US7686762B1 - Wireless device and system for monitoring physiologic parameters - Google Patents
Wireless device and system for monitoring physiologic parameters Download PDFInfo
- Publication number
- US7686762B1 US7686762B1 US10/677,674 US67767403A US7686762B1 US 7686762 B1 US7686762 B1 US 7686762B1 US 67767403 A US67767403 A US 67767403A US 7686762 B1 US7686762 B1 US 7686762B1
- Authority
- US
- United States
- Prior art keywords
- substrate
- sensor
- module
- monitoring
- electronics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active - Reinstated, expires
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 32
- 239000000758 substrate Substances 0.000 claims description 68
- 239000000463 material Substances 0.000 claims description 9
- 230000006835 compression Effects 0.000 claims description 8
- 238000007906 compression Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 7
- 229910000679 solder Inorganic materials 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 5
- 210000004369 blood Anatomy 0.000 claims description 5
- 230000004410 intraocular pressure Effects 0.000 claims description 5
- 238000003466 welding Methods 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 4
- 238000007917 intracranial administration Methods 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 3
- 208000010412 Glaucoma Diseases 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims description 3
- 239000000017 hydrogel Substances 0.000 claims description 3
- 229920000052 poly(p-xylylene) Polymers 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims 4
- 201000010099 disease Diseases 0.000 claims 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims 4
- 239000000203 mixture Substances 0.000 claims 4
- 238000007789 sealing Methods 0.000 claims 3
- 206010007559 Cardiac failure congestive Diseases 0.000 claims 2
- 208000002330 Congenital Heart Defects Diseases 0.000 claims 2
- 208000018522 Gastrointestinal disease Diseases 0.000 claims 2
- 206010019280 Heart failures Diseases 0.000 claims 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 2
- 208000002223 abdominal aortic aneurysm Diseases 0.000 claims 2
- 230000001133 acceleration Effects 0.000 claims 2
- 208000007474 aortic aneurysm Diseases 0.000 claims 2
- 230000001143 conditioned effect Effects 0.000 claims 2
- 238000001514 detection method Methods 0.000 claims 2
- 150000001247 metal acetylides Chemical class 0.000 claims 2
- 229960003753 nitric oxide Drugs 0.000 claims 2
- 150000004767 nitrides Chemical class 0.000 claims 2
- 229910021332 silicide Inorganic materials 0.000 claims 2
- 229910052719 titanium Inorganic materials 0.000 claims 2
- 239000010936 titanium Substances 0.000 claims 2
- 208000014001 urinary system disease Diseases 0.000 claims 2
- 239000007943 implant Substances 0.000 abstract description 35
- 238000000034 method Methods 0.000 abstract description 29
- 238000002513 implantation Methods 0.000 abstract description 11
- 238000004891 communication Methods 0.000 abstract description 10
- 230000036772 blood pressure Effects 0.000 abstract description 8
- 230000003750 conditioning effect Effects 0.000 abstract description 8
- 238000004873 anchoring Methods 0.000 abstract description 5
- 230000009545 invasion Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 206010007558 Cardiac failure chronic Diseases 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 210000000695 crystalline len Anatomy 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000033999 Device damage Diseases 0.000 description 1
- QCEUXSAXTBNJGO-UHFFFAOYSA-N [Ag].[Sn] Chemical compound [Ag].[Sn] QCEUXSAXTBNJGO-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 206010003664 atrial septal defect Diseases 0.000 description 1
- 210000003157 atrial septum Anatomy 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 1
- 210000001308 heart ventricle Anatomy 0.000 description 1
- 208000003906 hydrocephalus Diseases 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 210000005248 left atrial appendage Anatomy 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000001453 nonthrombogenic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002885 thrombogenetic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0031—Implanted circuitry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6879—Means for maintaining contact with the body
- A61B5/6882—Anchoring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0204—Operational features of power management
- A61B2560/0214—Operational features of power management of power generation or supply
- A61B2560/0219—Operational features of power management of power generation or supply of externally powered implanted units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
- A61N1/37217—Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
- A61N1/37223—Circuits for electromagnetic coupling
Definitions
- This invention relates generally to medical devices monitoring blood pressure and other physiologic parameters.
- a number of different physiologic parameters are strong candidates for continuous monitoring, such as blood pressure or flow, cardiovascular pressure, intracranial pressure, intraocular pressure, glucose levels, etc.
- Wireless sensors in particular are highly desirable for biologic applications because the transcutaneous passage of wires (or other communication “tethers”) risks both infection to the patient and physical injury or device damage if the communication link experiences excessive pulling force.
- a large number of proposed schemes for non-medical wireless communication rely on magnetic coupling between an electrical coil in an implanted device and a separate, external “readout” coil.
- One method of wireless communication well-known to those knowledgeable in the art is that of the LC tank resonator.
- a series-parallel connection of a capacitor and inductor has a specific resonant frequency ideally expressed as 1/ ⁇ square root over (LC) ⁇ , which can be measured from the impedance of the circuit. If one element of the inductor-capacitor pair varies with some physical parameter (e.g. pressure), while the other element remains at a known value, the physical parameter may be determined from the resonant frequency.
- the capacitance may be back-calculated from the resonant frequency.
- the sensed pressure may then be deduced from the capacitance by means of a calibrated pressure-capacitance transfer function.
- the impedance of the LC tank may be measured directly or it may also be determined indirectly from the impedance of a separate readout coil that is magnetically coupled to the internal coil.
- a separate readout coil that is magnetically coupled to the internal coil.
- the latter case is most useful for biologic applications in that the sensing device may be subcutaneously implanted, while the readout coil may be located external to the body, but in a location that allows magnetic coupling between the implant and readout coil. It is possible for the readout coil (or coils) to simultaneously excite the implant resonator and sense the impedance reflected back to the readout coil. Consequently, this architecture has the substantial advantage of requiring no internal power source, which greatly improves its prospects for long-term implantation (e.g. decades to a human lifetime).
- Frenkel U.S. Pat. No. 5,005,577 describes an implantable lens for monitoring intraocular pressure. Such a device would be advantageous for monitoring elevated eye pressures (as is usually the case for glaucoma patients); however, the requirement that the eye's crystalline lens be replaced will likely limit the general acceptance of this device.
- CVF Chronic Heart Failure
- Porat U.S. Pat. No. 6,277,078
- Eigler U.S. Pat. No. 6,328,699
- Carney U.S. Pat. No. 5,368,040
- What is described is a general scheme of monitoring the heart. The existence of a method to construct a sensor with sufficient size, long-term fidelity, stability, telemetry range, and biocompatibility is noticeably absent in each case, being instead simply assumed.
- the disclosed devices require a complex electromechanical assembly with many dissimilar materials, which will result in significant temperature- and aging-induced drift over time. Such assemblies may also be too large for many desirable applications, including intraocular pressure monitoring and/or pediatric applications. Finally, complex assembly processes will make such devices prohibitively expensive to manufacture for widespread use.
- microfabricated sensors have also been proposed.
- One such device is taught by Darrow (U.S. Pat. No. 6,201,980).
- Others are reported in the literature (see, e.g. Park, et al., Jpn. J. Appl. Phys., 37 (1998), pp. 7124-7128; Puers, et al., J. Micromech. Microeng. 10 (2000), pp. 124-129; Harpster et al., Proc. 14 th IEEE Intl. Conf. Microelectromech. Sys. (2001), pp. 553-557).
- a self-contained implant comprising a sensor, an electrical circuit for signal conditioning and magnetic telemetry, and an antenna for telemetric communication with an external reader device.
- the implant is small in size so that it external reader may be delivered to the desired location and implanted using a catheter, although direct surgical implantation is also possible.
- the circuit, sensor, and antenna are packaged together in the implant, which is preferably a small volume and sealed hermetically to the biologic environment.
- the larger reader device remains outside the body but can be placed proximal to the implant for minimizing communication distance.
- FIG. 1 is a side view of a miniature sensor module according to a preferred embodiment of the present invention.
- FIG. 2 is a top, side, and perspective view of a flexible substrate to rigid substrate self aligning connection illustrating a preferred arrangement of electrical leads within a substrate cavity.
- FIG. 3 is a block diagram of a magnetic telemetry based physiologic monitoring system according to a preferred embodiment of the present invention.
- FIG. 5 is a side view of a sensor implanted in the atrial septum according to a preferred embodiment of the present invention.
- the preferred communication scheme for the present invention is based on magnetic telemetry.
- an implant 17 lies passive and without any internal means to power itself.
- the reader 18 is brought into a suitable range to the implant 17 .
- the reader 18 then creates an RF (Radio Frequency) magnetic field large enough to induce sufficient voltage across an implant coil 9 .
- the implant circuit 8 may rectify the alternating waveform to create a direct voltage, which analog and/or digital circuitry may use as a power supply.
- the implant 17 can be considered alert and, in the preferred embodiment, also ready for commands from the reader 18 .
- a number of techniques may be used to convert the sensor output into a form suitable for transmission back to the reader 18 .
- a capacitive pressure sensor 2 and sigma delta conversion or capacitance to frequency conversion of the sensor output may be easily used.
- Capacitive sensors are preferred due to the small power requirements for electronics when reading capacitance values.
- Many pressure sensors are based on piezoresistive effects and, while suitable for some applications, do suffer in this application due to the higher power levels needed for readout.
- Sigma delta converters are preferred due to the tolerance of noisy supply voltages and manufacturing variations.
- modulation schemes are available for transmitting data via magnetic coupling.
- the preferred schemes include but are not limited to amplitude modulation, frequency modulation, frequency shift keying, phase shift keying, and also spread spectrum techniques.
- the preferred modulation scheme may be determined by the specifications of an individual application, and is not intended to be limited under this invention.
- the implant 17 may communicate back to the reader 18 the signal containing pressure information. It is understood that the reader 18 may transmit either a continuous level of RF power to supply the implant's needed energy, or it may pulse the power allowing temporary storage in a battery or capacitor device. Similarly, the implant 17 of FIG. 3 may signal back to the reader 18 at any interval in time, delayed or instantaneous, during reader RF transmission or alternately in the absence of reader transmission.
- the implant 17 may include a single coil antenna 9 for both reception and transmission, or it may include two antennas, one each for transmission 21 and reception 9 .
- the preferred embodiment of the invention is based on a small inner package, preferably of glass and silicon, that can be fit with a number of shell options for various implantation methods.
- the cross-section in FIG. 1 illustrates a glass and silicon package for the miniature implant 17 according to a preferred embodiment of the invention.
- the implant 17 includes a substrate 1 , the sensor 2 , and electronics 3 (both coil 9 and integrated circuit die 8 included in electronics).
- a secondary and optional substrate 4 may be used for attaching the various electronic components to each other and to sensor connections.
- An alternative preferred method is to use a cylindrical shaped package, made from silicon, glass, ceramic, metal, plastic, or any combination thereof which houses the coil and the electronic components.
- the purpose of the shell is to simplify fabrication by allowing different processes, process flows, materials, and/or structures to be used for the subassembly (e.g. MEMS technologies) and the shell (e.g. machining and/or molding of plastics, glass, metals, rubbers, polymers, etc.)
- the material of the implant 17 may be compatible with the environment, in which case a shell is not required and the implant 17 is the complete implantable sensing device.
- the miniature sensor 2 can be any suitable miniature sensor adapted to detect and/or monitor various physiological parameters.
- the sensor 2 can comprise a pressure sensor, a temperature sensor, a flow sensor, a velocity sensor, or a sensor adapted to measure specific chemistries such as gas content (e.g., O2 and CO2) and glucose levels.
- gas content e.g., O2 and CO2
- glucose levels e.g., glucose levels
- chemistries e.g., O2 and CO2
- Various specific examples of these types of miniature sensors are known to those skilled in the art, and any one or more of these suitable sensors can be utilized in the sensor module of the present invention. While the specific type of sensor(s) chosen will depend on the application of the implantable system, the sensor(s) 2 should be of a sufficiently small size in order to facilitate placement within a catheter for delivery and implantation.
- the bottom substrate 1 defines a cavity 6 in which the electronics 3 may be placed.
- the rigid substrate cavity walls enclose the electronics 3 on five of the six possible sides.
- at least part of the sensor 2 is disposed on the top side of the bottom substrate 1 .
- Connections 16 to the sensor 2 may be made in a substrate recess 5 (recess is optional for increased clearance, and connection may alternately be co-planar with or above the plane of the substrate) adjoining the larger cavity 6 , or through alternate lead transfer techniques in the substrate cavity 6 .
- a top substrate 7 is attached to the bottom substrate 1 to form a hermetic seal around the sensor 2 and electronics.
- the physically interacting parts of the sensor 2 are formed in the top substrate 7 and complete the sensor structure after subsequent processing steps after bonding.
- the two substrates 1 and 7 may be made of materials such as glass and silicon that are preferably anodically bonded together and provide excellent bond mechanical properties. Alternate methods of attachment include: fusion, frit, solder, laser welds, other welding, compression, thermal, thermal compression, eutectic, glue.
- the electronics 3 are connected together via a rigid or flexible substrate, which may be either the bottom substrate 1 or a separate flexible substrate 4 .
- the connection between the integrated circuit die 8 and the flexible substrate 4 is preferably made with flip-chip process to avoid the more fragile wire bonds.
- the circuit die 8 may include ASIC (Application Specific Integrated Circuits), capacitors, or diodes.
- the leads from the inductor coil 9 may fold over the flexible substrate 4 or be preformed for soldering to the substrate 4 with a preferably biocompatible solder such as gold-tin or silver-tin.
- the flexible substrate 4 may also extend to the connections 16 for the sensor 2 , where the connection may be made with a number of methods such as silver epoxy, laser welding, solder, or other.
- FIG. 2 Aligning the flexible substrate 4 to the bottom substrate recess 5 is shown in FIG. 2 .
- a preferred structure to accommodate manufacturing tolerances matches complementary tapered shapes 15 of the recess 5 and the flexible substrate 4 , ensuring that the electrical connections 16 are properly aligned.
- the tapered shape 15 of the flexible substrate 4 is inserted into the recess 5 , the electrical connections 16 are forced to align themselves to avoid faulty connections.
- any variance in the width of the tapered shapes 15 will be accommodated by a small variation in the final, lateral depth of insertion of the flexible substrate 4 .
- FIG. 3 illustrates a block diagram for the electronics 3 according to the present invention.
- the electronic circuit may consist of a receiving inductor coil 9 , rectification circuitry 10 , signal conditioning circuitry 11 , and signal transmission circuitry 12 .
- the coil conductor may be wound around a ferrite core to enhance magnetic properties, deposited on a flat rigid or flexible substrate, and formed into a long/skinny or short/wide cylindrical solenoid.
- the conductor is preferably made at least in part with a metal of high conductivity such as copper, silver, gold.
- the coil may alternately be fabricated on substrates 1 , 4 , or 8 (or any combination thereof) of FIG. 1 . Methods of fabrication include sputtering, electroplating, lift-off, screen printing, and/or other suitable methods known to those skilled in the art.
- the rectification circuitry 10 outputs a constant voltage level for the other electronics from an alternating voltage input. Efficient realizations of such circuitry are standard electronic techniques and may include full bridge diode rectifiers in the preferred embodiment. This rectification circuitry may include a capacitor for transient energy storage to reduce the noise ripple on the output supply voltage. This circuitry may be implemented on the same integrated circuit die with other electronics.
- the signal conditioning circuit 11 processes an output signal from the sensor 2 and prepares it for transmission to an external receiving and/or analyzing device. For example, many pressure sensors output a capacitance signal that may be digitized for radio frequency (RF) transmission. Accordingly, the signal conditioning circuit places the output signal of the sensor into an appropriate form.
- RF radio frequency
- Many different signal conditioning circuits are known to those skilled in the art. Capacitance to frequency conversion, sigma delta or other analog to digital conversion techniques are all possible conditioning circuits that may be used in a preferred embodiment.
- the signal transmission circuitry transmits the encoded signal from the signal conditioning circuitry for reception by an external reader. Magnetic telemetry is again used for this communication, as the transmission circuitry generates an alternating electromagnetic field that propagates to the reader. Either the same coil 9 is used for signal reception and for transmission, or alternately a second coil 21 is dedicated for transmission only.
- the implant may be located in various places depending on the blood pressure measurement of interest. For chronic heart failure the end-diastolic pressure may be of most importance, and therefore the left chambers of the heart or immediately attaching vessels may be preferred locations. Because the number of implants is not practically limited by the technology, multiple locations for blood pressure and/or other physiologic parameter measurements are easily established, including all chambers of the heart, major arteries and appendages. In the preferred embodiment, embedding the module in an area that does not significantly impede blood flow can minimize the thrombogenic effect of flow turbulence caused by this volume.
- Pacemaker leads have a well-established history for implantation methods, and similar techniques are possible for the current invention.
- a screw 13 or barb may be used to attach the implant to a heart or vessel wall.
- a screw may be molded into the device shell 26 , and screwed into the ventricle wall so that the screw buries below the wall surface.
- the package may have mesh 25 attached to the device to promote tissue growth and anchoring.
- a second package option can be attached with a metal tine or barb placed with a catheter. These devices work well in trabeculated areas of the heart, and therefore are used often for implanting pacing leads in the right ventricle. Clips or expanding probes may also be used, both of which would penetrate the heart or vessel wall slightly.
- Atrial septum defects a septal occluder
- An umbrella structure 14 may be folded inside a catheter for delivery and then expanded for implantation.
- the present invention may be anchored to the septum with similar techniques, as shown in FIG. 5 .
- An important aspect of this preferred embodiment is that the majority of the implantable sensing device is located in the right side of the heart, with minimum protrusion in the left side of the heart. This embodiment will greatly reduce the thrombogenicity.
- the readout device 18 includes an inductor 19 for communicating with and powering the implant 17 via magnetic telemetry. Also included is signal reception 24 , signal processing 23 , and transmission circuitry 22 for data analysis and subsequent communication.
- FIG. 3 illustrates the system diagram and the blocks of the reader. There are many techniques for construction of the reader coil and processing electronics known to those skilled in the art.
- the reader may interface to a display, computer, or other data logging device 20 .
- the described system could be augmented with various actuation functions.
- the implant device would augmented with any of various actuators, including but not limited to: thermal generators; voltage or current sources, probes, or electrodes; drug delivery pumps, valves, or meters; microtools for localized surgical procedures; radiation-emitting sources; defibrillators; muscle stimulators; pacing stimulators.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
Claims (29)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/677,674 US7686762B1 (en) | 2002-10-03 | 2003-10-02 | Wireless device and system for monitoring physiologic parameters |
US12/399,131 US9498130B2 (en) | 2002-10-03 | 2009-03-06 | Wireless device and system for monitoring physiologic parameters |
US12/704,685 US20110046452A1 (en) | 2002-10-03 | 2010-02-12 | Wireless device and system for monitoring physiologic parameters |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41553802P | 2002-10-03 | 2002-10-03 | |
US41553702P | 2002-10-03 | 2002-10-03 | |
US41640702P | 2002-10-07 | 2002-10-07 | |
US41640602P | 2002-10-07 | 2002-10-07 | |
US41640802P | 2002-10-07 | 2002-10-07 | |
US41640902P | 2002-10-07 | 2002-10-07 | |
US10/677,674 US7686762B1 (en) | 2002-10-03 | 2003-10-02 | Wireless device and system for monitoring physiologic parameters |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/399,131 Division US9498130B2 (en) | 2002-10-03 | 2009-03-06 | Wireless device and system for monitoring physiologic parameters |
US12/704,685 Division US20110046452A1 (en) | 2002-10-03 | 2010-02-12 | Wireless device and system for monitoring physiologic parameters |
Publications (1)
Publication Number | Publication Date |
---|---|
US7686762B1 true US7686762B1 (en) | 2010-03-30 |
Family
ID=57132902
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/677,674 Active - Reinstated 2026-12-16 US7686762B1 (en) | 2002-10-03 | 2003-10-02 | Wireless device and system for monitoring physiologic parameters |
US12/399,131 Active 2029-08-21 US9498130B2 (en) | 2002-10-03 | 2009-03-06 | Wireless device and system for monitoring physiologic parameters |
US12/704,685 Abandoned US20110046452A1 (en) | 2002-10-03 | 2010-02-12 | Wireless device and system for monitoring physiologic parameters |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/399,131 Active 2029-08-21 US9498130B2 (en) | 2002-10-03 | 2009-03-06 | Wireless device and system for monitoring physiologic parameters |
US12/704,685 Abandoned US20110046452A1 (en) | 2002-10-03 | 2010-02-12 | Wireless device and system for monitoring physiologic parameters |
Country Status (1)
Country | Link |
---|---|
US (3) | US7686762B1 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050165317A1 (en) * | 2003-11-04 | 2005-07-28 | Turner Nicholas M. | Medical devices |
US20090221885A1 (en) * | 2008-02-25 | 2009-09-03 | Cardiac Pacemakers, Inc. | Optical Window Assembly for Implantable Medical Device |
US20100226101A1 (en) * | 2009-03-09 | 2010-09-09 | Yeates Kyle H | Multi-Part Substrate Assemblies for Low Profile Portable Electronic Devices |
US20100256462A1 (en) * | 2007-09-05 | 2010-10-07 | Sensible Medical Innovations Ltd. | Method and system for monitoring thoracic tissue fluid |
US20110025295A1 (en) * | 2009-07-30 | 2011-02-03 | Sensible Medical Innovations Ltd. | System and method for calibration of measurements of interacted em signals in real time |
US8115635B2 (en) | 2005-02-08 | 2012-02-14 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8602983B2 (en) | 2010-12-20 | 2013-12-10 | Covidien Lp | Access assembly having undercut structure |
US8641610B2 (en) | 2010-12-20 | 2014-02-04 | Covidien Lp | Access assembly with translating lumens |
US8696557B2 (en) | 2010-12-21 | 2014-04-15 | Covidien Lp | Access assembly including inflatable seal member |
US8715300B2 (en) | 2009-12-05 | 2014-05-06 | Integrated Sensing Systems, Inc. | Delivery system, method, and anchor for medical implant placement |
US20140155710A1 (en) * | 2011-06-30 | 2014-06-05 | Endotronix, Inc. | Implantable sensor enclosure with thin sidewalls |
US9305456B2 (en) | 2007-03-15 | 2016-04-05 | Endotronix, Inc. | Wireless sensor reader |
US9572511B2 (en) | 2007-09-05 | 2017-02-21 | Sensible Medical Innovations Ltd. | Methods and systems for monitoring intrabody tissues |
US9649113B2 (en) | 2011-04-27 | 2017-05-16 | Covidien Lp | Device for monitoring physiological parameters in vivo |
US10003862B2 (en) | 2007-03-15 | 2018-06-19 | Endotronix, Inc. | Wireless sensor reader |
US10206592B2 (en) | 2012-09-14 | 2019-02-19 | Endotronix, Inc. | Pressure sensor, anchor, delivery system and method |
US10226218B2 (en) | 2011-06-30 | 2019-03-12 | Endotronix, Inc. | Pressure sensing implant |
EP3479757A1 (en) | 2017-11-07 | 2019-05-08 | Integrated Sensing Systems, Inc. | Implantable sensing devices and anchoring methods therefor |
US10420583B2 (en) | 2013-05-22 | 2019-09-24 | Covidien Lp | Methods and apparatus for controlling surgical instruments using a port assembly |
US10430624B2 (en) | 2017-02-24 | 2019-10-01 | Endotronix, Inc. | Wireless sensor reader assembly |
US10478067B2 (en) | 2016-05-09 | 2019-11-19 | Integrated Sensing Systems, Inc. | Implantable sensing devices and anchoring methods therefor |
US10638955B2 (en) | 2011-06-30 | 2020-05-05 | Endotronix, Inc. | Pressure sensing implant |
US10667715B2 (en) | 2008-08-20 | 2020-06-02 | Sensible Medical Innovations Ltd. | Methods and devices of cardiac tissue monitoring and analysis |
US10952621B2 (en) | 2017-12-05 | 2021-03-23 | Cardiac Pacemakers, Inc. | Multimodal analyte sensor optoelectronic interface |
US10993669B2 (en) | 2017-04-20 | 2021-05-04 | Endotronix, Inc. | Anchoring system for a catheter delivered device |
US11089983B2 (en) | 2017-12-01 | 2021-08-17 | Cardiac Pacemakers, Inc. | Multimodal analyte sensors for medical devices |
US11103147B2 (en) | 2005-06-21 | 2021-08-31 | St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux 11”) | Method and system for determining a lumen pressure |
US11129557B2 (en) | 2017-05-31 | 2021-09-28 | Cardiac Pacemakers, Inc. | Implantable medical device with chemical sensor |
US11439304B2 (en) | 2017-08-10 | 2022-09-13 | Cardiac Pacemakers, Inc. | Systems and methods including electrolyte sensor fusion |
US11452497B2 (en) | 2020-05-19 | 2022-09-27 | Coravie Medical, Inc. | Injectable hemodynamic monitoring devices, systems and methods |
US11497399B2 (en) | 2016-05-31 | 2022-11-15 | Qura, Inc. | Implantable intraocular pressure sensors and methods of use |
US11571151B2 (en) | 2017-08-23 | 2023-02-07 | Cardiac Pacemakers, Inc. | Implantable chemical sensor with staged activation |
US11615257B2 (en) | 2017-02-24 | 2023-03-28 | Endotronix, Inc. | Method for communicating with implant devices |
US11622684B2 (en) | 2017-07-19 | 2023-04-11 | Endotronix, Inc. | Physiological monitoring system |
US20230371842A1 (en) * | 2011-06-30 | 2023-11-23 | Endotronix, Inc. | Implantable sensor enclosure with thin sidewalls |
US11883028B2 (en) | 2021-09-08 | 2024-01-30 | Covidien Lp | Systems and methods for post-operative anastomotic leak detection |
US11896365B2 (en) | 2011-06-30 | 2024-02-13 | Endotronix, Inc. | MEMS device for an implant assembly |
US12004853B2 (en) | 2017-07-26 | 2024-06-11 | Cardiac Pacemakers, Inc. | Systems and methods for disambiguation of posture |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9198608B2 (en) | 2005-04-28 | 2015-12-01 | Proteus Digital Health, Inc. | Communication system incorporated in a container |
US8836513B2 (en) | 2006-04-28 | 2014-09-16 | Proteus Digital Health, Inc. | Communication system incorporated in an ingestible product |
US8912908B2 (en) | 2005-04-28 | 2014-12-16 | Proteus Digital Health, Inc. | Communication system with remote activation |
US8802183B2 (en) | 2005-04-28 | 2014-08-12 | Proteus Digital Health, Inc. | Communication system with enhanced partial power source and method of manufacturing same |
US8730031B2 (en) | 2005-04-28 | 2014-05-20 | Proteus Digital Health, Inc. | Communication system using an implantable device |
EP1889198B1 (en) | 2005-04-28 | 2014-11-26 | Proteus Digital Health, Inc. | Pharma-informatics system |
JP5714210B2 (en) | 2005-09-01 | 2015-05-07 | プロテウス デジタル ヘルス, インコーポレイテッド | Implantable wireless communication system |
KR20140018439A (en) | 2006-05-02 | 2014-02-12 | 프로테우스 디지털 헬스, 인코포레이티드 | Patient customized therapeutic regimens |
EP2087589B1 (en) | 2006-10-17 | 2011-11-23 | Proteus Biomedical, Inc. | Low voltage oscillator for medical devices |
KR101611240B1 (en) | 2006-10-25 | 2016-04-11 | 프로테우스 디지털 헬스, 인코포레이티드 | Controlled activation ingestible identifier |
US8718193B2 (en) | 2006-11-20 | 2014-05-06 | Proteus Digital Health, Inc. | Active signal processing personal health signal receivers |
JP5524626B2 (en) | 2007-02-01 | 2014-06-18 | プロテウス デジタル ヘルス, インコーポレイテッド | Ingestible event marker system |
KR101528748B1 (en) | 2007-02-14 | 2015-06-15 | 프로테우스 디지털 헬스, 인코포레이티드 | In-body power source having high surface area electrode |
EP2063771A1 (en) | 2007-03-09 | 2009-06-03 | Proteus Biomedical, Inc. | In-body device having a deployable antenna |
EP2124725A1 (en) | 2007-03-09 | 2009-12-02 | Proteus Biomedical, Inc. | In-body device having a multi-directional transmitter |
US8115618B2 (en) | 2007-05-24 | 2012-02-14 | Proteus Biomedical, Inc. | RFID antenna for in-body device |
PT2192946T (en) | 2007-09-25 | 2022-11-17 | Otsuka Pharma Co Ltd | In-body device with virtual dipole signal amplification |
DK2268261T3 (en) | 2008-03-05 | 2017-08-28 | Proteus Digital Health Inc | Edible event markers with multi-mode communications and systems as well as methods for using them |
SG195535A1 (en) | 2008-07-08 | 2013-12-30 | Proteus Digital Health Inc | Ingestible event marker data framework |
CN104382598A (en) | 2008-08-13 | 2015-03-04 | 普罗透斯数字保健公司 | Method of producing a recognizer |
MY153794A (en) | 2008-11-13 | 2015-03-31 | Proteus Digital Health Inc | Ingestible therapy activator system and method |
SG172077A1 (en) | 2008-12-11 | 2011-07-28 | Proteus Biomedical Inc | Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same |
US9659423B2 (en) | 2008-12-15 | 2017-05-23 | Proteus Digital Health, Inc. | Personal authentication apparatus system and method |
US9439566B2 (en) | 2008-12-15 | 2016-09-13 | Proteus Digital Health, Inc. | Re-wearable wireless device |
TWI503101B (en) | 2008-12-15 | 2015-10-11 | Proteus Digital Health Inc | Body-associated receiver and method |
TWI602561B (en) | 2009-01-06 | 2017-10-21 | 波提亞斯數位康健公司 | Pharmaceutical dosages delivery system |
EP2385781A4 (en) | 2009-01-06 | 2014-11-05 | Proteus Digital Health Inc | Ingestion-related biofeedback and personalized medical therapy method and system |
US8540664B2 (en) | 2009-03-25 | 2013-09-24 | Proteus Digital Health, Inc. | Probablistic pharmacokinetic and pharmacodynamic modeling |
MY161146A (en) | 2009-04-28 | 2017-04-14 | Proteus Digital Health Inc | Highly-reliable ingestible event markers and methods for using the same |
EP2432458A4 (en) | 2009-05-12 | 2014-02-12 | Proteus Digital Health Inc | Ingestible event markers comprising an ingestible component |
EP2467707A4 (en) | 2009-08-21 | 2014-12-17 | Proteus Digital Health Inc | Apparatus and method for measuring biochemical parameters |
TWI517050B (en) | 2009-11-04 | 2016-01-11 | 普羅托斯數位健康公司 | System for supply chain management |
UA109424C2 (en) | 2009-12-02 | 2015-08-25 | PHARMACEUTICAL PRODUCT, PHARMACEUTICAL TABLE WITH ELECTRONIC MARKER AND METHOD OF MANUFACTURING PHARMACEUTICAL TABLETS | |
US10687704B2 (en) | 2009-12-30 | 2020-06-23 | The University Of Kentucky Research Foundation | System, device, and method for determination of intraocular pressure |
EP2531099B1 (en) | 2010-02-01 | 2018-12-12 | Proteus Digital Health, Inc. | Data gathering system |
AU2011237612B2 (en) | 2010-04-07 | 2016-05-12 | Otsuka Pharmaceutical Co., Ltd. | Miniature ingestible device |
TWI557672B (en) | 2010-05-19 | 2016-11-11 | 波提亞斯數位康健公司 | Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device |
US9107806B2 (en) | 2010-11-22 | 2015-08-18 | Proteus Digital Health, Inc. | Ingestible device with pharmaceutical product |
US20120130203A1 (en) * | 2010-11-24 | 2012-05-24 | Fujitsu Limited | Inductively-Powered Ring-Based Sensor |
US8928671B2 (en) | 2010-11-24 | 2015-01-06 | Fujitsu Limited | Recording and analyzing data on a 3D avatar |
US8868794B2 (en) | 2010-12-27 | 2014-10-21 | Medtronic, Inc. | Application limitations for a medical communication module and host device |
JP2014514032A (en) | 2011-03-11 | 2014-06-19 | プロテウス デジタル ヘルス, インコーポレイテッド | Wearable personal body-related devices with various physical configurations |
US10022054B2 (en) | 2011-06-08 | 2018-07-17 | Integrated Sensing Systems, Inc. | Implantable wireless sensor systems |
US9756874B2 (en) | 2011-07-11 | 2017-09-12 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
EP2731493B1 (en) | 2011-07-11 | 2015-07-01 | The Regents of The University of Michigan | Multimodality left atrial appendage occlusion device |
WO2015112603A1 (en) | 2014-01-21 | 2015-07-30 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
US10307292B2 (en) | 2011-07-18 | 2019-06-04 | Mor Research Applications Ltd | Device for adjusting the intraocular pressure |
JP6144678B2 (en) | 2011-07-21 | 2017-06-07 | プロテウス デジタル ヘルス, インコーポレイテッド | Mobile communication device, system, and method |
US9235683B2 (en) | 2011-11-09 | 2016-01-12 | Proteus Digital Health, Inc. | Apparatus, system, and method for managing adherence to a regimen |
JP2015534539A (en) | 2012-07-23 | 2015-12-03 | プロテウス デジタル ヘルス, インコーポレイテッド | Technique for producing an ingestible event marker with an ingestible component |
SG11201503027SA (en) | 2012-10-18 | 2015-05-28 | Proteus Digital Health Inc | Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device |
US9949692B2 (en) | 2012-12-21 | 2018-04-24 | Canary Medical Inc. | Stent graft monitoring assembly and method of use thereof |
US11149123B2 (en) | 2013-01-29 | 2021-10-19 | Otsuka Pharmaceutical Co., Ltd. | Highly-swellable polymeric films and compositions comprising the same |
WO2014151929A1 (en) | 2013-03-15 | 2014-09-25 | Proteus Digital Health, Inc. | Personal authentication apparatus system and method |
WO2014144738A1 (en) | 2013-03-15 | 2014-09-18 | Proteus Digital Health, Inc. | Metal detector apparatus, system, and method |
JP2016520340A (en) * | 2013-03-15 | 2016-07-14 | ウィリアム エル ハンター | Stent monitoring assembly and method of use thereof |
EP3968263A1 (en) | 2013-06-04 | 2022-03-16 | Otsuka Pharmaceutical Co., Ltd. | System, apparatus and methods for data collection and assessing outcomes |
US9796576B2 (en) | 2013-08-30 | 2017-10-24 | Proteus Digital Health, Inc. | Container with electronically controlled interlock |
US9270503B2 (en) | 2013-09-20 | 2016-02-23 | Proteus Digital Health, Inc. | Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping |
US9577864B2 (en) | 2013-09-24 | 2017-02-21 | Proteus Digital Health, Inc. | Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance |
US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
WO2015200718A1 (en) | 2014-06-25 | 2015-12-30 | Hunter William L | Devices, systems and methods for using and monitoring tubes in body passageways |
EP3160395A4 (en) | 2014-06-25 | 2018-08-08 | Canary Medical Inc. | Devices, systems and methods for using and monitoring heart valves |
WO2016022713A1 (en) * | 2014-08-05 | 2016-02-11 | Purvis Rick | Telemetry arrangements for implantable devices |
RU2613086C2 (en) * | 2015-05-08 | 2017-03-15 | Общество с ограниченной ответственностью "М-ЛАЙН" (ООО "М-ЛАЙН") | Device for long-term remote invasive monitoring of state and critical changes of cardiovascular system for patients with comorbidity |
US11051543B2 (en) | 2015-07-21 | 2021-07-06 | Otsuka Pharmaceutical Co. Ltd. | Alginate on adhesive bilayer laminate film |
US11000197B2 (en) * | 2016-03-23 | 2021-05-11 | Koninklijke Philips N.V. | Blood pressure monitor |
JP6552148B1 (en) | 2016-07-22 | 2019-07-31 | プロテウス デジタル ヘルス, インコーポレイテッド | Electromagnetic sensing and detection of ingestible event markers |
US10820831B2 (en) | 2016-10-26 | 2020-11-03 | Proteus Digital Health, Inc. | Methods for manufacturing capsules with ingestible event markers |
JP7091335B2 (en) | 2016-12-09 | 2022-06-27 | ゼンフロー, インコーポレイテッド | Systems, devices, and methods for the accurate deployment of implants within the urethral prostate |
WO2018217633A1 (en) | 2017-05-21 | 2018-11-29 | Oncodisc, Inc. | Low profile implantable medication infusion port with electronic localization, physiologic monitoring, and data transfer |
WO2019118231A1 (en) * | 2017-12-11 | 2019-06-20 | Microoptx Inc. | Implantable ocular glucose sensor devices and methods |
KR101884226B1 (en) * | 2017-12-29 | 2018-08-02 | 신종환 | Bio-signal detection apparatus using bone graft substitute |
IT201800003693A1 (en) | 2018-03-16 | 2019-09-16 | St Microelectronics Srl | STRESS SENSOR, STRUCTURAL INTEGRITY MONITORING SYSTEM FOR CONSTRUCTION AND MANUFACTURING PROCESS OF A STRESS SENSOR |
CA3102104A1 (en) | 2018-06-03 | 2019-12-12 | Satz, Roseanne | Systems, methods, and devices for treating bradyarrhythmias, tachyarrhythmias and heart failure |
US11096582B2 (en) | 2018-11-20 | 2021-08-24 | Veris Health Inc. | Vascular access devices, systems, and methods for monitoring patient health |
WO2021101951A1 (en) | 2019-11-19 | 2021-05-27 | Zenflow, Inc. | Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra |
WO2024199834A1 (en) * | 2023-03-30 | 2024-10-03 | Ams-Osram Ag | Implantable unit and system for vital sign monitoring |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3958558A (en) | 1974-09-16 | 1976-05-25 | Huntington Institute Of Applied Medical Research | Implantable pressure transducer |
US4026276A (en) | 1976-04-05 | 1977-05-31 | The Johns Hopkins University | Intracranial pressure monitor |
US4127110A (en) | 1976-05-24 | 1978-11-28 | Huntington Institute Of Applied Medical Research | Implantable pressure transducer |
US4871351A (en) | 1984-09-28 | 1989-10-03 | Vladimir Feingold | Implantable medication infusion system |
US5005577A (en) | 1988-08-23 | 1991-04-09 | Frenkel Ronald E P | Intraocular lens pressure monitoring device |
US5067491A (en) * | 1989-12-08 | 1991-11-26 | Becton, Dickinson And Company | Barrier coating on blood contacting devices |
US5368040A (en) | 1993-08-02 | 1994-11-29 | Medtronic, Inc. | Apparatus and method for determining a plurality of hemodynamic variables from a single, chroniclaly implanted absolute pressure sensor |
US5833603A (en) * | 1996-03-13 | 1998-11-10 | Lipomatrix, Inc. | Implantable biosensing transponder |
US5951487A (en) * | 1996-09-20 | 1999-09-14 | Sican F&E Gmbh (Sibet) | Intracorporeal measuring system |
US5967986A (en) * | 1997-11-25 | 1999-10-19 | Vascusense, Inc. | Endoluminal implant with fluid flow sensing capability |
US6015386A (en) | 1998-05-07 | 2000-01-18 | Bpm Devices, Inc. | System including an implantable device and methods of use for determining blood pressure and other blood parameters of a living being |
US6053873A (en) | 1997-01-03 | 2000-04-25 | Biosense, Inc. | Pressure-sensing stent |
US6111520A (en) | 1997-04-18 | 2000-08-29 | Georgia Tech Research Corp. | System and method for the wireless sensing of physical properties |
US6201980B1 (en) | 1998-10-05 | 2001-03-13 | The Regents Of The University Of California | Implantable medical sensor system |
US6268161B1 (en) | 1997-09-30 | 2001-07-31 | M-Biotech, Inc. | Biosensor |
US6277078B1 (en) | 1999-11-19 | 2001-08-21 | Remon Medical Technologies, Ltd. | System and method for monitoring a parameter associated with the performance of a heart |
US6278379B1 (en) | 1998-04-02 | 2001-08-21 | Georgia Tech Research Corporation | System, method, and sensors for sensing physical properties |
US6328699B1 (en) | 2000-01-11 | 2001-12-11 | Cedars-Sinai Medical Center | Permanently implantable system and method for detecting, diagnosing and treating congestive heart failure |
US6409674B1 (en) * | 1998-09-24 | 2002-06-25 | Data Sciences International, Inc. | Implantable sensor with wireless communication |
US6432050B1 (en) | 1997-12-30 | 2002-08-13 | Remon Medical Technologies Ltd. | Implantable acoustic bio-sensing system and method |
US6475170B1 (en) | 1997-12-30 | 2002-11-05 | Remon Medical Technologies Ltd | Acoustic biosensor for monitoring physiological conditions in a body implantation site |
US6486588B2 (en) | 1997-12-30 | 2002-11-26 | Remon Medical Technologies Ltd | Acoustic biosensor for monitoring physiological conditions in a body implantation site |
US20030013969A1 (en) * | 2001-06-20 | 2003-01-16 | Erikson Kenneth R. | Acoustical array with multilayer substrate integrated circuits |
US7147604B1 (en) * | 2002-08-07 | 2006-12-12 | Cardiomems, Inc. | High Q factor sensor |
US20070032734A1 (en) | 2002-10-03 | 2007-02-08 | Integrated Sensing Systems, Inc. | Method for monitoring a physiologic parameter of patients with congestive heart failure |
US7211048B1 (en) | 2002-10-07 | 2007-05-01 | Integrated Sensing Systems, Inc. | System for monitoring conduit obstruction |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7483743B2 (en) * | 2000-01-11 | 2009-01-27 | Cedars-Sinai Medical Center | System for detecting, diagnosing, and treating cardiovascular disease |
-
2003
- 2003-10-02 US US10/677,674 patent/US7686762B1/en active Active - Reinstated
-
2009
- 2009-03-06 US US12/399,131 patent/US9498130B2/en active Active
-
2010
- 2010-02-12 US US12/704,685 patent/US20110046452A1/en not_active Abandoned
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3958558A (en) | 1974-09-16 | 1976-05-25 | Huntington Institute Of Applied Medical Research | Implantable pressure transducer |
US4026276A (en) | 1976-04-05 | 1977-05-31 | The Johns Hopkins University | Intracranial pressure monitor |
US4127110A (en) | 1976-05-24 | 1978-11-28 | Huntington Institute Of Applied Medical Research | Implantable pressure transducer |
US4871351A (en) | 1984-09-28 | 1989-10-03 | Vladimir Feingold | Implantable medication infusion system |
US5005577A (en) | 1988-08-23 | 1991-04-09 | Frenkel Ronald E P | Intraocular lens pressure monitoring device |
US5067491A (en) * | 1989-12-08 | 1991-11-26 | Becton, Dickinson And Company | Barrier coating on blood contacting devices |
US5368040A (en) | 1993-08-02 | 1994-11-29 | Medtronic, Inc. | Apparatus and method for determining a plurality of hemodynamic variables from a single, chroniclaly implanted absolute pressure sensor |
US5833603A (en) * | 1996-03-13 | 1998-11-10 | Lipomatrix, Inc. | Implantable biosensing transponder |
US5951487A (en) * | 1996-09-20 | 1999-09-14 | Sican F&E Gmbh (Sibet) | Intracorporeal measuring system |
US6053873A (en) | 1997-01-03 | 2000-04-25 | Biosense, Inc. | Pressure-sensing stent |
US6111520A (en) | 1997-04-18 | 2000-08-29 | Georgia Tech Research Corp. | System and method for the wireless sensing of physical properties |
US6268161B1 (en) | 1997-09-30 | 2001-07-31 | M-Biotech, Inc. | Biosensor |
US5967986A (en) * | 1997-11-25 | 1999-10-19 | Vascusense, Inc. | Endoluminal implant with fluid flow sensing capability |
US6475170B1 (en) | 1997-12-30 | 2002-11-05 | Remon Medical Technologies Ltd | Acoustic biosensor for monitoring physiological conditions in a body implantation site |
US6432050B1 (en) | 1997-12-30 | 2002-08-13 | Remon Medical Technologies Ltd. | Implantable acoustic bio-sensing system and method |
US6486588B2 (en) | 1997-12-30 | 2002-11-26 | Remon Medical Technologies Ltd | Acoustic biosensor for monitoring physiological conditions in a body implantation site |
US6278379B1 (en) | 1998-04-02 | 2001-08-21 | Georgia Tech Research Corporation | System, method, and sensors for sensing physical properties |
US6015386A (en) | 1998-05-07 | 2000-01-18 | Bpm Devices, Inc. | System including an implantable device and methods of use for determining blood pressure and other blood parameters of a living being |
US6409674B1 (en) * | 1998-09-24 | 2002-06-25 | Data Sciences International, Inc. | Implantable sensor with wireless communication |
US6201980B1 (en) | 1998-10-05 | 2001-03-13 | The Regents Of The University Of California | Implantable medical sensor system |
US6277078B1 (en) | 1999-11-19 | 2001-08-21 | Remon Medical Technologies, Ltd. | System and method for monitoring a parameter associated with the performance of a heart |
US6328699B1 (en) | 2000-01-11 | 2001-12-11 | Cedars-Sinai Medical Center | Permanently implantable system and method for detecting, diagnosing and treating congestive heart failure |
US20030013969A1 (en) * | 2001-06-20 | 2003-01-16 | Erikson Kenneth R. | Acoustical array with multilayer substrate integrated circuits |
US7147604B1 (en) * | 2002-08-07 | 2006-12-12 | Cardiomems, Inc. | High Q factor sensor |
US20070032734A1 (en) | 2002-10-03 | 2007-02-08 | Integrated Sensing Systems, Inc. | Method for monitoring a physiologic parameter of patients with congestive heart failure |
US7211048B1 (en) | 2002-10-07 | 2007-05-01 | Integrated Sensing Systems, Inc. | System for monitoring conduit obstruction |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050165317A1 (en) * | 2003-11-04 | 2005-07-28 | Turner Nicholas M. | Medical devices |
US8115635B2 (en) | 2005-02-08 | 2012-02-14 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8542122B2 (en) | 2005-02-08 | 2013-09-24 | Abbott Diabetes Care Inc. | Glucose measurement device and methods using RFID |
US8390455B2 (en) | 2005-02-08 | 2013-03-05 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8358210B2 (en) | 2005-02-08 | 2013-01-22 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8223021B2 (en) | 2005-02-08 | 2012-07-17 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US11103146B2 (en) | 2005-06-21 | 2021-08-31 | St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux 11”) | Wireless sensor for measuring pressure |
US11684276B2 (en) | 2005-06-21 | 2023-06-27 | Tc1, Llc | Implantable wireless pressure sensor |
US11179048B2 (en) | 2005-06-21 | 2021-11-23 | St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux 11”) | System for deploying an implant assembly in a vessel |
US11103147B2 (en) | 2005-06-21 | 2021-08-31 | St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux 11”) | Method and system for determining a lumen pressure |
US11890082B2 (en) | 2005-06-21 | 2024-02-06 | Tc1 Llc | System and method for calculating a lumen pressure utilizing sensor calibration parameters |
US10003862B2 (en) | 2007-03-15 | 2018-06-19 | Endotronix, Inc. | Wireless sensor reader |
US9305456B2 (en) | 2007-03-15 | 2016-04-05 | Endotronix, Inc. | Wireless sensor reader |
US9721463B2 (en) | 2007-03-15 | 2017-08-01 | Endotronix, Inc. | Wireless sensor reader |
US11564586B2 (en) | 2007-09-05 | 2023-01-31 | Sensible Medical Innovations Ltd. | Method and system for monitoring thoracic tissue fluid |
US10561336B2 (en) | 2007-09-05 | 2020-02-18 | Sensible Medical Innovations Ltd. | Method and system for monitoring thoracic tissue fluid |
US12059238B2 (en) | 2007-09-05 | 2024-08-13 | Sensible Medical Innovations Ltd. | Method, system and apparatus for using electromagnetic radiation for monitoring a tissue of a user |
US20100256462A1 (en) * | 2007-09-05 | 2010-10-07 | Sensible Medical Innovations Ltd. | Method and system for monitoring thoracic tissue fluid |
US10506943B2 (en) | 2007-09-05 | 2019-12-17 | Sensible Medical Innovations Ltd. | Methods and systems for monitoring intrabody tissues |
US10758150B2 (en) | 2007-09-05 | 2020-09-01 | Sensible Medical lnnovations Ltd. | Method, system and apparatus for using electromagnetic radiation for monitoring a tissue of a user |
US20110160549A1 (en) * | 2007-09-05 | 2011-06-30 | Saroka Amir | Method, system and apparatus for using electromagnetic radiation for monitoring a tissue of a user |
US11944419B2 (en) | 2007-09-05 | 2024-04-02 | Sensible Medical Innovations Ltd. | Method and system for monitoring thoracic tissue fluid |
US9572511B2 (en) | 2007-09-05 | 2017-02-21 | Sensible Medical Innovations Ltd. | Methods and systems for monitoring intrabody tissues |
US20090221885A1 (en) * | 2008-02-25 | 2009-09-03 | Cardiac Pacemakers, Inc. | Optical Window Assembly for Implantable Medical Device |
US10667715B2 (en) | 2008-08-20 | 2020-06-02 | Sensible Medical Innovations Ltd. | Methods and devices of cardiac tissue monitoring and analysis |
US11529065B2 (en) | 2008-08-20 | 2022-12-20 | Sensible Medical Innovations Ltd. | Methods and devices of cardiac tissue monitoring and analysis |
US8072764B2 (en) * | 2009-03-09 | 2011-12-06 | Apple Inc. | Multi-part substrate assemblies for low profile portable electronic devices |
US8879272B2 (en) | 2009-03-09 | 2014-11-04 | Apple Inc. | Multi-part substrate assemblies for low profile portable electronic devices |
US20100226101A1 (en) * | 2009-03-09 | 2010-09-09 | Yeates Kyle H | Multi-Part Substrate Assemblies for Low Profile Portable Electronic Devices |
US8907682B2 (en) | 2009-07-30 | 2014-12-09 | Sensible Medical Innovations Ltd. | System and method for calibration of measurements of interacted EM signals in real time |
US20110025295A1 (en) * | 2009-07-30 | 2011-02-03 | Sensible Medical Innovations Ltd. | System and method for calibration of measurements of interacted em signals in real time |
US8715300B2 (en) | 2009-12-05 | 2014-05-06 | Integrated Sensing Systems, Inc. | Delivery system, method, and anchor for medical implant placement |
US8641610B2 (en) | 2010-12-20 | 2014-02-04 | Covidien Lp | Access assembly with translating lumens |
US9307974B2 (en) | 2010-12-20 | 2016-04-12 | Covidien Lp | Access assembly having undercut structure |
US8602983B2 (en) | 2010-12-20 | 2013-12-10 | Covidien Lp | Access assembly having undercut structure |
US8827901B2 (en) | 2010-12-20 | 2014-09-09 | Covidien Lp | Access assembly with translating lumens |
US8696557B2 (en) | 2010-12-21 | 2014-04-15 | Covidien Lp | Access assembly including inflatable seal member |
US9277907B2 (en) | 2010-12-21 | 2016-03-08 | Covidien Lp | Access assembly including inflatable seal member |
US11160512B2 (en) | 2011-04-27 | 2021-11-02 | Covidien Lp | Device for monitoring physiological parameters in vivo |
US9649113B2 (en) | 2011-04-27 | 2017-05-16 | Covidien Lp | Device for monitoring physiological parameters in vivo |
US20200029857A1 (en) * | 2011-06-30 | 2020-01-30 | Endotronix, Inc. | Implantable sensor enclosure with thin sidewalls |
US11896365B2 (en) | 2011-06-30 | 2024-02-13 | Endotronix, Inc. | MEMS device for an implant assembly |
US12201414B2 (en) | 2011-06-30 | 2025-01-21 | Endotronix, Inc. | Pressure sensing implant |
US20140155710A1 (en) * | 2011-06-30 | 2014-06-05 | Endotronix, Inc. | Implantable sensor enclosure with thin sidewalls |
US12029546B2 (en) * | 2011-06-30 | 2024-07-09 | Endotronix, Inc. | Implantable sensor enclosure with thin sidewalls |
US20240172957A1 (en) * | 2011-06-30 | 2024-05-30 | Endotronix, Inc. | Mems device for an implant assembly |
US10433764B2 (en) * | 2011-06-30 | 2019-10-08 | Endotronix, Inc. | Implantable sensor enclosure with thin sidewalls |
US9867552B2 (en) * | 2011-06-30 | 2018-01-16 | Endotronix, Inc. | Implantable sensor enclosure with thin sidewalls |
US10638955B2 (en) | 2011-06-30 | 2020-05-05 | Endotronix, Inc. | Pressure sensing implant |
US20180116552A1 (en) * | 2011-06-30 | 2018-05-03 | Endotronix, Inc. | Implantable sensor enclosure with thin sidewalls |
US20230371842A1 (en) * | 2011-06-30 | 2023-11-23 | Endotronix, Inc. | Implantable sensor enclosure with thin sidewalls |
US11707230B2 (en) | 2011-06-30 | 2023-07-25 | Endotronix, Inc. | Pressure sensing implant |
US11589773B2 (en) | 2011-06-30 | 2023-02-28 | Endotronix, Inc. | MEMS device for an implant assembly |
US10226218B2 (en) | 2011-06-30 | 2019-03-12 | Endotronix, Inc. | Pressure sensing implant |
US11547320B2 (en) * | 2011-06-30 | 2023-01-10 | Endotronix, Inc. | Implantable sensor enclosure with thin sidewalls |
US10206592B2 (en) | 2012-09-14 | 2019-02-19 | Endotronix, Inc. | Pressure sensor, anchor, delivery system and method |
US11172958B2 (en) | 2013-05-22 | 2021-11-16 | Covidien Lp | Methods and apparatus for controlling surgical instruments using a port assembly |
US10420583B2 (en) | 2013-05-22 | 2019-09-24 | Covidien Lp | Methods and apparatus for controlling surgical instruments using a port assembly |
US10478067B2 (en) | 2016-05-09 | 2019-11-19 | Integrated Sensing Systems, Inc. | Implantable sensing devices and anchoring methods therefor |
US11497399B2 (en) | 2016-05-31 | 2022-11-15 | Qura, Inc. | Implantable intraocular pressure sensors and methods of use |
US11615257B2 (en) | 2017-02-24 | 2023-03-28 | Endotronix, Inc. | Method for communicating with implant devices |
US10430624B2 (en) | 2017-02-24 | 2019-10-01 | Endotronix, Inc. | Wireless sensor reader assembly |
US12067448B2 (en) | 2017-02-24 | 2024-08-20 | Endotronix, Inc. | Wireless sensor reader assembly |
US11461568B2 (en) | 2017-02-24 | 2022-10-04 | Endotronix, Inc. | Wireless sensor reader assembly |
US10993669B2 (en) | 2017-04-20 | 2021-05-04 | Endotronix, Inc. | Anchoring system for a catheter delivered device |
US11129557B2 (en) | 2017-05-31 | 2021-09-28 | Cardiac Pacemakers, Inc. | Implantable medical device with chemical sensor |
US11622684B2 (en) | 2017-07-19 | 2023-04-11 | Endotronix, Inc. | Physiological monitoring system |
US12213760B2 (en) | 2017-07-19 | 2025-02-04 | Endotronix, Inc. | Physiological monitoring system |
US12004853B2 (en) | 2017-07-26 | 2024-06-11 | Cardiac Pacemakers, Inc. | Systems and methods for disambiguation of posture |
US11439304B2 (en) | 2017-08-10 | 2022-09-13 | Cardiac Pacemakers, Inc. | Systems and methods including electrolyte sensor fusion |
US11571151B2 (en) | 2017-08-23 | 2023-02-07 | Cardiac Pacemakers, Inc. | Implantable chemical sensor with staged activation |
EP3479757A1 (en) | 2017-11-07 | 2019-05-08 | Integrated Sensing Systems, Inc. | Implantable sensing devices and anchoring methods therefor |
US11089983B2 (en) | 2017-12-01 | 2021-08-17 | Cardiac Pacemakers, Inc. | Multimodal analyte sensors for medical devices |
US10952621B2 (en) | 2017-12-05 | 2021-03-23 | Cardiac Pacemakers, Inc. | Multimodal analyte sensor optoelectronic interface |
US11826195B2 (en) | 2020-05-19 | 2023-11-28 | Coravie Medical, Inc. | Subcutaneous hemodynamic monitoring devices, systems and methods |
US11452497B2 (en) | 2020-05-19 | 2022-09-27 | Coravie Medical, Inc. | Injectable hemodynamic monitoring devices, systems and methods |
US11883028B2 (en) | 2021-09-08 | 2024-01-30 | Covidien Lp | Systems and methods for post-operative anastomotic leak detection |
Also Published As
Publication number | Publication date |
---|---|
US9498130B2 (en) | 2016-11-22 |
US20110046452A1 (en) | 2011-02-24 |
US20090182206A1 (en) | 2009-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7686762B1 (en) | Wireless device and system for monitoring physiologic parameters | |
US7615010B1 (en) | System for monitoring the physiologic parameters of patients with congestive heart failure | |
US7211048B1 (en) | System for monitoring conduit obstruction | |
US8512252B2 (en) | Delivery method and system for monitoring cardiovascular pressures | |
US6926670B2 (en) | Wireless MEMS capacitive sensor for physiologic parameter measurement | |
US11033192B2 (en) | Wireless sensor for measuring pressure | |
US8267863B2 (en) | Procedure and system for monitoring a physiological parameter within an internal organ of a living body | |
USRE42378E1 (en) | Implantable pressure sensors and methods for making and using them | |
US7147604B1 (en) | High Q factor sensor | |
JP3149957B2 (en) | Implantable capacitive pressure and temperature sensors | |
US8360984B2 (en) | Hypertension system and method | |
US20070282210A1 (en) | Implantable wireless sensor for in vivo pressure measurement and continuous output determination | |
US20040133092A1 (en) | Wireless system for measuring distension in flexible tubes | |
US20090024042A1 (en) | Method and system for monitoring ventricular function of a heart | |
US20080077016A1 (en) | Monitoring system having implantable inductive sensor | |
CN113747835A (en) | Occluder with self-powered sensor | |
EP1893081A2 (en) | Implantable wireless sensor for in vivo pressure measurement | |
IL146959A (en) | Intracardiac pressure monitoring method | |
WO2009006249A1 (en) | Minimally-invasive procedure for monitoring a physiological parameter within an internal organ | |
US8231538B2 (en) | Perivascular pressure sensor and sensing system | |
US20160183842A1 (en) | Minimally-invasive procedures for monitoring physiological parameters within internal organs and anchors therefor | |
US20240138688A1 (en) | Implantable sensor for measuring and monitoring intravascular pressure, system comprising said sensor and method for operating thereof | |
AU2014200072A1 (en) | Implantable wireless sensor for in vivo pressure measurement and continuous output determination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTEGRATED SENSING SYSTEMS, INC.,MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAJAFI, NADER;MASSOUD-ANSARI, SONBOL;RICH, COLLIN A.;SIGNING DATES FROM 20040616 TO 20040819;REEL/FRAME:015055/0442 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2555) |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552) Year of fee payment: 8 |
|
AS | Assignment |
Owner name: EDWARDS LIFESCIENCES LLC, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:INTEGRATED SENSING SYSTEMS, INCORPORATED;REEL/FRAME:047236/0129 Effective date: 20181019 |
|
AS | Assignment |
Owner name: INTEGRATED SENSING SYSTEMS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:EDWARDS LIFESCIENCES LLC;REEL/FRAME:050748/0754 Effective date: 20191015 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20220330 |
|
PRDP | Patent reinstated due to the acceptance of a late maintenance fee |
Effective date: 20220822 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL. (ORIGINAL EVENT CODE: M2558); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: UIM PRESSURE IMPLANT INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTEGRATED SENSING SYSTEMS INCORPORATED;REEL/FRAME:061220/0908 Effective date: 20220818 |