US7693110B2 - System and method for downlink signaling for high speed uplink packet access - Google Patents
System and method for downlink signaling for high speed uplink packet access Download PDFInfo
- Publication number
- US7693110B2 US7693110B2 US11/193,207 US19320705A US7693110B2 US 7693110 B2 US7693110 B2 US 7693110B2 US 19320705 A US19320705 A US 19320705A US 7693110 B2 US7693110 B2 US 7693110B2
- Authority
- US
- United States
- Prior art keywords
- user equipment
- channel
- base station
- packet
- control information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000011664 signaling Effects 0.000 title description 12
- 230000004044 response Effects 0.000 claims abstract description 16
- 230000005540 biological transmission Effects 0.000 claims description 44
- 238000004891 communication Methods 0.000 abstract description 46
- 230000005754 cellular signaling Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 11
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 11
- 230000006978 adaptation Effects 0.000 description 2
- 208000037918 transfusion-transmitted disease Diseases 0.000 description 2
- IRLPACMLTUPBCL-KQYNXXCUSA-N 5'-adenylyl sulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OS(O)(=O)=O)[C@@H](O)[C@H]1O IRLPACMLTUPBCL-KQYNXXCUSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0866—Non-scheduled access, e.g. ALOHA using a dedicated channel for access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
Definitions
- the present invention relates generally to the field of wireless communication systems, and methods thereof, for providing high speed communication to and from a wireless communication device.
- the present invention relates to wireless communication systems, and methods thereof, that provide high speed uplink packet access between base stations and mobile handsets.
- Many wireless communication systems communicate voice and data information between communication infrastructure and user equipment using a standard wireless communication protocol.
- Data information includes information necessary for network browsing, messaging, and multimedia applications.
- new standards for managing and handling these improved systems are desired.
- HSDPA High Speed Downlink Packet Access
- HSUPA High Speed Uplink Packet Access service
- HSDPA and HSUPA use a number of similar techniques including incremental redundancy and adaptive transmit format adaptation.
- HSDPA and HSUPA provide for modulation formats and code rates to be modified in response to dynamic variations in the radio environment.
- HSDPA and HSUPA use a retransmission scheme known as Hybrid Automatic Repeat reQuest (H-ARQ).
- H-ARQ Hybrid Automatic Repeat reQuest
- incremental redundancy is provided by a use of soft combining of data from the original transmission and any retransmissions of a data packet.
- a receiver receives a retransmission, it combines the received information with information from any previous transmission of the data packet.
- the retransmissions may comprise retransmissions of the same channel data or different channel data may be transmitted.
- retransmissions may comprise additional redundant data of a Forward Error Correcting (FEC) scheme.
- FEC Forward Error Correcting
- the additional encoding data may be combined with encoded data of previous transmissions and a decoding operation may be applied to the combined data.
- the retransmission may effectively result in a lower rate (higher redundancy) encoding of the same information data.
- HSDPA and HSUPA use many similar techniques, HSUPA provides a number of additional complications with respect to HSDPA and not all techniques used for the downlink transmissions are directly applicable to the uplink scenario.
- scheduling of data for communication over the air interface is performed by the network rather than in the mobile devices.
- aspects of the scheduling are performed in the individual base stations scheduling a user in order to minimize scheduling delays. This permits the air interface communication to be adapted to the dynamic variations in the radio environment and facilitates link adaptation.
- HSDPA the data to be transmitted is available at the base station and in particular the base station includes downlink transmit data buffers. Furthermore, HSDPA provides for transmissions to be made from only one base station and does not support soft handovers where the same data is simultaneously transmitted from a plurality of base stations to the same mobile device. Accordingly, the scheduling by the base station is relatively simple as the information required is available at the base station and as the scheduling by one base station may be made independently of other base stations.
- the data to be scheduled is the data which is to be transmitted from the mobile devices. Accordingly, it is important to have an efficient signaling scheme between the mobile devices and the base stations in order to allow the base stations to schedule data from the mobile devices and for the mobile devices to operate in accordance with the scheduling.
- HSUPA provides for the use of soft handovers in which a transmission from a mobile device may be simultaneously received by a plurality of base stations with the received signals being combined in the network.
- the scheduling is performed by one base station in HSUPA, other base stations do not have any information on when the mobile device may transmit. Accordingly, all base stations which may be involved in a soft handover, continuously attempt to receive data transmissions from the mobile device. This requires that the base stations continuously despread the received signals with all spreading codes of mobile devices which potentially may be active.
- the mobile devices typically transmit only for a fraction of the time, this results in a very high resource usage and in particular results in a large part of the computational resource of the receiver being used to monitor for potential transmissions from mobile devices.
- mobile devices must monitor the downlink signaling from each base station involved in a soft handover where each base station may use multiple channelization codes to send the necessary signaling to the mobile stations thus requiring the mobile to decode multiple channelization codes to determine when and if it is being signalled.
- Mobile station complexity increases when it must decode multiple channelization codes per cell and channelization codes from multiple cells hence the number of channelization codes a mobile station must decode should be minimized.
- some forms of scheduling are more optimal than others. For example, ‘time and rate’ scheduling is better when tight control of the quality of server (QoS) is required or larger overhead from signaling can be tolerated.
- Other types of scheduling such as ‘rate control’ scheduling may be better when only low signaling overhead can be tolerated such as in multi-coverage regions in a macro-cell topology or the applications tend to be best effort like uploading e-mail or low data rate streaming.
- the frame size is also important since this can drive much of the physical delay component of the end to end delay experienced by the user (mobile station).
- a larger frame size can help with coverage issues typically occurring at the edge of the cell or network.
- both small and large frame sizes i.e. small and large transmission time intervals—TTIs) are useful when supported by a high speed uplink packet access network and mobile stations.
- FIG. 1 is a schematic diagram of a wireless communication system representing mobile devices communication with a wireless communication infrastructure in accordance with the present invention.
- FIGS. 2A and 2B are timing diagrams of a scheduling cell servicing multiple mobile devices in accordance with the present invention.
- FIGS. 3A through 3D are schematic diagrams representing downlink control channels supporting uplink data communications in accordance with the present invention.
- FIG. 4 is a schematic diagram representing a scheduling cell downlink coding structure for controlling uplink data communications in accordance with the present invention.
- FIG. 5 is a schematic diagram representing a non-scheduling cell downlink coding structure in accordance with the present invention.
- FIG. 6 is a schematic diagram of an absolute grant channel utilized in accordance with the present invention.
- FIG. 7 is a schematic diagram of multiple absolute grant channels allocated per cell in accordance with the present invention.
- FIG. 8 is a schematic diagram of a color coding scheme utilized in accordance with the present invention.
- FIG. 9 is a schematic diagram representing another scheduling cell downlink coding structure for controlling uplink data communications in accordance with the present invention.
- FIG. 10 is a schematic diagram representing a hybrid scheduling cell downlink coding structure for controlling uplink data communications in accordance with the present invention.
- FIG. 11 is a block diagram representing an exemplary mobile device of the wireless communication system of FIG. 1 .
- FIG. 12 is a block diagram representing an exemplary base station of the wireless communication system of FIG. 1 .
- One aspect of the present invention is user equipment for providing high speed uplink packet access to a base station comprising a transmitter, a receiver, and a controller coupled to the transmitter and the receiver.
- the transmitter is configured to transmit data packets to the base station.
- the receiver is configured to receive control information from the base station which corresponds to the data packets transmitted to the base station.
- the control information includes an absolute grant channel indicator.
- the controller is configured to minimize a number of channelization codes per scheduling active set cell to be monitored by the user equipment based on the absolute grant channel indicator.
- Another aspect of the present invention is user equipment for providing high speed uplink packet to a base station comprising a transmitter, a receiver, and a controller coupled to the transmitter and the receiver, in which the control information received by the receiver including one or more channelization codes assigned to the user equipment.
- the controller is configured to utilize the channelization code or codes in response to handoff and/or entering an active channel state.
- Yet another aspect of the present invention is a base station for receiving high speed uplink packet access from user equipment comprising a transmitter, a receiver, and a controller coupled to the transmitter and the receiver.
- the receiver is configured to receive data packets from the user equipment.
- the transmitter is configured to transmit control information to the user equipment which corresponds to the data packets received from the user equipment.
- the control information includes an absolute grant channel indicator.
- the controller is configured to determine the absolute grant channel indicator to minimize a number of channelization codes per scheduling active set cell to be monitored by the user equipment.
- Still another aspect of the present invention is a base station for receiving high speed uplink packet access from user equipment comprising a transmitter, a receiver, and a controller coupled to the transmitter and the receiver, in which the control information transmitted by the transmitter includes one or more channelization codes assigned to the user equipment.
- the controller is configured to assign the channelization code or codes in response to one of handoff and entering an active channel state.
- a further aspect of the present invention is a method of user equipment for providing high speed uplink packet access to a base station.
- An absolute grant indicator associated with a first stop-and-wait interval of a reoccurring series of stop-and-wait intervals is received from the base station.
- a packet is then transmitted to the base station on a first channel for a transmission time interval corresponding to the first stop-and-wait interval in response to receiving the absolute grant indicator.
- control information associated with the packet on a second channel is transmitted to the base station in response to receiving the absolute grant indicator.
- a still further aspect of the present invention is a method of a base station for receiving high speed uplink packet access from user equipment.
- An absolute grant indicator associated with a first stop-and-wait interval of a reoccurring series of stop-and-wait intervals is transmitted to the user equipment.
- a packet is received from the user equipment on a first channel, and control information associated with the packet is received from the user equipment on a second channel.
- the packet received on the first channel is decoded based on the control information received on the second channel.
- a yet further aspect of the present invention is another method of user equipment for providing high speed uplink packet access to a base station.
- Relative grant information is received from the base station.
- a rate level and/or a power level to use when sending a packet to the base station based on the relative grant information is determined.
- An absolute grant indicator associated with a first stop-and-wait interval of a reoccurring series of stop-and-wait intervals is received from the base station.
- a packet is transmitted to the base station on a first channel for a transmission time interval corresponding to the first stop-and-wait interval and control information associated with the packet is transmitted to the base station on a second channel in response to receiving the absolute grant indicator.
- An even further aspect of the present invention is another method of a base station for receiving high speed uplink packet access from user equipment.
- Relative grant information is transmitted to the user equipment to help determine a rate level and/or a power level to use when sending a packet.
- a packet is received from the user equipment on a first channel, and control information associated with the packet is received from the user equipment on a second channel. Thereafter, the packet received on the first channel is decoded based on the control information received on the second channel.
- a scheduling cell is an active set cell that a mobile device, i.e., user equipment, receives grants or other scheduling signaling.
- An active set cell is a cell in communication with a mobile device. Multiple cells are likely to be in the active set when a mobile device is in a multi-coverage region. Such a multi-coverage region is typically referred to as a soft handoff region where a mobile device can simultaneously communicate with the cells that have coverage in that region after they have been included in the active set.
- a new cell is added to the mobile device's active set in addition to one or more other cells then the mobile device is in soft handoff (if newly added cell is of a different cell site) or softer handoff (the newly added cell of the same cell site) with the new cell.
- active set cell handoffs such that the best active set cell controls a mobile device either through scheduling grants or through up/down commands that control the mobile device's maximum allowed data rate, power levels, or power ratios.
- Time and rate scheduling refers to the case when an active set Base station uses scheduling grants to control the rate or power levels and the scheduling interval of mobile devices.
- the scheduling interval is the time interval over which the mobile device is permitted to transmit or relates to the number of outstanding packets allowed over some time duration.
- Rate control scheduling refers to the case when an active set base station uses signaling to control some mobile device attribute that mobile devices use to determine their transmission rate or power level while not directly determining mobile device transmission start times or transmission duration.
- a wireless communication system 100 such as a wireless radio access network (RAN), comprising multiple cell sites 102 , 104 in which each cell site includes multiple cells 106 , 108 , 110 , 112 .
- Each cell 106 , 108 , 110 , 112 includes a base station, a.k.a., a Node-B, 114 , 116 , 118 , 120 and may be controlled by a base station controller or Radio Network Controller (RNC) 122 , 124 .
- RNC Radio Network Controller
- the base station controllers 122 , 124 may communicate with other landline or wireless components via a communication network 126 .
- Mobile stations or devices 128 , 130 communicate with one or more base stations 114 , 116 , 118 , 120 over wireless fading multi-path channels. Signaling and control information may also be supported over the wireless channels.
- a mobile device or user equipment 128 , 130 may have simultaneous communication channels with more than one cell, or base station 114 , 116 , 118 , 120 , such as when the mobile device is in a soft or softer handoff state involving multiple cells in which the cells have been placed in the mobile device's active set as part of the handoff process.
- Wireless communication links or connections utilized by the wireless communication system 100 include, but are not limited to, cellular-based communications such as analog communications (using AMPS), digital communications (using CDMA, TDMA, GSM, iDEN, GPRS, or EDGE), and next generation communications (using UMTS or WCDMA) and their variants; a peer-to-peer or ad hoc communications such as HomeRF, Bluetooth, IEEE 802.11 (a, b or g) and IEEE 802.16 (a, d, or e); and other forms of wireless communication such as infrared technology.
- cellular-based communications such as analog communications (using AMPS), digital communications (using CDMA, TDMA, GSM, iDEN, GPRS, or EDGE), and next generation communications (using UMTS or WCDMA) and their variants
- a peer-to-peer or ad hoc communications such as HomeRF, Bluetooth, IEEE 802.11 (a, b or g) and IEEE 802.16 (a, d
- FIG. 2A there is shown an example 200 of the timing of a cell servicing multiple mobile devices.
- the cell supports uplink (UL DPCH) 204 and downlink (DL DPCH) 202 dedicated physical channels which are time offset from the starting time of the primary common control physical channel (P-CCPCH) 206 by a frame and chip offset determined by the network and signaled to each mobile device on call origination or handover.
- the timing for the downlink (HS-SCCH) 208 and uplink (HS-DPCCH) 210 physical channels supporting high speed downlink packet access (HSDPA) 212 are shown which highlight the support of N-channel stop-and-wait Hybrid ARQ via the numbering (for example, 1 through 6 for the embodiment shown in FIG.
- the proposed downlink channels include an ACK channel 214 and an Absolute Grant channel 216 . It should be noted that the E-DPDCH 218 and E-DPCCH 220 are time aligned with the UL DPCH 202 . The downlink HSUPA channel start times are time aligned with the P-CCPCH 206 .
- user equipment or mobile device (UE 1 ) 222 may transmit a packet on the E-DPDCH 218 for a TTI corresponding to stop-and-wait channel 1 as well as transmitting associated control information on E-DPCCH 220 in response to receiving an absolute grant (not shown) corresponding to stop-and-wait channel 1 .
- the scheduling cell e.g. scheduling base station
- upon receiving and decoding the packet transmission sent on the E-DPDCH 218 by using the control information sent on the E-DPCCH 220 transmits and ACK on the ACK channel 214 assigned to the mobile device if the packet was successfully decoded or transmits an NACK otherwise.
- an implicit NACK may be used where nothing is transmitted (i.e.
- the mobile device may also send ACK/NACK information on a ACK channel for the mobile device to determine if the packet was successfully decoded by the network or not.
- the ACK or NACK may be sent on the ACK channel 214 in response to the packet received on stop-and-wait channel 1 .
- the scheduling cell may schedule the next transmission for stop-and-wait channel 1 by sending an absolute grant on the absolute grant channel on the TTI corresponding to stop-and-wait channel 1 .
- the mobile device may then transmit a packet on the TTI corresponding to the next occurrence of stop-and-wait channel 1 .
- this procedure may be followed for each of the N stop-and-wait channels used.
- a mobile device may need to monitor multiple channels and determine which channel it has been assigned based on some unique identifier.
- an absolute grant channel may be assigned to each user (for example on handover or when the mobile device enters an active channel state with that cell) but this may be inefficient if a large number of mobile devices is to be supported by a cell.
- an absolute grant indicator field may be included in the absolute grant channel itself which would identify which absolute grant channel the mobile device should use on the next or subsequent transmissions.
- the mobile device may be assigned a specific absolute grant channel to monitor at handover or when it entered an active channel state with a cell.
- the absolute grant channel to monitor may then be changed by use of the AGI field.
- the mobile device and scheduling cell may either go back to the AG channel that they last received a correct transmission on or (more simply) go to the AG channel assigned at handoff or assigned at the start of the active channel state.
- the total AG channels may be divided into sets such that a mobile device is assigned a set with only four possible AG channels such that the AG indicator would then only have four possible values each corresponding to one of the four AG channels. Using sets would also serve to reduce the number of bits required for the AG indicator field sent on the AG channel.
- FIG. 2B there is shown another example 250 of the timing of a cell servicing multiple mobile devices.
- the cell supports uplink (UL DPCH) 252 and downlink (DL DPCH) 254 dedicated physical channels which are time offset from the starting time of the primary common control physical channel (P-CCPCH) 256 by a frame and chip offset determined by the network and signaled to each mobile device on call origination or handover.
- the proposed downlink may include an ACK channel 264 , a global relative grant channel 266 , a global Busy bit 268 , and optionally a per mobile device busy bit (not shown).
- E-DPDCH 270 and E-DPCCH 272 are time aligned with the UL DPCH 252 .
- the downlink HSUPA channel start times are time aligned with the P-CCPCH 256 .
- the E-DPDCH 270 and E-DPCCH 272 are time aligned with the HS-DPCCH 260 .
- user equipment or mobile device transmits a packet on the E-DPDCH 270 for a TTI corresponding to stop-and-wait channel 1 as well as transmitting associated control information on E-DPCCH 272 .
- the mobile device may used relative grant information sent on the global relative grant channel 266 by the scheduling cell to help determine what rate or power level to use when sending the packet such that the overall interference at the scheduling cell is controlled to a targeted level.
- the scheduling cell upon receiving and decoding the packet transmission sent on the E-DPDCH 218 by using the control information sent on the E-DPCCH 220 , may transmit an ACK on the ACK channel 214 assigned to the mobile device if the packet was successfully decoded or transmits an NACK otherwise.
- NACK may be used were nothing is transmitted (i.e., discontinued transmission (DTX)) when the packet decoding is unsuccessful.
- DTX discontinued transmission
- the mobile device is in soft handoff with other cells, they would also send ACK/NACK information on a ACK channel for the mobile device to determine if the packet was successfully decoded by the network or not.
- the mobile device will not start transmitting on subsequent TTIs until busy bit transmission is discontinued. It should be noted that this procedure is followed for each of the N stop-and-wait channels used.
- the downlink control channels 300 for ‘rate control’ scheduling comprise scheduling cell structure(s) 302 and non-scheduling cell structure(s) 304 .
- the scheduling cell structure(s) 302 include a scheduling cell signaling structure 306 and may include one or more additional scheduling cell signaling structures 308 .
- the non-scheduling cell structure(s) 304 include a non-scheduling cell signaling structure 310 and may include one or more additional non-scheduling cell signaling structures 312 .
- the downlink control channels 320 for ‘time and rate’ scheduling comprise scheduling cell structure(s) 322 , non-scheduling cell structure(s) 324 , and one or more absolute grant (AG) channel sets 326 , 328 .
- the scheduling cell structure(s) 322 include a scheduling cell signaling structure 330 and may include one or more additional scheduling cell signaling structures 332 .
- the non-scheduling cell structure(s) 324 include a non-scheduling cell signaling structure 334 and may include one or more additional non-scheduling cell signaling structures 336 .
- Each set of AG channels 326 , 328 may include a plurality of AG channels.
- the downlink control channels 340 for ‘rate control’ and ‘time and rate’ scheduling comprise scheduling cell structure(s) for ‘rate control’ scheduling 342 , scheduling cell structure(s) for ‘time and rate’ scheduling 344 , non-scheduling cell structure(s) 346 , and one or more absolute grant (AG) channel sets 348 , 350 .
- A absolute grant
- the scheduling cell structure(s) for ‘rate control’ scheduling 342 include a scheduling cell signaling structure for ‘rate control’ scheduling 352 and may include one or more additional scheduling cell signaling structures for ‘rate control’ scheduling 354 .
- the scheduling cell structure(s) for ‘time and rate’ scheduling 344 include a scheduling cell signaling structure for ‘time and rate’ scheduling 356 and may include one or more additional scheduling cell signaling structures for ‘time and rate’ scheduling 358 .
- the non-scheduling cell structure(s) 346 include a non-scheduling cell signaling structure 360 and may include one or more additional non-scheduling cell signaling structures 362 .
- Each set of AG channels 348 , 350 may include a plurality of AG channels.
- the downlink control channels 370 for ‘Hybrid’ scheduling comprise scheduling cell structure(s) for ‘Hybrid’ scheduling 372 , non-scheduling cell structure(s) for ‘Hybrid’ scheduling 374 , and one or more absolute grant (AG) channel sets 376 , 378 .
- AG absolute grant
- the scheduling cell structure(s) for ‘Hybrid’ scheduling 372 include a scheduling cell signaling structure for ‘Hybrid’ scheduling 380 and may include one or more additional scheduling cell signaling structures for ‘Hybrid’ scheduling 382 .
- the non-scheduling cell structure(s) for ‘Hybrid’ scheduling 374 include a non-scheduling cell signaling structure for ‘Hybrid’ scheduling 384 and may include one or more additional non-scheduling cell signaling structures for ‘Hybrid’ scheduling 386 .
- Each set of AG channels 376 , 378 may include a plurality of AG channels.
- FIG. 4 there is shown an example of a scheduling cell downlink coding structure 400 for controlling uplink data communications in a high speed packet access network.
- the proposed downlink coding structure 400 supports an ACK bit channel 406 , 408 for each mobile device, a global (i.e., for all mobile devices) Relative Grant downlink channel 414 , and a global Busy bit channel 416 .
- the coding structure 400 may also support a Busy bit channel 410 , 412 for each mobile device.
- the proposed downlink coding structure 400 may support mobile devices UE 1 402 through UE k 404 , and the structure may support an ACK/NAK bit channel 406 , 408 and a Busy bit channel 410 , 412 for each mobile device. Also, for this example, the proposed downlink coding structure 400 may support a global 1-bit relative grant bit 414 and a global 1-bit Busy bit 416 .
- This structure is for mobile devices scheduled by a given cell. If the cell is a scheduling cell for a mobile device, then the mobile device may be assigned to use this structure to access downlink information necessary to support uplink communications.
- the Busy bit channels 410 , 412 , 416 are unnecessary for a ‘time and rate’ scheduling network, but are useful for a ‘rate’ controlled scheduling network to control the maximum number of mobile devices that can transmit per Transmission Time Interval (TTI) and/or to constrain the maximum amount of Base station channel resources needed.
- Active set handoff may be used to transfer ‘scheduling cell’ status to a different active set cell with the assumption that there may be only one scheduling cell per TTI for a given mobile device.
- OVSF channelization code 418 there may be a single size 128 OVSF channelization code 418 associated with the structure which supports 19 mobile devices or up to 38 if the per mobile device Busy bits 410 , 412 are not assigned. There may be multiple instances of this structure per cell, but mobile devices scheduled by the cell will be assigned a single corresponding OVSF code 418 to monitor at active cell handoff, or simultaneous active cell and soft/softer handoff, or upon mobile device call origination/setup for the cell.
- each mobile device may also be assigned unique orthogonal sequences 420 , 422 , 424 , 426 for its corresponding ACK and Busy bit channels 406 , 408 , 410 , 412 , a unique common orthogonal sequence 428 known by all mobile devices for the Relative Grant (up/down bit) channel, and a unique common orthogonal sequence 430 for the global Busy bit channel.
- each mobile device may be assigned 40-bit Hadamard orthogonal sequences 420 , 422 , 424 , 426 for the ACK and Busy bit channels, a 40-bit Hadamard orthogonal sequence 428 for the Relative Grant channel, and a 40-bit Hadamard orthogonal sequence 430 for the global Busy bit channel.
- Each sequence to be transmitted may be repeated over a predetermined number slots of a predetermined TTI, such as 3 slots of a 2 ms TTI, and summed 432 with the other sequences.
- the sum may be then spread 434 with an OVSF channelization code 418 , such as size 128 code, followed by QPSK modulation and scrambling.
- a larger sequence such as a 40-bit sequence, is preferred over a shorter sequence, such as a 20-bit sequence, so that fewer channelization codes must be maintained.
- FIG. 5 there is shown an example of the non-scheduling cell downlink coding structure 500 for supporting multiple per mobile device ACK channels 502 , 504 .
- This coding structure 500 may be used by mobile devices not scheduled by a given active set cell. Hence, mobile devices monitor a single (size 256) OVSF channelization code 506 corresponding to an instance of this structure at each of their non-scheduling active set cells.
- each instance of the structure may support twenty mobile devices and a single corresponding channelization code may be assigned at soft/softer handoff, call origination/setup, or active cell handover.
- An orthogonal code such as a 20-bit Hadamard orthogonal code, corresponding to a single ACK channel may also be assigned to each mobile device by the non-scheduling cell at active set handoff or upon soft/softer handoff when the cell is added to the mobile devices active set.
- a mobile device's assigned sequence may be transmitted for an ACK and not transmitted for a NACK. It should be noted that a shorter (such as 20-bit) sequence is preferred over the longer (such as 40-bit) sequence since better ACK/NACK coverage may be achieved. Also, the number of non-scheduled users supported by a cell may be minimized to reduce the number of ACK channels needed in the non-scheduling cell downlink coding structure.
- an exemplary coding structure of an Absolute Grant (AG) channel which may be used for base station scheduling of mobile device uplink transmissions as would be supported in a ‘time and rate’ scheduling network.
- the AG channel may be used to signal the mobile device's rate or power limit information and a proscribed scheduling time interval over which the mobile device may transmit.
- the AG information (e.g. DPR, CACK, NOP, AGI) may be sent on the AG channel for a specific mobile device.
- control channel ACK/NACK may be transmitted in response to the previous 2 ms TTI E-DPCCH transmission where an ACK is sent if the control channel is successfully decoded and a NACK is sent otherwise.
- the mobile device may also use the CACK for E-DPCCH power control.
- the CACK may also allow for early termination for repeated 2 ms TTI E-DPCCH transmissions used to achieve effective 10 ms TTI for code multiplexed E-DPCH case.
- NOP number of outstanding packets
- the number of outstanding packets per scheduling grant is controlled by a 2-bit ‘number of outstanding packet’ (NOP) field and can be mapped to 1, 4, 6, or unlimited number of packets.
- the unlimited number of packet case corresponds to a mobile device leaving the ‘time and rate’ scheduling mode to enter the ‘rate control’ mode. For ‘time and rate’ scheduling, this allows for effectively different scheduling intervals where the unlimited case means a mobile device goes into rate scheduled mode and uses the global relative grant (up/down) bit to control its rate selection or power levels and the busy bit to enable or disable its transmission.
- a mobile device may remain in that mode until it leaves the active state which typically occurs when an inactivity timer expires due to their being no data left to transmit.
- the absolute grant indicator (AGI) field may be used to indicate which of four AG channelization codes in the AG channelization code set a mobile device should monitor and decode on subsequent AG transmissions for the current HARQ stop-and-wait channel number for which the AGI was received. This allows the mobile device to only have to monitor one AG code per TTI.
- a user may send one packet on each of the N channels with, for example, 2 ms TTI, where the channels are time offset from one another by one TTI such that there is no overlap or gaps in the mobile device transmissions when all N channels are continuously used.
- a packet may be sent on stop-and-wait channel i is retransmitted on subsequent occurrences of channel i if the user does not receive an ACK from the receiving entity. It may continue to retransmit the packet on the i th stop-and-wait channel until it receives an ACK or until the maximum number of retransmissions is reached. The user is then free to transmit a new packet on channel i. This procedure may be followed independently for each of the N-channels.
- the AGI received on the AG channel corresponding to channel i indicates which AG channel number the user should subsequently monitor for channel i.
- the AGI indicates which AG channel to monitor independent of the stop-and-wait channel number the absolute grant implicitly indicated.
- an exemplary absolute grant (AG) channels 702 , 704 allocated per cell.
- AG absolute grant
- two sets of four AG channels may be allocated per cell with each channel having a corresponding OVSF channelization code 706 , 708 .
- One of a cell's AG channel sets, along with the corresponding channelization codes, is assigned to a mobile device when the cell becomes the scheduling cell due to an active set handoff or call origination/setup.
- Each AG channel is color coded by a unique mobile device ID (H-RNTI 802 ) to allow the mobile device to determine whether it is the target of a transmitted grant and thereby reducing the likelihood of erroneous grants.
- H-RNTI 802 a unique mobile device ID
- FIG. 9 there is shown an example of another scheduling cell downlink coding structure 900 for controlling uplink data communications in a high speed packet access network used in conjunction with the AG channels.
- the proposed downlink structure supports the scheduling cell's per mobile device UE 1 through UE k ACK channels 902 , 904 for a ‘time and rate’ scheduling network.
- Active set handoff is used to transfer ‘scheduling cell’ status to a different active set cell with the assumption that there may be only one scheduling cell per TTI for a given mobile device.
- each mobile device is also assigned unique orthogonal sequences 908 , 910 for its corresponding ACK channel 902 , 904 .
- each sequence to be transmitted may be repeated over 3 slots of a 2 ms TTI and summed 912 with the other sequences. The sum is then spread 914 with an OVSF channelization code followed by QPSK modulation and scrambling.
- a larger (in this case 40-bit) sequence is preferred over a shorter (e.g. 20-bit) one so that fewer channelization codes must be maintained.
- a hybrid scheduling cell coding structure 1000 includes one or more ‘rate control’ ACK/NAK channels 1002 , per mobile device Busy bit channels 100 x as well as a global relative grant channel 100 x and global busy bit channel 100 x as well as one or more ‘time and rate’ ACK/NAK channels 1004 and, thus, may support mobile devices in either ‘rate control’ or ‘time and rate’ scheduling mode. Accordingly, one channelization code provides a structure that supports both ‘rate control’ and ‘time and rate’ scheduled mobile devices.
- FIG. 11 there is shown an exemplary mobile device 1100 of the wireless communication system 100 of FIG. 1 .
- FIG. 11 illustrates only functionality of the mobile devices 128 , 130 required for describing the embodiments to a person skilled in the art.
- the mobile devices may typically comprise other functionality required or desired for communicating in accordance with the wireless communication Technical Specifications as will be well known to the person skilled in the art.
- FIG. 11 comprises an antenna 1102 which is coupled to a first receiver 1104 and a first transmitter 1106 (for example through a duplexer (not shown)).
- the first receiver 1104 comprises functionality for receiving signals transmitted from one or more base stations over the air interface and the first transmitter comprises functionality for transmitting signals to one or more base stations over the air interface.
- the first receiver 1104 and the first transmitter 1106 are coupled to a first controller 1108 .
- FIG. 12 illustrates a soft handover base station 1200 of the wireless communication system 100 of FIG. 1 .
- FIG. 12 illustrates only functionality of the base station 114 , 116 , 118 , 120 required for describing the embodiment to a person skilled in the art.
- the base station may typically comprise other functionality required or desired for communicating in accordance with the wireless communication Technical Specifications as will be well known to the person skilled in the art.
- the base station 1200 comprises an antenna 1202 coupled to a second receiver 1204 which receives signals transmitted from user equipments over the air interface.
- the second receiver 1204 is coupled to a controller 1206 which receives data from the second receiver 1204 for outputting to the fixed network and in particular to an RNC (not shown).
- the controller 1206 is further operable to control the second receiver 1204 and to address other network elements in the fixed network.
- the base station 1200 comprises an antenna 1202 which is coupled to a second receiver 1204 which receives signals transmitted from user equipments over the air interface and a second transmitter 1206 which sends signals transmitted to user equipments over the air interface.
- the second receiver 1204 comprises functionality for receiving signals transmitted from one or more user equipments over the air interface and the second transmitter 1206 comprises functionality for transmitting signals to one or more user equipments over the air interface.
- the second receiver 1204 and the second transmitter 1206 are coupled to a controller 1208 .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Communication Control (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
Claims (31)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/193,207 US7693110B2 (en) | 2004-09-16 | 2005-07-29 | System and method for downlink signaling for high speed uplink packet access |
US12/723,392 US8542656B2 (en) | 2004-09-16 | 2010-03-12 | System and method for downlink signaling for high speed uplink packet access |
US12/723,383 US8125944B2 (en) | 2004-09-16 | 2010-03-12 | System and method for downlink signaling for high speed uplink packet access |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61026104P | 2004-09-16 | 2004-09-16 | |
US11/193,207 US7693110B2 (en) | 2004-09-16 | 2005-07-29 | System and method for downlink signaling for high speed uplink packet access |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/723,392 Continuation US8542656B2 (en) | 2004-09-16 | 2010-03-12 | System and method for downlink signaling for high speed uplink packet access |
US12/723,383 Continuation US8125944B2 (en) | 2004-09-16 | 2010-03-12 | System and method for downlink signaling for high speed uplink packet access |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060056355A1 US20060056355A1 (en) | 2006-03-16 |
US7693110B2 true US7693110B2 (en) | 2010-04-06 |
Family
ID=35462443
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/193,207 Active 2028-06-22 US7693110B2 (en) | 2004-09-16 | 2005-07-29 | System and method for downlink signaling for high speed uplink packet access |
US12/723,383 Active 2025-08-02 US8125944B2 (en) | 2004-09-16 | 2010-03-12 | System and method for downlink signaling for high speed uplink packet access |
US12/723,392 Active 2027-02-13 US8542656B2 (en) | 2004-09-16 | 2010-03-12 | System and method for downlink signaling for high speed uplink packet access |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/723,383 Active 2025-08-02 US8125944B2 (en) | 2004-09-16 | 2010-03-12 | System and method for downlink signaling for high speed uplink packet access |
US12/723,392 Active 2027-02-13 US8542656B2 (en) | 2004-09-16 | 2010-03-12 | System and method for downlink signaling for high speed uplink packet access |
Country Status (5)
Country | Link |
---|---|
US (3) | US7693110B2 (en) |
EP (4) | EP2187583B1 (en) |
JP (3) | JP4189399B2 (en) |
CN (3) | CN101023699B (en) |
WO (2) | WO2006036351A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070030838A1 (en) * | 2005-08-05 | 2007-02-08 | Nokia Corporation | Power control for gated uplink control channel |
US20080119183A1 (en) * | 2004-07-28 | 2008-05-22 | Kyocera Corporation | Wireless Communication Terminal, Program and Communication Method |
US20090307560A1 (en) * | 2008-06-05 | 2009-12-10 | Panasonic Corporation | Coding apparatus, coding processing target sequence forming method and viterbi decoding apparatus |
US20100318886A1 (en) * | 2001-05-14 | 2010-12-16 | Interdigital Technology Corporation | Method and apparatus for processing a downlink shared channel |
US20110021239A1 (en) * | 2005-04-20 | 2011-01-27 | Mitsubishi Electric Corporation | Communication quality judgment method, mobile station, base station, and communications system |
US7941151B2 (en) | 2003-11-18 | 2011-05-10 | Interdigital Technology Corporation | Method and system for providing channel assignment information used to support uplink and downlink channels |
US8958368B2 (en) | 2004-11-15 | 2015-02-17 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving downlink control information in a mobile communication system supporting uplink packet data service |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100651548B1 (en) * | 2004-11-05 | 2006-11-29 | 삼성전자주식회사 | Method and apparatus for scheduling uplink data transmission in mobile telecommunication system using ue-id |
US7643515B2 (en) * | 2004-11-10 | 2010-01-05 | Qualcomm Incorporated | Method and apparatus for deriving transmission timing of a downlink control channel in support of enhanced uplink operation |
KR100663278B1 (en) | 2004-11-15 | 2007-01-02 | 삼성전자주식회사 | Method and apparatus for the transmission and reception of downlink control information in mobile telecommunication system supporting uplink packet data service |
US8359040B2 (en) * | 2005-01-05 | 2013-01-22 | Ntt Docomo, Inc. | Transmission rate control method, mobile station, radio base station, and wireless line control station |
JP2006191319A (en) * | 2005-01-05 | 2006-07-20 | Ntt Docomo Inc | Relative value notification method, base station and mobile station |
CN100425087C (en) * | 2005-02-07 | 2008-10-08 | 上海贝尔阿尔卡特股份有限公司 | A base station scheduling method and system for HSUPA |
US7693537B2 (en) * | 2005-03-22 | 2010-04-06 | Ntt Docomo, Inc. | Transmission rate control method, transmission rate control system, and mobile station |
BRPI0602597A (en) * | 2005-03-29 | 2007-04-03 | Ntt Docomo Inc | Transmission speed control method, mobile station and base station |
KR101024890B1 (en) | 2005-08-05 | 2011-03-31 | 노키아 코포레이션 | Adjust uplink control channel gating via channel quality indicator report |
TWI388151B (en) * | 2005-08-10 | 2013-03-01 | Koninkl Philips Electronics Nv | A method of operating a communication device and system, a communication device and a system including the communication device |
JP4668733B2 (en) * | 2005-08-19 | 2011-04-13 | 株式会社エヌ・ティ・ティ・ドコモ | Transmission rate control method and mobile station |
RU2390972C2 (en) * | 2005-08-22 | 2010-05-27 | Нокиа Корпорейшн | Device, method and computer software product for release, configuration and reconfiguration of improved channel of descending communication line |
JP4837957B2 (en) * | 2005-08-23 | 2011-12-14 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile station, base station, mobile communication system and communication method |
JP4592547B2 (en) * | 2005-08-24 | 2010-12-01 | 株式会社エヌ・ティ・ティ・ドコモ | Transmission power control method and mobile communication system |
US7613157B2 (en) * | 2005-08-30 | 2009-11-03 | Interdigital Technology Corporation | Wireless communication method and apparatus for processing enhanced uplink scheduling grants |
RU2411660C2 (en) | 2005-10-31 | 2011-02-10 | Эл Джи Электроникс Инк. | Method to transfer and receive information on radio access in system of wireless mobile communication |
WO2007052921A1 (en) * | 2005-10-31 | 2007-05-10 | Lg Electronics Inc. | Data receiving method for mobile communication terminal |
JP4818371B2 (en) * | 2005-10-31 | 2011-11-16 | エルジー エレクトロニクス インコーポレイティド | Method for processing control information in wireless mobile communication system |
US8305970B2 (en) * | 2005-10-31 | 2012-11-06 | Lg Electronics Inc. | Method of transmitting a measurement report in a wireless mobile communications system |
WO2007052916A1 (en) | 2005-10-31 | 2007-05-10 | Lg Electronics Inc. | Method for processing control information in a wireless mobile communication system |
EP1811800A1 (en) * | 2006-01-23 | 2007-07-25 | Alcatel Lucent | Method, base station, and communication network supporting high-speed uplink packet access (HSUPA) with soft handover mechanisms |
US7599320B2 (en) * | 2006-07-13 | 2009-10-06 | Motorola, Inc. | Enhanced-transport format combination power margin for uplink |
CN101123798B (en) * | 2006-08-10 | 2010-09-08 | 中兴通讯股份有限公司 | An adjustment method for high-speed uplink packet access to downlink control channel |
US8363605B2 (en) * | 2006-08-22 | 2013-01-29 | Qualcomm Incorporated | Method and apparatus for monitoring grant channels in wireless communication |
US8031651B2 (en) | 2006-09-29 | 2011-10-04 | Broadcom Corporation | Method and system for minimizing power consumption in a communication system |
US8233935B2 (en) * | 2006-09-29 | 2012-07-31 | Broadcom Corporation | Method and system for sharing RF filters in systems supporting WCDMA and GSM |
US8340712B2 (en) * | 2006-09-29 | 2012-12-25 | Broadcom Corporation | Method and system for utilizing diplexer/duplexer for WCDMA operation as a filter for supporting GSM-based operation |
WO2008066236A2 (en) * | 2006-12-01 | 2008-06-05 | Electronics And Telecommunications Research Institute | Method of controlling call setup in wireless communication system |
KR100853699B1 (en) * | 2006-12-01 | 2008-08-25 | 한국전자통신연구원 | Call setup control method of mobile communication system |
US20080151765A1 (en) * | 2006-12-20 | 2008-06-26 | Sanal Chandran Cheruvathery | Enhanced Jitter Buffer |
KR100877750B1 (en) * | 2006-12-27 | 2009-01-12 | 포스데이타 주식회사 | Pilot tone generation method and apparatus in orthogonal frequency division multiple access system and channel estimation method and apparatus using same |
GB2445987B (en) * | 2007-01-19 | 2011-09-28 | Motorola Inc | Relocation in a cellular communication system |
EP2811677A3 (en) | 2007-10-02 | 2015-03-11 | Nokia Solutions and Networks Oy | Improved ACK/NACK DTX detection for LTE |
CN101971550A (en) * | 2008-01-08 | 2011-02-09 | 诺基亚西门子通信公司 | Sounding reference signal arrangement |
KR101375936B1 (en) * | 2008-02-01 | 2014-03-18 | 엘지전자 주식회사 | Method of a downlink harq operation at an expiry of time alignment timer |
US9008004B2 (en) * | 2008-02-01 | 2015-04-14 | Lg Electronics Inc. | Method for sending RLC PDU and allocating radio resource in mobile communications system and RLC entity of mobile communications |
KR101531419B1 (en) | 2008-02-01 | 2015-06-24 | 엘지전자 주식회사 | Operation Method of Uplink HARQ at Expiration of Time Synchronization Timer |
JP5081706B2 (en) * | 2008-02-25 | 2012-11-28 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile communication method, mobile communication system, and radio base station |
JP5115802B2 (en) * | 2008-03-11 | 2013-01-09 | 富士通株式会社 | Scheduling apparatus, scheduling method, and program |
US8477734B2 (en) * | 2008-03-25 | 2013-07-02 | Qualcomm Incorporated | Reporting of ACK and CQI information in a wireless communication system |
HUE055251T2 (en) * | 2008-03-31 | 2021-11-29 | Ericsson Telefon Ab L M | Methods and arrangements in a telecommunications system |
CN101615951B (en) * | 2008-06-25 | 2013-01-16 | 中兴通讯股份有限公司 | Method and device for timed sending of uplink authorization signaling |
CN101651897B (en) * | 2008-08-12 | 2012-05-23 | 华为技术有限公司 | Method, device and system for scheduling radio resources |
CN101742673A (en) * | 2008-11-25 | 2010-06-16 | 中兴通讯股份有限公司 | Implementation method and terminal for TD-SCDMA_HSUPA (time division-synchronization code division multiple access high speed uplink packet access) |
CN102859898A (en) * | 2010-01-07 | 2013-01-02 | 交互数字专利控股公司 | Method and apparatus for performing uplink antenna transmit diversity |
US9337962B2 (en) * | 2010-02-17 | 2016-05-10 | Qualcomm Incorporated | Continuous mode operation for wireless communications systems |
EP3525378B1 (en) | 2010-08-13 | 2020-12-09 | Sun Patent Trust | Retransmission method and terminal device thereof |
US9433015B2 (en) * | 2012-06-15 | 2016-08-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Mitigating ghost signalling effects in radio systems |
JP5991059B2 (en) * | 2012-07-27 | 2016-09-14 | 富士通株式会社 | Offload device, network system, and multicast traffic handover method |
JP2016524859A (en) * | 2013-05-21 | 2016-08-18 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | Improved TTI switching |
US9100175B2 (en) | 2013-11-19 | 2015-08-04 | M2M And Iot Technologies, Llc | Embedded universal integrated circuit card supporting two-factor authentication |
US9350550B2 (en) | 2013-09-10 | 2016-05-24 | M2M And Iot Technologies, Llc | Power management and security for wireless modules in “machine-to-machine” communications |
US10498530B2 (en) | 2013-09-27 | 2019-12-03 | Network-1 Technologies, Inc. | Secure PKI communications for “machine-to-machine” modules, including key derivation by modules and authenticating public keys |
US10700856B2 (en) | 2013-11-19 | 2020-06-30 | Network-1 Technologies, Inc. | Key derivation for a module using an embedded universal integrated circuit card |
BR112016022642A2 (en) | 2014-04-01 | 2017-08-15 | Ericsson Telefon Ab L M | METHOD FOR CONTROLLING TRANSMISSION OF UPLOAD LINK, NETWORK NODE, WIRELESS DEVICE, AND, CARRIER |
US10278178B2 (en) | 2014-05-19 | 2019-04-30 | Qualcomm Incorporated | Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching |
US11432305B2 (en) * | 2014-05-19 | 2022-08-30 | Qualcomm Incorporated | Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control |
US9853977B1 (en) | 2015-01-26 | 2017-12-26 | Winklevoss Ip, Llc | System, method, and program product for processing secure transactions within a cloud computing system |
US10104683B2 (en) * | 2015-02-06 | 2018-10-16 | Qualcomm Incorporated | Parallel low latency awareness |
CN116867081A (en) * | 2016-02-03 | 2023-10-10 | 索尼公司 | Terminal device, base station device, and communication method |
US10342038B2 (en) * | 2016-10-04 | 2019-07-02 | Qualcomm Incorporated | Method and apparatus for scheduling multiple uplink grants of different types |
US10548165B2 (en) * | 2017-04-25 | 2020-01-28 | Qualcomm Incorporated | Flexible scheduling in new radio (NR) networks |
WO2019031882A1 (en) * | 2017-08-10 | 2019-02-14 | Samsung Electronics Co., Ltd. | Method and apparatus for controlling transmission power of terminal in mobile communication system |
KR102341474B1 (en) * | 2017-08-10 | 2021-12-22 | 삼성전자 주식회사 | Method and apparatus for transmit power control of terminal in beamforming system |
WO2020064710A1 (en) | 2018-09-24 | 2020-04-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Control of drx using layer-1 signaling |
CN113170490B (en) | 2018-09-28 | 2025-02-25 | 瑞典爱立信有限公司 | Switching between different scheduling latency assumptions |
US11729692B2 (en) * | 2021-06-25 | 2023-08-15 | T-Mobile Usa, Inc. | Mobility management for mobile device edge computing |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5257270A (en) * | 1990-12-26 | 1993-10-26 | Eastman Kodak Company | Shift-correction code rate-enhancing parity encoding/decoding |
US5926747A (en) * | 1996-09-05 | 1999-07-20 | Airnet Communications Corp. | Method and apparatus for dynamically optimizing the forward-link transmit power of a broadband multi-carrier radio signal |
US20020172217A1 (en) | 2001-05-21 | 2002-11-21 | Kadaba Srinivas R. | Multiple mode data communication system and method and forward and/or reverse link control channel structure |
WO2004034656A2 (en) | 2002-10-07 | 2004-04-22 | Golden Bridge Technology, Inc. | Enhanced uplink packet transfer |
WO2004042992A1 (en) | 2002-11-05 | 2004-05-21 | Nokia Corporation | Method, device and system for determining a transmission power for arq related re-transmissions |
WO2004062205A1 (en) | 2003-01-04 | 2004-07-22 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving uplink data retransmission request in a cdma communication system |
US20040152458A1 (en) * | 2003-01-30 | 2004-08-05 | Ari Hottinen | Data transfer method in mobile communication system and mobile communication system |
US20040192286A1 (en) * | 2003-03-31 | 2004-09-30 | Motorola, Inc. | Adaptive dispatch paging monitoring system and method |
US20040228389A1 (en) * | 2003-03-06 | 2004-11-18 | Odenwalder Joseph P. | Systems and methods for using code space in spread-spectrum communications |
US20080159184A1 (en) * | 2005-02-01 | 2008-07-03 | Mitsubishi Electric Corporation | Transmission Control Method, Mobile Station, and Communication System |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5673259A (en) * | 1995-05-17 | 1997-09-30 | Qualcomm Incorporated | Random access communications channel for data services |
US6556549B1 (en) | 1999-07-02 | 2003-04-29 | Qualcomm Incorporated | Method and apparatus for signal combining in a high data rate communication system |
US6563810B1 (en) | 1999-09-30 | 2003-05-13 | Qualcomm Incorporated | Closed loop resource allocation |
DE10008653A1 (en) * | 2000-02-24 | 2001-09-06 | Siemens Ag | Improvements in a radio communication system |
EP1134994A1 (en) * | 2000-03-15 | 2001-09-19 | Lucent Technologies Inc. | Load balancing based on Walsh code usage |
US6735216B2 (en) * | 2000-10-11 | 2004-05-11 | Qualcomm, Inc. | Simplified quality indicator bit test procedures |
GB0029002D0 (en) | 2000-11-28 | 2001-01-10 | Nokia Networks Oy | Channels in a communication system |
CN1151620C (en) * | 2002-04-28 | 2004-05-26 | 武汉汉网高技术有限公司 | Multiuser downstream grouping transmission quality control method for CDMA communication system |
US7808920B2 (en) * | 2002-10-28 | 2010-10-05 | Qualcomm Incorporated | Tandem-free vocoder operations between non-compatible communication systems |
US7493132B2 (en) * | 2003-02-14 | 2009-02-17 | Qualcomm Incorporated | System and method for uplink rate selection |
US7123928B2 (en) * | 2003-07-21 | 2006-10-17 | Qualcomm Incorporated | Method and apparatus for creating and using a base station almanac for position determination |
US7315527B2 (en) * | 2003-08-05 | 2008-01-01 | Qualcomm Incorporated | Extended acknowledgement and rate control channel |
US7126928B2 (en) * | 2003-08-05 | 2006-10-24 | Qualcomm Incorporated | Grant, acknowledgement, and rate control active sets |
-
2005
- 2005-07-29 US US11/193,207 patent/US7693110B2/en active Active
- 2005-08-17 WO PCT/US2005/029185 patent/WO2006036351A1/en active Application Filing
- 2005-08-17 CN CN2005800311156A patent/CN101023699B/en active Active
- 2005-08-17 EP EP10001803.5A patent/EP2187583B1/en not_active Not-in-force
- 2005-08-17 WO PCT/US2005/029156 patent/WO2006036346A1/en active Application Filing
- 2005-08-17 CN CN201010231435.9A patent/CN101917773B/en active Active
- 2005-08-17 EP EP12003638.9A patent/EP2501193B1/en not_active Not-in-force
- 2005-08-17 EP EP13168462.3A patent/EP2642667B1/en not_active Not-in-force
- 2005-08-17 EP EP05788811.7A patent/EP1792514B1/en not_active Not-in-force
- 2005-08-17 CN CN201410482835.5A patent/CN104284431B/en active Active
- 2005-09-15 JP JP2005267832A patent/JP4189399B2/en active Active
- 2005-09-15 JP JP2005267831A patent/JP4304178B2/en active Active
-
2008
- 2008-08-12 JP JP2008208127A patent/JP5017210B2/en active Active
-
2010
- 2010-03-12 US US12/723,383 patent/US8125944B2/en active Active
- 2010-03-12 US US12/723,392 patent/US8542656B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5257270A (en) * | 1990-12-26 | 1993-10-26 | Eastman Kodak Company | Shift-correction code rate-enhancing parity encoding/decoding |
US5926747A (en) * | 1996-09-05 | 1999-07-20 | Airnet Communications Corp. | Method and apparatus for dynamically optimizing the forward-link transmit power of a broadband multi-carrier radio signal |
US20020172217A1 (en) | 2001-05-21 | 2002-11-21 | Kadaba Srinivas R. | Multiple mode data communication system and method and forward and/or reverse link control channel structure |
WO2004034656A2 (en) | 2002-10-07 | 2004-04-22 | Golden Bridge Technology, Inc. | Enhanced uplink packet transfer |
WO2004042992A1 (en) | 2002-11-05 | 2004-05-21 | Nokia Corporation | Method, device and system for determining a transmission power for arq related re-transmissions |
WO2004062205A1 (en) | 2003-01-04 | 2004-07-22 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving uplink data retransmission request in a cdma communication system |
US20040152458A1 (en) * | 2003-01-30 | 2004-08-05 | Ari Hottinen | Data transfer method in mobile communication system and mobile communication system |
US20040228389A1 (en) * | 2003-03-06 | 2004-11-18 | Odenwalder Joseph P. | Systems and methods for using code space in spread-spectrum communications |
US20040192286A1 (en) * | 2003-03-31 | 2004-09-30 | Motorola, Inc. | Adaptive dispatch paging monitoring system and method |
US20080159184A1 (en) * | 2005-02-01 | 2008-07-03 | Mitsubishi Electric Corporation | Transmission Control Method, Mobile Station, and Communication System |
Non-Patent Citations (8)
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9026885B2 (en) | 2001-05-14 | 2015-05-05 | Intel Corporation | Method and apparatus for processing a downlink shared channel |
US8762811B2 (en) | 2001-05-14 | 2014-06-24 | Intel Corporation | Method and apparatus for processing a downlink shared channel |
US8347177B2 (en) | 2001-05-14 | 2013-01-01 | Intel Corporation | Method and apparatus for processing a downlink shared channel |
US8051360B2 (en) * | 2001-05-14 | 2011-11-01 | Interdigital Technology Corporation | Method and apparatus for processing a downlink shared channel |
US20100318886A1 (en) * | 2001-05-14 | 2010-12-16 | Interdigital Technology Corporation | Method and apparatus for processing a downlink shared channel |
US7941151B2 (en) | 2003-11-18 | 2011-05-10 | Interdigital Technology Corporation | Method and system for providing channel assignment information used to support uplink and downlink channels |
US10237854B2 (en) | 2003-11-18 | 2019-03-19 | Interdigital Technology Corporation | Method and apparatus for providing channel assignment information used to support uplink and downlink channels |
US20110205992A1 (en) * | 2003-11-18 | 2011-08-25 | Interdigital Technology Corporation | Method and system for providing channel assignment information used to support uplink and downlink channels |
US11057868B2 (en) | 2003-11-18 | 2021-07-06 | Interdigital Technology Corporation | Method and apparatus for providing channel assignment information used to support uplink and downlink channels |
US9332569B2 (en) | 2003-11-18 | 2016-05-03 | Interdigital Technology Corporation | Method and system for providing channel assignment information used to support uplink and downlink channels |
US11889504B2 (en) | 2003-11-18 | 2024-01-30 | Interdigital Technology Corporation | Method and apparatus for providing channel assignment information used to support uplink and downlink channels |
US8285287B2 (en) * | 2004-07-28 | 2012-10-09 | Kyocera Corporation | Wireless communication terminal, program and communication method |
US20080119183A1 (en) * | 2004-07-28 | 2008-05-22 | Kyocera Corporation | Wireless Communication Terminal, Program and Communication Method |
US9185723B2 (en) | 2004-11-15 | 2015-11-10 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving downlink control information in a mobile communication system supporting uplink packet data service |
US8958368B2 (en) | 2004-11-15 | 2015-02-17 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving downlink control information in a mobile communication system supporting uplink packet data service |
US20110021239A1 (en) * | 2005-04-20 | 2011-01-27 | Mitsubishi Electric Corporation | Communication quality judgment method, mobile station, base station, and communications system |
US20070030838A1 (en) * | 2005-08-05 | 2007-02-08 | Nokia Corporation | Power control for gated uplink control channel |
US7787430B2 (en) * | 2005-08-05 | 2010-08-31 | Nokia Corporation | Power control for gated uplink control channel |
US8276036B2 (en) * | 2008-06-05 | 2012-09-25 | Panasonic Corporation | Coding apparatus, coding processing target sequence forming method and viterbi decoding apparatus |
US20090307560A1 (en) * | 2008-06-05 | 2009-12-10 | Panasonic Corporation | Coding apparatus, coding processing target sequence forming method and viterbi decoding apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN101023699A (en) | 2007-08-22 |
US8125944B2 (en) | 2012-02-28 |
EP2642667A1 (en) | 2013-09-25 |
WO2006036351A1 (en) | 2006-04-06 |
EP2501193B1 (en) | 2017-11-22 |
EP2187583B1 (en) | 2017-10-04 |
EP2642667B1 (en) | 2016-03-02 |
CN104284431A (en) | 2015-01-14 |
EP2501193A3 (en) | 2013-01-16 |
JP5017210B2 (en) | 2012-09-05 |
CN101023699B (en) | 2012-08-29 |
JP4304178B2 (en) | 2009-07-29 |
JP4189399B2 (en) | 2008-12-03 |
JP2009027729A (en) | 2009-02-05 |
WO2006036346A1 (en) | 2006-04-06 |
US20100172303A1 (en) | 2010-07-08 |
CN104284431B (en) | 2017-12-19 |
CN101917773A (en) | 2010-12-15 |
EP2501193A2 (en) | 2012-09-19 |
EP2187583A2 (en) | 2010-05-19 |
JP2006087114A (en) | 2006-03-30 |
US8542656B2 (en) | 2013-09-24 |
EP1792514A1 (en) | 2007-06-06 |
US20100165951A1 (en) | 2010-07-01 |
CN101917773B (en) | 2015-04-15 |
JP2006101503A (en) | 2006-04-13 |
US20060056355A1 (en) | 2006-03-16 |
EP1792514B1 (en) | 2017-10-04 |
EP2187583A3 (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7693110B2 (en) | System and method for downlink signaling for high speed uplink packet access | |
EP2787673B1 (en) | Interference limitation for retransmissions | |
EP1557967B1 (en) | Method of HARQ retransmission timing control | |
EP1557968B1 (en) | Methods and apparatuses for switching between asynchronous and synchronous HARQ retransmission modes | |
US7817605B2 (en) | Method of transmitting control signals for uplink transmission in communication systems | |
JP6110458B2 (en) | Method and apparatus for transmitting / receiving downlink control information in mobile communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOTOROLA, INC.,ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOVE, ROBERT T.;CARNEY, MICHAEL J.;GHOSH, AMITAVA;AND OTHERS;SIGNING DATES FROM 20050701 TO 20050708;REEL/FRAME:016855/0795 Owner name: MOTOROLA, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOVE, ROBERT T.;CARNEY, MICHAEL J.;GHOSH, AMITAVA;AND OTHERS;REEL/FRAME:016855/0795;SIGNING DATES FROM 20050701 TO 20050708 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: MOTOROLA MOBILITY, INC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA, INC;REEL/FRAME:025673/0558 Effective date: 20100731 |
|
AS | Assignment |
Owner name: MOTOROLA MOBILITY LLC, ILLINOIS Free format text: CHANGE OF NAME;ASSIGNOR:MOTOROLA MOBILITY, INC.;REEL/FRAME:029216/0282 Effective date: 20120622 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GOOGLE TECHNOLOGY HOLDINGS LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA MOBILITY LLC;REEL/FRAME:034371/0612 Effective date: 20141028 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |