US7515808B2 - Thermally stabilized waveguides - Google Patents
Thermally stabilized waveguides Download PDFInfo
- Publication number
- US7515808B2 US7515808B2 US11/757,098 US75709807A US7515808B2 US 7515808 B2 US7515808 B2 US 7515808B2 US 75709807 A US75709807 A US 75709807A US 7515808 B2 US7515808 B2 US 7515808B2
- Authority
- US
- United States
- Prior art keywords
- nucleus
- optical
- cladding
- toc
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1221—Basic optical elements, e.g. light-guiding paths made from organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/045—Light guides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/1219—Polymerisation
Definitions
- the present invention is directed, in general, to planar optical waveguides.
- Planar optical waveguides enjoy widespread use in optical communications technology, including switches, filters and multiplexers. Stability of the index of refraction, n i , of the waveguide material is desirable to maintain device operation within a desired tolerance. However, the n i of such materials commonly varies as a function of temperature. Such variability is commonly defined by a nonzero value of the thermo-optic coefficient (TOC), or ⁇ n/ ⁇ T.
- TOC thermo-optic coefficient
- various embodiments provide an apparatus having planar optical waveguides (POWs) that may have reduced thermo-optic coefficients.
- PWs planar optical waveguides
- One embodiment is an apparatus that includes a POW having an optical core and optical cladding next to the optical core.
- the optical core or cladding includes a plurality of particles therein. Each particle has a nucleus and polymeric molecules permanently bonded thereto to form a polymer shell. A plurality of nuclei are dispersed in the core or cladding.
- Another embodiment is a method of fabricating a planar optical waveguide.
- the method includes chemically bonding a polymer to a surface of a nucleus to form a particle having a polymer shell.
- a layer of the particles is formed on a substrate, where the layer includes a plurality of nuclei dispersed in the polymer. Portions of the layer are selectively removed to form a planar optical waveguide.
- FIG. 1 illustrates a planar optical waveguide (POW);
- FIGS. 2A through 2C illustrate a nucleus with a polymer shell
- FIG. 3 illustrates embodiments of methods of producing a POW including nuclei with polymer shells dispersed therein;
- FIGS. 4A and 4B illustrate formation of poly(dimethyl siloxane), and attachment thereof to a nucleus
- FIGS. 5A through 5H illustrate sectional views of a POW at various stages of formation
- FIG. 6 illustrates an apparatus employing a POW.
- FIG. 1 illustrates one embodiment of a planar optical waveguide (POW) 100 .
- the POW 100 includes a substrate 110 with an optical core 120 thereon.
- the core 120 is substantially transparent to a wavelength of light to be used in operation of the POW 100 .
- the substrate 110 may be any substrate with suitable optical properties, e.g., having a refractive index (n i ) that is equal to or lower than the refractive index of the core 120 .
- the POW 100 also may include an optical cladding 130 .
- the optical cladding also has a refractive index less than that of the core 120 .
- the cladding 130 may be omitted, as the refractive index of air will be less than the refractive index of the core 120 .
- At least one of the core 120 and the cladding 130 includes nuclei 140 substantially uniformly dispersed therein.
- the nuclei 140 include a material that is transparent to a wavelength of light confined by the POW 100 .
- the core 120 or cladding 130 also includes a medium 150 that includes a polymer.
- the nuclei 140 are chemically bonded to the polymer.
- a nucleus 140 has a surface that is capable of forming a chemical bond with a functional group of a polymer, a “primer” compound or a polymerization initiator.
- Materials suitable for use as the nuclei 140 include, but are not limited to, silica, doped silica, fluorozirconate, fluoroaluminate, and chalcogenide glasses, and polymers such as poly(dimethyl siloxane) (PDMS) and derivatives thereof.
- the polymer included in the medium 150 has suitable properties for use in optical waveguides. Suitable characteristics include optical transparency at the operating wavelength of the light, dimensional stability and low optical loss at telecommunications wavelengths. Non-limiting examples of such polymers include poly(dimethyl siloxane) (PDMS), poly(acrylate), poly(carbonate), poly(styrene), and derivatives thereof.
- PDMS poly(dimethyl siloxane)
- acrylate poly(acrylate)
- carbonate poly(carbonate)
- poly(styrene) poly(styrene)
- FIG. 2A illustrates a conceptual view of a particle 200 that includes a nucleus 210 and a polymer shell 215 .
- bonded polymers are believed by the inventors to form a substantially continuous coating on a surface 220 of the nucleus 210 .
- the polymers are believed to intermix to form the medium 150 in which the nuclei 140 are substantially homogeneously distributed.
- the polymers may additionally entangle. For example, in some cases, polymers may entangle when they include over about 200 monomer repeat units. As described below, the layer may then be formed into the POW 100 .
- the polymer may have a functional group capable of directly bonding to the surface 220 of the nucleus 210 .
- the functional group may be at a terminal or non-terminal position on the polymer chain.
- the composition of such a functional group may depend on the chemical composition of the nucleus 210 .
- the nucleus 210 comprises silica, e.g., the functional group may include silicon, and may further include an alkoxysilane moiety.
- a primer or initiator compound may also have a functional group capable of bonding to the surface 220 of the nucleus 210 .
- this functional group may include silicon, and may further include an alkoxysilane moiety.
- the primer or initiator may include a derivative of a mono-trichlorosilane or a mono-trialkoxysilane.
- the primer additionally has a functional group capable of bonding to a reactive site on a polymer in the medium 150 .
- the reactive site may be at a terminal or non-terminal position on the polymer chain.
- the initiator has a functional group capable of initiating polymerization of a monomer.
- the initiator includes a moiety capable of initiating anionic polymerization.
- a moiety may include, e.g., a lithium atom complexed with an organic anion.
- the initiator includes a moiety capable of initiating atomic transfer radical polymerization (ATRP).
- ATRP atomic transfer radical polymerization
- Such a moiety may include, e.g., an alpha-bromo-substituted carbonyl such as the alpha-bromo-isobutyryl group.
- the nucleus 210 and the shell 215 have a bulk thermo-optic coefficient (TOC), ⁇ n/ ⁇ T.
- a bulk TOC is the TOC exhibited by a sample of a material large enough that the presence of the surface has a negligible effect on the TOC of the sample.
- the TOC may be approximately constant within a range of temperatures.
- the TOC may be greater than zero, indicating an increase of the index of refraction with increasing temperature, or less than zero, indicating a decrease of the index of refraction with increasing temperature.
- thermo-optic coefficient or TOC is used herein, unless otherwise stated it is understood to refer to the thermo-optic coefficient at room temperature, about 25° C.
- a nucleus 210 having a TOC of one sign may be combined with a shell 215 having the opposite sign to form a core 120 or cladding 130 having a desired TOC.
- silica typically has a TOC of about +1 E-5° C. ⁇ 1
- PDMS may have a TOC ranging from about ⁇ 1.5 E-4° C. ⁇ 1 to about ⁇ 5 E-4° C. ⁇ 1 .
- the TOC of the nucleus 210 and the shell 215 may be chosen to result in a desired TOC of the POW 100 .
- the desired TOC may be approximately zero.
- the ratio of volume of the nucleus 210 and the shell 215 may be chosen to result in a TOC of the POW 100 of 1 E-6° C. ⁇ 1 , 1 E-7° C. ⁇ 1 , or less. Note that if the temperature range within which the TOC of the nucleus 210 and shell 215 are constant is limited, the temperature range within which the TOC retains its target value may be similarly limited.
- the nucleus 210 is shown as spherical for illustration, but may be any geometry that does not result in significant scattering of light by the nucleus 210 at the optical wavelength of interest.
- the nucleus 210 may scatter an optical wave when the size of the nucleus 210 exceeds a minimum fraction of the wavelength ⁇ of the wave. To reduce such scattering, it is preferred that no linear dimension of the nucleus 210 exceeds about 1 ⁇ 2 ⁇ . More preferably, no linear dimension of the nucleus 210 exceeds about 1 ⁇ 4 ⁇ . Most preferably, no linear dimension of the nucleus 210 exceeds about 1/10 ⁇ .
- a preferred upper limit on a diameter of the nucleus 210 would be about 150 nm or less. Furthermore, as discussed below, there may be a preferred lower limit on size of the nucleus 210 .
- the shell 215 is formed from polymer emulsion particles 225 bonded to the surface 220 of the nucleus 210 .
- Each emulsion particle 225 includes one or more polymer chains 230 .
- a primer 235 includes functional groups R and R′. The functional group R is bonded to the surface 220 .
- the polymer chain 230 is bonded to the functional group R′, thus attaching the emulsion particle 225 to the nucleus 210 .
- the emulsion particles 225 may be formed with a desired diameter determined by the conditions of formation.
- the shell 215 is expected to have about the same thickness as the diameter of the emulsion particles 225 . For example, if the average diameter of the emulsion particles 225 is about 5 nm, the average thickness of the shell 215 may be about 5 nm.
- the particle 200 includes a polymerization initiator 240 attached to the surface 220 via a functional group R′′.
- the initiator 240 is first bonded to the surface 220 .
- a solution of monomers is provided to form the polymer chain 245 from an initiator group R′′′.
- the thickness of the resulting polymer shell 215 may be controlled by constraining the length of the polymer chains 245 formed on the surface 220 .
- the polymer chain 245 may be formed with a desired chain length by constraining the amount of monomer available.
- the polymer chain 245 may then be terminated with a suitable end group.
- the thickness of the shell 215 is expected to be related to the length of the polymer chains formed on the surface 220 . However, the thickness is expected to typically be less than the length of the polymer chains due to entropic effects and cohesion among neighboring polymer chains.
- polymer emulsion particles are bonded directly to the nucleus 210 .
- a functional group capable of bonding to the surface 220 is present on the polymer chain prior to bonding the polymer chain 230 to the surface 220 .
- the functional group may contain silicon when the nucleus 210 comprises silica, and may further include an alkoxysilane moiety.
- the TOC of the core 120 and the cladding 130 may be advantageously adjusted by controlling the volume fraction of the nuclei 140 and the medium 150 therein.
- the TOC is expected to be approximately the sum of each TOC of the nuclei 140 and the medium 150 , each weighted by its respective volume fraction.
- the TOC value targeted is less than a maximum design value. This relationship may be expressed as VF Nuclei *TOC Nuclei +VF Medium *TOC Medium ⁇ Maximum Design Value, where VF is the volume fraction of the nuclei or the medium.
- a relatively undemanding requirement may be imposed on the maximum design value. In some cases, this value may be greater than 1 E-6° C. ⁇ 1 . In other cases, a more sensitive application may require a maximum design value less than about 1 E-6° C. ⁇ 1 , while even more sensitive applications may require a maximum design value less than about 5 E-7° C. ⁇ 1 .
- the required volume fraction of the nuclei and the medium may, in general, depend on the TOC of the nuclei and medium and the targeted maximum design value.
- a non-limiting example is provided using the geometry illustrated in FIG. 2A .
- imperfect packing of the emulsion particles 225 is neglected.
- about 100% of the surface 220 may be covered by the emulsion particles 225 .
- the thickness of the shell 215 may then be approximated by the thickness of the emulsion particles 225 .
- the volume fraction of the shell 215 is then calculated using the diameter of the nucleus 210 and the thickness of the shell 215 .
- the TOC of silica, about 1 E-5° C. ⁇ 1 , and PDMS, about ⁇ 1 E-4° C. ⁇ 1 are used as representative values of the TOC of the nucleus 210 and the shell 215 , respectively.
- a volume fraction of about 9% of the shell 215 in the core 120 or cladding 130 results in a TOC of about 1 E-7° C. ⁇ .
- This volume fraction corresponds to a thickness of the shell 215 of about 2 nm when the diameter of the nucleus 210 is about 100 nm.
- a larger nucleus 210 may provide better control of the volume fraction of the shell 215 .
- the diameter of the nucleus 210 is about 200 nm, and the thickness of the shell is about 3.2 nm.
- the diameter of the nucleus 210 is about 400 nm, and the thickness of the shell is about 6 nm.
- the diameter of the nucleus 210 may be chosen to be below a minimum diameter at which light is scattered in the POW 100 .
- FIG. 3 illustrated are embodiments of a method 300 of fabricating a planar optical waveguide.
- the method includes chemically bonding a polymer to a surface of a nucleus to form a particle having a polymer shell.
- a layer of the particles is formed on a substrate, where the layer includes a plurality of nuclei dispersed in the polymer. Portions of the layer are selectively removed, e.g., via a conventional etching process, to form a planar optical waveguide.
- nuclei for the particles are provided.
- the nuclei are silica particles.
- silica particles with an average diameter ranging from about 100 nm to about 750 nm may be used. Methods of producing silica particles with diameters in this range are well known to those skilled in the pertinent art.
- Steps 310 - 315 - 320 and 330 - 340 represent alternate embodiments of the method 300 .
- a primer compound is bonded to the surfaces of the nuclei.
- the primer is a compound having a functional group capable of permanently bonding to the surface, and a functional group capable of permanently bonding with a polymer emulsion particle.
- a permanent bond is one that is stable over a temperature range normally experienced by the nucleus, including temperatures during the processing, storage and operation of a device including the nuclei. In some cases the permanent bond is a covalent bond.
- a dispersion of nuclei coated with the primer is formed.
- vinyl trimethoxysilane may be used as the primer when the nucleus comprises silica.
- Vinyl trimethoxysilane may be bonded to the surface of silica particles by heating the silica particles in liquid vinyl TMS at about 100° C. for about 12 hours with agitation. Under these conditions, it is thought that the TMS moiety forms a silyl ether linkage with a hydroxyl group on a silica particle surface.
- a dispersion is formed of polymer emulsion particles having a desired diameter. While recognizing that any of the polymers previously recited may be used, the case in which the polymer includes a derivative of PDMS is presented as a non-limiting example.
- the figure below illustrates an example reaction forming PDMS by anhydrous anionic polymerization of a monomer.
- a suitable siloxane monomer may be reacted in the presence of an anionic initiator such as an alkyl lithium compound.
- the siloxane monomer is hexamethylcyclotrisiloxane (D3), though other monomers such as octamethylcyclotetrasiloxane (D4) may also be used.
- Derivatives of PDMS may be used to provide sites on the polymer to bond to the primer compound.
- pentamethylcyclotrisiloxane may be included with the monomer to provide reactive sites on the polymer chain.
- the PDMS chain may be terminated with a silyl moiety (—SiH 3 , —SiH 2 R, —SiHR 1 R 2 or —SiR 1 R 2 R 3 ).
- Functionalized monomer providing for cross-linking of the polymer may also optionally be included.
- the emulsion particles may be formed by emulsion polymerization. In this method, polymerization of the monomer occurs in micelles formed by surfactant molecules.
- the size of emulsion particles produced may be limited by factors including the amount and type of surfactant used, and the amount of monomer present. One skilled in the chemical arts may determine conditions to produce a desired size of the emulsion particles.
- the emulsion particles are attached to the primed nuclei.
- the nuclei are suspended in tetrahydrofuran (THF) and heated to reflux (about 64° C.).
- the suspension of emulsion particles, prepared with suitable functionalization, is added.
- the primer is vinyl TMS
- the mixture may be maintained at the reflux temperature for about 12 hours to form a polymeric shell.
- FIG. 4A an example of a potential hydrosilylation reaction is illustrated.
- the primed nucleus, prepared as described above, is combined with silane-terminated PDMS in the presence of a Pt catalyst.
- Karstedt's solution of Speirs' hydrosilylation catalyst may be used as the reaction medium.
- the mixture may be heated to 80° C. for about 2 hours to drive the hydrosilylation reaction substantially to completion.
- the reaction is thought to add the silyl group across the vinyl bond of the vinyl TMS, resulting in a bond between the terminal silicon atom and a carbon atom of the vinyl moiety.
- a silyl group may be added to a non-terminal chain position to provide a point of attachment to the surface.
- a primer compound other than vinyl TMS having a C—C double bond may be used to bond the PDMS chain to the surface.
- a polymerization initiator is attached to the nucleus, and a polymer is grown directly from the initiator.
- the initiator is attached to the nucleus.
- the initiator is attached directly to the surface, while in other cases, another compound may serve as an intermediate.
- FIG. 4B illustrated is an embodiment in which an anionic initiator is bonded to a nucleus using an intermediate compound comprising a moiety that includes silicon.
- the intermediate compound is then reacted with an alkyl lithium compound to form the initiator.
- the intermediate compound illustrated is a 1,1-diphenyl, 2-(trialkoxysilyl) ethene as a non-limiting example.
- the presence of two phenyl rings is thought to stabilize formation of an anion of the attached intermediate compound when the alkyl lithium compound reacts therewith.
- other intermediate compounds may be used that have more, fewer or no phenyl rings.
- the moieties shown generally as “R” in FIG. 4B may be any group that does not sterically hinder the formation of a bond that attaches the intermediate compound to the surface 220 . In some cases, R may be a short chain alkyl group, such as a methyl group.
- Butyl lithium is illustrated as a non-limiting example of an alkyl lithium compound. Under anhydrous conditions, a butyl anion may react with the ethene carbon-carbon double bond. The reaction in this example forms the butyl derivative of the intermediate compound. The derivative has a stabilized negative charge that may initiate polymerization of a monomer.
- the nuclei with the attached anionic initiator are combined with a monomer.
- the monomer is reacted with the nuclei to produce coated nuclei.
- the quantity of monomer may be limited to result in a shell having a desired thickness. After the desired thickness is produced, the polymer chains may be terminated.
- the monomer is D3.
- the anion produced by attaching the alkyl lithium derivative to the nucleus is used to initiate polymerization of the monomer under anhydrous conditions.
- a functionalized monomer may optionally be included in the monomer stock to provide cross-linking of the resulting polymer at a later stage of manufacture.
- nuclei are prepared with an anionic initiator primer as described previously.
- the nuclei are dispersed in cyclohexane in a reaction vessel from which water has been purged. A dry nitrogen atmosphere is maintained to exclude water.
- butyl lithium is added with stirring to the dispersion to convert the attached primer to the anion.
- the solution is permitted to stir for about 30 minutes to ensure complete reaction.
- D3 monomer is then added and the solution is allowed to react with agitation for about 3 hours.
- the coated nuclei may be precipitated from the solution by the addition of methanol.
- the coated nuclei are separated from the reaction medium. This may be done, for example, by centrifugation followed by rinsing with methanol.
- the rinsed coated nuclei are suspended in a suitable carrier solvent.
- the carrier solvent may be any solvent in which the polymer shell is at least partially soluble, and that is compatible with the method used to form a layer of coated nuclei on a substrate.
- THF may be a suitable carrier solvent.
- a substrate 505 illustrated in FIG. 5A .
- a substrate is provided when it is obtained from any source or formed by any currently existing or future discovered method.
- a layer 510 including the coated nuclei is formed on the substrate 505 .
- Methods of determining the specific coating conditions to result in a desired thickness and uniformity of the resulting layer are well known to those skilled in the pertinent art.
- the polymer may optionally be cross-linked at this point. A process utilizing short-wavelength light (ultraviolet, e.g.) or thermal activation may be used as appropriate.
- the layer 510 is patterned to form a POW core.
- a layer of photoresist 515 is formed over the layer 510 .
- the photoresist is patterned to form a mask layer 520 .
- exposed portions of the layer 510 are removed by plasma etch, e.g., to form a POW core 525 , and the mask layer 520 is removed. Methods of achieving these recited steps are known to those skilled in the pertinent arts. If additional cross-linking is desired or cross-linking was not previously performed, the polymer in the POW core 525 may optionally be cross-linked at this point.
- a cladding layer 530 is formed over the POW core 525 .
- the cladding layer 530 may be a conventional material suitable for use with the POW core 525 , or may be a composition formed as described herein. Restated, the cladding layer 530 may also include nuclei having a polymer chemically bonded thereto, but designed to have a lower index refraction than the POW core 525 . The polymer in the cladding layer 530 may optionally be cross-linked at this point.
- the cladding layer 530 is patterned to form a cladding 540 .
- FIG. 5G illustrates a mask layer 535 formed by processing a photoresist layer (not shown) by conventional lithographic techniques.
- FIG. 5H shows a cladding 540 after selective removal of exposed portions of the cladding layer 530 by plasma etch, e.g., and removal of the mask layer 535 . If not already performed, the polymer in the POW core 525 or the cladding 540 may optionally be cross-linked at this point.
- FIG. 6 illustrated is an example apparatus 600 using the POW 100 described herein.
- the apparatus 600 is shown as a Mach-Zehnder modulator as a non-limiting example.
- An input optical signal 610 is provided to the apparatus 600 .
- the input optical signal 610 is split between waveguide arms 620 , 630 and recombined to form an output optical signal 640 .
- Driving electronics 650 provide control signals to result in a desired modulation of the optical signals passing through the waveguide arms 620 , 630 .
- the POW 100 may be used with any optical apparatus requiring a planar optical waveguide, such as switches, filters and multiplexers.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
VF Nuclei *TOC Nuclei +VF Medium *TOC Medium≦Maximum Design Value,
where VF is the volume fraction of the nuclei or the medium.
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/757,098 US7515808B2 (en) | 2007-06-01 | 2007-06-01 | Thermally stabilized waveguides |
US12/371,889 US8216637B2 (en) | 2007-06-01 | 2009-02-16 | Thermally stabilized waveguides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/757,098 US7515808B2 (en) | 2007-06-01 | 2007-06-01 | Thermally stabilized waveguides |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/371,889 Division US8216637B2 (en) | 2007-06-01 | 2009-02-16 | Thermally stabilized waveguides |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080298760A1 US20080298760A1 (en) | 2008-12-04 |
US7515808B2 true US7515808B2 (en) | 2009-04-07 |
Family
ID=40088316
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/757,098 Active US7515808B2 (en) | 2007-06-01 | 2007-06-01 | Thermally stabilized waveguides |
US12/371,889 Active 2029-05-23 US8216637B2 (en) | 2007-06-01 | 2009-02-16 | Thermally stabilized waveguides |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/371,889 Active 2029-05-23 US8216637B2 (en) | 2007-06-01 | 2009-02-16 | Thermally stabilized waveguides |
Country Status (1)
Country | Link |
---|---|
US (2) | US7515808B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110205685A1 (en) * | 2010-02-25 | 2011-08-25 | LGS Innovations LLC | Composite dielectric material for high-energy-density capacitors |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3354665B9 (en) | 2011-06-02 | 2022-08-03 | Massachusetts Institute of Technology | Modified alginates for cell encapsulation and cell therapy |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6441077B1 (en) * | 2000-12-22 | 2002-08-27 | Eastman Kodak Company | Polysulfone nanocomposite optical plastic article and method of making same |
US20030136946A1 (en) * | 2000-02-22 | 2003-07-24 | Eugenia Kumacheva | Polymer-based nanocomposite materials and methods of production thereof |
US20030174994A1 (en) * | 2002-02-19 | 2003-09-18 | Garito Anthony F. | Thermal polymer nanocomposites |
US6642295B2 (en) * | 2001-12-21 | 2003-11-04 | Eastman Kodak Company | Photoresist nanocomposite optical plastic article and method of making same |
US20040105980A1 (en) * | 2002-11-25 | 2004-06-03 | Sudarshan Tirumalai S. | Multifunctional particulate material, fluid, and composition |
US6775449B2 (en) * | 2002-03-26 | 2004-08-10 | Fitel Usa Corp. | Multimode optical fiber having reduced intermodal dispersion |
US20050042453A1 (en) * | 2003-08-18 | 2005-02-24 | Eastman Kodak Company | Core shell nanocomposite optical plastic article |
US20050082521A1 (en) * | 2002-02-27 | 2005-04-21 | Tsukasa Torimoto | Core-shell structure having controlled cavity inside and structure comprising the core-shell structure as component, and method for preparation thereof |
US7065285B2 (en) | 2003-12-01 | 2006-06-20 | Lucent Technologies Inc. | Polymeric compositions comprising quantum dots, optical devices comprising these compositions and methods for preparing same |
US7081295B2 (en) * | 2003-08-18 | 2006-07-25 | Eastman Kodak Company | Method of manufacturing a polymethylmethacrylate core shell nanocomposite optical plastic article |
US20070298256A1 (en) * | 2004-12-03 | 2007-12-27 | Kaneka Corporation | Silicone Polymer Particle and Silicone Composition Containing Same |
-
2007
- 2007-06-01 US US11/757,098 patent/US7515808B2/en active Active
-
2009
- 2009-02-16 US US12/371,889 patent/US8216637B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030136946A1 (en) * | 2000-02-22 | 2003-07-24 | Eugenia Kumacheva | Polymer-based nanocomposite materials and methods of production thereof |
US6441077B1 (en) * | 2000-12-22 | 2002-08-27 | Eastman Kodak Company | Polysulfone nanocomposite optical plastic article and method of making same |
US6642295B2 (en) * | 2001-12-21 | 2003-11-04 | Eastman Kodak Company | Photoresist nanocomposite optical plastic article and method of making same |
US20030174994A1 (en) * | 2002-02-19 | 2003-09-18 | Garito Anthony F. | Thermal polymer nanocomposites |
US20050082521A1 (en) * | 2002-02-27 | 2005-04-21 | Tsukasa Torimoto | Core-shell structure having controlled cavity inside and structure comprising the core-shell structure as component, and method for preparation thereof |
US6775449B2 (en) * | 2002-03-26 | 2004-08-10 | Fitel Usa Corp. | Multimode optical fiber having reduced intermodal dispersion |
US20040105980A1 (en) * | 2002-11-25 | 2004-06-03 | Sudarshan Tirumalai S. | Multifunctional particulate material, fluid, and composition |
US20050042453A1 (en) * | 2003-08-18 | 2005-02-24 | Eastman Kodak Company | Core shell nanocomposite optical plastic article |
US7081295B2 (en) * | 2003-08-18 | 2006-07-25 | Eastman Kodak Company | Method of manufacturing a polymethylmethacrylate core shell nanocomposite optical plastic article |
US7091271B2 (en) * | 2003-08-18 | 2006-08-15 | Eastman Kodak Company | Core shell nanocomposite optical plastic article |
US7065285B2 (en) | 2003-12-01 | 2006-06-20 | Lucent Technologies Inc. | Polymeric compositions comprising quantum dots, optical devices comprising these compositions and methods for preparing same |
US20070298256A1 (en) * | 2004-12-03 | 2007-12-27 | Kaneka Corporation | Silicone Polymer Particle and Silicone Composition Containing Same |
Non-Patent Citations (1)
Title |
---|
Y. Inoue et al. "Athermal Silica-Based Arrayed-Waveguide Grating Multiplexer" Electronics Letters, vol. 33, No. 23, Nov. 6, 1997, pp. 1945-1947. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110205685A1 (en) * | 2010-02-25 | 2011-08-25 | LGS Innovations LLC | Composite dielectric material for high-energy-density capacitors |
US8440299B2 (en) | 2010-02-25 | 2013-05-14 | LGS Innovations LLC | Composite dielectric material for high-energy-density capacitors |
Also Published As
Publication number | Publication date |
---|---|
US20090148597A1 (en) | 2009-06-11 |
US8216637B2 (en) | 2012-07-10 |
US20080298760A1 (en) | 2008-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100965682B1 (en) | Method of production of optical elements with an inclined structure | |
Ohno et al. | Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization | |
US7457508B2 (en) | Polymeric compositions comprising quantum dots, optical devices comprising these compositions and methods for preparing same | |
TWI395040B (en) | Electrophoretic particle, electrophoretic particle dispersion liquid, image display medium, and image display device | |
KR101345317B1 (en) | Spd light valves incorporating films comprising improved matrix polymers and methods for making such matrix polymers | |
KR20040081119A (en) | Nanocomposite material for the production of index of refraction gradient films | |
CN102532554A (en) | Preparation method for organic silicon modified acrylic ester core-shell material | |
Yamago et al. | Synthesis of concentrated polymer brushes via surface-initiated organotellurium-mediated living radical polymerization | |
US12189259B2 (en) | Electrophoretic core-shell particles having an organic pigment core and a shell with a thin metal oxide layer and a silane layer | |
Kim et al. | Low optical loss perfluorinated methacrylates for a single-mode polymer waveguide | |
US7515808B2 (en) | Thermally stabilized waveguides | |
JP2007530682A (en) | Compound for optical material and production method | |
US7574097B2 (en) | Polysilane composition, optical waveguide and method for fabrication thereof | |
JP2001281475A (en) | Organic/inorganic composite material for optical waveguide and method for manufacturing optical waveguide using the same | |
CN110506229B (en) | Light transmittance control film and composition for light transmittance control film | |
WO2004113963A1 (en) | Optical element | |
US20060046515A1 (en) | Micelle-containing composition, thin film thereof, and method for producing the thin film | |
Seddon | Potential of organic-inorganic hybrid materials derived by sol-gel for photonic applications | |
JP3827376B2 (en) | Organic / inorganic polymer composite and production method thereof | |
JPH11326915A (en) | Adhesive resin particle for spacer of liquid crystal element and spacer composition of liquid crystal element | |
EP3613810A1 (en) | Articles and compositions comprising host polymers and chromophores and methods of producing the same | |
TW593455B (en) | Polysilsesquioxane-metal alkoxide hybrid film material, its preparation and use | |
JP2006117846A (en) | Resin composition for forming pattern and pattern forming process | |
JP2010126623A (en) | Dispersion resin composition, curable composition and film for suspended particle device | |
WO2025049160A1 (en) | Electrophoretic particles comprising an organic pigment and graphene oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LUCENT TECHNOLOGIES INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOERR, CHRISTOPHER RICHARD;MALIAKAL, ASHOK;REEL/FRAME:019535/0256;SIGNING DATES FROM 20070508 TO 20070615 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: ALCATEL-LUCENT USA INC., NEW JERSEY Free format text: MERGER;ASSIGNOR:LUCENT TECHNOLOGIES INC.;REEL/FRAME:022247/0548 Effective date: 20081101 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: BANK OF AMERICA NA, VIRGINIA Free format text: SECURITY INTEREST;ASSIGNOR:LGS INNOVATIONS LLC;REEL/FRAME:032579/0066 Effective date: 20140331 |
|
AS | Assignment |
Owner name: LGS INNOVATIONS LLC, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALCATEL LUCENT;REEL/FRAME:032743/0584 Effective date: 20140331 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., NEW YORK Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:LGS INNOVATIONS LLC;REEL/FRAME:043254/0393 Effective date: 20170718 |
|
AS | Assignment |
Owner name: LGS INNOVATIONS LLC, VIRGINIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:049074/0094 Effective date: 20190301 |
|
AS | Assignment |
Owner name: LGS INNOVATIONS LLC, GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:049247/0557 Effective date: 20190521 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:LGS INNOVATIONS LLC;REEL/FRAME:049312/0843 Effective date: 20101021 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:LGS INNOVATIONS LLC;REEL/FRAME:049312/0843 Effective date: 20101021 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: LGS INNOVATIONS LLC, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALCATEL LUCENT;ALCATEL-LUCENT USA INC.;REEL/FRAME:059660/0301 Effective date: 20140331 |
|
AS | Assignment |
Owner name: CACI LGS INNOVATIONS LLC, VIRGINIA Free format text: CHANGE OF NAME;ASSIGNOR:LGS INNOVATIONS LLC;REEL/FRAME:069292/0887 Effective date: 20240403 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CACI LGS INNOVATIONS LLC;REEL/FRAME:069987/0444 Effective date: 20241030 |