra Turtle Beach, Inc. | System and method for automatically pairing headset to gaming audio source based on proximity |
US9832043B2 (en) * | 2014-02-07 | 2017-11-28 | Verizon Patent And Licensing Inc. | Bandwidth boosting in shared local networks |
US11087265B2 (en) * | 2016-08-12 | 2021-08-10 | International Business Machines Corporation | System, method and recording medium for causality analysis for auto-scaling and auto-configuration |
US10841399B2 (en) | 2019-01-24 | 2020-11-17 | Tambora Systems Singapore Pte. Ltd. | System and method for guaranteeing quality of experience of a user in an online environment by implementing a required change in the mobile network based on quality of experience requirements and received quality of experience parameters |
Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5408465A (en) * | 1993-06-21 | 1995-04-18 | Hewlett-Packard Company | Flexible scheme for admission control of multimedia streams on integrated networks |
US5644355A (en) | 1992-02-24 | 1997-07-01 | Intelligent Instruments Corporation | Adaptive video subscriber system and methods for its use |
EP0848560A2 (en) * | 1996-12-13 | 1998-06-17 | Siemens Business Communication Systems, Inc. | Method and system for increasing quality of service at or below a treshold cost |
WO1999033301A1 (en) * | 1997-12-18 | 1999-07-01 | Nokia Mobile Phones Limited | Resource reservation in mobile internet protocol |
WO1999050999A1 (en) * | 1998-03-31 | 1999-10-07 | Madge Networks Limited | A communications network end station |
WO2000036871A1 (en) * | 1998-12-15 | 2000-06-22 | Telia Ab (Publ) | Data transmission system adapted to provide interworking between rsvp and mpls |
US6124878A (en) | 1996-12-20 | 2000-09-26 | Time Warner Cable, A Division Of Time Warner Enterainment Company, L.P. | Optimum bandwidth utilization in a shared cable system data channel |
US6137793A (en) | 1997-12-05 | 2000-10-24 | Com21, Inc. | Reverse path multiplexer for use in high speed data transmissions |
US6230203B1 (en) | 1995-10-20 | 2001-05-08 | Scientific-Atlanta, Inc. | System and method for providing statistics for flexible billing in a cable environment |
US6272150B1 (en) * | 1997-01-17 | 2001-08-07 | Scientific-Atlanta, Inc. | Cable modem map display for network management of a cable data delivery system |
US20010024434A1 (en) * | 2000-02-23 | 2001-09-27 | Arun Ayyagari | Quality of service over paths having a wireless-link |
US6297845B1 (en) * | 1998-12-29 | 2001-10-02 | International Business Machines Corporation | System and method of in-service testing of compressed digital broadcast video |
US6308216B1 (en) | 1997-11-14 | 2001-10-23 | International Business Machines Corporation | Service request routing using quality-of-service data and network resource information |
US6335927B1 (en) | 1996-11-18 | 2002-01-01 | Mci Communications Corporation | System and method for providing requested quality of service in a hybrid network |
US20020010938A1 (en) * | 2000-05-31 | 2002-01-24 | Qian Zhang | Resource allocation in multi-stream IP network for optimized quality of service |
US20020019886A1 (en) | 2000-06-07 | 2002-02-14 | Sanghvi Ashvinkumar J. | Event consumers for an event management system |
US6351773B1 (en) * | 1998-12-21 | 2002-02-26 | 3Com Corporation | Methods for restricting access of network devices to subscription services in a data-over-cable system |
US6374402B1 (en) | 1998-11-16 | 2002-04-16 | Into Networks, Inc. | Method and apparatus for installation abstraction in a secure content delivery system |
US20020046406A1 (en) * | 2000-10-18 | 2002-04-18 | Majid Chelehmal | On-demand data system |
US6378130B1 (en) | 1997-10-20 | 2002-04-23 | Time Warner Entertainment Company | Media server interconnect architecture |
US20020059635A1 (en) | 2000-05-31 | 2002-05-16 | Hoang Khoi N. | Digital data-on-demand broadcast cable modem termination system |
US6404738B1 (en) | 1998-01-21 | 2002-06-11 | Nec Usa, Inc. | Dynamic network bandwidth allocation for multimedia applications with soft quality-of-service requirements |
US6415317B1 (en) | 1999-10-01 | 2002-07-02 | Joshua Michael Yelon | Software system for reducing the appearance of latency in a multi-user environment |
US20020087657A1 (en) * | 2000-12-28 | 2002-07-04 | Hunt Galen C. | Stateless distributed computer architecture with server-oriented state-caching objects maintained on network or client |
US6419332B1 (en) * | 1999-02-24 | 2002-07-16 | Harbor Steel & Supply Corp. | File cabinet |
US6434624B1 (en) | 1998-12-04 | 2002-08-13 | Cisco Technology, Inc. | Method and apparatus for identifying network data traffic flows and for applying quality of service treatments to the flows |
US6442158B1 (en) | 1998-05-27 | 2002-08-27 | 3Com Corporation | Method and system for quality-of-service based data forwarding in a data-over-cable system |
US20020119821A1 (en) * | 2000-05-12 | 2002-08-29 | Sanjoy Sen | System and method for joining a broadband multi-user communication session |
US20020118699A1 (en) | 2000-05-19 | 2002-08-29 | Mckinnon Martin W. | Allocating access across a shared communications medium to user classes |
US20020133598A1 (en) * | 2001-03-16 | 2002-09-19 | Strahm Frederick William | Network communication |
US20020137565A1 (en) * | 2001-03-09 | 2002-09-26 | Blanco Victor K. | Uniform media portal for a gaming system |
US20020143914A1 (en) * | 2001-03-29 | 2002-10-03 | Cihula Joseph F. | Network-aware policy deployment |
USH2051H1 (en) * | 2000-09-29 | 2002-11-05 | Opuswave Networks, Inc. | System and method for providing multiple quality of service classes |
US20030085888A1 (en) * | 2001-09-25 | 2003-05-08 | Gauthier Lafruit | Method for operating a real-time multimedia terminal in a QoS manner |
US20030137942A1 (en) * | 2002-01-08 | 2003-07-24 | Telefonaktiebolaget L M Ericsson (Publ) | Network selection for connectivity |
US20030154174A1 (en) * | 2000-06-16 | 2003-08-14 | Jerome Tassel | Network charging |
US6636505B1 (en) * | 1999-05-28 | 2003-10-21 | 3Com Corporation | Method for service provisioning a broadband modem |
US20030216185A1 (en) * | 2001-10-17 | 2003-11-20 | Varley John A. | Method and system for providing an environment for the delivery of interactive gaming services |
US20030229779A1 (en) * | 2002-06-10 | 2003-12-11 | Morais Dinarte R. | Security gateway for online console-based gaming |
US20040009815A1 (en) * | 2002-06-26 | 2004-01-15 | Zotto Banjamin O. | Managing access to content |
US20040064504A1 (en) * | 2002-08-12 | 2004-04-01 | Alcatel | Method and devices for implementing highly interactive entertainment services using interactive media-streaming technology, enabling remote provisioning of virtual reality services |
US6803863B1 (en) * | 2000-01-07 | 2004-10-12 | Tai-Her Yang | Method and circuitry device for non-linear output displacement conversion with reference to signal speeds coming from displacement detector |
US7354345B2 (en) * | 2004-05-25 | 2008-04-08 | Microsoft Corporation | Multilevel online tournament |
US7632186B2 (en) * | 2005-11-21 | 2009-12-15 | Microsoft Corporation | Spectator mode for a game |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2051A (en) * | 1841-04-16 | Manner | ||
US6022994A (en) * | 1992-08-25 | 2000-02-08 | G. D. Searle &. Co. | Succinoylamino hydroxyethylamino sulfonamides useful as retroviral protease inhibitors |
-
2002
- 2002-09-30 US US10/261,245 patent/US7918734B2/en active Active
-
2010
- 2010-11-22 US US12/951,129 patent/US8475280B2/en not_active Expired - Lifetime
Patent Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644355A (en) | 1992-02-24 | 1997-07-01 | Intelligent Instruments Corporation | Adaptive video subscriber system and methods for its use |
US5408465A (en) * | 1993-06-21 | 1995-04-18 | Hewlett-Packard Company | Flexible scheme for admission control of multimedia streams on integrated networks |
US6230203B1 (en) | 1995-10-20 | 2001-05-08 | Scientific-Atlanta, Inc. | System and method for providing statistics for flexible billing in a cable environment |
US6335927B1 (en) | 1996-11-18 | 2002-01-01 | Mci Communications Corporation | System and method for providing requested quality of service in a hybrid network |
EP0848560A2 (en) * | 1996-12-13 | 1998-06-17 | Siemens Business Communication Systems, Inc. | Method and system for increasing quality of service at or below a treshold cost |
US6124878A (en) | 1996-12-20 | 2000-09-26 | Time Warner Cable, A Division Of Time Warner Enterainment Company, L.P. | Optimum bandwidth utilization in a shared cable system data channel |
US6272150B1 (en) * | 1997-01-17 | 2001-08-07 | Scientific-Atlanta, Inc. | Cable modem map display for network management of a cable data delivery system |
US6378130B1 (en) | 1997-10-20 | 2002-04-23 | Time Warner Entertainment Company | Media server interconnect architecture |
US6308216B1 (en) | 1997-11-14 | 2001-10-23 | International Business Machines Corporation | Service request routing using quality-of-service data and network resource information |
US6137793A (en) | 1997-12-05 | 2000-10-24 | Com21, Inc. | Reverse path multiplexer for use in high speed data transmissions |
WO1999033301A1 (en) * | 1997-12-18 | 1999-07-01 | Nokia Mobile Phones Limited | Resource reservation in mobile internet protocol |
US6404738B1 (en) | 1998-01-21 | 2002-06-11 | Nec Usa, Inc. | Dynamic network bandwidth allocation for multimedia applications with soft quality-of-service requirements |
WO1999050999A1 (en) * | 1998-03-31 | 1999-10-07 | Madge Networks Limited | A communications network end station |
US6442158B1 (en) | 1998-05-27 | 2002-08-27 | 3Com Corporation | Method and system for quality-of-service based data forwarding in a data-over-cable system |
US6374402B1 (en) | 1998-11-16 | 2002-04-16 | Into Networks, Inc. | Method and apparatus for installation abstraction in a secure content delivery system |
US6434624B1 (en) | 1998-12-04 | 2002-08-13 | Cisco Technology, Inc. | Method and apparatus for identifying network data traffic flows and for applying quality of service treatments to the flows |
WO2000036871A1 (en) * | 1998-12-15 | 2000-06-22 | Telia Ab (Publ) | Data transmission system adapted to provide interworking between rsvp and mpls |
US6351773B1 (en) * | 1998-12-21 | 2002-02-26 | 3Com Corporation | Methods for restricting access of network devices to subscription services in a data-over-cable system |
US6297845B1 (en) * | 1998-12-29 | 2001-10-02 | International Business Machines Corporation | System and method of in-service testing of compressed digital broadcast video |
US6419332B1 (en) * | 1999-02-24 | 2002-07-16 | Harbor Steel & Supply Corp. | File cabinet |
US6636505B1 (en) * | 1999-05-28 | 2003-10-21 | 3Com Corporation | Method for service provisioning a broadband modem |
US6415317B1 (en) | 1999-10-01 | 2002-07-02 | Joshua Michael Yelon | Software system for reducing the appearance of latency in a multi-user environment |
US6803863B1 (en) * | 2000-01-07 | 2004-10-12 | Tai-Her Yang | Method and circuitry device for non-linear output displacement conversion with reference to signal speeds coming from displacement detector |
US20010024434A1 (en) * | 2000-02-23 | 2001-09-27 | Arun Ayyagari | Quality of service over paths having a wireless-link |
US20020119821A1 (en) * | 2000-05-12 | 2002-08-29 | Sanjoy Sen | System and method for joining a broadband multi-user communication session |
US20020118699A1 (en) | 2000-05-19 | 2002-08-29 | Mckinnon Martin W. | Allocating access across a shared communications medium to user classes |
US20020059635A1 (en) | 2000-05-31 | 2002-05-16 | Hoang Khoi N. | Digital data-on-demand broadcast cable modem termination system |
US20020010938A1 (en) * | 2000-05-31 | 2002-01-24 | Qian Zhang | Resource allocation in multi-stream IP network for optimized quality of service |
US20020019886A1 (en) | 2000-06-07 | 2002-02-14 | Sanghvi Ashvinkumar J. | Event consumers for an event management system |
US20030154174A1 (en) * | 2000-06-16 | 2003-08-14 | Jerome Tassel | Network charging |
USH2051H1 (en) * | 2000-09-29 | 2002-11-05 | Opuswave Networks, Inc. | System and method for providing multiple quality of service classes |
US20020046406A1 (en) * | 2000-10-18 | 2002-04-18 | Majid Chelehmal | On-demand data system |
US20020087657A1 (en) * | 2000-12-28 | 2002-07-04 | Hunt Galen C. | Stateless distributed computer architecture with server-oriented state-caching objects maintained on network or client |
US20020137565A1 (en) * | 2001-03-09 | 2002-09-26 | Blanco Victor K. | Uniform media portal for a gaming system |
US20020133598A1 (en) * | 2001-03-16 | 2002-09-19 | Strahm Frederick William | Network communication |
US20020143914A1 (en) * | 2001-03-29 | 2002-10-03 | Cihula Joseph F. | Network-aware policy deployment |
US20030085888A1 (en) * | 2001-09-25 | 2003-05-08 | Gauthier Lafruit | Method for operating a real-time multimedia terminal in a QoS manner |
US20030216185A1 (en) * | 2001-10-17 | 2003-11-20 | Varley John A. | Method and system for providing an environment for the delivery of interactive gaming services |
US20030137942A1 (en) * | 2002-01-08 | 2003-07-24 | Telefonaktiebolaget L M Ericsson (Publ) | Network selection for connectivity |
US20030229779A1 (en) * | 2002-06-10 | 2003-12-11 | Morais Dinarte R. | Security gateway for online console-based gaming |
US20040009815A1 (en) * | 2002-06-26 | 2004-01-15 | Zotto Banjamin O. | Managing access to content |
US20040064504A1 (en) * | 2002-08-12 | 2004-04-01 | Alcatel | Method and devices for implementing highly interactive entertainment services using interactive media-streaming technology, enabling remote provisioning of virtual reality services |
US7354345B2 (en) * | 2004-05-25 | 2008-04-08 | Microsoft Corporation | Multilevel online tournament |
US7632186B2 (en) * | 2005-11-21 | 2009-12-15 | Microsoft Corporation | Spectator mode for a game |
Non-Patent Citations (12)
Title |
---|
CableLabs, DOCSIS(TM) Overview, Aug. 2002. |
CableLabs, PacketCable(TM) Dynamic Quality-of-Service Specification PKT-SP-DQOS-103-020116, Jan. 2002, pp. 3-22. |
CableLabs, Packetcablet(TM) Dynamic Quality-of-service Specification PKT-SP-DQOS-103-020116, Jan. 2002, pp. 3-22 retrieved from http://www.cablelabs.com/specifications/archives/PKT-SP-DQOS-103-020116.pdf. * |
CableLabs, Packetcablet(TM) Dynamic Quality-of-service Specification PKT-SP-DQOS-103-020116, Jan. 2002, pp. 3-22. * |
CableLabs, Radio Frequency Interface Specification SP-RFIv1.1-107-010829, retrieved from http://www.cablelabs.com/specifications/archives/SP-RFI-v1.1-107-010829.pdf, Aug. 2001, pp. 1-10, 145-180 and 263-312. * |
CableLabs, Radio Frequency Interface Specification SP-RFIv1.1-107-010829, retrieved from http://www.cablelabs.com/specifications/archives/SP-RFI—v1.1—107-010829.pdf, Aug. 2001, pp. 1-10, 145-180 and 263-312. * |
CableLabs, Radio Frequency Interface Specification SP-RFIv1.1-107-010829, retrieved from http:llwww.cablelabs.comlspecificationslarchivesISP-RFI-vl. 1-107-010829.pdf, Aug. 2001, pp. 1-10, 145-180 and 263-312. * |
CableLabs, Radio Frequency Interface Specification SP-RFIv1.1-107-010829, retrieved from http:llwww.cablelabs.comlspecificationslarchivesISP-RFI—vl. 1—107-010829.pdf, Aug. 2001, pp. 1-10, 145-180 and 263-312. * |
Cisco Systems, DiffServ-The Scalable End-to-End QoS Model, White Paper, 2001. |
Cisco Systems, DiffServ—The Scalable End-to-End QoS Model, White Paper, 2001. |
Cisco Systems, DOCSIS 1.1 for Cisco uBR7200 Series Universal Broadband Routers, Oct. 2001. |
Cisco Systems, DOCSIS i.i for Cisco uBR7200 Series Universal Broadband Routers, Oct. 2001. * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8638735B2 (en) * | 2003-05-15 | 2014-01-28 | At&T Intellectual Property I, L.P. | Methods, systems, and computer program products for allocating different quality of service/bandwidth allocation to subscribers having different levels of subscription service for interactive gaming |
US20110116461A1 (en) * | 2003-05-15 | 2011-05-19 | At&T Intellectual Property I, L.P. | Methods, systems, and computer program products for allocating different quality of service/bandwidth allocation to subscribers having different levels of subscription service for interactive gaming |
US9564004B2 (en) | 2003-10-20 | 2017-02-07 | Igt | Closed-loop system for providing additional event participation to electronic video game customers |
US20070155469A1 (en) * | 2003-10-20 | 2007-07-05 | Sam Johnson | Automatic funding of paragames on electronic gaming platform |
US9331933B2 (en) | 2004-10-13 | 2016-05-03 | CSC Holdings, LLC | Method and system for redirecting networked traffic |
US9613491B2 (en) | 2004-12-16 | 2017-04-04 | Igt | Video gaming device having a system and method for completing wagers and purchases during the cash out process |
US10275984B2 (en) | 2004-12-16 | 2019-04-30 | Igt | Video gaming device having a system and method for completing wagers |
US8784196B2 (en) | 2006-04-13 | 2014-07-22 | Igt | Remote content management and resource sharing on a gaming machine and method of implementing same |
US10706660B2 (en) | 2006-04-13 | 2020-07-07 | Igt | Presentation of remotely-hosted and locally rendered content for gaming systems |
US8777737B2 (en) | 2006-04-13 | 2014-07-15 | Igt | Method and apparatus for integrating remotely-hosted and locally rendered content on a gaming device |
US9881453B2 (en) | 2006-04-13 | 2018-01-30 | Igt | Integrating remotely-hosted and locally rendered content on a gaming device |
US8968077B2 (en) | 2006-04-13 | 2015-03-03 | Idt | Methods and systems for interfacing with a third-party application |
US9028329B2 (en) * | 2006-04-13 | 2015-05-12 | Igt | Integrating remotely-hosted and locally rendered content on a gaming device |
US20090233705A1 (en) * | 2006-04-13 | 2009-09-17 | Igt | Presentation of remotely-hosted and locally rendered content for gaming systems |
US10607437B2 (en) | 2006-04-13 | 2020-03-31 | Igt | Remote content management and resource sharing on a gaming machine and method of implementing same |
US10169950B2 (en) | 2006-04-13 | 2019-01-01 | Igt | Remote content management and resource sharing on a gaming machine and method of implementing same |
US20080009344A1 (en) * | 2006-04-13 | 2008-01-10 | Igt | Integrating remotely-hosted and locally rendered content on a gaming device |
US20070243925A1 (en) * | 2006-04-13 | 2007-10-18 | Igt | Method and apparatus for integrating remotely-hosted and locally rendered content on a gaming device |
US10026255B2 (en) | 2006-04-13 | 2018-07-17 | Igt | Presentation of remotely-hosted and locally rendered content for gaming systems |
US20070243934A1 (en) * | 2006-04-13 | 2007-10-18 | Igt | Remote content management and resource sharing on a gaming machine and method of implementing same |
US9685034B2 (en) | 2006-04-13 | 2017-06-20 | Igt | Methods and systems for interfacing with a third-party application |
US9959702B2 (en) | 2006-04-13 | 2018-05-01 | Igt | Remote content management and resource sharing on a gaming machine and method of implementing same |
US10152846B2 (en) | 2006-11-10 | 2018-12-11 | Igt | Bonusing architectures in a gaming environment |
US8727855B2 (en) | 2006-11-13 | 2014-05-20 | Igt | Three-dimensional paylines for gaming machines |
US20080113775A1 (en) * | 2006-11-13 | 2008-05-15 | Igt | Three-dimensional paylines for gaming machines |
US10204481B2 (en) | 2011-09-30 | 2019-02-12 | Igt | System and method for remote rendering of content on an electronic gaming machine |
US9466173B2 (en) | 2011-09-30 | 2016-10-11 | Igt | System and method for remote rendering of content on an electronic gaming machine |
US9401065B2 (en) | 2011-09-30 | 2016-07-26 | Igt | System and method for remote rendering of content on an electronic gaming machine |
US9824536B2 (en) | 2011-09-30 | 2017-11-21 | Igt | Gaming system, gaming device and method for utilizing mobile devices at a gaming establishment |
US10515513B2 (en) | 2011-09-30 | 2019-12-24 | Igt | Gaming system, gaming device and method for utilizing mobile devices at a gaming establishment |
US10013134B1 (en) * | 2011-12-19 | 2018-07-03 | Electronic Arts Inc. | System and method for determining quality of service in a video game based on priority |
US9129469B2 (en) | 2012-09-11 | 2015-09-08 | Igt | Player driven game download to a gaming machine |
US9569921B2 (en) | 2012-09-11 | 2017-02-14 | Igt | Player driven game download to a gaming machine |
US10055930B2 (en) | 2015-08-11 | 2018-08-21 | Igt | Gaming system and method for placing and redeeming sports bets |
US11769365B2 (en) | 2015-08-11 | 2023-09-26 | Igt | Gaming system and method for placing and redeeming sports bets |
US12211337B2 (en) | 2015-08-11 | 2025-01-28 | Igt | Gaming system and method for placing and redeeming sports bets |
US11229850B2 (en) * | 2016-04-13 | 2022-01-25 | Roblox Corporation | User-controlled, on-demand gaming channel |
Also Published As
Publication number | Publication date |
---|---|
US20110065500A1 (en) | 2011-03-17 |
US8475280B2 (en) | 2013-07-02 |
US20040063497A1 (en) | 2004-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7918734B2 (en) | Gaming server providing on demand quality of service | |
US6636482B2 (en) | Method and apparatus for controlling traffic loading of different service levels in a cable data system | |
US7792963B2 (en) | Method to block unauthorized network traffic in a cable data network | |
US6898182B1 (en) | Congestion control in a network device having a buffer circuit | |
US7921457B2 (en) | Distributed subscriber management system | |
US8004987B2 (en) | Method to prioritize videos distributed in a wireless LAN and device implementing the method | |
US7788357B2 (en) | Policy-based admission control and bandwidth reservation for future sessions | |
US6553568B1 (en) | Methods and systems for service level agreement enforcement on a data-over cable system | |
JP4843610B2 (en) | Dynamic change method of utilization rate based on selective passive network monitoring | |
US7516198B1 (en) | Arrangement for providing content-based quality of service for a service flow based on parsing XML tags detected from a server response to a client request | |
US8160068B2 (en) | System and method for facilitating communication between a CMTS and an application server in a cable network | |
KR101255529B1 (en) | Resource admission control for customer triggered and network triggered reservation requests | |
US20020129378A1 (en) | Method and apparatus for controlling traffic loading on a cable modem termination system | |
US20090238199A1 (en) | Wideband upstream protocol | |
US20100299674A1 (en) | Method, system, gateway device and authentication server for allocating multi-service resources | |
US20060149845A1 (en) | Managed quality of service for users and applications over shared networks | |
US20060039380A1 (en) | Very high speed cable modem for increasing bandwidth | |
AU2005208846A1 (en) | Video policy server | |
US20020129377A1 (en) | Method and apparatus for controlling traffic loading on links between internet service providers and cable modem termination system | |
Cisco | Chapter 1: Overview of Cisco uBR7100 Series Software | |
Marrero et al. | An Admission Control and Traffic Regulation Mechanism for Infrastructure WiFi networks. | |
Tassel | TV, voice and broadband IP over cable TV networks | |
WO2002071697A1 (en) | A method and apparatus for transferring data packets in communication networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TIME WARNER CABLE, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOULD, KENNETH;REEL/FRAME:013591/0904 Effective date: 20021216 |
|
AS | Assignment |
Owner name: TIME WARNER CABLE, A DIVISION OF TIME WARNER ENTER Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 013591 FRAME 0904. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECT NAME OF THE ASSIGNEE IS TIME WARNER CABLE, A DIVISION OF TIME WARNER ENTERTAINMENT COMPANY, L.P.;ASSIGNOR:GOULD, KENNETH;REEL/FRAME:025497/0202 Effective date: 20021216 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: TIME WARNER CABLE ENTERPRISES LLC, NEW YORK Free format text: MERGER;ASSIGNOR:TIME WARNER ENTERTAINMENT COMPANY, L.P.;REEL/FRAME:034778/0037 Effective date: 20120928 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:BRIGHT HOUSE NETWORKS, LLC;CHARTER COMMUNICATIONS OPERATING, LLC;TIME WARNER CABLE ENTERPRISES LLC;REEL/FRAME:038747/0507 Effective date: 20160518 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NE Free format text: SECURITY INTEREST;ASSIGNORS:BRIGHT HOUSE NETWORKS, LLC;CHARTER COMMUNICATIONS OPERATING, LLC;TIME WARNER CABLE ENTERPRISES LLC;REEL/FRAME:038747/0507 Effective date: 20160518 |
|
AS | Assignment |
Owner name: TIME WARNER CABLE ENTERPRISES LLC, MISSOURI Free format text: CHANGE OF APPLICANT'S ADDRESS;ASSIGNOR:TIME WARNER CABLE ENTERPRISES LLC;REEL/FRAME:043360/0992 Effective date: 20160601 |
|
AS | Assignment |
Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:ADCAST NORTH CAROLINA CABLE ADVERTISING, LLC;ALABANZA LLC;AMERICA'S JOB EXCHANGE LLC;AND OTHERS;SIGNING DATES FROM 20160518 TO 20180518;REEL/FRAME:046567/0090 Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., I Free format text: SECURITY INTEREST;ASSIGNORS:ADCAST NORTH CAROLINA CABLE ADVERTISING, LLC;ALABANZA LLC;AMERICA'S JOB EXCHANGE LLC;AND OTHERS;SIGNING DATES FROM 20160518 TO 20180518;REEL/FRAME:046567/0090 |
|
AS | Assignment |
Owner name: WELLS FARGO TRUST COMPANY, N.A., UTAH Free format text: SECURITY INTEREST;ASSIGNORS:BRIGHT HOUSE NETWORKS, LLC;CHARTER COMMUNICATIONS OPERATING, LLC;TIME WARNER CABLE ENTERPRISES LLC;AND OTHERS;REEL/FRAME:046630/0193 Effective date: 20180716 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |