US7859084B2 - Semiconductor substrate - Google Patents
Semiconductor substrate Download PDFInfo
- Publication number
- US7859084B2 US7859084B2 US12/391,671 US39167109A US7859084B2 US 7859084 B2 US7859084 B2 US 7859084B2 US 39167109 A US39167109 A US 39167109A US 7859084 B2 US7859084 B2 US 7859084B2
- Authority
- US
- United States
- Prior art keywords
- grooves
- semiconductor
- semiconductor substrate
- substrate
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/60—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/0005—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
- B28D5/0011—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00865—Multistep processes for the separation of wafers into individual elements
- B81C1/00888—Multistep processes involving only mechanical separation, e.g. grooving followed by cleaving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/1015—Shape
- H01L2924/10155—Shape being other than a cuboid
- H01L2924/10158—Shape being other than a cuboid at the passive surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16195—Flat cap [not enclosing an internal cavity]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/162—Disposition
- H01L2924/16235—Connecting to a semiconductor or solid-state bodies, i.e. cap-to-chip
Definitions
- the present invention relates to a semiconductor substrate, a semiconductor device, and a method of manufacturing the same.
- MEMS microelectromechanical system
- MEMS pressure sensors and MEMS accelerometers.
- a plurality of such sensors is concurrently formed in a semiconductor wafer process so as to acquire a diaphragm structure or a beam structure, and is subsequently individually separated.
- the most common method involves rotating a circular dicing saw to which diamond or c-BN particles are secured at high speed to perform a fracturing process. The process is performed while running water for removing fractured waste and suppressing frictional heat.
- diaphragm structures and beam structures are structurally fragile, there is a risk that the pressure generated by the water may destroy the structures.
- Japanese Patent No. 3408805 discloses a method involving using a laser beam to form a modified region in a semiconductor substrate through multiple photon absorption and performing separation at cleavages originating at the modified region.
- Multiple photon absorption is a phenomenon in which absorption occurs in a material when light intensity is significantly increased even in a case where light energy is lower than an absorption band gap of the material or, in other words, in a case of entering an optically transmissive state.
- a focal point of a laser beam 108 is set to the inside of a semiconductor substrate 101 at a portion of a separating line 104 that individually separates a plurality of semiconductor elements 102 formed on the semiconductor substrate 101 to cause multiple photon absorption in a thickness direction.
- a modified region 109 along the separating line 104 is formed inside the substrate and a crack 110 originating at the modified region 109 is created.
- Another method is to reduce the thickness of a processed portion by forming, in advance, a groove on a separating line through anisotropic etching or the like.
- anisotropic etching is performed after forming an etching protective film on a semiconductor substrate on a (100)-oriented surface so as to expose longitudinal and lateral separating line portions.
- etching is stopped at a (111)-oriented surface and a V-groove having an inclination angle of 54.7 degrees is formed.
- the semiconductor substrate can be separated along the V-groove, i.e., along the separating line.
- Japanese Patent Laid-Open No. 2004-186340 discloses the formation of continuous-line first grooves and broken-line second grooves as scribe grooves on separating lines on a substrate.
- Japanese Utility Model Laid-Open No. H04-109537 discloses the formation of continuous cut grooves and discontinuous cut grooves on separating lines of a substrate on which a semiconductor device having a diaphragm is formed.
- the continuous grooves are not uniformly disposed with respect to the four sides of individual semiconductor devices to be separated, stress tends to concentrate on sides on which the continuous grooves are formed and damage originating at such sides may occur in the semiconductor device.
- the formation of continuous grooves causes deterioration in strength and may lead to damage to the semiconductor substrate during handling.
- Japanese Patent Laid-Open No. 2004-165227 discloses the formation of two grooves on separating lines on a substrate corresponding to each of the four sides of each semiconductor device.
- the grooves are not continuous, the rectilinearity of separation decreases, resulting in nonuniform shapes of semiconductor devices after separation and, in particular, inhomogeneous dimensions of the respective sides.
- the pick-up rate of collets picked up at the sides of semiconductor devices in a subsequent process declines, resulting in lower productivity.
- the present invention is made in consideration of the disadvantages described above, and an object thereof is to improve process takt without decreasing separation quality when separating a semiconductor substrate on which a plurality of semiconductor elements are formed into individual semiconductor elements and forming individual semiconductor devices.
- a semiconductor substrate according to the present invention is a semiconductor substrate on which a plurality of semiconductor elements in which functional elements are constructed are formed in a grid pattern, wherein linear grooves are formed on longitudinal and lateral separating lines that individually separate the plurality of semiconductor elements with the exception of intersections of the separating lines.
- a method of manufacturing a semiconductor device includes the steps of: forming linear grooves by anisotropic etching, in a semiconductor substrate on which a plurality of semiconductor elements in which functional elements are constructed are formed in a grid pattern, on longitudinal and lateral separating lines that individually separate the plurality of semiconductor elements with the exception of intersections of the separating lines; forming a modified region inside the substrate by irradiating, after forming the grooves, a laser beam along each separating line while at the same time focusing the laser beam to the inside of the substrate; and forming individual semiconductor devices by applying, after forming the modified region, external force to the semiconductor substrate to separate the semiconductor substrate along each separating line.
- grooves are formed with the exception of intersections of the separating lines or, in other words, since groove intersections where it is extremely difficult to control etching have been removed, the formation of grooves can be performed in an extremely easy and stable manner.
- separation can now be performed with good rectilinearity and in a stable manner.
- the grooves can be continuously formed with the exception of portions corresponding to corners of each semiconductor element. Additionally, the grooves can be continuously formed with the exception of portions corresponding to the outer periphery of each semiconductor element.
- a structure may be adopted in which the substrate is partially thinned, such as a diaphragm structure having a depression on a rear face-side of each semiconductor element.
- the number of laser beam scans on a groove formation portion can be set lower than the number of laser beam scans on a groove nonformation portion.
- the method of manufacturing a semiconductor device includes the step of forming a depression constituting a diaphragm structure on a rear face-side of each semiconductor element by anisotropic etching, the step of forming the grooves can be performed concurrently with the step of forming the depression.
- a semiconductor device manufactured as described above and having a notched portion that is continuous with the exception of corners, on each side of the rear face of a substrate opposite to a semiconductor element also constitutes a part of the present invention.
- a die bond material can be kept from creeping up to a device-side face during mounting of the substrate.
- notched portions are absent in corners, there is no decrease in area of the rear face of the device and bonding area can be secured.
- a semiconductor device having a diaphragm structure provided with a depression on a rear face-side of the semiconductor element also constitutes a part of the present invention.
- FIG. 1 is a plan view of a semiconductor substrate according to an embodiment of the present invention.
- FIG. 2 is a partial enlarged plan view showing the semiconductor substrate
- FIG. 3 is a cross-sectional view of the semiconductor substrate taken along A-A′ in FIG. 2 ;
- FIG. 4 is a cross-sectional view of the semiconductor substrate taken along B-B′ in FIG. 2 ;
- FIGS. 5( a )-( f ) are process cross-sectional views showing the semiconductor substrate and a method of manufacturing a semiconductor device from the semiconductor substrate;
- FIGS. 6A and B are cross-sectional views showing, in detail, a part of the method of manufacturing the semiconductor device
- FIG. 7 is a plan view and cross-sectional views of the semiconductor device
- FIGS. 8A and B are cross-sectional views showing a state in which the semiconductor device is mounted on a mounting substrate
- FIGS. 9A and B are process cross-sectional views showing another method of manufacturing a semiconductor device
- FIG. 10 is a plan view of a semiconductor substrate according to another embodiment of the present invention.
- FIG. 11 is a partial enlarged plan view showing the semiconductor substrate
- FIG. 12 is a cross-sectional view of the semiconductor substrate taken along A-A′ in FIG. 11 ;
- FIG. 13 is a cross-sectional view of the semiconductor substrate taken along B-B′ in FIG. 11 ;
- FIGS. 14( a )-( f ) are process cross-sectional views showing the semiconductor substrate and a method of manufacturing a semiconductor device from the semiconductor substrate;
- FIGS. 15A and B are cross-sectional views showing, in detail, a part of the method of manufacturing the semiconductor device
- FIG. 16 is a plan view and cross-sectional views of the semiconductor device
- FIG. 17 is a cross-sectional view showing a state in which the semiconductor device is mounted on a mounting substrate
- FIGS. 18A and B are process cross-sectional views showing another method of manufacturing a semiconductor device.
- FIG. 19A is a plan view
- FIG. 19B is a cross-sectional view, showing a conventional semiconductor substrate and a method of separating the same.
- a semiconductor substrate 1 is made up of Si monocrystals, and a plurality of semiconductor elements 2 in which functional elements are constructed are formed in a grid pattern on one of the faces of the semiconductor substrate 1 .
- the portions of the semiconductor elements 2 become diaphragm pressure sensors (semiconductor devices) after separation.
- the semiconductor elements 2 themselves are made thin so as to become sensing sections, while depressions 5 are formed on rear face-sides of the semiconductor elements 2 , constituting diaphragm structures.
- An example of such a diaphragm pressure sensor is a microphone sensor, in which air vibrated by sound vibrates a diaphragm, and the displacement of the diaphragm varies the capacity of a conductor between a receiving-side diaphragm and a vibrating-side diaphragm to convert the sound into a vibrational frequency and an electrical signal.
- Separating lines 4 separating the plurality of semiconductor elements 2 extend in longitudinal and lateral directions so as to bisect each other at right angles.
- Linear grooves 3 are formed on the respective separating lines 4 with the exception of the intersections of the separating lines 4 .
- the grooves 3 are continuously formed on the separating lines 4 along the respective sides of the semiconductor elements 2 with the exception of corners of the semiconductor elements 2 .
- the semiconductor substrate 1 and a method of manufacturing a semiconductor device from the semiconductor substrate 1 will now be described.
- etching masks 6 are formed on the semiconductor substrate 1 (refer to FIG. 1) on which the plurality of semiconductor elements 2 are formed in a grid pattern and separated by the separating lines 4 .
- the etching masks 6 are formed by, for example, forming a silicon oxide film or the like by a CVD method and subsequently performing patterning using a lithographic technique so that apertures are provided in areas in which the aforementioned depressions 5 and the grooves 3 are to be formed.
- etching masks are to be retained across the entire surface of the face on which the semiconductor elements 2 are formed.
- the depressions 5 and the grooves 3 are formed by anisotropic etching.
- a KOH solution or a TMAH (tetra-methyl ammonium hydroxide) solution is used for anisotropic etching.
- the grooves 3 are formed with the exception of the intersections of the separating lines 4 as described above, the grooves 3 do not have any intersecting portions.
- etch stop is possible at a desired depth even if the grooves 3 are formed concurrently with the depressions 5 having a different etching depth.
- the depth and the width of the grooves 3 are determined by the width of the aperture of the etching masks 6 .
- the etching masks 6 are removed as shown in FIG. 5( c ). While the removal is performed using a BHF solution or the like, the etching masks 6 may be retained if this does not pose any problems.
- the semiconductor substrate 1 is mounted on a dicing tape 7 , and a laser beam 8 is irradiated along each separating line 4 and at the same time focused on the inside of the semiconductor substrate 1 to form modified regions 9 inside the semiconductor substrate 1 .
- the laser beam 8 is arranged to scan along the longitudinal direction of the grooves 3 while moving the focus of the laser beam 8 in the thickness-direction of the substrate so that microcracks originating at the modified regions 9 develop towards the grooves 3 .
- linearly-continuous grooves 3 are formed with the exception of portions corresponding to corners 15 for each semiconductor element 2 , it is now possible to perform separation with superior rectilinearity in a stable and simple manner.
- the number of scans by the laser beam 8 for the formation portions of the grooves 3 can be reduced in comparison to the number of scans by the laser beam 8 for the nonformation portions of the grooves 3 .
- process takt can be reduced.
- the grooves 3 need not necessarily be given a V-groove shape for which etching control is extremely difficult, making stable etching possible with extreme ease. Since grooves 3 are not formed at portions corresponding to the corners 15 (intersecting portions of the separating lines 4 ), abnormal erosion during etching such as when grooves are also formed in these portions no longer occurs.
- FIGS. 7( a ), 7 ( b ), and 7 ( c ) show the semiconductor device 11 separated from the semiconductor substrate 1 .
- a semiconductor element 2 and a depression 5 are formed on a semiconductor substrate 1 ′, and each side of the rear face of the substrate opposing to the semiconductor element 2 with the exception of corners is provided with a notched portion (indentation) 12 therealong.
- the notched portion 12 is the aforementioned groove 3 segmented in the longitudinal direction.
- a semiconductor device has a quadrangular shape as observed from a planar view.
- a long side of the semiconductor device is susceptible to breakage and, in rare cases, breakage occurs at a short side.
- An origin of breakage is a crack created at an edge portion.
- the edge portions of the semiconductor device 11 according to the present embodiment are provided with the notched portion 12 or, in other words, since edge portions exist both above original edge portions on the inward side thereof, cracks that become origins of breakage are unlikely to occur. Therefore, with the semiconductor device 11 , cracking and chipping of the edge portions are suppressed, deflective strength is dramatically improved, and superior mechanical strength is achieved.
- FIGS. 8A and 8B show a state in which the semiconductor device 11 is mounted on a mounting substrate 13 .
- the semiconductor device 11 and the mounting substrate 13 are bonded to each other by a die-bond material 14 .
- the notched portion 12 is absent from the corners 15 of the semiconductor device 11 , the actual area of the rear face of the semiconductor device 11 is not reduced. Instead, the existence of the notched portion increases the die-bond area, in turn increasing the die-bond adhesion force between the semiconductor device 11 and the mounting substrate 13 . In addition, since the notched portion 12 is absent from the corners 15 of the semiconductor device 11 , the thickness of the semiconductor device 11 can be detected in a conventional manner and the mounting height variation accuracy of the semiconductor device 11 can be controlled without variance in a conventional manner.
- the semiconductor substrate 1 (and the semiconductor device 11 ) is provided with a diaphragm structure, it is obvious that a structure other than a diaphragm structure shall suffice.
- the semiconductor substrate 1 may also be a compound semiconductor substrate.
- FIGS. 9A and 9B when manufacturing an accelerometer as the semiconductor device 11 , as shown in FIGS. 9A and 9B , a beam structure is adopted in which depressions 5 ′ are formed on the upper face of the semiconductor substrate 1 and semiconductor elements 2 are placed at apertures of the depressions 5 ′ while grooves 3 are formed on the lower face of the semiconductor substrate 1 . Effects due to subsequent processes and the grooves 3 are the same as described above.
- continuous grooves are formed on longitudinal and lateral separating lines that individually separate a plurality of semiconductor elements with the exception of intersections of the separating lines such as portions corresponding to corners of each semiconductor element. Accordingly, since a structure is achieved in which the substrate is thin at the groove portions and stress can be more readily concentrated during separation using cleavages or the like, separation can now be performed with good rectilinearity and in a stable manner as compared to a semiconductor substrate not provided with such grooves. Since the grooves are not continuously formed along the entirety of the separating lines, strength deterioration or breakage of the semiconductor substrate is unlikely to occur.
- the formation of the grooves can be performed in an extremely easy and stable manner. Since almost all of the grooves on the respective separating lines are to be linearly continuous, when forming modified regions to become origins of separation using a laser beam, separation can be performed with good rectilinearity in a stable manner and a reduction in process takt can be achieved even when reducing the number of scans by the laser beam on groove-formation portions in comparison to other portions.
- the method of manufacturing a semiconductor device includes the process of forming a depression constituting a diaphragm structure on a rear face-side of each semiconductor element by anisotropic etching, concurrently forming the grooves in the process of forming the depression shall suffice. Therefore, the formation of grooves does not increase the number of processes and increases in cost and lead-time can be avoided.
- process takt can be improved without increasing process costs or degrading process quality.
- a semiconductor device manufactured as described above has a notched portion that is continuous with the exception of corners on each side of the rear face of a substrate opposite to a semiconductor element, a die-bond material can be kept from creeping up to a lateral face of the device during mounting of the substrate. Since notched portions are absent from corners, there is no decrease in the area of the rear face of the device and a bonding area can be secured.
- a semiconductor substrate 1 is made up of Si monocrystals, and a plurality of semiconductor elements 2 in which functional elements are constructed are formed in a grid pattern on one of faces of the semiconductor substrate 1 .
- the portions of the semiconductor elements 2 become diaphragm pressure sensors (semiconductor devices) after separation.
- the semiconductor elements 2 themselves are made thin so as to become sensing sections, while depressions 5 are formed on rear face-sides of the semiconductor elements 2 , constituting diaphragm structures.
- An example of such a diaphragm pressure sensor is a microphone sensor, in which air vibrated by sound vibrates a diaphragm, and the displacement of the diaphragm varies the capacity of a conductor between a receiving-side diaphragm and a vibrating-side diaphragm to convert the sound into a vibrational frequency and an electrical signal.
- Separating lines 4 separating the plurality of semiconductor elements 2 are separating areas set so as to separate the semiconductor substrate 1 into the semiconductor elements 2 , and extend in longitudinal and lateral directions so as to bisect each other at right angles.
- linear grooves 3 are formed on the respective separating lines 4 with the exception of intersections of the separating lines 4 .
- continuous grooves 3 are formed only in the vicinity of the outer periphery of the substrate (substrate periphery).
- the semiconductor substrate 1 and a method of manufacturing a semiconductor device will now be described.
- etching masks 6 are formed on the semiconductor substrate 1 (refer to FIG. 10) on which the plurality of semiconductor elements 2 are formed in a grid pattern and separated by the separating lines 4 .
- the etching masks 6 are formed by, for example, forming a silicon oxide film or the like by a CVD method and subsequently performing patterning using a lithographic technique so that apertures are provided in areas in which the aforementioned depressions 5 and the grooves 3 are to be formed.
- etching masks are to be retained across the entire surface of the face on which the semiconductor elements 2 are formed.
- the depressions 5 and the grooves 3 are formed by anisotropic etching.
- a KOH solution or a TMAH (tetra-methyl ammonium hydroxide) solution is used for anisotropic etching.
- the grooves 3 are formed with the exception of outer peripheries of the respective semiconductor elements 2 and only on the separating lines 4 in the vicinity of the outer periphery of the substrate as described above, the grooves 3 do not have any intersecting portions.
- abnormal erosion attributable to intersecting does not occur and etch stop is possible at a desired depth even if the grooves 3 are formed concurrently with the depressions 5 having a different etching depth.
- the depth and the width of the grooves 3 are determined by the width of the apertures of the etching mask 6 .
- the etching mask 6 is removed as shown in FIG. 14( c ). While the removal is performed using a BHF solution or the like, the etching mask 6 may be retained if this does not pose any problems.
- the semiconductor substrate 1 is mounted on a dicing tape 7 , and a laser beam 8 is irradiated along each separating line 4 and at the same time focused on the inside of the semiconductor substrate 1 to form modified regions 9 inside the semiconductor substrate 1 .
- the laser beam 8 is arranged to scan along the longitudinal direction of the grooves 3 while moving the focus of the laser beam 8 in the thickness-direction of the substrate so that microcracks originating at the modified regions 9 develop towards the grooves 3 .
- the following effects can be achieved.
- a structure is achieved in which the substrate is thin at the portions of the grooves 3 and stress can be more readily concentrated during separation using cleavages or the like.
- separation can now be performed with good rectilinearity and in a stable manner as compared to a case where the grooves 3 are not formed. Since the grooves 3 are not continuously formed along the entirety of the separating lines 4 , strength deterioration or breakage of the semiconductor substrate 1 is unlikely to occur.
- the grooves 3 Since the formation of the grooves 3 does not include groove intersections at which etching control is extremely difficult, abnormal erosion during etching such as when groove intersections are included no longer occurs. As a result, the grooves 3 can be formed significantly easily and in a stable manner, thereby achieving a reduction in process takt. Furthermore, since the formation of modified regions 9 in a subsequent stage enables cracks to be formed more easily, the grooves 3 need not necessarily be given a V-groove shape for which etching control is extremely difficult, making stable etching possible with extreme ease.
- the modified regions 9 since the number of scans by the laser beam 8 for groove formation portions can be reduced in comparison to groove nonformation portions, the total number of scans can be reduced in comparison to a case where the grooves 3 are not formed and a reduction in process takt can be achieved.
- the aforementioned grooves 3 become origins when performing separation, combined with the effect of providing modified regions 9 , the risks of meandering of separating lines and chipping of the semiconductor device 11 after separation can be reduced in comparison with a case where the grooves 3 are not formed. As a result, separation with good rectilinearity can be easily performed to improve the quality of the semiconductor device 11 . Traces of the grooves 3 do not remain on the semiconductor device 11 and the area of the rear face of the device does not decrease.
- FIG. 16 shows a semiconductor device 11 separated from the semiconductor substrate 1 .
- a semiconductor element 2 and a depression 5 are formed on a semiconductor substrate 1 ′.
- FIG. 17 shows a state in which the semiconductor device 11 is mounted on a mounting substrate 13 .
- the semiconductor device 11 and the mounting substrate 13 are bonded to each other by a die-bond material 14 . Since traces of the aforementioned grooves 3 do not remain on the semiconductor substrate 1 ′ or, in other words, since the exterior shape of the semiconductor device 11 is as per conventional, the bonding area during die-bonding can be secured in a conventional manner, enabling die-bonding to be performed under the same die-bonding conditions as per conventional.
- a continuous groove may be formed on longitudinal and lateral separating lines of the semiconductor substrate 1 prior to separation, along the four sides of each semiconductor element 2 with the exception of portions corresponding to corners.
- the semiconductor substrate 1 (and the semiconductor device 11 ) is provided with a diaphragm structure, it is obvious that a structure other than a diaphragm structure shall suffice.
- the semiconductor substrate 1 may also be a compound semiconductor substrate.
- FIGS. 18A and 18B when manufacturing an accelerometer as the semiconductor device 11 , as shown in FIGS. 18A and 18B , a beam structure is adopted in which depressions 5 ′ are formed on the upper face of the semiconductor substrate 1 and semiconductor elements 2 are placed at apertures of the depressions 5 ′ while grooves 3 are formed on the lower face of the semiconductor substrate 1 . Effects due to subsequent processes and the grooves 3 are the same as described above.
- continuous grooves are formed on longitudinal and lateral separating lines that individually separate a plurality of semiconductor elements with the exception of intersections of the separating lines and, for example, portions corresponding to the outer periphery of each semiconductor element or, in other words, only in the vicinity of the outer periphery of the substrate. Accordingly, since a structure is achieved in which the substrate is thin at the groove portions and stress can be more readily concentrated during separation using cleavages or the like, separation can now be performed with good rectilinearity and in a stable manner as compared to a semiconductor substrate not provided with such grooves. Since the grooves are not continuously formed along the entirety of the separating lines, strength deterioration or breakage of the semiconductor substrate is unlikely to occur.
- the formation of the grooves can be performed in an extremely easy and stable manner. Furthermore, when forming the modified regions, since the number of scans by the laser beam for groove formation portions can be reduced in comparison to groove nonformation portions, the total number of scans can be reduced in comparison to a case where the grooves are not formed.
- the method of manufacturing a semiconductor device includes the process of forming a depression constituting a diaphragm structure on a rear face-side of each semiconductor element by anisotropic etching, concurrently forming the grooves in the process of forming the depression shall suffice. Therefore, the formation of grooves does not increase the number of processes and increases in cost and lead-time can be avoided.
- process takt can be improved without increasing process costs or degrading process qualities.
- the thickness of the semiconductor substrate is to be determined in accordance with the diameter of the semiconductor substrate or the thickness required by the semiconductor device after separation, and the depth of grooves are also to be determined according to the thickness of the semiconductor substrate.
- the semiconductor device is a microphone sensor
- the thickness of a planar diaphragm is to be approximately 1 to 5 um at a receiving side and approximately 1 to 5 um at a vibrating side.
- the depressions can be formed by etching so that these thicknesses are made.
- the planar size of the depression is approximately 0.5 to 150 mm 2 .
- the grooves can be arranged so as to have a width of approximately 20 to 500 um (the narrower the better in order to improve chip throughput) and a depth of approximately 10 to 890 um (although the deeper the better to facilitate division and separation, the depth is set at which cracking of the substrate does not unnecessarily occur).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Micromachines (AREA)
- Dicing (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/926,772 US20110108957A1 (en) | 2008-02-28 | 2010-12-08 | Semiconductor substrate, semiconductor device and method of manufacturing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008046972A JP2009206292A (en) | 2008-02-28 | 2008-02-28 | Semiconductor substrate, and manufacturing method of semiconductor device |
JP2008-046971 | 2008-02-28 | ||
JP2008-046972 | 2008-02-28 | ||
JP2008046971A JP2009206291A (en) | 2008-02-28 | 2008-02-28 | Semiconductor substrate, semiconductor device, and manufacturing method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/926,772 Continuation US20110108957A1 (en) | 2008-02-28 | 2010-12-08 | Semiconductor substrate, semiconductor device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090218660A1 US20090218660A1 (en) | 2009-09-03 |
US7859084B2 true US7859084B2 (en) | 2010-12-28 |
Family
ID=41012529
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/391,671 Active US7859084B2 (en) | 2008-02-28 | 2009-02-24 | Semiconductor substrate |
US12/926,772 Abandoned US20110108957A1 (en) | 2008-02-28 | 2010-12-08 | Semiconductor substrate, semiconductor device and method of manufacturing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/926,772 Abandoned US20110108957A1 (en) | 2008-02-28 | 2010-12-08 | Semiconductor substrate, semiconductor device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
US (2) | US7859084B2 (en) |
Cited By (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090284942A1 (en) * | 2008-05-19 | 2009-11-19 | Takashi Yui | Semiconductor device and fabrication method thereof |
US20100215906A1 (en) * | 2009-02-23 | 2010-08-26 | Yoshihisa Tange | Manufacturing method of glass-sealed package, and glass substrate |
US20110220383A1 (en) * | 2008-12-18 | 2011-09-15 | Takeshi Sugiyama | Wafer and package product manufacturing method |
US20120228744A1 (en) * | 2011-03-07 | 2012-09-13 | Yasuo Kawada | Wafer and method of manufacturing package product |
US20120313224A1 (en) * | 2010-06-10 | 2012-12-13 | Fuji Electric Co., Ltd. | Semiconductor device and semiconductor device manufacturing method |
US8507363B2 (en) | 2011-06-15 | 2013-08-13 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using water-soluble die attach film |
US8557682B2 (en) | 2011-06-15 | 2013-10-15 | Applied Materials, Inc. | Multi-layer mask for substrate dicing by laser and plasma etch |
US8557683B2 (en) | 2011-06-15 | 2013-10-15 | Applied Materials, Inc. | Multi-step and asymmetrically shaped laser beam scribing |
US8598016B2 (en) | 2011-06-15 | 2013-12-03 | Applied Materials, Inc. | In-situ deposited mask layer for device singulation by laser scribing and plasma etch |
US8642448B2 (en) | 2010-06-22 | 2014-02-04 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
US8652940B2 (en) | 2012-04-10 | 2014-02-18 | Applied Materials, Inc. | Wafer dicing used hybrid multi-step laser scribing process with plasma etch |
US8703581B2 (en) | 2011-06-15 | 2014-04-22 | Applied Materials, Inc. | Water soluble mask for substrate dicing by laser and plasma etch |
US8759197B2 (en) | 2011-06-15 | 2014-06-24 | Applied Materials, Inc. | Multi-step and asymmetrically shaped laser beam scribing |
US8845854B2 (en) | 2012-07-13 | 2014-09-30 | Applied Materials, Inc. | Laser, plasma etch, and backside grind process for wafer dicing |
US8859397B2 (en) | 2012-07-13 | 2014-10-14 | Applied Materials, Inc. | Method of coating water soluble mask for laser scribing and plasma etch |
US8883615B1 (en) | 2014-03-07 | 2014-11-11 | Applied Materials, Inc. | Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes |
US8883614B1 (en) | 2013-05-22 | 2014-11-11 | Applied Materials, Inc. | Wafer dicing with wide kerf by laser scribing and plasma etching hybrid approach |
US8912078B1 (en) | 2014-04-16 | 2014-12-16 | Applied Materials, Inc. | Dicing wafers having solder bumps on wafer backside |
US8912077B2 (en) | 2011-06-15 | 2014-12-16 | Applied Materials, Inc. | Hybrid laser and plasma etch wafer dicing using substrate carrier |
US8912075B1 (en) | 2014-04-29 | 2014-12-16 | Applied Materials, Inc. | Wafer edge warp supression for thin wafer supported by tape frame |
US8927393B1 (en) | 2014-01-29 | 2015-01-06 | Applied Materials, Inc. | Water soluble mask formation by dry film vacuum lamination for laser and plasma dicing |
US8932939B1 (en) | 2014-04-14 | 2015-01-13 | Applied Materials, Inc. | Water soluble mask formation by dry film lamination |
US8940619B2 (en) | 2012-07-13 | 2015-01-27 | Applied Materials, Inc. | Method of diced wafer transportation |
US8946057B2 (en) | 2012-04-24 | 2015-02-03 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using UV-curable adhesive film |
US8951819B2 (en) | 2011-07-11 | 2015-02-10 | Applied Materials, Inc. | Wafer dicing using hybrid split-beam laser scribing process with plasma etch |
US8969177B2 (en) | 2012-06-29 | 2015-03-03 | Applied Materials, Inc. | Laser and plasma etch wafer dicing with a double sided UV-curable adhesive film |
US8975163B1 (en) | 2014-04-10 | 2015-03-10 | Applied Materials, Inc. | Laser-dominated laser scribing and plasma etch hybrid wafer dicing |
US8975162B2 (en) | 2012-12-20 | 2015-03-10 | Applied Materials, Inc. | Wafer dicing from wafer backside |
US8980726B2 (en) | 2013-01-25 | 2015-03-17 | Applied Materials, Inc. | Substrate dicing by laser ablation and plasma etch damage removal for ultra-thin wafers |
US8980727B1 (en) | 2014-05-07 | 2015-03-17 | Applied Materials, Inc. | Substrate patterning using hybrid laser scribing and plasma etching processing schemes |
US8991329B1 (en) | 2014-01-31 | 2015-03-31 | Applied Materials, Inc. | Wafer coating |
US8993414B2 (en) | 2012-07-13 | 2015-03-31 | Applied Materials, Inc. | Laser scribing and plasma etch for high die break strength and clean sidewall |
US8999816B1 (en) | 2014-04-18 | 2015-04-07 | Applied Materials, Inc. | Pre-patterned dry laminate mask for wafer dicing processes |
US9012305B1 (en) | 2014-01-29 | 2015-04-21 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate non-reactive post mask-opening clean |
US9018079B1 (en) | 2014-01-29 | 2015-04-28 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate reactive post mask-opening clean |
US9029242B2 (en) | 2011-06-15 | 2015-05-12 | Applied Materials, Inc. | Damage isolation by shaped beam delivery in laser scribing process |
US9034771B1 (en) | 2014-05-23 | 2015-05-19 | Applied Materials, Inc. | Cooling pedestal for dicing tape thermal management during plasma dicing |
US9041198B2 (en) | 2013-10-22 | 2015-05-26 | Applied Materials, Inc. | Maskless hybrid laser scribing and plasma etching wafer dicing process |
US9048309B2 (en) | 2012-07-10 | 2015-06-02 | Applied Materials, Inc. | Uniform masking for wafer dicing using laser and plasma etch |
US9076860B1 (en) | 2014-04-04 | 2015-07-07 | Applied Materials, Inc. | Residue removal from singulated die sidewall |
US9093518B1 (en) | 2014-06-30 | 2015-07-28 | Applied Materials, Inc. | Singulation of wafers having wafer-level underfill |
US9105710B2 (en) | 2013-08-30 | 2015-08-11 | Applied Materials, Inc. | Wafer dicing method for improving die packaging quality |
US9112050B1 (en) | 2014-05-13 | 2015-08-18 | Applied Materials, Inc. | Dicing tape thermal management by wafer frame support ring cooling during plasma dicing |
US9117868B1 (en) | 2014-08-12 | 2015-08-25 | Applied Materials, Inc. | Bipolar electrostatic chuck for dicing tape thermal management during plasma dicing |
US9130056B1 (en) | 2014-10-03 | 2015-09-08 | Applied Materials, Inc. | Bi-layer wafer-level underfill mask for wafer dicing and approaches for performing wafer dicing |
US9129904B2 (en) | 2011-06-15 | 2015-09-08 | Applied Materials, Inc. | Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch |
US9130057B1 (en) | 2014-06-30 | 2015-09-08 | Applied Materials, Inc. | Hybrid dicing process using a blade and laser |
US9130030B1 (en) | 2014-03-07 | 2015-09-08 | Applied Materials, Inc. | Baking tool for improved wafer coating process |
US9126285B2 (en) | 2011-06-15 | 2015-09-08 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using physically-removable mask |
US9142459B1 (en) | 2014-06-30 | 2015-09-22 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with mask application by vacuum lamination |
US9159621B1 (en) | 2014-04-29 | 2015-10-13 | Applied Materials, Inc. | Dicing tape protection for wafer dicing using laser scribe process |
US9159624B1 (en) | 2015-01-05 | 2015-10-13 | Applied Materials, Inc. | Vacuum lamination of polymeric dry films for wafer dicing using hybrid laser scribing and plasma etch approach |
US9159574B2 (en) | 2012-08-27 | 2015-10-13 | Applied Materials, Inc. | Method of silicon etch for trench sidewall smoothing |
US9165812B2 (en) | 2014-01-31 | 2015-10-20 | Applied Materials, Inc. | Cooled tape frame lift and low contact shadow ring for plasma heat isolation |
US9165832B1 (en) | 2014-06-30 | 2015-10-20 | Applied Materials, Inc. | Method of die singulation using laser ablation and induction of internal defects with a laser |
US9172347B2 (en) | 2011-03-03 | 2015-10-27 | Seiko Instruments Inc. | Wafer, method of manufacturing package, and piezoelectric oscillator |
US9177861B1 (en) | 2014-09-19 | 2015-11-03 | Applied Materials, Inc. | Hybrid wafer dicing approach using laser scribing process based on an elliptical laser beam profile or a spatio-temporal controlled laser beam profile |
US9196498B1 (en) | 2014-08-12 | 2015-11-24 | Applied Materials, Inc. | Stationary actively-cooled shadow ring for heat dissipation in plasma chamber |
US9196536B1 (en) | 2014-09-25 | 2015-11-24 | Applied Materials, Inc. | Hybrid wafer dicing approach using a phase modulated laser beam profile laser scribing process and plasma etch process |
US9224650B2 (en) | 2013-09-19 | 2015-12-29 | Applied Materials, Inc. | Wafer dicing from wafer backside and front side |
US9236305B2 (en) | 2013-01-25 | 2016-01-12 | Applied Materials, Inc. | Wafer dicing with etch chamber shield ring for film frame wafer applications |
US9245803B1 (en) | 2014-10-17 | 2016-01-26 | Applied Materials, Inc. | Hybrid wafer dicing approach using a bessel beam shaper laser scribing process and plasma etch process |
US9252057B2 (en) | 2012-10-17 | 2016-02-02 | Applied Materials, Inc. | Laser and plasma etch wafer dicing with partial pre-curing of UV release dicing tape for film frame wafer application |
US9275902B2 (en) | 2014-03-26 | 2016-03-01 | Applied Materials, Inc. | Dicing processes for thin wafers with bumps on wafer backside |
US9281244B1 (en) | 2014-09-18 | 2016-03-08 | Applied Materials, Inc. | Hybrid wafer dicing approach using an adaptive optics-controlled laser scribing process and plasma etch process |
US9293304B2 (en) | 2013-12-17 | 2016-03-22 | Applied Materials, Inc. | Plasma thermal shield for heat dissipation in plasma chamber |
US9299614B2 (en) | 2013-12-10 | 2016-03-29 | Applied Materials, Inc. | Method and carrier for dicing a wafer |
US9299611B2 (en) | 2014-01-29 | 2016-03-29 | Applied Materials, Inc. | Method of wafer dicing using hybrid laser scribing and plasma etch approach with mask plasma treatment for improved mask etch resistance |
US9312177B2 (en) | 2013-12-06 | 2016-04-12 | Applied Materials, Inc. | Screen print mask for laser scribe and plasma etch wafer dicing process |
US9330977B1 (en) | 2015-01-05 | 2016-05-03 | Applied Materials, Inc. | Hybrid wafer dicing approach using a galvo scanner and linear stage hybrid motion laser scribing process and plasma etch process |
US9349648B2 (en) | 2014-07-22 | 2016-05-24 | Applied Materials, Inc. | Hybrid wafer dicing approach using a rectangular shaped two-dimensional top hat laser beam profile or a linear shaped one-dimensional top hat laser beam profile laser scribing process and plasma etch process |
US9355907B1 (en) | 2015-01-05 | 2016-05-31 | Applied Materials, Inc. | Hybrid wafer dicing approach using a line shaped laser beam profile laser scribing process and plasma etch process |
US9460966B2 (en) | 2013-10-10 | 2016-10-04 | Applied Materials, Inc. | Method and apparatus for dicing wafers having thick passivation polymer layer |
US9478455B1 (en) | 2015-06-12 | 2016-10-25 | Applied Materials, Inc. | Thermal pyrolytic graphite shadow ring assembly for heat dissipation in plasma chamber |
US9601375B2 (en) | 2015-04-27 | 2017-03-21 | Applied Materials, Inc. | UV-cure pre-treatment of carrier film for wafer dicing using hybrid laser scribing and plasma etch approach |
US9620379B2 (en) | 2013-03-14 | 2017-04-11 | Applied Materials, Inc. | Multi-layer mask including non-photodefinable laser energy absorbing layer for substrate dicing by laser and plasma etch |
US9721839B2 (en) | 2015-06-12 | 2017-08-01 | Applied Materials, Inc. | Etch-resistant water soluble mask for hybrid wafer dicing using laser scribing and plasma etch |
US9793132B1 (en) | 2016-05-13 | 2017-10-17 | Applied Materials, Inc. | Etch mask for hybrid laser scribing and plasma etch wafer singulation process |
US9852997B2 (en) | 2016-03-25 | 2017-12-26 | Applied Materials, Inc. | Hybrid wafer dicing approach using a rotating beam laser scribing process and plasma etch process |
US9972575B2 (en) | 2016-03-03 | 2018-05-15 | Applied Materials, Inc. | Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process |
US20180185964A1 (en) * | 2015-11-09 | 2018-07-05 | Furukawa Electric Co., Ltd. | Method of producing semiconductor chip, and mask-integrated surface protective tape used therein |
US10363629B2 (en) | 2017-06-01 | 2019-07-30 | Applied Materials, Inc. | Mitigation of particle contamination for wafer dicing processes |
US10535561B2 (en) | 2018-03-12 | 2020-01-14 | Applied Materials, Inc. | Hybrid wafer dicing approach using a multiple pass laser scribing process and plasma etch process |
US10692765B2 (en) | 2014-11-07 | 2020-06-23 | Applied Materials, Inc. | Transfer arm for film frame substrate handling during plasma singulation of wafers |
US10903121B1 (en) | 2019-08-14 | 2021-01-26 | Applied Materials, Inc. | Hybrid wafer dicing approach using a uniform rotating beam laser scribing process and plasma etch process |
US11011424B2 (en) | 2019-08-06 | 2021-05-18 | Applied Materials, Inc. | Hybrid wafer dicing approach using a spatially multi-focused laser beam laser scribing process and plasma etch process |
US11158540B2 (en) | 2017-05-26 | 2021-10-26 | Applied Materials, Inc. | Light-absorbing mask for hybrid laser scribing and plasma etch wafer singulation process |
US11195756B2 (en) | 2014-09-19 | 2021-12-07 | Applied Materials, Inc. | Proximity contact cover ring for plasma dicing |
US11211247B2 (en) | 2020-01-30 | 2021-12-28 | Applied Materials, Inc. | Water soluble organic-inorganic hybrid mask formulations and their applications |
US11342226B2 (en) | 2019-08-13 | 2022-05-24 | Applied Materials, Inc. | Hybrid wafer dicing approach using an actively-focused laser beam laser scribing process and plasma etch process |
US11355394B2 (en) | 2018-09-13 | 2022-06-07 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate breakthrough treatment |
US11600492B2 (en) | 2019-12-10 | 2023-03-07 | Applied Materials, Inc. | Electrostatic chuck with reduced current leakage for hybrid laser scribing and plasma etch wafer singulation process |
US11774689B2 (en) | 2021-10-25 | 2023-10-03 | Globalfoundries U.S. Inc. | Photonics chips and semiconductor products having angled optical fibers |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5127669B2 (en) * | 2008-10-31 | 2013-01-23 | パナソニック株式会社 | Semiconductor wafer |
US8357996B2 (en) * | 2009-11-17 | 2013-01-22 | Cree, Inc. | Devices with crack stops |
JP2011189477A (en) * | 2010-03-16 | 2011-09-29 | Disco Corp | Manufacturing method of micromachine device |
JP5939752B2 (en) * | 2011-09-01 | 2016-06-22 | 株式会社ディスコ | Wafer dividing method |
JP6061064B2 (en) * | 2012-05-14 | 2017-01-18 | セイコーエプソン株式会社 | Gyro sensor and electronic equipment |
JP5973357B2 (en) * | 2013-02-05 | 2016-08-23 | 株式会社鷺宮製作所 | Pressure detection unit and method for manufacturing pressure detection unit |
US9102514B2 (en) * | 2013-03-22 | 2015-08-11 | Freescale Semiconductor, Inc | Inhibiting propagation of surface cracks in a MEMS Device |
FR3075773B1 (en) * | 2017-12-22 | 2020-01-24 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | PROCESS FOR PRODUCING SEMICONDUCTOR DEVICES AND CUTTING PATHS |
US11804416B2 (en) * | 2020-09-08 | 2023-10-31 | UTAC Headquarters Pte. Ltd. | Semiconductor device and method of forming protective layer around cavity of semiconductor die |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3795045A (en) * | 1970-08-04 | 1974-03-05 | Silec Semi Conducteurs | Method of fabricating semiconductor devices to facilitate early electrical testing |
JPH04109537A (en) | 1990-08-30 | 1992-04-10 | Stanley Electric Co Ltd | Manufacture of discharge lamp |
JP2001127008A (en) | 1999-10-22 | 2001-05-11 | Seiko Epson Corp | Wafer dividing method and semiconductor chip manufacturing method |
JP2002192370A (en) | 2000-09-13 | 2002-07-10 | Hamamatsu Photonics Kk | Laser beam machining method |
JP2004165227A (en) | 2002-11-08 | 2004-06-10 | Toyoda Gosei Co Ltd | Method of manufacturing group iii nitride compound semiconductor element |
JP2004186340A (en) | 2002-12-02 | 2004-07-02 | Sumitomo Electric Ind Ltd | Cleaving method of compound semiconductor wafer |
US6774500B1 (en) * | 1999-07-28 | 2004-08-10 | Seiko Epson Corporation | Substrate for semiconductor device, semiconductor chip mounting substrate, semiconductor device and method of fabrication thereof, and circuit board, together with electronic equipment |
US7126225B2 (en) * | 2003-04-15 | 2006-10-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and method for manufacturing a semiconductor wafer with reduced delamination and peeling |
US20070190748A1 (en) | 2006-02-16 | 2007-08-16 | Disco Corporation | Wafer dividing method |
US20070264803A1 (en) | 2006-05-12 | 2007-11-15 | Matsushita Electric Industrial Co., Ltd. | Semiconductor substrate, and semiconductor device and method of manufacturing the semiconductor device |
-
2009
- 2009-02-24 US US12/391,671 patent/US7859084B2/en active Active
-
2010
- 2010-12-08 US US12/926,772 patent/US20110108957A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3795045A (en) * | 1970-08-04 | 1974-03-05 | Silec Semi Conducteurs | Method of fabricating semiconductor devices to facilitate early electrical testing |
JPH04109537A (en) | 1990-08-30 | 1992-04-10 | Stanley Electric Co Ltd | Manufacture of discharge lamp |
US6774500B1 (en) * | 1999-07-28 | 2004-08-10 | Seiko Epson Corporation | Substrate for semiconductor device, semiconductor chip mounting substrate, semiconductor device and method of fabrication thereof, and circuit board, together with electronic equipment |
JP2001127008A (en) | 1999-10-22 | 2001-05-11 | Seiko Epson Corp | Wafer dividing method and semiconductor chip manufacturing method |
JP2002192370A (en) | 2000-09-13 | 2002-07-10 | Hamamatsu Photonics Kk | Laser beam machining method |
JP2004165227A (en) | 2002-11-08 | 2004-06-10 | Toyoda Gosei Co Ltd | Method of manufacturing group iii nitride compound semiconductor element |
JP2004186340A (en) | 2002-12-02 | 2004-07-02 | Sumitomo Electric Ind Ltd | Cleaving method of compound semiconductor wafer |
US7126225B2 (en) * | 2003-04-15 | 2006-10-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and method for manufacturing a semiconductor wafer with reduced delamination and peeling |
US20070190748A1 (en) | 2006-02-16 | 2007-08-16 | Disco Corporation | Wafer dividing method |
US20070264803A1 (en) | 2006-05-12 | 2007-11-15 | Matsushita Electric Industrial Co., Ltd. | Semiconductor substrate, and semiconductor device and method of manufacturing the semiconductor device |
Cited By (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8022305B2 (en) * | 2008-05-19 | 2011-09-20 | Panasonic Corporation | Semiconductor device with a wiring board having an angled linear part |
US20090284942A1 (en) * | 2008-05-19 | 2009-11-19 | Takashi Yui | Semiconductor device and fabrication method thereof |
US20110220383A1 (en) * | 2008-12-18 | 2011-09-15 | Takeshi Sugiyama | Wafer and package product manufacturing method |
US8461665B2 (en) | 2008-12-18 | 2013-06-11 | Seiko Instruments Inc. | Wafer and package product manufacturing method |
US20100215906A1 (en) * | 2009-02-23 | 2010-08-26 | Yoshihisa Tange | Manufacturing method of glass-sealed package, and glass substrate |
US8656740B2 (en) | 2009-02-23 | 2014-02-25 | Seiko Instruments Inc. | Manufacturing method of glass-sealed package, and glass substrate |
US8598688B2 (en) * | 2010-06-10 | 2013-12-03 | Fuji Electric Co., Ltd. | Semiconductor device |
US8748225B2 (en) | 2010-06-10 | 2014-06-10 | Fuji Electric Co., Ltd. | Semiconductor device manufacturing method |
US20120313224A1 (en) * | 2010-06-10 | 2012-12-13 | Fuji Electric Co., Ltd. | Semiconductor device and semiconductor device manufacturing method |
US9245802B2 (en) | 2010-06-22 | 2016-01-26 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
US8853056B2 (en) | 2010-06-22 | 2014-10-07 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
US10566238B2 (en) | 2010-06-22 | 2020-02-18 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
US10714390B2 (en) | 2010-06-22 | 2020-07-14 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
US8642448B2 (en) | 2010-06-22 | 2014-02-04 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
US10910271B2 (en) | 2010-06-22 | 2021-02-02 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
US10163713B2 (en) | 2010-06-22 | 2018-12-25 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
US11621194B2 (en) | 2010-06-22 | 2023-04-04 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
US12131952B2 (en) | 2010-06-22 | 2024-10-29 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
US9172347B2 (en) | 2011-03-03 | 2015-10-27 | Seiko Instruments Inc. | Wafer, method of manufacturing package, and piezoelectric oscillator |
CN102684630A (en) * | 2011-03-07 | 2012-09-19 | 精工电子有限公司 | Wafer and method of manufacturing package product |
US20120228744A1 (en) * | 2011-03-07 | 2012-09-13 | Yasuo Kawada | Wafer and method of manufacturing package product |
US8557682B2 (en) | 2011-06-15 | 2013-10-15 | Applied Materials, Inc. | Multi-layer mask for substrate dicing by laser and plasma etch |
US9126285B2 (en) | 2011-06-15 | 2015-09-08 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using physically-removable mask |
US10112259B2 (en) | 2011-06-15 | 2018-10-30 | Applied Materials, Inc. | Damage isolation by shaped beam delivery in laser scribing process |
US8759197B2 (en) | 2011-06-15 | 2014-06-24 | Applied Materials, Inc. | Multi-step and asymmetrically shaped laser beam scribing |
US8703581B2 (en) | 2011-06-15 | 2014-04-22 | Applied Materials, Inc. | Water soluble mask for substrate dicing by laser and plasma etch |
US8912077B2 (en) | 2011-06-15 | 2014-12-16 | Applied Materials, Inc. | Hybrid laser and plasma etch wafer dicing using substrate carrier |
US8507363B2 (en) | 2011-06-15 | 2013-08-13 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using water-soluble die attach film |
US9224625B2 (en) | 2011-06-15 | 2015-12-29 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using water-soluble die attach film |
US8598016B2 (en) | 2011-06-15 | 2013-12-03 | Applied Materials, Inc. | In-situ deposited mask layer for device singulation by laser scribing and plasma etch |
US9218992B2 (en) | 2011-06-15 | 2015-12-22 | Applied Materials, Inc. | Hybrid laser and plasma etch wafer dicing using substrate carrier |
US8557683B2 (en) | 2011-06-15 | 2013-10-15 | Applied Materials, Inc. | Multi-step and asymmetrically shaped laser beam scribing |
US9054176B2 (en) | 2011-06-15 | 2015-06-09 | Applied Materials, Inc. | Multi-step and asymmetrically shaped laser beam scribing |
US9129904B2 (en) | 2011-06-15 | 2015-09-08 | Applied Materials, Inc. | Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch |
US9029242B2 (en) | 2011-06-15 | 2015-05-12 | Applied Materials, Inc. | Damage isolation by shaped beam delivery in laser scribing process |
US9263308B2 (en) | 2011-06-15 | 2016-02-16 | Applied Materials, Inc. | Water soluble mask for substrate dicing by laser and plasma etch |
US8951819B2 (en) | 2011-07-11 | 2015-02-10 | Applied Materials, Inc. | Wafer dicing using hybrid split-beam laser scribing process with plasma etch |
US8652940B2 (en) | 2012-04-10 | 2014-02-18 | Applied Materials, Inc. | Wafer dicing used hybrid multi-step laser scribing process with plasma etch |
US8846498B2 (en) | 2012-04-10 | 2014-09-30 | Applied Materials, Inc. | Wafer dicing using hybrid multi-step laser scribing process with plasma etch |
US8946057B2 (en) | 2012-04-24 | 2015-02-03 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using UV-curable adhesive film |
US8969177B2 (en) | 2012-06-29 | 2015-03-03 | Applied Materials, Inc. | Laser and plasma etch wafer dicing with a double sided UV-curable adhesive film |
US9048309B2 (en) | 2012-07-10 | 2015-06-02 | Applied Materials, Inc. | Uniform masking for wafer dicing using laser and plasma etch |
US9177864B2 (en) | 2012-07-13 | 2015-11-03 | Applied Materials, Inc. | Method of coating water soluble mask for laser scribing and plasma etch |
US8845854B2 (en) | 2012-07-13 | 2014-09-30 | Applied Materials, Inc. | Laser, plasma etch, and backside grind process for wafer dicing |
US8993414B2 (en) | 2012-07-13 | 2015-03-31 | Applied Materials, Inc. | Laser scribing and plasma etch for high die break strength and clean sidewall |
US8859397B2 (en) | 2012-07-13 | 2014-10-14 | Applied Materials, Inc. | Method of coating water soluble mask for laser scribing and plasma etch |
US8940619B2 (en) | 2012-07-13 | 2015-01-27 | Applied Materials, Inc. | Method of diced wafer transportation |
US9159574B2 (en) | 2012-08-27 | 2015-10-13 | Applied Materials, Inc. | Method of silicon etch for trench sidewall smoothing |
US9252057B2 (en) | 2012-10-17 | 2016-02-02 | Applied Materials, Inc. | Laser and plasma etch wafer dicing with partial pre-curing of UV release dicing tape for film frame wafer application |
US8975162B2 (en) | 2012-12-20 | 2015-03-10 | Applied Materials, Inc. | Wafer dicing from wafer backside |
US9236305B2 (en) | 2013-01-25 | 2016-01-12 | Applied Materials, Inc. | Wafer dicing with etch chamber shield ring for film frame wafer applications |
US8980726B2 (en) | 2013-01-25 | 2015-03-17 | Applied Materials, Inc. | Substrate dicing by laser ablation and plasma etch damage removal for ultra-thin wafers |
US9620379B2 (en) | 2013-03-14 | 2017-04-11 | Applied Materials, Inc. | Multi-layer mask including non-photodefinable laser energy absorbing layer for substrate dicing by laser and plasma etch |
US8883614B1 (en) | 2013-05-22 | 2014-11-11 | Applied Materials, Inc. | Wafer dicing with wide kerf by laser scribing and plasma etching hybrid approach |
US9105710B2 (en) | 2013-08-30 | 2015-08-11 | Applied Materials, Inc. | Wafer dicing method for improving die packaging quality |
US9224650B2 (en) | 2013-09-19 | 2015-12-29 | Applied Materials, Inc. | Wafer dicing from wafer backside and front side |
US9460966B2 (en) | 2013-10-10 | 2016-10-04 | Applied Materials, Inc. | Method and apparatus for dicing wafers having thick passivation polymer layer |
US9209084B2 (en) | 2013-10-22 | 2015-12-08 | Applied Materials, Inc. | Maskless hybrid laser scribing and plasma etching wafer dicing process |
US9041198B2 (en) | 2013-10-22 | 2015-05-26 | Applied Materials, Inc. | Maskless hybrid laser scribing and plasma etching wafer dicing process |
US9312177B2 (en) | 2013-12-06 | 2016-04-12 | Applied Materials, Inc. | Screen print mask for laser scribe and plasma etch wafer dicing process |
US9299614B2 (en) | 2013-12-10 | 2016-03-29 | Applied Materials, Inc. | Method and carrier for dicing a wafer |
US9293304B2 (en) | 2013-12-17 | 2016-03-22 | Applied Materials, Inc. | Plasma thermal shield for heat dissipation in plasma chamber |
US9299611B2 (en) | 2014-01-29 | 2016-03-29 | Applied Materials, Inc. | Method of wafer dicing using hybrid laser scribing and plasma etch approach with mask plasma treatment for improved mask etch resistance |
US8927393B1 (en) | 2014-01-29 | 2015-01-06 | Applied Materials, Inc. | Water soluble mask formation by dry film vacuum lamination for laser and plasma dicing |
US9018079B1 (en) | 2014-01-29 | 2015-04-28 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate reactive post mask-opening clean |
US9012305B1 (en) | 2014-01-29 | 2015-04-21 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate non-reactive post mask-opening clean |
US9165812B2 (en) | 2014-01-31 | 2015-10-20 | Applied Materials, Inc. | Cooled tape frame lift and low contact shadow ring for plasma heat isolation |
US9236284B2 (en) | 2014-01-31 | 2016-01-12 | Applied Materials, Inc. | Cooled tape frame lift and low contact shadow ring for plasma heat isolation |
US9768014B2 (en) | 2014-01-31 | 2017-09-19 | Applied Materials, Inc. | Wafer coating |
US8991329B1 (en) | 2014-01-31 | 2015-03-31 | Applied Materials, Inc. | Wafer coating |
US8883615B1 (en) | 2014-03-07 | 2014-11-11 | Applied Materials, Inc. | Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes |
US9130030B1 (en) | 2014-03-07 | 2015-09-08 | Applied Materials, Inc. | Baking tool for improved wafer coating process |
US9275902B2 (en) | 2014-03-26 | 2016-03-01 | Applied Materials, Inc. | Dicing processes for thin wafers with bumps on wafer backside |
US9076860B1 (en) | 2014-04-04 | 2015-07-07 | Applied Materials, Inc. | Residue removal from singulated die sidewall |
US8975163B1 (en) | 2014-04-10 | 2015-03-10 | Applied Materials, Inc. | Laser-dominated laser scribing and plasma etch hybrid wafer dicing |
US9583375B2 (en) | 2014-04-14 | 2017-02-28 | Applied Materials, Inc. | Water soluble mask formation by dry film lamination |
US8932939B1 (en) | 2014-04-14 | 2015-01-13 | Applied Materials, Inc. | Water soluble mask formation by dry film lamination |
US8912078B1 (en) | 2014-04-16 | 2014-12-16 | Applied Materials, Inc. | Dicing wafers having solder bumps on wafer backside |
US9343366B2 (en) | 2014-04-16 | 2016-05-17 | Applied Materials, Inc. | Dicing wafers having solder bumps on wafer backside |
US8999816B1 (en) | 2014-04-18 | 2015-04-07 | Applied Materials, Inc. | Pre-patterned dry laminate mask for wafer dicing processes |
US9159621B1 (en) | 2014-04-29 | 2015-10-13 | Applied Materials, Inc. | Dicing tape protection for wafer dicing using laser scribe process |
US9269604B2 (en) | 2014-04-29 | 2016-02-23 | Applied Materials, Inc. | Wafer edge warp suppression for thin wafer supported by tape frame |
US8912075B1 (en) | 2014-04-29 | 2014-12-16 | Applied Materials, Inc. | Wafer edge warp supression for thin wafer supported by tape frame |
US8980727B1 (en) | 2014-05-07 | 2015-03-17 | Applied Materials, Inc. | Substrate patterning using hybrid laser scribing and plasma etching processing schemes |
US9112050B1 (en) | 2014-05-13 | 2015-08-18 | Applied Materials, Inc. | Dicing tape thermal management by wafer frame support ring cooling during plasma dicing |
US9034771B1 (en) | 2014-05-23 | 2015-05-19 | Applied Materials, Inc. | Cooling pedestal for dicing tape thermal management during plasma dicing |
US9093518B1 (en) | 2014-06-30 | 2015-07-28 | Applied Materials, Inc. | Singulation of wafers having wafer-level underfill |
US9142459B1 (en) | 2014-06-30 | 2015-09-22 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with mask application by vacuum lamination |
US9165832B1 (en) | 2014-06-30 | 2015-10-20 | Applied Materials, Inc. | Method of die singulation using laser ablation and induction of internal defects with a laser |
US9130057B1 (en) | 2014-06-30 | 2015-09-08 | Applied Materials, Inc. | Hybrid dicing process using a blade and laser |
US9349648B2 (en) | 2014-07-22 | 2016-05-24 | Applied Materials, Inc. | Hybrid wafer dicing approach using a rectangular shaped two-dimensional top hat laser beam profile or a linear shaped one-dimensional top hat laser beam profile laser scribing process and plasma etch process |
US9117868B1 (en) | 2014-08-12 | 2015-08-25 | Applied Materials, Inc. | Bipolar electrostatic chuck for dicing tape thermal management during plasma dicing |
US9196498B1 (en) | 2014-08-12 | 2015-11-24 | Applied Materials, Inc. | Stationary actively-cooled shadow ring for heat dissipation in plasma chamber |
US9281244B1 (en) | 2014-09-18 | 2016-03-08 | Applied Materials, Inc. | Hybrid wafer dicing approach using an adaptive optics-controlled laser scribing process and plasma etch process |
US9177861B1 (en) | 2014-09-19 | 2015-11-03 | Applied Materials, Inc. | Hybrid wafer dicing approach using laser scribing process based on an elliptical laser beam profile or a spatio-temporal controlled laser beam profile |
US11195756B2 (en) | 2014-09-19 | 2021-12-07 | Applied Materials, Inc. | Proximity contact cover ring for plasma dicing |
US9196536B1 (en) | 2014-09-25 | 2015-11-24 | Applied Materials, Inc. | Hybrid wafer dicing approach using a phase modulated laser beam profile laser scribing process and plasma etch process |
US9130056B1 (en) | 2014-10-03 | 2015-09-08 | Applied Materials, Inc. | Bi-layer wafer-level underfill mask for wafer dicing and approaches for performing wafer dicing |
US9245803B1 (en) | 2014-10-17 | 2016-01-26 | Applied Materials, Inc. | Hybrid wafer dicing approach using a bessel beam shaper laser scribing process and plasma etch process |
US10692765B2 (en) | 2014-11-07 | 2020-06-23 | Applied Materials, Inc. | Transfer arm for film frame substrate handling during plasma singulation of wafers |
US9330977B1 (en) | 2015-01-05 | 2016-05-03 | Applied Materials, Inc. | Hybrid wafer dicing approach using a galvo scanner and linear stage hybrid motion laser scribing process and plasma etch process |
US9355907B1 (en) | 2015-01-05 | 2016-05-31 | Applied Materials, Inc. | Hybrid wafer dicing approach using a line shaped laser beam profile laser scribing process and plasma etch process |
US9159624B1 (en) | 2015-01-05 | 2015-10-13 | Applied Materials, Inc. | Vacuum lamination of polymeric dry films for wafer dicing using hybrid laser scribing and plasma etch approach |
US9601375B2 (en) | 2015-04-27 | 2017-03-21 | Applied Materials, Inc. | UV-cure pre-treatment of carrier film for wafer dicing using hybrid laser scribing and plasma etch approach |
US9721839B2 (en) | 2015-06-12 | 2017-08-01 | Applied Materials, Inc. | Etch-resistant water soluble mask for hybrid wafer dicing using laser scribing and plasma etch |
US9478455B1 (en) | 2015-06-12 | 2016-10-25 | Applied Materials, Inc. | Thermal pyrolytic graphite shadow ring assembly for heat dissipation in plasma chamber |
US20180185964A1 (en) * | 2015-11-09 | 2018-07-05 | Furukawa Electric Co., Ltd. | Method of producing semiconductor chip, and mask-integrated surface protective tape used therein |
US10307866B2 (en) * | 2015-11-09 | 2019-06-04 | Furukawa Electric Co., Ltd. | Method of producing semiconductor chip, and mask-integrated surface protective tape used therein |
US11217536B2 (en) | 2016-03-03 | 2022-01-04 | Applied Materials, Inc. | Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process |
US9972575B2 (en) | 2016-03-03 | 2018-05-15 | Applied Materials, Inc. | Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process |
US9852997B2 (en) | 2016-03-25 | 2017-12-26 | Applied Materials, Inc. | Hybrid wafer dicing approach using a rotating beam laser scribing process and plasma etch process |
US9793132B1 (en) | 2016-05-13 | 2017-10-17 | Applied Materials, Inc. | Etch mask for hybrid laser scribing and plasma etch wafer singulation process |
US11158540B2 (en) | 2017-05-26 | 2021-10-26 | Applied Materials, Inc. | Light-absorbing mask for hybrid laser scribing and plasma etch wafer singulation process |
US10363629B2 (en) | 2017-06-01 | 2019-07-30 | Applied Materials, Inc. | Mitigation of particle contamination for wafer dicing processes |
US10661383B2 (en) | 2017-06-01 | 2020-05-26 | Applied Materials, Inc. | Mitigation of particle contamination for wafer dicing processes |
US10535561B2 (en) | 2018-03-12 | 2020-01-14 | Applied Materials, Inc. | Hybrid wafer dicing approach using a multiple pass laser scribing process and plasma etch process |
US11355394B2 (en) | 2018-09-13 | 2022-06-07 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate breakthrough treatment |
US11011424B2 (en) | 2019-08-06 | 2021-05-18 | Applied Materials, Inc. | Hybrid wafer dicing approach using a spatially multi-focused laser beam laser scribing process and plasma etch process |
US11342226B2 (en) | 2019-08-13 | 2022-05-24 | Applied Materials, Inc. | Hybrid wafer dicing approach using an actively-focused laser beam laser scribing process and plasma etch process |
US10903121B1 (en) | 2019-08-14 | 2021-01-26 | Applied Materials, Inc. | Hybrid wafer dicing approach using a uniform rotating beam laser scribing process and plasma etch process |
US11600492B2 (en) | 2019-12-10 | 2023-03-07 | Applied Materials, Inc. | Electrostatic chuck with reduced current leakage for hybrid laser scribing and plasma etch wafer singulation process |
US11764061B2 (en) | 2020-01-30 | 2023-09-19 | Applied Materials, Inc. | Water soluble organic-inorganic hybrid mask formulations and their applications |
US11211247B2 (en) | 2020-01-30 | 2021-12-28 | Applied Materials, Inc. | Water soluble organic-inorganic hybrid mask formulations and their applications |
US11774689B2 (en) | 2021-10-25 | 2023-10-03 | Globalfoundries U.S. Inc. | Photonics chips and semiconductor products having angled optical fibers |
Also Published As
Publication number | Publication date |
---|---|
US20110108957A1 (en) | 2011-05-12 |
US20090218660A1 (en) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7859084B2 (en) | Semiconductor substrate | |
US7754584B2 (en) | Semiconductor substrate, and semiconductor device and method of manufacturing the semiconductor device | |
JP2009124077A (en) | Semiconductor chip and its production process | |
JP2009206291A (en) | Semiconductor substrate, semiconductor device, and manufacturing method thereof | |
CN108231658A (en) | Substrate processing method using same | |
CN100499072C (en) | Wafer dividing method | |
US8329561B2 (en) | Method of producing semiconductor device | |
JP2006286727A (en) | Semiconductor wafer provided with plurality of semiconductor devices and its dicing method | |
KR20190012128A (en) | Method of processing a substrate | |
US8030180B2 (en) | Method of manufacturing a semiconductor device | |
JP2004342896A (en) | Semiconductor device and method of manufacturing the same | |
CN101086956A (en) | Method for fabricating semiconductor device | |
US12060266B2 (en) | Method with mechanical dicing process for producing MEMS components | |
JP2007165835A (en) | Laser dicing method and semiconductor wafer | |
US10373855B2 (en) | Method for processing a wafer and method for processing a carrier | |
JP2007165371A (en) | Method of manufacturing semiconductor device | |
JP2008091779A (en) | Manufacturing method of semiconductor device | |
US8299580B2 (en) | Semiconductor wafer and a method of separating the same | |
JP2004335583A (en) | Wafer dicing method | |
JP2009206292A (en) | Semiconductor substrate, and manufacturing method of semiconductor device | |
JPS59130438A (en) | Method for separating plates | |
CN111696968B (en) | Method for manufacturing semiconductor structure | |
CN215249543U (en) | Chip structure and device | |
JP2009188428A (en) | Semiconductor substrate | |
JP2007207871A (en) | Semiconductor wafer equipped witt plural semiconductor devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PANASONIC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:UTSUMI, MASAKI;KUMAKAWA, TAKAHIRO;REEL/FRAME:022502/0072 Effective date: 20090210 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: EPCOS AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:031138/0412 Effective date: 20130731 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: TDK CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EPCOS AG;REEL/FRAME:041265/0442 Effective date: 20161101 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |