US7238855B2 - TyrA genes and uses thereof - Google Patents
TyrA genes and uses thereof Download PDFInfo
- Publication number
- US7238855B2 US7238855B2 US10/137,310 US13731002A US7238855B2 US 7238855 B2 US7238855 B2 US 7238855B2 US 13731002 A US13731002 A US 13731002A US 7238855 B2 US7238855 B2 US 7238855B2
- Authority
- US
- United States
- Prior art keywords
- plant
- nucleic acid
- acid molecule
- gene
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 101001022844 Bacillus subtilis ATP-dependent proline adenylase Proteins 0.000 title 1
- 101000644385 Brevibacillus parabrevis ATP-dependent leucine adenylase Proteins 0.000 title 1
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 345
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 299
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 255
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 255
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 173
- 238000000034 method Methods 0.000 claims abstract description 135
- 229930003799 tocopherol Natural products 0.000 claims abstract description 131
- 239000011732 tocopherol Substances 0.000 claims abstract description 131
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims abstract description 131
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims abstract description 122
- 235000010384 tocopherol Nutrition 0.000 claims abstract description 105
- 229960001295 tocopherol Drugs 0.000 claims abstract description 105
- 238000004519 manufacturing process Methods 0.000 claims abstract description 33
- 241000196324 Embryophyta Species 0.000 claims description 500
- 210000004027 cell Anatomy 0.000 claims description 173
- 230000014509 gene expression Effects 0.000 claims description 134
- 230000002068 genetic effect Effects 0.000 claims description 57
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 45
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 43
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 42
- 108020004999 messenger RNA Proteins 0.000 claims description 42
- 241000219194 Arabidopsis Species 0.000 claims description 38
- 101100230987 Synechocystis sp. (strain PCC 6803 / Kazusa) slr1736 gene Proteins 0.000 claims description 33
- 102000004190 Enzymes Human genes 0.000 claims description 31
- 108090000790 Enzymes Proteins 0.000 claims description 31
- 108010035004 Prephenate Dehydrogenase Proteins 0.000 claims description 31
- 229930003802 tocotrienol Natural products 0.000 claims description 31
- 239000011731 tocotrienol Substances 0.000 claims description 31
- 235000019148 tocotrienols Nutrition 0.000 claims description 31
- 244000068988 Glycine max Species 0.000 claims description 28
- 230000000694 effects Effects 0.000 claims description 28
- 230000006870 function Effects 0.000 claims description 28
- 240000008042 Zea mays Species 0.000 claims description 27
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 27
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 27
- 235000009973 maize Nutrition 0.000 claims description 27
- 235000010469 Glycine max Nutrition 0.000 claims description 25
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims description 24
- 235000006008 Brassica napus var napus Nutrition 0.000 claims description 24
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims description 24
- 241001301148 Brassica rapa subsp. oleifera Species 0.000 claims description 24
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 24
- 230000000295 complement effect Effects 0.000 claims description 24
- 210000002706 plastid Anatomy 0.000 claims description 23
- 230000002018 overexpression Effects 0.000 claims description 22
- GJJVAFUKOBZPCB-UHFFFAOYSA-N 2-methyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol Chemical compound OC1=CC=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-UHFFFAOYSA-N 0.000 claims description 19
- 240000002791 Brassica napus Species 0.000 claims description 19
- 235000011293 Brassica napus Nutrition 0.000 claims description 19
- 235000004835 α-tocopherol Nutrition 0.000 claims description 19
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims description 17
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 16
- 240000006240 Linum usitatissimum Species 0.000 claims description 16
- 230000001131 transforming effect Effects 0.000 claims description 15
- 235000017060 Arachis glabrata Nutrition 0.000 claims description 13
- 244000105624 Arachis hypogaea Species 0.000 claims description 13
- 235000010777 Arachis hypogaea Nutrition 0.000 claims description 13
- 235000018262 Arachis monticola Nutrition 0.000 claims description 13
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 claims description 13
- 235000020232 peanut Nutrition 0.000 claims description 13
- 238000013518 transcription Methods 0.000 claims description 13
- 230000035897 transcription Effects 0.000 claims description 13
- 239000002076 α-tocopherol Substances 0.000 claims description 13
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 12
- 108010000898 Chorismate mutase Proteins 0.000 claims description 12
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 12
- 229940087168 alpha tocopherol Drugs 0.000 claims description 12
- 229960000984 tocofersolan Drugs 0.000 claims description 12
- 244000060924 Brassica campestris Species 0.000 claims description 11
- 235000005637 Brassica campestris Nutrition 0.000 claims description 11
- 235000003255 Carthamus tinctorius Nutrition 0.000 claims description 11
- 244000020518 Carthamus tinctorius Species 0.000 claims description 11
- 235000001950 Elaeis guineensis Nutrition 0.000 claims description 11
- 235000010382 gamma-tocopherol Nutrition 0.000 claims description 10
- 241000219198 Brassica Species 0.000 claims description 9
- 108010006731 Dimethylallyltranstransferase Proteins 0.000 claims description 9
- 102000005454 Dimethylallyltranstransferase Human genes 0.000 claims description 9
- 230000001580 bacterial effect Effects 0.000 claims description 9
- 125000001189 phytyl group Chemical group [H]C([*])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])C([H])([H])[C@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])C([H])([H])[C@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 claims description 9
- 108091028664 Ribonucleotide Proteins 0.000 claims description 8
- 239000002336 ribonucleotide Substances 0.000 claims description 8
- 125000002652 ribonucleotide group Chemical group 0.000 claims description 8
- KKADPXVIOXHVKN-UHFFFAOYSA-N 4-hydroxyphenylpyruvic acid Chemical compound OC(=O)C(=O)CC1=CC=C(O)C=C1 KKADPXVIOXHVKN-UHFFFAOYSA-N 0.000 claims description 7
- 235000003351 Brassica cretica Nutrition 0.000 claims description 7
- 235000003343 Brassica rupestris Nutrition 0.000 claims description 7
- 235000003901 Crambe Nutrition 0.000 claims description 7
- 241000220246 Crambe <angiosperm> Species 0.000 claims description 7
- 240000000528 Ricinus communis Species 0.000 claims description 7
- 235000004443 Ricinus communis Nutrition 0.000 claims description 7
- 235000003434 Sesamum indicum Nutrition 0.000 claims description 7
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 claims description 7
- 235000012343 cottonseed oil Nutrition 0.000 claims description 7
- 235000004426 flaxseed Nutrition 0.000 claims description 7
- 235000010460 mustard Nutrition 0.000 claims description 7
- 230000008685 targeting Effects 0.000 claims description 7
- 240000003133 Elaeis guineensis Species 0.000 claims description 6
- 239000002478 γ-tocopherol Substances 0.000 claims description 5
- 235000019150 γ-tocotrienol Nutrition 0.000 claims description 5
- 101710088194 Dehydrogenase Proteins 0.000 claims description 4
- 235000019145 α-tocotrienol Nutrition 0.000 claims description 4
- QUEDXNHFTDJVIY-DQCZWYHMSA-N γ-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1 QUEDXNHFTDJVIY-DQCZWYHMSA-N 0.000 claims description 4
- OTXNTMVVOOBZCV-UHFFFAOYSA-N 2R-gamma-tocotrienol Natural products OC1=C(C)C(C)=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 OTXNTMVVOOBZCV-UHFFFAOYSA-N 0.000 claims description 3
- RZFHLOLGZPDCHJ-DLQZEEBKSA-N alpha-Tocotrienol Natural products Oc1c(C)c(C)c2O[C@@](CC/C=C(/CC/C=C(\CC/C=C(\C)/C)/C)\C)(C)CCc2c1C RZFHLOLGZPDCHJ-DLQZEEBKSA-N 0.000 claims description 3
- 241000192700 Cyanobacteria Species 0.000 claims description 2
- OTXNTMVVOOBZCV-YMCDKREISA-N gamma-Tocotrienol Natural products Oc1c(C)c(C)c2O[C@@](CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)(C)CCc2c1 OTXNTMVVOOBZCV-YMCDKREISA-N 0.000 claims description 2
- 239000011722 γ-tocotrienol Substances 0.000 claims description 2
- OTXNTMVVOOBZCV-WAZJVIJMSA-N γ-tocotrienol Chemical compound OC1=C(C)C(C)=C2O[C@@](CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 OTXNTMVVOOBZCV-WAZJVIJMSA-N 0.000 claims description 2
- 244000020551 Helianthus annuus Species 0.000 claims 2
- 244000000231 Sesamum indicum Species 0.000 claims 2
- 229940064063 alpha tocotrienol Drugs 0.000 claims 1
- RZFHLOLGZPDCHJ-XZXLULOTSA-N α-Tocotrienol Chemical compound OC1=C(C)C(C)=C2O[C@@](CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1C RZFHLOLGZPDCHJ-XZXLULOTSA-N 0.000 claims 1
- 239000011730 α-tocotrienol Substances 0.000 claims 1
- 230000009261 transgenic effect Effects 0.000 abstract description 32
- 238000004458 analytical method Methods 0.000 abstract description 21
- 239000003795 chemical substances by application Substances 0.000 abstract description 21
- 230000037361 pathway Effects 0.000 abstract description 13
- 230000006696 biosynthetic metabolic pathway Effects 0.000 abstract description 11
- 238000010359 gene isolation Methods 0.000 abstract description 2
- 235000018102 proteins Nutrition 0.000 description 147
- 239000012634 fragment Substances 0.000 description 115
- 101150083154 tyrA gene Proteins 0.000 description 94
- 239000013598 vector Substances 0.000 description 82
- 101710095856 Napin-3 Proteins 0.000 description 66
- 108020004414 DNA Proteins 0.000 description 63
- 101150005884 ctp1 gene Proteins 0.000 description 56
- 235000001014 amino acid Nutrition 0.000 description 55
- 210000001519 tissue Anatomy 0.000 description 53
- 229940024606 amino acid Drugs 0.000 description 51
- IGMNYECMUMZDDF-UHFFFAOYSA-N homogentisic acid Chemical compound OC(=O)CC1=CC(O)=CC=C1O IGMNYECMUMZDDF-UHFFFAOYSA-N 0.000 description 46
- 230000015572 biosynthetic process Effects 0.000 description 45
- 150000001413 amino acids Chemical class 0.000 description 42
- 239000000499 gel Substances 0.000 description 37
- 239000003550 marker Substances 0.000 description 37
- 230000009466 transformation Effects 0.000 description 35
- 101710202365 Napin Proteins 0.000 description 32
- 229940088598 enzyme Drugs 0.000 description 30
- 125000002640 tocopherol group Chemical class 0.000 description 28
- 235000019149 tocopherols Nutrition 0.000 description 26
- 101001075374 Homo sapiens Gamma-glutamyl hydrolase Proteins 0.000 description 23
- 230000000692 anti-sense effect Effects 0.000 description 23
- 238000005516 engineering process Methods 0.000 description 22
- 108700028369 Alleles Proteins 0.000 description 21
- -1 aromatic amino acids Chemical class 0.000 description 21
- 239000000523 sample Substances 0.000 description 21
- 239000003921 oil Substances 0.000 description 20
- 235000019198 oils Nutrition 0.000 description 20
- 238000009396 hybridization Methods 0.000 description 19
- 239000000047 product Substances 0.000 description 19
- 241000219195 Arabidopsis thaliana Species 0.000 description 18
- 238000013507 mapping Methods 0.000 description 18
- 102000054765 polymorphisms of proteins Human genes 0.000 description 18
- 241000589158 Agrobacterium Species 0.000 description 17
- 102100029698 Metallothionein-1A Human genes 0.000 description 16
- FPWMCUPFBRFMLH-UHFFFAOYSA-N prephenic acid Chemical compound OC1C=CC(CC(=O)C(O)=O)(C(O)=O)C=C1 FPWMCUPFBRFMLH-UHFFFAOYSA-N 0.000 description 16
- 241000588724 Escherichia coli Species 0.000 description 15
- 238000009395 breeding Methods 0.000 description 15
- 230000001488 breeding effect Effects 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 125000003729 nucleotide group Chemical group 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 14
- 102000016680 Dioxygenases Human genes 0.000 description 14
- 108010028143 Dioxygenases Proteins 0.000 description 14
- 238000003556 assay Methods 0.000 description 14
- 230000001588 bifunctional effect Effects 0.000 description 14
- 230000000306 recurrent effect Effects 0.000 description 14
- 101000895629 Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6) Geranylgeranyl pyrophosphate synthase Proteins 0.000 description 13
- 239000002253 acid Substances 0.000 description 13
- GJJVAFUKOBZPCB-ZGRPYONQSA-N (r)-3,4-dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2h-1-benzopyran-6-ol Chemical class OC1=CC=C2OC(CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-ZGRPYONQSA-N 0.000 description 12
- 101150118992 dxr gene Proteins 0.000 description 12
- 101150056470 dxs gene Proteins 0.000 description 12
- 241000894007 species Species 0.000 description 12
- 229940068778 tocotrienols Drugs 0.000 description 12
- 241000588912 Pantoea agglomerans Species 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 210000000349 chromosome Anatomy 0.000 description 11
- 108091033319 polynucleotide Proteins 0.000 description 11
- 102000040430 polynucleotide Human genes 0.000 description 11
- 239000002157 polynucleotide Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- 241000208818 Helianthus Species 0.000 description 10
- 238000013459 approach Methods 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 240000007594 Oryza sativa Species 0.000 description 9
- 235000007164 Oryza sativa Nutrition 0.000 description 9
- 101100278777 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) dxs1 gene Proteins 0.000 description 9
- 235000021307 Triticum Nutrition 0.000 description 9
- 241000209140 Triticum Species 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 238000007901 in situ hybridization Methods 0.000 description 9
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 9
- 230000001404 mediated effect Effects 0.000 description 9
- 230000008929 regeneration Effects 0.000 description 9
- 238000011069 regeneration method Methods 0.000 description 9
- 235000009566 rice Nutrition 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 108030006697 Homogentisate phytyltransferases Proteins 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 8
- 229930003427 Vitamin E Natural products 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 238000004128 high performance liquid chromatography Methods 0.000 description 8
- 235000012054 meals Nutrition 0.000 description 8
- 210000001938 protoplast Anatomy 0.000 description 8
- 239000013605 shuttle vector Substances 0.000 description 8
- 229940046009 vitamin E Drugs 0.000 description 8
- 235000019165 vitamin E Nutrition 0.000 description 8
- 239000011709 vitamin E Substances 0.000 description 8
- 238000004520 electroporation Methods 0.000 description 7
- 210000001161 mammalian embryo Anatomy 0.000 description 7
- 238000003976 plant breeding Methods 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- 244000061456 Solanum tuberosum Species 0.000 description 6
- 108010039811 Starch synthase Proteins 0.000 description 6
- 108010043934 Sucrose synthase Proteins 0.000 description 6
- 210000003763 chloroplast Anatomy 0.000 description 6
- 235000013399 edible fruits Nutrition 0.000 description 6
- 210000002257 embryonic structure Anatomy 0.000 description 6
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 239000013600 plasmid vector Substances 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 150000003505 terpenes Chemical class 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 6
- 150000003772 α-tocopherols Chemical class 0.000 description 6
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 5
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 5
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 5
- 244000127993 Elaeis melanococca Species 0.000 description 5
- 108010068370 Glutens Proteins 0.000 description 5
- 240000005979 Hordeum vulgare Species 0.000 description 5
- 235000007340 Hordeum vulgare Nutrition 0.000 description 5
- 108060004795 Methyltransferase Proteins 0.000 description 5
- 244000040738 Sesamum orientale Species 0.000 description 5
- 235000002595 Solanum tuberosum Nutrition 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 235000010389 delta-tocopherol Nutrition 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 238000003306 harvesting Methods 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 229930027917 kanamycin Natural products 0.000 description 5
- 229960000318 kanamycin Drugs 0.000 description 5
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 5
- 229930182823 kanamycin A Natural products 0.000 description 5
- 238000007899 nucleic acid hybridization Methods 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 244000075850 Avena orientalis Species 0.000 description 4
- 235000007319 Avena orientalis Nutrition 0.000 description 4
- 235000007558 Avena sp Nutrition 0.000 description 4
- 108700001566 Bacteria TyrA Proteins 0.000 description 4
- 108010078791 Carrier Proteins Proteins 0.000 description 4
- 241000701489 Cauliflower mosaic virus Species 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 4
- 102000004594 DNA Polymerase I Human genes 0.000 description 4
- 108010017826 DNA Polymerase I Proteins 0.000 description 4
- 244000299507 Gossypium hirsutum Species 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 102000016397 Methyltransferase Human genes 0.000 description 4
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 240000000111 Saccharum officinarum Species 0.000 description 4
- 235000007201 Saccharum officinarum Nutrition 0.000 description 4
- 235000007238 Secale cereale Nutrition 0.000 description 4
- 244000082988 Secale cereale Species 0.000 description 4
- 244000062793 Sorghum vulgare Species 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 102000004357 Transferases Human genes 0.000 description 4
- 108090000992 Transferases Proteins 0.000 description 4
- 108700019146 Transgenes Proteins 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 108010031100 chloroplast transit peptides Proteins 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- GZIFEOYASATJEH-VHFRWLAGSA-N delta-Tocopherol Natural products OC1=CC(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1 GZIFEOYASATJEH-VHFRWLAGSA-N 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000011987 methylation Effects 0.000 description 4
- 238000007069 methylation reaction Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- IJBLJLREWPLEPB-IQSNHBBHSA-N plastoquinol-9 Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC1=CC(O)=C(C)C(C)=C1O IJBLJLREWPLEPB-IQSNHBBHSA-N 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 239000013589 supplement Substances 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 235000007680 β-tocopherol Nutrition 0.000 description 4
- 150000003785 γ-tocopherols Chemical class 0.000 description 4
- 235000019144 δ-tocotrienol Nutrition 0.000 description 4
- WTFXTQVDAKGDEY-UHFFFAOYSA-N (-)-chorismic acid Natural products OC1C=CC(C(O)=O)=CC1OC(=C)C(O)=O WTFXTQVDAKGDEY-UHFFFAOYSA-N 0.000 description 3
- OINNEUNVOZHBOX-QIRCYJPOSA-K 2-trans,6-trans,10-trans-geranylgeranyl diphosphate(3-) Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O OINNEUNVOZHBOX-QIRCYJPOSA-K 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 3
- 241000195493 Cryptophyta Species 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 208000035240 Disease Resistance Diseases 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 244000004281 Eucalyptus maculata Species 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- OINNEUNVOZHBOX-XBQSVVNOSA-N Geranylgeranyl diphosphate Natural products [P@](=O)(OP(=O)(O)O)(OC/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)O OINNEUNVOZHBOX-XBQSVVNOSA-N 0.000 description 3
- 102100039291 Geranylgeranyl pyrophosphate synthase Human genes 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 101150012639 HPPD gene Proteins 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 241000209510 Liliopsida Species 0.000 description 3
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 235000011430 Malus pumila Nutrition 0.000 description 3
- 244000070406 Malus silvestris Species 0.000 description 3
- 235000015103 Malus silvestris Nutrition 0.000 description 3
- 240000004658 Medicago sativa Species 0.000 description 3
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 240000005561 Musa balbisiana Species 0.000 description 3
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 3
- 102100023072 Neurolysin, mitochondrial Human genes 0.000 description 3
- 241000219833 Phaseolus Species 0.000 description 3
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 3
- 241000018646 Pinus brutia Species 0.000 description 3
- 235000011613 Pinus brutia Nutrition 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 240000003768 Solanum lycopersicum Species 0.000 description 3
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 3
- 235000009337 Spinacia oleracea Nutrition 0.000 description 3
- 244000300264 Spinacia oleracea Species 0.000 description 3
- 235000021536 Sugar beet Nutrition 0.000 description 3
- 241000192584 Synechocystis Species 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 3
- WTFXTQVDAKGDEY-HTQZYQBOSA-N chorismic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1OC(=C)C(O)=O WTFXTQVDAKGDEY-HTQZYQBOSA-N 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 235000011180 diphosphates Nutrition 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000009399 inbreeding Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 108010058731 nopaline synthase Proteins 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 230000000243 photosynthetic effect Effects 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 150000003773 α-tocotrienols Chemical class 0.000 description 3
- 150000003781 β-tocopherols Chemical class 0.000 description 3
- 235000019151 β-tocotrienol Nutrition 0.000 description 3
- 150000003782 β-tocotrienols Chemical class 0.000 description 3
- 150000003786 γ-tocotrienols Chemical class 0.000 description 3
- 150000003789 δ-tocopherols Chemical class 0.000 description 3
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 2
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- LWTDZKXXJRRKDG-KXBFYZLASA-N (-)-phaseollin Chemical compound C1OC2=CC(O)=CC=C2[C@H]2[C@@H]1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-KXBFYZLASA-N 0.000 description 2
- AJPADPZSRRUGHI-RFZPGFLSSA-L 1-deoxy-D-xylulose 5-phosphate(2-) Chemical compound CC(=O)[C@@H](O)[C@H](O)COP([O-])([O-])=O AJPADPZSRRUGHI-RFZPGFLSSA-L 0.000 description 2
- XMWHRVNVKDKBRG-UHNVWZDZSA-N 2-C-methyl-D-erythritol 4-(dihydrogen phosphate) Chemical compound OC[C@@](O)(C)[C@H](O)COP(O)(O)=O XMWHRVNVKDKBRG-UHNVWZDZSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- 241000234282 Allium Species 0.000 description 2
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 2
- 240000002234 Allium sativum Species 0.000 description 2
- 241000192531 Anabaena sp. Species 0.000 description 2
- 108700005147 Arabidopsis HPT1 Proteins 0.000 description 2
- 235000011331 Brassica Nutrition 0.000 description 2
- 235000006463 Brassica alba Nutrition 0.000 description 2
- 244000140786 Brassica hirta Species 0.000 description 2
- 240000007124 Brassica oleracea Species 0.000 description 2
- 101100425714 Brassica oleracea TMT2 gene Proteins 0.000 description 2
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 2
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 2
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 2
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 2
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 2
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 2
- 235000002566 Capsicum Nutrition 0.000 description 2
- 235000009467 Carica papaya Nutrition 0.000 description 2
- 240000006432 Carica papaya Species 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- GZIFEOYASATJEH-UHFFFAOYSA-N D-delta tocopherol Natural products OC1=CC(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 GZIFEOYASATJEH-UHFFFAOYSA-N 0.000 description 2
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 2
- YAHZABJORDUQGO-NQXXGFSBSA-N D-ribulose 1,5-bisphosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)C(=O)COP(O)(O)=O YAHZABJORDUQGO-NQXXGFSBSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 108090000204 Dipeptidase 1 Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- 241000552068 Eucarpia Species 0.000 description 2
- 108010007508 Farnesyltranstransferase Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 235000016623 Fragaria vesca Nutrition 0.000 description 2
- 240000009088 Fragaria x ananassa Species 0.000 description 2
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 2
- 102000027487 Fructose-Bisphosphatase Human genes 0.000 description 2
- 108010017464 Fructose-Bisphosphatase Proteins 0.000 description 2
- 108010066605 Geranylgeranyl-Diphosphate Geranylgeranyltransferase Proteins 0.000 description 2
- 101150062518 Ggh gene Proteins 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 206010021929 Infertility male Diseases 0.000 description 2
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- 235000003228 Lactuca sativa Nutrition 0.000 description 2
- 240000008415 Lactuca sativa Species 0.000 description 2
- 235000008119 Larix laricina Nutrition 0.000 description 2
- 241000218653 Larix laricina Species 0.000 description 2
- 240000004322 Lens culinaris Species 0.000 description 2
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 2
- 101150013665 MT1 gene Proteins 0.000 description 2
- 208000007466 Male Infertility Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 108091092878 Microsatellite Proteins 0.000 description 2
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 108010016852 Orthophosphate Dikinase Pyruvate Proteins 0.000 description 2
- 238000009004 PCR Kit Methods 0.000 description 2
- 239000006002 Pepper Substances 0.000 description 2
- 235000016761 Piper aduncum Nutrition 0.000 description 2
- 240000003889 Piper guineense Species 0.000 description 2
- 235000017804 Piper guineense Nutrition 0.000 description 2
- 235000008184 Piper nigrum Nutrition 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000219000 Populus Species 0.000 description 2
- 102000019337 Prenyltransferases Human genes 0.000 description 2
- 108050006837 Prenyltransferases Proteins 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108700005078 Synthetic Genes Proteins 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 108700029229 Transcriptional Regulatory Elements Proteins 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 235000009754 Vitis X bourquina Nutrition 0.000 description 2
- 235000012333 Vitis X labruscana Nutrition 0.000 description 2
- 240000006365 Vitis vinifera Species 0.000 description 2
- 235000014787 Vitis vinifera Nutrition 0.000 description 2
- 108010055615 Zein Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- JUGOREOARAHOCO-UHFFFAOYSA-M acetylcholine chloride Chemical compound [Cl-].CC(=O)OCC[N+](C)(C)C JUGOREOARAHOCO-UHFFFAOYSA-M 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 108090000637 alpha-Amylases Proteins 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 101150099875 atpE gene Proteins 0.000 description 2
- WGVKWNUPNGFDFJ-DQCZWYHMSA-N beta-Tocopherol Natural products OC1=CC(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C WGVKWNUPNGFDFJ-DQCZWYHMSA-N 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 229930002868 chlorophyll a Natural products 0.000 description 2
- 229930002869 chlorophyll b Natural products 0.000 description 2
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 229960003067 cystine Drugs 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 241001233957 eudicotyledons Species 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000004611 garlic Nutrition 0.000 description 2
- 230000030279 gene silencing Effects 0.000 description 2
- 238000012226 gene silencing method Methods 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 108090000515 geranylgeranyl reductase Proteins 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 108010066354 methylcobalamin-coenzyme M methyltransferase Proteins 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- WKFUDLTXRQQGHB-UHFFFAOYSA-N plastoquinol-1 Chemical class CC(C)=CCC1=CC(O)=C(C)C(C)=C1O WKFUDLTXRQQGHB-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000010152 pollination Effects 0.000 description 2
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 101150079627 slr1736 gene Proteins 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229960000268 spectinomycin Drugs 0.000 description 2
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 2
- 230000009469 supplementation Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 235000013616 tea Nutrition 0.000 description 2
- 230000010474 transient expression Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 239000002446 δ-tocopherol Substances 0.000 description 2
- ODADKLYLWWCHNB-LDYBVBFYSA-N δ-tocotrienol Chemical compound OC1=CC(C)=C2O[C@@](CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 ODADKLYLWWCHNB-LDYBVBFYSA-N 0.000 description 2
- 150000003790 δ-tocotrienols Chemical class 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- DFUSDJMZWQVQSF-XLGIIRLISA-N (2r)-2-methyl-2-[(4r,8r)-4,8,12-trimethyltridecyl]-3,4-dihydrochromen-6-ol Chemical compound OC1=CC=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1 DFUSDJMZWQVQSF-XLGIIRLISA-N 0.000 description 1
- HGVJFBSSLICXEM-UHNVWZDZSA-N (2s,3r)-2-methylbutane-1,2,3,4-tetrol Chemical compound OC[C@@](O)(C)[C@H](O)CO HGVJFBSSLICXEM-UHNVWZDZSA-N 0.000 description 1
- FCHBECOAGZMTFE-ZEQKJWHPSA-N (6r,7r)-3-[[2-[[4-(dimethylamino)phenyl]diazenyl]pyridin-1-ium-1-yl]methyl]-8-oxo-7-[(2-thiophen-2-ylacetyl)amino]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=CC=[N+]1CC1=C(C([O-])=O)N2C(=O)[C@@H](NC(=O)CC=3SC=CC=3)[C@H]2SC1 FCHBECOAGZMTFE-ZEQKJWHPSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-L (R)-2-Hydroxy-3-(phosphonooxy)-propanal Natural products O=C[C@H](O)COP([O-])([O-])=O LXJXRIRHZLFYRP-VKHMYHEASA-L 0.000 description 1
- KJTLQQUUPVSXIM-ZCFIWIBFSA-M (R)-mevalonate Chemical compound OCC[C@](O)(C)CC([O-])=O KJTLQQUUPVSXIM-ZCFIWIBFSA-M 0.000 description 1
- SUFZKUBNOVDJRR-WGEODTKDSA-N (R,R)-2,3-dimethyl-6-phytylhydroquinone Chemical compound CC(C)CCC[C@@H](C)CCC[C@@H](C)CCC\C(C)=C\CC1=CC(O)=C(C)C(C)=C1O SUFZKUBNOVDJRR-WGEODTKDSA-N 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- IGUZJYCAXLYZEE-RFZPGFLSSA-N 1-deoxy-D-xylulose Chemical compound CC(=O)[C@@H](O)[C@H](O)CO IGUZJYCAXLYZEE-RFZPGFLSSA-N 0.000 description 1
- 108010068049 1-deoxy-D-xylulose 5-phosphate reductoisomerase Proteins 0.000 description 1
- 101710094045 1-deoxy-D-xylulose-5-phosphate synthase Proteins 0.000 description 1
- 101150028074 2 gene Proteins 0.000 description 1
- OINNEUNVOZHBOX-QIRCYJPOSA-N 2-trans,6-trans,10-trans-geranylgeranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP(O)(=O)OP(O)(O)=O OINNEUNVOZHBOX-QIRCYJPOSA-N 0.000 description 1
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 1
- ODADKLYLWWCHNB-UHFFFAOYSA-N 2R-delta-tocotrienol Natural products OC1=CC(C)=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 ODADKLYLWWCHNB-UHFFFAOYSA-N 0.000 description 1
- SEBPXHSZHLFWRL-UHFFFAOYSA-N 3,4-dihydro-2,2,5,7,8-pentamethyl-2h-1-benzopyran-6-ol Chemical compound O1C(C)(C)CCC2=C1C(C)=C(C)C(O)=C2C SEBPXHSZHLFWRL-UHFFFAOYSA-N 0.000 description 1
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 1
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical compound O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 1
- HZWWPUTXBJEENE-UHFFFAOYSA-N 5-amino-2-[[1-[5-amino-2-[[1-[2-amino-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoic acid Chemical compound C1CCC(C(=O)NC(CCC(N)=O)C(=O)N2C(CCC2)C(=O)NC(CCC(N)=O)C(O)=O)N1C(=O)C(N)CC1=CC=C(O)C=C1 HZWWPUTXBJEENE-UHFFFAOYSA-N 0.000 description 1
- WFPZSXYXPSUOPY-ROYWQJLOSA-N ADP alpha-D-glucoside Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WFPZSXYXPSUOPY-ROYWQJLOSA-N 0.000 description 1
- 101150015935 ATP2 gene Proteins 0.000 description 1
- 108010000700 Acetolactate synthase Proteins 0.000 description 1
- 108010006229 Acetyl-CoA C-acetyltransferase Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 235000021411 American diet Nutrition 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 101100064446 Arabidopsis thaliana DXS gene Proteins 0.000 description 1
- 101100204308 Arabidopsis thaliana SUC2 gene Proteins 0.000 description 1
- 241000710139 Artichoke mottled crinkle virus Species 0.000 description 1
- 244000003416 Asparagus officinalis Species 0.000 description 1
- 235000005340 Asparagus officinalis Nutrition 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 235000011371 Brassica hirta Nutrition 0.000 description 1
- 239000005489 Bromoxynil Substances 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 101100494448 Caenorhabditis elegans cab-1 gene Proteins 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000701459 Caulimovirus Species 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 108010022172 Chitinases Proteins 0.000 description 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 1
- 241001112695 Clostridiales Species 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- 244000241257 Cucumis melo Species 0.000 description 1
- 235000009847 Cucumis melo var cantalupensis Nutrition 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 235000001815 DL-alpha-tocopherol Nutrition 0.000 description 1
- 239000011627 DL-alpha-tocopherol Substances 0.000 description 1
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 240000004585 Dactylis glomerata Species 0.000 description 1
- 241001523681 Dendrobium Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 235000005903 Dioscorea Nutrition 0.000 description 1
- 244000281702 Dioscorea villosa Species 0.000 description 1
- 235000000504 Dioscorea villosa Nutrition 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 102100020743 Dipeptidase 1 Human genes 0.000 description 1
- 102000057412 Diphosphomevalonate decarboxylases Human genes 0.000 description 1
- AHMIDUVKSGCHAU-UHFFFAOYSA-N Dopaquinone Natural products OC(=O)C(N)CC1=CC(=O)C(=O)C=C1 AHMIDUVKSGCHAU-UHFFFAOYSA-N 0.000 description 1
- 108091065810 E family Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 244000148064 Enicostema verticillatum Species 0.000 description 1
- 101000896135 Enterobacteria phage T4 Baseplate tail-tube junction protein gp48 Proteins 0.000 description 1
- 101100509137 Escherichia coli (strain K12) ispD gene Proteins 0.000 description 1
- 101100397366 Escherichia coli (strain K12) ispF gene Proteins 0.000 description 1
- 101000896134 Escherichia phage Mu Baseplate protein gp48 Proteins 0.000 description 1
- 102000007317 Farnesyltranstransferase Human genes 0.000 description 1
- 108010046335 Ferredoxin-NADP Reductase Proteins 0.000 description 1
- 241000234642 Festuca Species 0.000 description 1
- 241000234643 Festuca arundinacea Species 0.000 description 1
- 241000701484 Figwort mosaic virus Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 229930191978 Gibberellin Natural products 0.000 description 1
- 241000245654 Gladiolus Species 0.000 description 1
- 108010061711 Gliadin Proteins 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108700037728 Glycine max beta-conglycinin Proteins 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000988395 Homo sapiens PDZ and LIM domain protein 4 Proteins 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- 102000002284 Hydroxymethylglutaryl-CoA Synthase Human genes 0.000 description 1
- 108010000775 Hydroxymethylglutaryl-CoA synthase Proteins 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- HGVJFBSSLICXEM-UHFFFAOYSA-N L-2-methyl-erythritol Natural products OCC(O)(C)C(O)CO HGVJFBSSLICXEM-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- MIEILDYWGANZNH-DSQUFTABSA-N L-arogenic acid Chemical compound OC(=O)[C@@H](N)CC1(C(O)=O)C=CC(O)C=C1 MIEILDYWGANZNH-DSQUFTABSA-N 0.000 description 1
- AHMIDUVKSGCHAU-LURJTMIESA-N L-dopaquinone Chemical compound [O-]C(=O)[C@@H]([NH3+])CC1=CC(=O)C(=O)C=C1 AHMIDUVKSGCHAU-LURJTMIESA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 240000004296 Lolium perenne Species 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- 108700040132 Mevalonate kinases Proteins 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 241001045988 Neogene Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101000958834 Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) Diphosphomevalonate decarboxylase mvd1 Proteins 0.000 description 1
- 108010033272 Nitrilase Proteins 0.000 description 1
- 101710089395 Oleosin Proteins 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 102100029178 PDZ and LIM domain protein 4 Human genes 0.000 description 1
- 101000958925 Panax ginseng Diphosphomevalonate decarboxylase 1 Proteins 0.000 description 1
- 101710091688 Patatin Proteins 0.000 description 1
- 101710163504 Phaseolin Proteins 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- 102100024279 Phosphomevalonate kinase Human genes 0.000 description 1
- 108020005120 Plant DNA Proteins 0.000 description 1
- 108091036407 Polyadenylation Proteins 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 101150090155 R gene Proteins 0.000 description 1
- 241000282849 Ruminantia Species 0.000 description 1
- MEFKEPWMEQBLKI-AIRLBKTGSA-N S-adenosyl-L-methioninate Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H](N)C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-N 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- 241000592344 Spermatophyta Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 101710154134 Stearoyl-[acyl-carrier-protein] 9-desaturase, chloroplastic Proteins 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 102000003673 Symporters Human genes 0.000 description 1
- 108090000088 Symporters Proteins 0.000 description 1
- 241000973887 Takayama Species 0.000 description 1
- 108010089860 Thylakoid Membrane Proteins Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 240000001717 Vaccinium macrocarpon Species 0.000 description 1
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 1
- 244000000188 Vaccinium ovalifolium Species 0.000 description 1
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 101001036768 Zea mays Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic/amyloplastic Proteins 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- 101150067314 aadA gene Proteins 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 229960001570 ademetionine Drugs 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 108010050181 aleurone Proteins 0.000 description 1
- 238000007844 allele-specific PCR Methods 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- 108010030291 alpha-Galactosidase Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- LBDSXVIYZYSRII-IGMARMGPSA-N alpha-particle Chemical compound [4He+2] LBDSXVIYZYSRII-IGMARMGPSA-N 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009833 antibody interaction Effects 0.000 description 1
- 238000012231 antisense RNA technique Methods 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 101150026213 atpB gene Proteins 0.000 description 1
- 101150090348 atpC gene Proteins 0.000 description 1
- 101150035600 atpD gene Proteins 0.000 description 1
- 101150103189 atpG gene Proteins 0.000 description 1
- 101150048329 atpH gene Proteins 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 230000037429 base substitution Effects 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000003181 biological factor Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000081 body of the sternum Anatomy 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 201000011529 cardiovascular cancer Diseases 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 230000007748 combinatorial effect Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000004634 cranberry Nutrition 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- BTNBMQIHCRIGOU-UHFFFAOYSA-N delta-tocotrienol Natural products CC(=CCCC(=CCCC(=CCCOC1(C)CCc2cc(O)cc(C)c2O1)C)C)C BTNBMQIHCRIGOU-UHFFFAOYSA-N 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- MHUWZNTUIIFHAS-CLFAGFIQSA-N dioleoyl phosphatidic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC MHUWZNTUIIFHAS-CLFAGFIQSA-N 0.000 description 1
- 235000004879 dioscorea Nutrition 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 1
- 238000004186 food analysis Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 239000003448 gibberellin Substances 0.000 description 1
- IXORZMNAPKEEDV-OBDJNFEBSA-N gibberellin A3 Chemical class C([C@@]1(O)C(=C)C[C@@]2(C1)[C@H]1C(O)=O)C[C@H]2[C@]2(C=C[C@@H]3O)[C@H]1[C@]3(C)C(=O)O2 IXORZMNAPKEEDV-OBDJNFEBSA-N 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000007407 health benefit Effects 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- IZZWJPQHPPRVLP-UHFFFAOYSA-N hexane;2-methoxy-2-methylpropane Chemical compound CCCCCC.COC(C)(C)C IZZWJPQHPPRVLP-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 208000020673 hypertrichosis-acromegaloid facial appearance syndrome Diseases 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000001948 isotopic labelling Methods 0.000 description 1
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000007834 ligase chain reaction Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 235000013622 meat product Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 102000002678 mevalonate kinase Human genes 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000001127 nanoimprint lithography Methods 0.000 description 1
- 101150091879 neo gene Proteins 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- YCIMNLLNPGFGHC-UHFFFAOYSA-N o-dihydroxy-benzene Natural products OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 238000002966 oligonucleotide array Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000009401 outcrossing Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- LWTDZKXXJRRKDG-UHFFFAOYSA-N phaseollin Natural products C1OC2=CC(O)=CC=C2C2C1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 108091000116 phosphomevalonate kinase Proteins 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 108010078060 phytyltransferase Proteins 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000004161 plant tissue culture Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 101150096384 psaD gene Proteins 0.000 description 1
- 101150032357 psaE gene Proteins 0.000 description 1
- 101150027686 psaF gene Proteins 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 238000012175 pyrosequencing Methods 0.000 description 1
- 238000012205 qualitative assay Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000008117 seed development Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000010153 self-pollination Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical compound OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 108010057392 tocopherol cyclase Proteins 0.000 description 1
- 101150007587 tpx gene Proteins 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 101150101900 uidA gene Proteins 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 235000019195 vitamin supplement Nutrition 0.000 description 1
- 108700026215 vpr Genes Proteins 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 241000960357 x Tritordeum Species 0.000 description 1
- 101150074257 xylE gene Proteins 0.000 description 1
- 125000001020 α-tocopherol group Chemical group 0.000 description 1
- 239000011590 β-tocopherol Substances 0.000 description 1
- 125000003810 γ-tocopherol group Chemical group 0.000 description 1
- 239000011729 δ-tocotrienol Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/001—Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
Definitions
- the present invention is in the field of plant genetics and biochemistry. More specifically, the invention relates to genes associated with the tocopherol biosynthesis pathway.
- the present invention provides and includes nucleic acid molecules, proteins, and antibodies associated with the genes of the tocopherol biosynthesis pathway.
- the present invention also provides methods for utilizing such agents, for example in gene isolation, gene analysis and the production of transgenic plants.
- the present invention includes transgenic plants modified to express proteins associated with the tocopherol pathway.
- the present invention includes methods for the production of products from the tocopherol biosynthesis pathway.
- Tocopherols are an essential component of mammalian diets. Epidemiological evidence indicates that tocopherol supplementation can result in decreased risk for cardiovascular disease and cancer, can aid in immune function, and is associated with prevention or retardation of a number of degenerative disease processes in humans (Traber and Sies, Annu. Rev. Nutr. 16:321-347 (1996)). Tocopherol functions, in part, by stabilizing the lipid bilayer of biological membranes (Skrypin and Kagan, Biochim. Biophys. Acta 815:209 (1995); Kagan, N.Y. Acad. Sci. p 121, (1989); Gomez-Fernandez et al., Ann. N.Y. Acad. Sci .
- ⁇ -Tocopherol often referred to as vitamin E, belongs to a class of lipid-soluble antioxidants that includes ⁇ , ⁇ , ⁇ , and ⁇ -tocopherols and ⁇ , ⁇ , ⁇ , and ⁇ -tocotrienols. Although ⁇ , ⁇ , ⁇ , and ⁇ -tocopherols and ⁇ , ⁇ , ⁇ , and ⁇ -tocotrienols are sometimes referred to collectively as “vitamin E”, vitamin E is more appropriately defined chemically as ⁇ -tocopherol.
- ⁇ -Tocopherol is significant for human health, in part because it is readily absorbed and retained by the body, and has a higher degree of bioactivity than other tocopherol species (Traber and Sies, Annu. Rev. Nutr. 16:321-347 (1996)). However, other tocopherols such as ⁇ , ⁇ , and ⁇ -tocopherols, also have significant health and nutritional benefits.
- Tocopherols are primarily synthesized only by plants and certain other photosynthetic organisms, including cyanobacteria. As a result, mammalian dietary tocopherols are obtained almost exclusively from these sources. Plant tissues vary considerably in total tocopherol content and tocopherol composition, with ⁇ -tocopherol the predominant tocopherol species found in green, photosynthetic plant tissues.
- Leaf tissue can contain from 10-50 ⁇ g of total tocopherols per gram fresh weight, but most of the world's major staple crops (e.g., rice, maize, wheat, potato) produce low to extremely low levels of total tocopherols, of which only a small percentage is ⁇ -tocopherol (Hess, Vitamin E, ⁇ -tocopherol, In Antioxidants in Higher Plants , R. Alscher and J. Hess, Eds., CRC Press, Boca Raton. pp. 111-134 (1993)). Oil seed crops generally contain much higher levels of total tocopherols, but ⁇ -tocopherol is present only as aminor component (Taylor and Barnes, Chemy Ind ., October :722-726 (1981)).
- major staple crops e.g., rice, maize, wheat, potato
- tocopherols In addition to the health benefits of tocopherols, increased ⁇ -tocopherol levels in crops have been associated with enhanced stability and extended shelf life of plant products (Peterson, Cereal - Chem. 72(1):21-24 (1995); Ball, Fat - soluble vitamin assays in food analysis. A comprehensive review , London, Elsevier Science Publishers Ltd. (1988)). Further, tocopherol supplementation of swine, beef, and poultry feeds has been shown to significantly increase meat quality and extend the shelf life of post-processed meat products by retarding post-processing lipid oxidation, which contributes to the undesirable flavor components (Sante and Lacourt, J. Sci. Food Agric. 65(4):503-507 (1994); Buckley et al., J. of Animal Science 73:3122-3130 (1995)).
- the plastids of higher plants exhibit interconnected biochemical pathways leading to secondary metabolites including tocopherols.
- the tocopherol biosynthetic pathway in higher plants involves condensation of homogentisic acid and phytylpyrophosphate to form 2-methyl-6 phytylplastoquinol (Fiedler et al., Planta 155: 511-515 (1982); Soll et al., Arch. Biochem. Biophys. 204: 544-550 (1980); Marshall et al., Phytochem. 24: 1705-1711 (1985)).
- This plant tocopherol pathway can be divided into four parts: 1) synthesis of homogentisic acid, which contributes to the aromatic ring of tocopherol; 2) synthesis of phytylpyrophosphate, which contributes to the side chain of tocopherol; 3) cyclization, which plays a role in chirality and chromanol substructure of the vitamin E family; 4) and S-adenosyl methionine dependent methylation of an aromatic ring, which affects the relative abundance of each of the tocopherol species.
- Homogentisic acid is the common precursor to both tocopherols and plastoquinones. In at least some bacteria the synthesis of homogentesic acid is reported to occur via the conversion of chorismate to prephenate and then to p-hydroxyphenylpyruvate via a bifunctional prephenate dehydrogenase.
- bifunctional bacterial prephenate dehydrogenase enzymes include the proteins encoded by the tyrA genes of Erwinia herbicola and Escherichia coli .
- the tyrA gene product catalyzes the production of prephenate from chorismate, as well as the subsequent dehydrogenation of prephenate to for p-hydroxyphenylpyruvate (p-HPP), the immediate precursor to homogentisic acid.
- p-HPP is then converted to homogentisic acid by bydroxyphenylpyruvate dioxygenase (HPPD).
- HPPD bydroxyphenylpyruvate dioxygenase
- plants are believed to lack prephenate dehydrogenase activity, and it is generally believed that the synthesis of homogentesic acid from chorismate occurs via the synthesis and conversion of the intermediate arogenate. Since pathways involved in homogentesic acid synthesis are also responsible for tyrosine formation, any alterations in these pathways can also result in the alteration in tyrosine synthesis and the synthesis of other aromatic amino acids.
- Tocopherols are a member of the class of compounds referred to as the isoprenoids.
- Other isoprenoids include carotenoids, gibberellins, terpenes, chlorophyll and abscisic acid.
- IPP isopentenyl diphosphate
- Cytoplasmic and plastid-based pathways to generate IPP have been reported.
- the cytoplasmic based pathway involves the enzymes acetoacetyl CoA thiolase, IMGCoA synthase, HMGCoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate pyrophosphate decarboxylase.
- 1-Deoxyxylulose 5-phosphate can be further converted into 2-C-methylerythritol 4-phosphate (Arigoni et al., Proc. Natl. Acad. Sci. USA, 94:10600-10605 (1997)) by a reductoisomerase catalyzed by the dxr gene (Bouvier et al., Plant Physiol, 117:1421-1431 (1998); and Rohdich et al., Proc. Natl. Acad. Sci. USA, 96:11758-11763 (1999)).
- Reported genes in the MEP pathway also include ygbP, which catalyzes the conversion of 2-C-methylerythritol 4-phosphate into its respective cytidyl pyrophosphate derivative and ygbB, which catalyzes the conversion of 4-phosphocytidyl-2C-methyl-D-erythritol into 2C-methyl-D-erythritol, 3,4-cyclophosphate.
- ygbP which catalyzes the conversion of 2-C-methylerythritol 4-phosphate into its respective cytidyl pyrophosphate derivative
- ygbB which catalyzes the conversion of 4-phosphocytidyl-2C-methyl-D-erythritol into 2C-methyl-D-erythritol, 3,4-cyclophosphate.
- IPP is formed by the MEP pathway, it is converted to GGDP by GGDP synthase, and then to phytylpyrophosphate, which is the central constituent of the tocopherol side chain.
- Homogentisic acid is combined with either phytyl-pyrophosphate or solanylpyrophosphate by phytyl/prenyl transferase forming 2-methyl-6-phytyl plastoquinol or 2-methyl-6-solanyl plastoquinol respectively.
- 2-methyl-6-solanyl plastoquinol is a precursor to the biosynthesis of plastoquinones, while 2-methyl-6-phytyl plastoquinol is ultimately converted to tocopherol.
- the major structural difference between each of the tocopherol subtypes is the position of the methyl groups around the phenyl ring.
- Both 2-methyl-6-phytyl plastoquinol and 2-methyl-6-solanyl plastoquinol serve as substrates for 2-methyl-6-phytylplatoquinol/2-methyl-6-solanylplastoquinol-9 methyltransferase (Methyl Transferase 1 or MT 1), which catalyzes the formation of plastoquinol-9 and ⁇ -tocopherol respectively, by methylation of the 7 position. Subsequent methylation at the 5 position of ⁇ -tocopherol by ⁇ -methyl-transferase generates the biologically active ⁇ -tocopherol.
- Tocopherol methyl transferase 2 shows similar activity to MT1.
- nucleic acid molecules encoding enzymes involved in tocopherol biosysnthesis, as well as related enzymes and antibodies for the enhancement or alteration of tocopherol production in plants.
- transgenic organisms expressing those nucleic acid molecules involved in tocopherol biosynthesis, which are capable of nutritionally enhancing food and feed sources.
- homogentisate phytyl transferase HPT
- PPT phytylprenyl transferase
- slr1736 ATPT2
- ATPT2 ATPT2
- the present invention includes and provides a substantially purified nucleic acid molecule comprising as operably linked components: (A) a promoter region which functions in a plant cell to cause the production of an mRNA molecule; (B) a heterologous nucleic acid molecule that encodes an enzyme with chorismate mutase and prephenate dehydrogenase activities or a fragment thereof of at least 20 contiguous amino acids of said enzyme.
- the present invention includes and provides a substantially purified nucleic acid molecule comprising as operably linked components: (A) a promoter region which functions in a plant cell to cause the production of an mRNA molecule; (B) a heterologous nucleic acid molecule that encodes an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4 and fragments thereof of at least 20 contiguous amino acids.
- the present invention includes and provides a nucleic acid molecule comprising as operably linked components: (A) a promoter region which functions in a plant cell to cause the production of an mRNA molecule; (B) a heterologous nucleic acid molecule with a transcribed strand and a non-transcribed strand, wherein said transcribed strand is complementary to a nucleic acid molecule encoding a protein having chorismate mutase and prephenate dehydrogenase activities.
- the present invention includes and provides a nucleic acid molecule comprising as operably linked components: (A) a promoter region which functions in a plant cell to cause the production of an mRNA molecule; (B) a heterologous nucleic acid molecule with a transcribed strand and a non-transcribed strand, wherein said transcribed strand is complementary to a nucleic acid molecule encoding a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 4.
- the present invention includes and provides a transformed plant having a nucleic acid molecule which comprises as operably linked components: (A) a promoter region which functions in a plant cell to cause the production of an mRNA molecule; (B) an exogenous nucleic acid molecule encoding a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 4 or fragments thereof encoding at least 20 contiguous amino acids, and (C) a 3′ non-translated sequence that functions in said plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA molecule.
- the present invention includes and provides a transformed plant having a nucleic acid molecule comprising as operably linked components: (A) an exogenous promoter region which functions in a plant cell to cause the production of a mRNA molecule; which is linked to (B) a transcribed nucleic acid molecule with a transcribed strand and a non-transcribed strand, wherein said transcribed strand is complementary to a nucleic acid molecule encoding a protein comprising an amino acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4 and fragments thereof comprising at least 20 contiguous amino acids.
- the present invention includes and provides a method of producing a plant having increased tocopherol levels comprising: (A) transforming said plant with a nucleic acid molecule, wherein said nucleic acid molecule comprises a promoter region, wherein said promoter region is linked to a nucleic acid sequence that encodes a protein having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 4; and, growing said plant.
- the present invention includes and provides a method for reducing tocopherol levels in a plant comprising: (A) transforming said plant with a nucleic acid molecule, wherein said nucleic acid molecule comprises as operably linked components an exogenous promoter region which functions in plant cells to cause the production of an mRNA molecule, a transcribed nucleic acid molecule having a transcribed strand and a non-transcribed strand, wherein said transcribed strand is complementary to a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 and 3; and wherein said transcribed nucleic acid molecule is linked to a 3′ non-translated sequence that functions in the plant cells to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA sequence; and (B) growing said transformed plant.
- the present invention includes and provides a method for screening for increased tocopherol levels in a plant comprising interrogating genomic DNA for the presence or absence of a marker molecule that specifically hybridizes to a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 and 3 and complements thereof; and detecting said presence or absence of said marker.
- the present invention includes and provides a method for determining a genomic polymorphism in a plant that is predictive of an increased tocopherol level comprising the steps: (A) incubating a marker nucleic acid molecule and a complementary nucleic acid molecule obtained from said plant under conditions permitting nucleic acid hybridization, wherein said marker nucleic acid molecule specifically hybridizes to a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 and 3 and complements thereof; (B) permitting hybridization between said marker nucleic acid molecule and said complementary nucleic acid molecule obtained from said plant; and (C) detecting the presence of said polymorphism.
- the present invention includes and provides a method for determining a level or pattern of expression of a protein in a plant cell or plant tissue comprising: (A) incubating under conditions permitting nucleic acid hybridization: a marker nucleic acid molecule, said marker nucleic acid molecule having a nucleic acid sequence selected from SEQ ID NO: 1 and SEQ ID NO: 3, complements of either or fragments comprising at least about 20 nucleotides of said sequences, with a complementary nucleic acid molecule obtained from a plant cell or plant tissue, (B) permitting hybridization between said marker nucleic acid molecule and said complementary nucleic acid molecule obtained from said plant cell or plant tissue; and (C) detecting said level or pattern of said complementary nucleic acid, wherein detection of said complementary nucleic acid is predictive of said level or pattern of said expression of said protein.
- the present invention includes and provides a method for determining a level or pattern of expression of a protein in a plant cell or plant tissue under evaluation, comprising: assaying a concentration of an indicator molecule in said plant cell or plant tissue under evaluation, wherein said concentration of said indicator molecule is dependent upon expression of a gene, and wherein said gene specifically hybridizes to a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 and 3 and complements thereof; and, comparing said concentration of said indicator molecule with known concentrations of said indicator molecule that occur in plant cells or plant tissues with known levels or patterns of expression of said protein.
- the present invention includes and provides a cell comprising a nucleic acid molecule comprising as operably linked components: (A) a promoter region which functions in a plant cell to cause the production of an mRNA molecule; (B) a heterologous nucleic acid molecule, wherein said heterologous nucleic acid molecule encodes an enzyme with chorismate mutase and prephenate dehydrogenase activities or a fragment of said nucleic acid molecule comprising at least 20 contiguous amino acids.
- the present invention includes and provides oil derived from a seed of a transformed plant having a nucleic acid molecule which comprises as operably linked components: (A) a promoter region which functions in a plant cell to cause the production of an mRNA molecule; (B) an exogenous nucleic acid molecule encoding a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 4, and (C) a 3′ non-translated sequence that functions in said plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA molecule.
- the present invention includes and provides a method of preparing tocopherols which comprises: transforming a plant with a nucleic acid comprising as operably linked components: (A) a promoter region which functions in a plant cell to cause the production of an mRNA molecule; (B) an exogenous nucleic acid molecule encoding a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 4, and (C) a 3′ non-translated sequence that functions in said plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA molecule; and, growing said plant.
- the present invention includes and provides a method of preparing homogentesic acid which comprises transforming a plant with a nucleic acid comprising as operably linked components: (A) a promoter region which functions in a plant cell to cause the production of an mRNA molecule; (B) an exogenous nucleic acid molecule encoding a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 4, and (C) a 3′ non-translated sequence that functions in said plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA molecule.
- the present invention includes and provides a method of preparing plastoquinones which comprises transforming a plant with a nucleic acid comprising as operably linked components: (A) a promoter region which functions in a plant cell to cause the production of a mRNA molecule; (B) an exogenous nucleic acid molecule encoding a protein or fragment thereof comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 4, and (C) a 3′ non-translated sequence that functions in said plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA molecule.
- the present invention includes and provides feedstock comprising a transformed plant or part thereof, wherein said transformed plant has an exogenous nucleic acid molecule comprising a sequence selected from the group of SEQ ID NOs: 1 and 3.
- the present invention includes and provides a meal comprising plant material manufactured from a transformed plant, wherein said transformed plant contains an exogenous nucleic acid molecule comprising a sequence selected from the group of SEQ ID NOs: 1 and 3.
- the present invention includes and provides a transformed plant having an exogenous nucleic acid molecule which comprises a nucleic acid sequence that encodes for a protein having an amino acid sequence of SEQ ID NO: 2 or 4.
- the present invention includes and provides a transformed plant having an exogenous nucleic acid molecule that comprises a nucleic acid sequence of SEQ ID NO: 1 or 3.
- the present invention includes and provides a method of producing a plant having seeds with increased tocopherol level comprising: (A) transforming said plant with a nucleic acid molecule that encodes a protein with chorismate mutase and prephenate dehydrogenase activities; and (b) growing said transformed plant.
- the present invention includes and provides a method of producing a plant having seeds with increased tocopherol level comprising: (A) transforming said plant with a nucleic acid molecule which comprises a nucleic acid sequence that encodes for a protein having an amino acid sequence of SEQ ID NO: 2 or 4; and (b) growing said transformed plant.
- the present invention includes and provides a seed derived from a transformed plant having an exogenous nucleic acid molecule that encodes a protein with chorismate mutase and prephenate dehydrogenase activities, wherein said seed has an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking said exogenous nucleic acid molecule.
- the present invention includes and provides a seed derived from a transformed plant having an exogenous nucleic acid molecule which comprises a nucleic acid sequence that encodes for a protein having an amino acid sequence of SEQ ID NO: 2 or 4, wherein said transformed plant has a seed with an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking said exogenous nucleic acid molecule.
- the present invention includes and provides oil derived from a seed of a transformed plant having an exogenous nucleic acid molecule that encodes a protein with chorismate mutase and prephenate dehydrogenase activities, wherein said transformed plant has a seed with an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking said exogenous nucleic acid molecule.
- the present invention includes and provides oil derived from a seed of a transformed plant having an exogenous nucleic acid molecule which comprises a nucleic acid sequence that encodes for a protein having an amino acid sequence of SEQ ID NO: 2 or 4, wherein said transformed plant has a seed with an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking said exogenous nucleic acid molecule.
- the present invention includes and provides feedstock comprising a transformed plant or part thereof, having an exogenous nucleic acid molecule that encodes a protein with chorismate mutase and prephenate dehydrogenase activities, wherein said transformed plant has a seed with an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking said exogenous nucleic acid molecule.
- the present invention includes and provides feedstock comprising a transformed plant or part thereof, having an exogenous nucleic acid molecule which comprises a nucleic acid sequence that encodes for a protein having an amino acid sequence of SEQ ID NO: 2 or 4, wherein said transformed plant has a seed with an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking said exogenous nucleic acid molecule.
- the present invention includes and provides feedstock comprising a transformed plant or part thereof having an exogenous nucleic acid molecule that encodes a protein with chorismate mutase and prephenate dehydrogenase activities, wherein said transformed plant has a seed with an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking said exogenous nucleic acid molecule.
- the present invention includes and provides a meal comprising plant material manufactured from a transformed plant, having an exogenous nucleic acid molecule that encodes a protein with chorismate mutase and prephenate dehydrogenase activities, wherein said transformed plant has a seed with an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking said exogenous nucleic acid molecule.
- the present invention includes and provides a meal comprising plant material manufactured from a transformed plant having an exogenous nucleic acid molecule which comprises a nucleic acid sequence that encodes for a protein having an amino acid sequence of SEQ ID NO: 2 or 4, wherein said transformed plant has a seed with an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking said exogenous nucleic acid molecule.
- the present invention includes and provides a meal comprising plant material manufactured from a transformed plant, having an exogenous nucleic acid molecule that encodes a protein with chorismate mutase and prephenate dehydrogenase activities, wherein said transformed plant has a seed with an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking said exogenous nucleic acid molecule.
- the present invention includes and provides a meal comprising plant material manufactured from a transformed plant having an exogenous nucleic acid molecule which comprises a nucleic acid sequence that encodes for a protein having an amino acid sequence of SEQ ID NO: 2 or 4, wherein said transformed plant has a seed with an increased tocopherol level relative to seeds from a plant having a similar genetic background but lacking the exogenous nucleic acid molecule.
- the present invention includes and provides nucleic acid constructs, as well as plants and organisms containing those constructs, having combinations of two or more genes involved in tocopherol and tocotrienol biosynthesis.
- Any combination of the following genes with tyrA is prefered: slr1736, ATPT2, dxs, dxr, GGH, GGPPS, HPPD, MT1, TMT2, GMT, AANT1, slr 1737, and an antisense construct for homogentisic acid dioxygenase.
- tyrA is combined with HPPD and either slr1736 orATPT2.
- SEQ ID NO: 1 sets forth a nucleic acid sequence of DNA molecule that encodes an Erwinia herbicola bifunctional prephenate dehyrdrogenase.
- SEQ ID NO: 2 sets forth a derived amino acid sequence of an Erwinia herbicola bifunctional prephenate dehyrdrogenase.
- SEQ ID NO: 3 sets forth a nucleic acid sequence of DNA molecule that encodes an Escherichia coli bifunctional prephenate dehyrdrogenase.
- SEQ ID NO: 4 sets forth a derived amino acid sequence of an Escherichia coli bifunctional prephenate dehyrdrogenase.
- SEQ ID NO: 5 sets forth a 5′ primer used for amplification of an Erwinia herbicola tyrA sequence.
- SEQ ID NO: 6 sets forth a 3′ primer used for amplification of an Erwinia herbicola tyrA sequence.
- SEQ ID NO: 7 sets forth a 5′ primer used for amplification of an Escherichia coli tyrA sequence.
- SEQ ID NO: 8 sets forth a 3′ primer used for amplification of an Escherichia coli tyrA sequence.
- SEQ ID NO: 9 sets forth a primer sequence.
- SEQ ID NO: 10 sets forth a primer sequence.
- SEQ ID NO: 11 sets forth a primer sequence.
- SEQ ID NO: 12 sets forth a primer sequence.
- FIG. 1 is a graph comparing total seed tocopherol levels of Arabidopsis thaliana lines harboring an Erwinia herbicola tyrA expression construct with a plastidal target sequence, a wild type plant, and a plant with a vector control.
- FIG. 2 is a schematic of construct pMON26588.
- FIG. 3 is a schematic of construct pMON26589.
- FIG. 4 is a schematic of construct pMON26591.
- FIG. 5 is a schematic of construct pMON26590.
- FIG. 6 is a schematic of construct pMON36510.
- FIG. 7 is a schematic of construct pMON36512.
- FIG. 8 is a schematic of construct pMON36511.
- FIG. 9 is a schematic of construct pMON36520.
- FIG. 10 is a schematic of construct pCGN1822.
- FIG. 11 is a schematic of construct pMON36528.
- FIG. 12 is a schematic of construct pMON69907.
- FIG. 13 is a schematic of construct pMON69909.
- FIG. 14 depicts the total tocopherol and tocotrienol content of Arabidopsis seeds from wild type plants and several plant lines transformed with the plasmid vector pMON69907.
- FIG. 15 depicts the total tocopherol content of Arabidopsis seeds from wild type plants and several plant lines transformed with the plasmid vector pMON69907.
- FIG. 16 depicts the total tocopherol and tocotrienol content of Arabidopsis thaliana seeds from wild type plants and several plant lines separately transformed with the plasmid vectors pCGN10822, pMON36528, pMON69907 and pMON69909.
- FIG. 17 depicts a detailed analysis of tocopherol and tocotrienol content of arabidopsis seeds from plant lines transformed with the vector pMON69909 relative to wild type plant seeds.
- FIGS. 18 a and 18 b show exepmlary constructs for transformation into plants.
- FIG. 19 is a schematic construct of pMON36582.
- FIG. 20 is an example of a shuttle vector (pMON36586) harboring an expression cassette of the Arabidopsis homogentisate phytyltransferase (HPT) as a Bsp120I/Not I cassette.
- HPT Arabidopsis homogentisate phytyltransferase
- the napin promoter and napin terminator are fused to the 5′ and 3′ ends, respectively, to drive seed specific expression.
- FIG. 21 represents various gene expression cassettes shown in a shuttle vector (A) or in a binary vector (B).
- FIG. 22 is a schematic of construct pMON36596.
- FIG. 23 is a schematic of construct pMON36597.
- FIG. 24 is a schematic of construct pMON77601.
- FIG. 25 is a schematic of construct pMON77602.
- FIG. 26 is a schematic of construct pMON66657.
- FIG. 27 is a schematic of construct pMON66659.
- FIG. 28 is a schematic of construct pMON26541.
- FIG. 29 is a schematic of construct pMON26543.
- FIG. 30 is a schematic of construct pMON36176.
- FIG. 31 is an LC/MS standard graph.
- FIG. 32 is an LC/MS graph.
- FIG. 33 is an HPLC chromatograph.
- FIG. 34 is an HPLC chromatograph.
- FIG. 35 is a schematic of construct pMON69915.
- FIG. 36 is a schematic of construct pMON69919.
- FIG. 37 is a schematic of construct pMON10098.
- FIG. 38 is a schematic of construct pMON36520.
- FIG. 39 is a schematic of construct pMON43853.
- FIG. 40 is a schematic of construct pMON36525.
- FIG. 41 is a schematic of construct pMON43861.
- FIG. 42 is a schematic of construct pCGN7770.
- FIG. 43 is a schematic of construct pMON69911.
- FIG. 44 is a schematic of construct pCGN11301.
- FIG. 45 is a schematic of construct pCGN3223.
- FIG. 46 is a schematic of construct pMON36575.
- FIG. 47 is a schematic of construct pMON38207R.
- FIG. 48 is a schematic of construct pMON36571.
- FIG. 49 is a schematic of construct pMON36576.
- FIG. 50 is a schematic of construct pMON69924.
- FIG. 51 is a schematic of construct pMON69943.
- FIG. 52 is a schematic of construct pMON69929.
- FIG. 53 is a schematic of construct pMON69936.
- FIG. 54 is a schematic of construct pMON36592.
- FIG. 55 is a schematic of construct pMON69945.
- FIG. 56 is a schematic of construct pMON16602.
- FIG. 57 is a schematic of construct pMON36525.
- FIG. 58 is a schematic of construct pMON58171.
- FIG. 59 is a schematic of construct pMON58172.
- FIG. 60 is a schematic of construct pMON58170.
- FIG. 61 is a schematic of construct pMON36591.
- FIG. 62 is a schematic of construct pMON36588.
- FIG. 63 is a schematic of construct pMON36592.
- FIG. 64 is a schematic of construct pMON58182.
- FIG. 65 is a schematic of construct pMON58176.
- FIG. 66 is a schematic of construct pMON58183.
- FIG. 67 is a schematic of construct pMON58185.
- FIG. 68 is a schematic of construct pMON36593.
- FIG. 69 is a schematic of construct pMON36589.
- FIG. 70 is a schematic of construct pMON36590.
- FIG. 71 is a schematic of construct pMON67162.
- FIG. 72 is a schematic of construct pMON58178.
- FIG. 73 is a schematic of construct pMON58186.
- FIG. 74 is a schematic of construct pMON58188.
- FIG. 75 shows tocopherol and tocotrienol as well as HGA levels in selected lines.
- FIG. 76 shows tocotrienol and 2M6PPQ levels in selected lines.
- nucleic acid molecules disclosed herein can be enhanced or over-expressed in a variety of organisms, such as plants, which can result in higher levels of tocopherol precursors such as homogentisic acid (HGA) and ultimately in enhanced levels of tocopherols in such organisms.
- HGA homogentisic acid
- proteins set forth herein can also result in the production of increased levels of plastoquinones.
- the present invention provides a number of agents, for example, nucleic acid molecules and proteins associated with the production of tocopherols, and provides uses of such agents.
- the present invention includes and provides for nucleic acid constructs for expression of bifunctional prephenate dehydrogenases in organisms in which it is desirable to produce an increased yield of homogentesic acid, plastoquinones, or tocopherols.
- nucleic acid constructs may be used in organisms for which an increased level of prephenate dehydrogenase activity is desirable.
- the invention also includes and provides for nucleic acids constructs for the expression of phytyl prenyltransferases in organisms in which it is desirable to produce an increased yield of plastoquinones, or tocopherols, and the use of constructs producing antisense nucleic acids against phytyl prenyltransferases in organisms in which it is desirable to produce an increased yield of homogentesic acid.
- the agents of the invention will preferably be “biologically active” with respect to either a structural attribute, such as the capacity of a nucleic acid to hybridize to another nucleic acid molecule, or the ability of a protein to be bound by an antibody (or to compete with another molecule for such binding). Alternatively, such an attribute may be catalytic and thus involve the capacity of the agent to mediate a chemical reaction or response.
- the agents will preferably be “substantially purified.”
- the term “substantially purified,” as used herein, refers to a molecule separated from substantially all other molecules normally associated with it in its native state. More preferably a substantially purified molecule is the predominant species present in a preparation.
- a substantially purified molecule may be greater than 60% free, preferably 75% free, more preferably 90% free, and most preferably 95% free from the other molecules (exclusive of solvent) present in the natural mixture.
- the term “substantially purified” is not intended to encompass molecules present in their native state.
- the agents of the invention may also be recombinant.
- the term recombinant means any agent (e.g., DNA, peptide etc.), that is, or results, however indirectly, from human manipulation of a nucleic acid molecule.
- agents of the invention may be labeled with reagents that facilitate detection of the agent (e.g., fluorescent labels, Prober et al., Science 238:336-340 (1987); Albarella et al., EP 144914; chemical labels, Sheldon et al., U.S. Pat. No. 4,582,789; Albarella et al., U.S. Pat. No. 4,563,417; modified bases, Miyoshi et al., EP 119448).
- fluorescent labels e.g., fluorescent labels, Prober et al., Science 238:336-340 (1987); Albarella et al., EP 144914; chemical labels, Sheldon et al., U.S. Pat. No. 4,582,789; Albarella et al., U.S. Pat. No. 4,563,417; modified bases, Miyoshi et al., EP 119448).
- Agents of the invention include nucleic acid molecules which encode a bifunctional prephenate dehydrogenase, having both chorismate mutase and prephenate dehydrogenase activities.
- the nucleic acid molecule comprises a nucleic acid sequence which encodes a bacterial homologue of a bifuntional prephenate dehydrogenase.
- the nucleic acid molecule comprises a nucleic acid sequence having SEQ ID NOs: 1 or 3.
- the nucleic acid molecule is a fragment of any nucleic acid sequence disclosed herein encoding an amino acid sequence having prephenate dehydrogenase activity.
- nucleic acid molecule comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 and 3, complements thereof, and fragments of either.
- nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 4, and fragments thereof.
- nucleic acid molecules comprise both a nucleic acid sequence encoding a bifuntional prephenate dehydrogenase and an expression cassette for expressing phyty prenyltransferase.
- nucleic acid constructs separately encoding a bifunctional prephenate dehydrogenase and phyty prenyltransferase may be employed.
- a nucleic acid molecule comprises nucleotide sequences encoding a plastid transit peptide operably fused to a nucleic acid molecule that encodes a protein or fragment of the present invention.
- nucleic acids can encode a protein that differs from any of the proteins in that one or more amino acids have been deleted, substituted or added without altering the function.
- codons capable of coding for such conservative amino acid substitutions are known in the art.
- fragment nucleic acids molecules may consist of significant portion(s) of, or indeed most of, the nucleic acid molecules of the invention, such as those specifically disclosed.
- the fragments may comprise smaller oligonucleotides (having from about 15 to about 400 nucleotide residues and more preferably, about 15 to about 30 nucleotide residues, or about 50 to about 100 nucleotide residues, or about 100 to about 200 nucleotide residues, or about 200 to about 400 nucleotide residues, or about 275 to about 350 nucleotide residues).
- a fragment of one or more of the nucleic acid molecules of the invention may be a probe and specifically a PCR probe.
- a PCR probe is a nucleic acid molecule capable of initiating a polymerase activity while in a double-stranded structure with another nucleic acid.
- nucleic acid molecules of the invention include nucleic acid molecules that encode a protein or fragment thereof.
- Nucleic acid molecules or fragments thereof of the present invention are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances.
- Nucleic acid molecules of the present invention include those that specifically hybridize to nucleic acid molecules having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 and 3, and complements thereof.
- Nucleic acid molecules of the present invention also include those that specifically hybridize to nucleic acid molecules encoding an amino acid sequences selected from SEQ ID NOs: 2, 4, complements thereof, and fragments of either.
- nucleic acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure.
- a nucleic acid molecule is said to be the “complement” of another nucleic acid molecule if they exhibit complete complementarity.
- molecules are said to exhibit “complete complementarity” when every nucleotide of one of the molecules is complementary to a nucleotide of the other.
- Two molecules are said to be “minimally complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional “low-stringency” conditions.
- the molecules are said to be “complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional “high-stringency” conditions.
- Appropriate stringency conditions which promote DNA hybridization are, for example, 6.0 ⁇ sodium chloride/sodium citrate (SSC) at about 45° C., followed by a wash of 2.0 ⁇ SSC at 20-25° C., are known to those skilled in the art or can be found in Current Protocols in Molecular Biology , John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.
- the salt concentration in the wash step can be selected from a low stringency of about 2.0 ⁇ SSC at 50° C. to a high stringency of about 0.2 ⁇ SSC at 65° C.
- the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22° C., to high stringency conditions at about 65° C. Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed.
- a nucleic acid of the present invention will specifically hybridize to one or more of the nucleic acid molecules set forth in SEQ ID NOs: 1 and 3 and complements thereof under moderately stringent conditions, for example at about 2.0 ⁇ SSC and about 65° C.
- a nucleic acid of the present invention will include those nucleic acid molecules that specifically hybridize to one or more of the nucleic acid molecules set forth in SEQ ID NOs: 1 and 3 and complements thereof under high stringency conditions such as 0.2 ⁇ SSC and about 65° C.
- the nucleic acid molecules of the present invention have one or more of the nucleic acid sequences set forth in SEQ ID NOs: 1 and 3 and complements thereof. In another aspect of the present invention, one or more of the nucleic acid molecules of the present invention share between 100% and 90% sequence identity with one or more of the nucleic acid sequences set forth in SEQ ID NOs: 1 and 3 and complements thereof and fragments of either. In a further aspect of the present invention, one or more of the nucleic acid molecules of the present invention share between 100% and 95% sequence identity with one or more of the nucleic acid sequences set forth in SEQ ID NOs: 1 and 3, complements thereof, and fragments of either.
- one or more of the nucleic acid molecules of the present invention share between 100% and 98% sequence identity with one or more of the nucleic acid sequences set forth in SEQ ID NOs: 1 and 3, complements thereof and fragments of either. In an even more preferred aspect of the present invention, one or more of the nucleic acid molecules of the present invention share between 100% and 99% sequence identity with one or more of the sequences set forth in SEQ ID NOs: 1 and 3, complements thereof, and fragments of either.
- percent identity calculations are performed using the Megalign program of the LASERGENE bioinformatics computing suite (default parameters, DNASTAR Inc., Madison, Wis.).
- a nucleic acid molecule of the invention can also encode a homolog protein.
- a homolog protein molecule or fragment thereof is a counterpart protein molecule or fragment thereof in a second species (e.g., maize rubisco small subunit is a homolog of Arabidopsis rubisco small subunit).
- a homolog can also be generated by molecular evolution or DNA shuffling techniques, so that the molecule retains at least one functional or structure characteristic of the original protein (see, for example, U.S. Pat. No. 5,811,238).
- the homolog is selected from the group consisting of alfalfa, Arabidopsis , barley, Brassica campestris, Brassica napus , broccoli, cabbage, canola, citrus, cotton, garlic, oat, onion, flax, an ornamental plant, peanut, pepper, potato, rice, rye, sorghum, strawberry, sugarcane, sugarbeet, tomato, wheat, poplar, pine, fir, eucalyptus, apple, lettuce, lentils, grape, banana, tea, turf grasses, sunflower, soybean, maize, Phaseolus , crambe, mustard, castor bean, sesame, cottonseed, linseed, safflower, and oil palm.
- preferred homologs are selected from canola, maize, Arabidopsis, Brassica campestris, Brassica napus , soybean, crambe, mustard, castor bean, peanut, sesame, cottonseed, linseed, safflower, oil palm, flax, and sunflower.
- the homolog is selected from the group consisting of canola, maize, Arabidopsis, Brassica campestris, Brassica napus , soybean, sunflower, safflower, oil palms, and peanut.
- the homolog is soybean.
- the homolog is canola.
- the homolog is Brassica napus.
- nucleic acid molecules having SEQ ID NOs: 1 and 3, complements thereof, and fragments of either; or more preferably SEQ ID NOs: 1 and 3 and complements thereof, can be utilized to obtain such homologs.
- nucleic acid molecules of the present invention can comprise sequences that differ from those encoding a protein or fragment thereof in SEQ ID NOs: 2 and 4 due to fact that a protein can have one or more conservative amino acid changes, and nucleic acid sequences coding for the protein can therefore have sequence differences. It is understood that codons capable of coding for such conservative amino acid substitutions are known in the art.
- amino acids in a native sequence can be substituted with other amino acid(s), the charge and polarity of which are similar to that of the native amino acid, i.e., a conservative amino acid substitution.
- Conservative substitutes for an amino acid within the native polypeptide sequence can be selected from other members of the class to which the amino acid belongs.
- Amino acids can be divided into the following four groups: (1) acidic amino acids, (2) basic amino acids, (3) neutral polar amino acids, and (4) neutral, nonpolar amino acids.
- amino acids within these various groups include, but are not limited to, (1) acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; (2) basic (positively charged) amino acids such as arginine, histidine, and lysine; (3) neutral polar amino acids such as glycine, serine, threonine, cysteine, cystine, tyrosine, asparagine, and glutamine; and (4) neutral nonpolar (hydrophobic) amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine.
- amino acid substitution within the native polypeptide sequence can be made by replacing one amino acid from within one of these groups with another amino acid from within the same group.
- biologically functional equivalents of the proteins or fragments thereof of the present invention can have ten or fewer conservative amino acid changes, more preferably seven or fewer conservative amino acid changes, and most preferably five or fewer conservative amino acid changes.
- the encoding nucleotide sequence will thus have corresponding base substitutions, permitting it to encode biologically functional equivalent forms of the proteins or fragments of the present invention.
- amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Because it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence and, of course, its underlying DNA coding sequence and, nevertheless, a protein with like properties can still be obtained. It is thus contemplated by the inventors that various changes may be made in the peptide sequences of the proteins or fragments of the present invention, or corresponding DNA sequences that encode said peptides, without appreciable loss of their biological utility or activity. It is understood that codons capable of coding for such amino acid changes are known in the art.
- the hydropathic index of amino acids may be considered.
- the importance of the hydropathic amino acid index in conferring interactive biological function on a protein is generally understood in the art (Kyte and Doolittle, J. Mol. Biol. 157, 105-132 (1982)). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.
- Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics (Kyte and Doolittle, J. Mol. Biol. 157:105-132 (1982)); these are isoleucine (+4.5), valine (+4.2), leucine (+3.8), phenylalanine (+2.8), cysteine/cystine (+2.5), methionine (+1.9), alanine (+1.8), glycine ( ⁇ 0.4), threonine ( ⁇ 0.7), serine ( ⁇ 0.8), tryptophan ( ⁇ 0.9), tyrosine ( ⁇ 1.3), proline ( ⁇ 1.6), histidine ( ⁇ 3.2), glutamate ( ⁇ 3.5), glutamine ( ⁇ 3.5), aspartate ( ⁇ 3.5), asparagine ( ⁇ 3.5), lysine ( ⁇ 3.9), and arginine ( ⁇ 4.5).
- hydrophilicity values have been assigned to amino acid residues: arginine (+3.0), lysine (+3.0), aspartate (+3.0 ⁇ 1), glutamate (+3.0 ⁇ 1), serine (+0.3), asparagine (+0.2), glutamine (+0.2), glycine (0), threonine ( ⁇ 0.4), proline ( ⁇ 0.5 ⁇ 1), alanine ( ⁇ 0.5), histidine ( ⁇ 0.5), cysteine ( ⁇ 1.0), methionine ( ⁇ 1.3), valine ( ⁇ 1.5), leucine ( ⁇ 1.8), isoleucine ( ⁇ 1.8), tyrosine ( ⁇ 2.3), phenylalanine ( ⁇ 2.5), and tryptophan ( ⁇ 3.4).
- one or more of the nucleic acid molecules of the present invention differ in nucleic acid sequence from those for which a specific sequence is provided herein because one or more codons has been replaced with a codon that encodes a conservative substitution of the amino acid originally encoded.
- Agents of the invention include nucleic acid molecules that encode at least about a contiguous 10 amino acid region of a protein of the present invention, more preferably at least about a contiguous 25, 40, 50, 100, or 125 amino acid region of a protein of the present invention.
- any of the nucleic acid molecules of the present invention can be operably linked to a promoter region which functions in a plant cell to cause the production of an mRNA molecule, where the nucleic acid molecule that is linked to the promoter is heterologous with respect to that promoter.
- heterologous means not naturally occurring together.
- a class of agents includes one or more of the proteins or fragments thereof or peptide molecules encoded by a nucleic acid agent of the invention.
- a particular preferred class of proteins is that having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 and 4 and fragments thereof.
- Protein or peptide agents may have C-terminal or N-terminal amino acid sequence extensions.
- One class of N-terminal extensions employed in a preferred embodiment are plastid transit peptides. When employed, plastid transit peptides can be operatively linked to the N-terminal sequence, thereby permitting the localization of the agent peptide or proteins to plastids.
- the plastid targeting sequence is a CTP1 sequence.
- the sequence is a CTP2 sequence.
- protein or “peptide molecule” includes any molecule that comprises five or more amino acids. It is well known in the art that proteins may undergo modification, including post-translational modifications, such as, but not limited to, disulfide bond formation, glycosylation, phosphorylation, or oligomerization. Thus, as used herein, the term “protein” or “peptide molecule” includes any protein that is modified by any biological or non-biological process.
- amino acid and “amino acids” refer to all naturally occurring L-amino acids. This definition is meant to include norleucine, norvaline, omithine, homocysteine, and homoserine.
- One or more of the protein or fragments thereof or peptide molecules may be produced via chemical synthesis, or more preferably, by expression in a suitable bacterial or eukaryotic host. Suitable methods for expression are described by Sambrook et al., In: Molecular Cloning, A Laboratory Manual, 2 nd Edition, Cold Spring Harbor Press , Cold Spring Harbor, N.Y. (1989) or similar texts.
- a “protein fragment” is a peptide or polypeptide molecule whose amino acid sequence comprises a subset of the amino acid sequence of that protein.
- a protein or fragment thereof that comprises one or more additional peptide regions not derived from that protein is a “fusion” protein.
- Such molecules may be derivatized to contain carbohydrate or other moieties (such as keyhole limpet hemocyanin). Fusion protein or peptide molecules of the invention are preferably produced via recombinant means.
- Another class of agents comprise protein or peptide molecules or fragments or fusions thereof comprising SEQ ID NOs: 2 and 4 and fragments thereof in which conservative, non-essential or non-relevant amino acid residues have been added, replaced or deleted.
- Computerized means for designing modifications in protein structure are known in the art (Dahiyat and Mayo, Science 278:82-87 (1997)).
- a protein of the invention can also be a homolog protein.
- a homolog protein or fragment thereof is a counterpart protein or fragment thereof in a second species.
- a homolog can also be generated by molecular evolution or DNA shuffling techniques, so that the molecule retains at least one functional or structure characteristic of the original (see, for example, U.S. Pat. No. 5,811,238).
- the homolog is selected from the group consisting of alfalfa, Arabidopsis , barley, broccoli, cabbage, canola, citrus, cotton, garlic, oat, onion, flax, an ornamental plant, peanut, pepper, potato, nice, rye, sorghum, strawberry, sugarcane, sugarbeet, tomato, wheat, poplar, pine, fir, eucalyptus, apple, lettuce, lentils, grape, banana, tea, turf grasses, sunflower, soybean, maize, and Phaseolus .
- preferred homologs are selected from canola, maize, Arabidopsis, Brassica campestris, Brassica napus , soybean, crambe, mustard, castor bean, peanut, sesame, cottonseed, linseed, safflower, oil palm, flax, and sunflower.
- the homolog is selected from the group consisting of canola, maize, Arabidopsis, Brassica campestris, Brassica napus , soybean, sunflower, safflower, oil palms, and peanut.
- the homolog is soybean.
- the homolog is canola.
- the homolog is Brassica napus.
- nucleic acid molecules of the present invention or complements and fragments of either can be utilized to obtain such homologs.
- Agents of the invention include proteins and fragments thereof comprising at least about a contiguous 10 amino acid region preferably comprising at least about a contiguous 20 amino acid region, even more preferably comprising at least a contiguous 25, 35, 50, 75 or 100 amino acid region of a protein of the present invention.
- the proteins of the present invention include between about 10 and about 25 contiguous amino acid region, more preferably between about 20 and about 50 contiguous amino acid region, and even more preferably between about 40 and about 80 contiguous amino acid region.
- Exogenous genetic material may be transferred into a plant cell and the plant cell regenerated into a whole, fertile or sterile plant.
- Exogenous genetic material is any genetic material, whether naturally occurring or otherwise, from any source that is capable of being inserted into any organism.
- the exogenous genetic material encodes a bifunctional prephenate dehydrogenase or fragments thereof, more preferably a. bifunctional prephenate dehydrogenase from a prokaryotic organism, and even more preferably a bifunctional prephenate dehydrogenase from Erwinia herbicola or Escherichia coli .
- the exogenous genetic material includes a nucleic acid molecule of the present invention, and preferably a nucleic acid molecule having a sequence selected from the group consisting of SEQ ID NOs: 1 and 3, complements thereof, and fragments of either.
- the exogenous genetic material includes a nucleic acid molecule of the present invention, preferably a nucleic acid encoding a protein or fragment thereof having phytyl prenyltransferase activity.
- exogenous genetic material comprising a TyrA homolog or fragment thereof is introduced into a plant with one or more additional genes.
- preferred combinations of genes include two or more of the following genes: tyrA, slr1736, ATPT2, dxs, dxr, GGH, GGPPS, HPPD, MT1, TMT2, GMT, AANT1, slr 1737, and an antisense construct for homogentisic acid dioxygenase (Krindl et al., Seed Sci. Res. 1:209:219 (1991); Keegstra, Cell 56(2):247-53 (1989); Nawrath, et al., Proc. Natl. Acad. Sci.
- nucleic acid construct or constructs encode, in addition to tyrA, HPPD and either slr1736 or ATPT2.
- one or more of the gene products can be directed to the plastid by the use of a plastid targeting sequence.
- one or more of the gene products can be localized in the cytoplasm.
- Such genes can be introduced, for example, with the TyrA homolog or fragment thereof on a single construct, introduced on different constructs but the same transformation event or introduced into separate plants followed by one or more crosses to generate the desired combination of genes.
- a preferred promoter is a napin promoter and a preferred plastid targeting sequence is a CTP1 sequence.
- Such genetic material may be transferred into either monocotyledons and dicotyledons including, but not limited to canola, maize, soybean, Arabidopsis phaseolus, peanut, alfalfa, wheat, rice, oat, sorghum, rye, tritordeum, millet, fescue, perennial ryegrass, sugarcane, cranberry, papaya, banana, safflower, oil palms, flax, muskmelon, apple, cucumber, dendrobium, gladiolus, chrysanthemum, liliacea, cotton, eucalyptus, sunflower, Brassica campestris, Brassica napus , turfgrass, sugarbeet, coffee and dioscorea (Christou, In: Particle Bombardment for Genetic Engineering of Plants , Biotechnology Intelligence Unit.
- the genetic material is transferred into canola.
- the genetic material is transferred into Brassica napus .
- the genetic material is transferred into soybean.
- Transfer of a nucleic acid that encodes a protein can result in expression or overexpression of that protein in a transformed cell or transgenic plant.
- One or more of the proteins or fragments thereof encoded by nucleic acid molecules of the invention may be overexpressed in a transformed cell or transformed plant. Such expression or overexpression may be the result of transient or stable transfer of the exogenous genetic material.
- expression or overexpression of a protein or fragment thereof of the present invention in a plant provides in that plant, relative to an untransformed plant with a similar genetic background, an increased level of tocotrienols.
- expression or overexpression of a protein or fragment thereof of the present invention in a plant provides in that plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols.
- overexpression of a protein or fragment thereof of the present invention in a plant provides in that plant, relative to an untransformed plant with a similar genetic background, an increased level of ⁇ -tocopherols.
- overexpression of a protein or fragment thereof of the present invention in a plant provides in that plant, relative to an untransformed plant with a similar genetic background, an increased level of ⁇ -tocopherols.
- overexpression of a protein or fragment thereof of the present invention in a plant provides in that plant, relative to an untransformed plant with a similar genetic background, an increased level of homogentesic acid
- overexpression of a protein or fragment thereof of the present invention in a plant provides in that plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols or plastoquinones.
- the levels of one or more products of the tocopherol biosynthesis pathway are increased by 10%, or more preferably 25%, 50%, 100%, 200%, 250%, 1,000%, 2,000%, or 2,500%.
- the levels of products may be increased throughout an organism such as a plant or localized in one or more specific organs or tissues of the organism.
- the levels of products may be increased in one or more of the tissues and organs of a plant include without limitation: roots, tubers, stems, leaves, stalks, fruit, berries, nuts, bark, pods, seeds and flowers.
- overexpression of a protein or fragment thereof of the present invention in a plant provides in that plant, or a tissue of that plant, relative to an untransformed plant or plant tissue, with a similar genetic background, an increased level of prephenate dehydrogenase protein.
- overexpression of a protein or fragment thereof of the present invention in a transformed plant may provide tolerance to a variety of stress, e.g. oxidative stress tolerance such as to oxygen or ozone, UV tolerance, cold tolerance, or fungal/microbial pathogen tolerance.
- stress e.g. oxidative stress tolerance such as to oxygen or ozone, UV tolerance, cold tolerance, or fungal/microbial pathogen tolerance.
- a tolerance or resistance to stress is determined by the ability of a plant, when challenged by a stress such as cold to produce a plant having a higher yield than one without such tolerance or resistance to stress.
- the tolerance or resistance to stress is measured relative to a plant with a similar genetic background to the tolerant or resistance plant except that the plant expresses or over expresses a protein or fragment thereof of the present invention.
- Exogenous genetic material may be transferred into a host cell by the use of a DNA vector or construct designed for such a purpose. Design of such a vector is generally within the skill of the art ( See, Plant Molecular Biology: A Laboratory Manual , Clark (ed.), Springer, New York (1997)).
- a single gene sequence selected from the group consisting of tyrA, slr1736, ATPT2, dxs, dxr, GGH, GGPPS, HPPD, MT1, TMT2, GMT, AANT1, slr 1737, and an antisense construct for homogentisic acid dioxygenase can be transferred into the desired target plant.
- the nucleic acid construct or constructs encode, in addition to tyrA, HPPD and either slr1736 or ATPT2.
- Target plants expressing the desired activity from the transferred gene sequence can be subject to one or more crosses with plants having been transformed with one or more other gene sequences selected from the group consisting of tyrA, slr1736, ATPT2, dxs, dxr, GGH, GGPPS, HPPD, MT1, TMT2, GMT, AANT1, slr 1737, and an antisense construct for homogentisic acid dioxygenase in order to obtain plants expressing two or more of the desired activities from the transferred gene sequence.
- the nucleic acid construct or constructs encode, in addition to tyrA, HPPD and either slr1736 or ATPT2.
- DNA vector constructs may be multiple gene constructs that comprise two or more gene sequences selected from the group consisting of tyrA, slr1736, ATPT2, dxs, dxr, GGH, GGPPS, HPPD, MT1, TMT2, GMT, AANT1, slr 1737, and an antisense construct for homogentisic acid dioxygenase, such that transformation with a single DNA vector construct will result in the expression of the two or more of the gene sequences.
- the nucleic acid construct or constructs encode, in addition to tyrA, HPPD and either slr1736 or ATPT2.
- a construct or vector may include a plant promoter to express the protein or protein fragment of choice.
- any nucleic acid molecules described herein can be operably linked to a promoter region which functions in a plant cell to cause the production of an mRNA molecule.
- any promoter that functions in a plant cell to cause the production of an mRNA molecule such as those promoters described herein, without limitation, can be used.
- the promoter is a plant promoter.
- NOS nopaline synthase
- OCS octopine synthase
- CaMV cauliflower mosaic virus
- promoters utilized For the purpose of expression in source tissues of the plant, such as the leaf, seed, root or stem, it is preferred that the promoters utilized have relatively high expression in these specific tissues. Tissue-specific expression of a protein of the present invention is a particularly preferred embodiment. For this purpose, one may choose from a number of promoters for genes with tissue- or cell-specific or enhanced expression. Examples of such promoters reported in the literature include the chloroplast glutamine synthetase GS2 promoter from pea (Edwards et al., Proc. Natl. Acad. Sci .
- RbcS ribulose-1,5-bisphosphate carboxylase
- promoters for the thylakoid membrane proteins from spinach psaD, psaF, psaE, PC, FNR, atpC, atpD, cab, rbcS.
- Other promoters for the chlorophyll a/b-binding proteins may also be utilized in the invention, such as the promoters for LhcB gene and PsbP gene from white mustard (Sinapis alba; Kretsch et al., Plant Mol. Biol. 28:219-229 (1995)).
- the promoters utilized in the invention have relatively high expression in these specific tissues.
- a number of promoters for genes with tuber-specific or tuber-enhanced expression are known, including the class I patatin promoter (Bevan et al., EMBO J. 8:1899-1906 (1986); Jefferson et al., Plant Mol. Biol.
- the promoter for the potato tuber ADPGPP genes both the large and small subunits, the sucrose synthase promoter (Salanoubat and Belliard, Gene 60:47-56 (1987), Salanoubat and Belliard, Gene 84:181-185 (1989)), the promoter for the major tuber proteins including the 22 kd protein complexes and protease inhibitors (Hannapel, Plant Physiol. 101:703-704 (1993)), the promoter for the granule-bound starch synthase gene (GBSS) (Visser et al., Plant Mol. Biol.
- promoters can also be used to express a protein or fragment thereof in specific tissues, such as seeds or fruits.
- the promoter used is a seed specific promoter.
- promoters include the 5′ regulatory regions from such genes as napin (Krindl et al., Seed Sci. Res. 1:209:219 (1991)), phaseolin (Bustos, et al., Plant Cell, 1(9):839-853 (1989)), soybean trypsin inhibitor (Riggs, et al., Plant Cell 1(6):609-621 (1989)), ACP (Baerson, et al., Plant Mol.
- zeins are a group of storage proteins found in maize endosperm. Genomic clones for zein genes have been isolated (Pedersen et al., Cell 29:1015-1026 (1982), and Russell et al., Transgenic Res. 6(2): 157-168) and the promoters from these clones, including the 15 kD, 16 kD, 19 kD, 22 kD, 27 kD and genes, could also be used.
- promoters known to function include the promoters for the following genes: waxy, Brittle, Shrunken 2, Branching enzymes I and II, starch synthases, debranching enzymes, oleosins, glutelins and sucrose synthases.
- a particularly preferred promoter for maize endosperm expression is the promoter for the glutelin gene from rice, more particularly the Osgt-1 promoter (Zheng et al., Mol Cell Biol. 13:5829-5842 (1993)).
- promoters suitable for expression in wheat include those promoters for the ADPglucose pyrosynthase (ADPGPP) subunits, the granule bound and other starch synthase, the branching and debranching enzymes, the embryogenesis-abundant proteins, the gliadins and the glutenins.
- promoters in rice include those promoters for the ADPGPP subunits, the granule bound and other starch synthase, the branching enzymes, the debranching enzymes, sucrose synthases and the glutelins.
- a particularly preferred promoter is the promoter for rice glutelin, Osgt-1.
- promoters for barley include those for the ADPGPP subunits, the granule bound and other starch synthase, the branching enzymes, the debranching enzymes, sucrose synthases, the hordeins, the embryo globulins and the aleurone specific proteins.
- a preferred promoter for expression in the seed is a napin promoter.
- Root specific promoters may also be used.
- An example of such a promoter is the promoter for the acid chitinase gene (Samac et al., Plant Mol. Biol. 25:587-596 (1994)). Expression in root tissue could also be accomplished by utilizing the root specific subdomains of the CaMV35S promoter that have been identified (Lam et al., Proc. Natl. Acad. Sci . ( U.S.A. ) 86:7890-7894 (1989)).
- Other root cell specific promoters include those reported by Conkling et al. (Conkling et al., Plant Physiol. 93:1203-1211 (1990)).
- Constructs or vectors may also include, with the coding region of interest, a nucleic acid sequence that acts, in whole or in part, to terminate transcription of that region.
- a nucleic acid sequence that acts, in whole or in part, to terminate transcription of that region.
- Tr7 3′ sequence and the NOS 3′ sequence (Ingelbrecht et al., The Plant Cell 1:671-680 (1989); Bevan et al., Nucleic Acids Res. 11:369-385 (1983)).
- Regulatory transcript termination regions can be provided in plant expression constructs of this invention as well.
- Transcript termination regions can be provided by the DNA sequence encoding the gene of interest or a convenient transcription termination region derived from a different gene source, for example, the transcript termination region which is naturally associated with the transcript initiation region. The skilled artisan will recognize that any convenient transcript termination region which is capable of terminating transcription in a plant cell can be employed in the constructs of the present invention.
- a vector or construct may also include regulatory elements.
- regulatory elements include the Adh intron 1 (Callis et al., Genes and Develop. 1:1183-1200 (1987)), the sucrose synthase intron (Vasil et al., Plant Physiol. 91:1575-1579 (1989)) and the TMV omega element (Gallie et al., The Plant Cell 1:301-311 (1989)). These and other regulatory elements may be included when appropriate.
- a vector or construct may also include a selectable marker.
- Selectable markers may also be used to select for plants or plant cells that contain the exogenous genetic material. Examples of such include, but are not limited to: a neo gene (Potrykus et al., Mol. Gen. Genet. 199:183-188 (1985)), which codes for kanamycin resistance and can be selected for using kanamycin, RptII, G418, hpt etc.; a bar gene which codes for bialaphos resistance; a mutant EPSP synthase gene (Hinchee et al., Bio/Technology 6:915-922 (1988); Reynaerts et al., Selectable and Screenable Markers.
- a vector or construct may also include a transit peptide.
- DNA constructs could contain one or more 5′ non-translated leader sequences which may serve to enhance expression of the gene products from the resulting mRNA transcripts. Such sequences may be derived from the promoter selected to express the gene or can be specifically modified to increase translation of the mRNA. Such regions may also be obtained from viral RNAs, from suitable eukaryotic genes, or from a synthetic gene sequence. For a review of optimizing expression of transgenes, see Koziel et al., Plant Mol. Biol. 32:393-405 (1996).
- a preferred transit peptide is CTP1. In another embodiment the transit peptide is a CTP2 sequence.
- a vector or construct may also include a screenable marker.
- Screenable markers may be used to monitor expression.
- Exemplary screenable markers include: a ⁇ -glucuronidase or uidA gene (GUS) which encodes an enzyme for which various chromogenic substrates are known (Jefferson, Plant Mol. Biol, Rep. 5:387-405 (1987); Jefferson et al., EMBO J.
- tyrosinase gene (Katz et al., J. Gen. Microbiol. 129:2703-2714 (1983)) which encodes an enzyme capable of oxidizing tyrosine to DOPA and dopaquinone which in turn condenses to melanin; an ⁇ -galactosidase, which will turn a chromogenic ⁇ -galactose substrate.
- selectable or screenable marker genes are also genes which encode a secretable marker whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers which encode a secretable antigen that can be identified by antibody interaction, or even secretable enzymes which can be detected catalytically. Secretable proteins fall into a number of classes, including small, diffusible proteins which are detectable, (e.g.
- nucleic acid molecules may be introduced into a cell, such as by Agrobacterium infection or direct delivery of nucleic acid molecules such as, for example, by PEG-mediated transformation, by electroporation or by acceleration of DNA coated particles, etc (Potrykus, Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:205-225 (1991); Vasil, Plant Mol. Biol. 25:925-937 (1994)).
- electroporation has been used to transform maize protoplasts (Fromm et al., Nature 312:791-793 (1986)).
- vector systems suitable for introducing transforming DNA into a host plant cell include but are not limited to binary artificial chromosome (BIBAC) vectors (Hamilton et al., Gene 200:107-116 (1997)); and transfection with RNA viral vectors (Della-Cioppa et al., Ann. N.Y. Acad. Sci . (1996), 792 (Engineering Plants for Commercial Products and Applications), 57-61). Additional vector systems also include plant selectable YAC vectors such as those described in Mullen et al., Molecular Breeding 4:449-457 (1988).
- BIBAC binary artificial chromosome
- Acceleration methods include, for example, microprojectile bombardment and the like.
- microprojectile bombardment One example of a method for delivering transforming nucleic acid molecules into plant cells is microprojectile bombardment. This method has been reviewed by Yang and Christou (eds.), Particle Bombardment Technology for Gene Transfer , Oxford Press, Oxford, England (1994)).
- Non-biological particles that may be coated with nucleic acids and delivered into cells by a propelling force.
- Exemplary particles include those comprised of tungsten, gold, platinum and the like.
- a particular advantage of microprojectile bombardment in addition to it being an effective means of reproducibly transforming monocots, is that neither the isolation of protoplasts (Cristou et al., Plant Physiol. 87:671-674 (1988)) nor the susceptibility to Agrobacterium infection is required.
- An illustrative embodiment of a method for delivering DNA into maize cells by acceleration is a biolistics ⁇ -particle delivery system, which can be used to propel particles coated with DNA through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with maize cells cultured in suspension.
- Gordon-Kamm et al. describes the basic procedure for coating tungsten particles with DNA (Gordon-Kamm et al., Plant Cell 2:603-618 (1990)).
- the screen disperses the tungsten nucleic acid particles so that they are not delivered to the recipient cells in large aggregates.
- a particle delivery system suitable for use with the invention is the helium acceleration PDS-1000/He gun, which is available from Bio-Rad Laboratories (Bio-Rad, Hercules, Calif.)(Sanford et al., Technique 3:3-16 (1991)).
- cells in suspension may be concentrated on filters.
- Filters containing the cells to be bombarded are positioned at an appropriate distance below the microprojectile stopping plate. If desired, one or more screens are also positioned between the gun and the cells to be bombarded.
- immature embryos or other target cells may be arranged on solid culture medium.
- the cells to be bombarded are positioned at an appropriate distance below the microprojectile stopping plate.
- one or more screens are also positioned between the acceleration device and the cells to be bombarded.
- bombardment transformation one may optimize the pre-bombardment culturing conditions and the bombardment parameters to yield the maximum numbers of stable transformants.
- Both the physical and biological parameters for bombardment are important in this technology. Physical factors are those that involve manipulating the DNA/microprojectile precipitate or those that affect the flight and velocity of either the macro- or microprojectiles.
- Biological factors include all steps involved in manipulation of cells before and immediately after bombardment, the osmotic adjustment of target cells to help alleviate the trauma associated with bombardment and also the nature of the transforming DNA, such as linearized DNA or intact supercoiled plasmids. It is believed that pre-bombardment manipulations are especially important for successful transformation of immature embryos.
- plastids can be stably transformed.
- Methods disclosed for plastid transformation in higher plants include the particle gun delivery of DNA containing a selectable marker and targeting of the DNA to the plastid genome through homologous recombination (Svab et al., Proc. Natl. Acad. Sci . ( U.S.A. ) 87:8526-8530 (1990); Svab and Maliga, Proc. Natl. Acad. Sci . ( U.S.A .) 90:913-917 (1993); Staub and Maliga, EMBO J. 12:601-606 (1993); U.S. Pat. Nos. 5,451,513 and 5,545,818).
- the execution of other routine adjustments will be known to those of skill in the art in light of the present disclosure.
- Agrobacterium -mediated transfer is a widely applicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast.
- the use of Agrobacterium -mediated plant integrating vectors to introduce DNA into plant cells is well known in the art. See, for example the methods described by Fraley et al., Bio/Technology 3:629-635 (1985) and Rogers et al., Methods Enzymol. 153:253-277 (1987). Further, the integration of the Ti-DNA is a relatively precise process resulting in few rearrangements.
- the region of DNA to be transferred is defined by the border sequences and intervening DNA is usually inserted into the plant genome as described (Seemann et al., Mol. Gen. Genet. 205:34 (1986)).
- Modem Agrobacterium transformation vectors are capable of replication in E. coli as well as Agrobacterium , allowing for convenient manipulations as described (Klee et al., In: Plant DNA Infectious Agents , Hohn and Schell (eds.), Springer-Verlag, New York, pp. 179-203 (1985)). Moreover, technological advances in vectors for Agrobacterium -mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate construction of vectors capable of expressing various polypeptide coding genes.
- the vectors described have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes and are suitable for present purposes (Rogers et al., Methods Enzymol. 153:253-277 (1987)).
- Agrobacterium containing both armed and disarmed Ti genes can be used for the transformations. In those plant strains where Agrobacterium -mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene transfer.
- a transgenic plant formed using Agrobacterium transformation methods typically contains a single gene on one chromosome. Such transgenic plants can be referred to as being heterozygous for the added gene. More preferred is a transgenic plant that is homozygous for the added structural gene; i.e., a transgenic plant that contains two added genes, one gene at the same locus on each chromosome of a chromosome pair.
- a homozygous transgenic plant can be obtained by sexually mating (selling) an independent segregant, transgenic plant that contains a single added gene, germinating some of the seed produced and analyzing the resulting plants produced for the gene of interest.
- transgenic plants can also be mated to produce offspring that contain two independently segregating, exogenous genes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous genes that encode a polypeptide of interest. Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated, as is vegetative propagation.
- Transformation of plant protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation and combinations of these treatments (See, for example, Potrykus et al., Mol. Gen. Genet. 205:193-200 (1986); Lorz et al., Mol. Gen. Genet. 199:178 (1985); Fromm et al., Nature 319:791 (1986); Uchimiya et al., Mol. Gen. Genet. 204:204 (1986); Marcotte et al., Nature 335:454-457 (1988)).
- DNA is carried through the cell wall and into the cytoplasm on the surface of small metal particles as described (Klein et al., Nature 328:70 (1987); Klein et al., Proc. Natl. Acad. Sci . ( U.S.A .) 85:8502-8505 (1988); McCabe et al., Bio/Technology 6:923 (1988)).
- the metal particles penetrate through several layers of cells and thus allow the transformation of cells within tissue explants.
- Other methods of cell transformation can also be used and include but are not limited to introduction of DNA into plants by direct DNA transfer into pollen (Hess et al., Intern Rev. Cytol. 107:367 (1987); Luo et al., Plant Mol. Biol. Reporter 6:165 (1988)), by direct injection of DNA into reproductive organs of a plant (Pena et al, Nature 325:274 (1987)), or by direct injection of DNA into the cells of immature embryos followed by the rehydration of desiccated embryos (Neuhaus et al., Theor. Appl. Genet. 75:30 (1987)).
- This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
- the development or regeneration of plants containing the foreign, exogenous gene that encodes a protein of interest is well known in the art.
- the regenerated plants are self-pollinated to provide homozygous transgenic plants. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants.
- a transgenic plant of the invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.
- Transformation of monocotyledons using electroporation, particle bombardment and Agrobacterium have also been reported. Transformation and plant regeneration have been achieved in asparagus (Bytebier et al., Proc. Natl. Acad. Sci . ( USA ) 84:5354 (1987)); barley (Wan and Lemaux, Plant Physiol 104:37 (1994)); maize (Rhodes et al., Science 240:204 (1988); Gordon-Kamm et al., Plant Cell 2:603-618 (1990); Fromm et al., Bio/Technology 8:833 (1990); Koziel et al., Bio/Technology 11:194 (1993); Armstrong et al., Crop Science 35:550-557 (1995)); oat (Somers et al., Bio/Technology 10:1589 (1992)); orchard grass (Hom et al., Plant Cell Rep.
- nucleic acid molecules of the invention may be introduced into a plant cell in a permanent or transient manner in combination with other genetic elements such as vectors, promoters, enhancers, etc. Further, any of the nucleic acid molecules of the invention may be introduced into a plant cell in a manner that allows for expression or overexpression of the protein or fragment thereof encoded by the nucleic acid molecule.
- Cosuppression is the reduction in expression levels, usually at the level of RNA, of a particular endogenous gene or gene family by the expression of a homologous sense construct that is capable of transcribing mRNA of the same strandedness as the transcript of the endogenous gene (Napoli et al., Plant Cell 2:279-289 (1990); van der Krol et al., Plant Cell 2:291-299 (1990)). Cosuppression may result from stable transformation with a single copy nucleic acid molecule that is homologous to a nucleic acid sequence found with the cell (Prolls and Meyer, Plant J.
- nucleic acids of the invention may be introduced into a plant cell and transcribed using an appropriate promoter with such transcription resulting in the cosuppression of an endogenous protein.
- Antisense approaches are a way of preventing or reducing gene function by targeting the genetic material (Mol et al., FEBS Lett. 268:427-430 (1990)).
- the objective of the antisense approach is to use a sequence complementary to the target gene to block its expression and create a mutant cell line or organism in which the level of a single chosen protein is selectively reduced or abolished.
- Antisense techniques have several advantages over other ‘reverse genetic’ approaches. The site of inactivation and its developmental effect can be manipulated by the choice of promoter for antisense genes or by the timing of external application or microinjection.
- Antisense can manipulate its specificity by selecting either unique regions of the target gene or regions where it shares homology to other related genes (Hiatt et al., In: Genetic Engineering , Setlow (ed.), Vol. 11, New York: Plenum 49-63 (1989)).
- Antisense RNA techniques involve introduction of RNA that is complementary to the target mRNA into cells, which results in specific RNA:RNA duplexes being formed by base pairing between the antisense substrate and the target mRNA (Green et al., Annu. Rev. Biochem. 55:569-597 (1986)).
- the process involves the introduction and expression of an antisense gene sequence.
- Such a sequence is one in which part or all of the normal gene sequences are placed under a promoter in inverted orientation so that the ‘wrong’ or complementary strand is transcribed into a noncoding antisense RNA that hybridizes with the target mRNA and interferes with its expression (Takayama and Inouye, Crit. Rev. Biochem. Mol. Biol.
- An antisense vector is constructed by standard procedures and introduced into cells by transformation, transfection, electroporation, microinjection, infection, etc. The type of transformation and choice of vector will determine whether expression is transient or stable.
- the promoter used for the antisense gene may influence the level, timing, tissue, specificity, or inducibility of the antisense inhibition.
- the activity of a protein in a plant cell may be reduced or depressed by growing a transformed plant cell containing a nucleic acid molecule whose non-transcribed strand encodes a protein or fragment thereof.
- Posttranscriptional gene silencing can result in virus immunity or gene silencing in plants.
- PTGS is induced by dsRNA and is mediated by an RNA-dependent RNA polymerase, present in the cytoplasm, that requires a dsRNA template.
- the dsRNA is formed by hybridization of complementary transgene mRNAs or complementary regions of the same transcript. Duplex formation can be accomplished by using transcripts from one sense gene and one antisense gene colocated in the plant genome, a single transcript that has self-complementarity, or sense and antisense transcripts from genes brought together by crossing.
- the dsRNA-dependent RNA polymerase makes a complementary strand from the transgene mRNA and RNAse molecules attach to this complementary strand (cRNA).
- cRNA-RNase molecules hybridize to the endogene mRNA and cleave the single-stranded RNA adjacent to the hybrid.
- the cleaved single-stranded RNAs are further degraded by other host RNases because one will lack a capped 5′ end and the other will lack a poly(A) tail (Waterhouse et al., PNAS 95: 13959-13964 (1998)).
- nucleic acids of the invention may be introduced into a plant cell and transcribed using an appropriate promoter with such transcription resulting in the postranscriptional gene silencing of an endogenous transcript.
- Antibodies have been expressed in plants (Hiatt et al., Nature 342:76-78 (1989); Conrad and Fielder, Plant Mol. Biol. 26:1023-1030 (1994)). Cytoplasmic expression of a scFv (single-chain Fv antibody) has been reported to delay infection by artichoke mottled crinkle virus. Transgenic plants that express antibodies directed against endogenous proteins may exhibit a physiological effect (Philips et al., EMBO J. 16:4489-4496 (1997); Marion-Poll, Trends in Plant Science 2:447-448 (1997)). For example, expressed anti-abscisic antibodies have been reported to result in a general perturbation of seed development (Philips et al., EMBO J. 16: 4489-4496 (1997)).
- Antibodies that are catalytic may also be expressed in plants (abzymes).
- abzymes The principle behind abzymes is that since antibodies may be raised against many molecules, this recognition ability can be directed toward generating antibodies that bind transition states to force a chemical reaction forward (Persidas, Nature Biotechnology 15:1313-1315 (1997); Baca et al., Ann. Rev. Biophys. Biomol. Struct. 26:461-493 (1997)).
- the catalytic abilities of abzymes may be enhanced by site directed mutagenesis. Examples of abzymes are, for example, set forth in U.S. Pat. No. 5,658,753; U.S. Pat. No. 5,632,990; U.S. Pat. No. 5,631,137; U.S. Pat. No.
- any of the antibodies of the invention may be expressed in plants and that such expression can result in a physiological effect. It is also understood that any of the expressed antibodies may be catalytic.
- Alterations of plant phenotypes of the present invention can be relative to a plant having a similar genetic background that lacks the introduced nucleic acid of interest.
- a similar genetic background is a background where the organisms being compared share 50% or greater of their nuclear genetic material.
- a similar genetic background is a background where the organisms being compared share 75% or greater, even more preferably 90% or greater of their nuclear genetic material.
- a similar genetic background is a background where the organisms being compared are plants, and the plants are isogenic except for any genetic material originally introduced using plant transformation techniques.
- the present invention also provides for parts of the plants, particularly reproductive or storage parts, of the present invention.
- Plant parts include seed, endosperm, ovule and pollen.
- the plant part is a seed.
- the seed is a constituent of animal feed.
- the plant part is a fruit, more preferably a fruit with enhanced shelf life.
- the fruit has increased levels of a tocopherol.
- the present invention also provides a container of over 10,000, more preferably 20,000, and even more preferably 40,000 seeds where over 10%, more preferably 25%, more preferably 50% and even more preferably 75% or 90% of the seeds are seeds derived from a plant of the present invention.
- the present invention also provides a container of over 10 kg, more preferably 25 kg, and even more preferably 50 kg seeds where over 10%, more preferably 25%, more preferably 50% and even more preferably 75% or 90% of the seeds are seeds derived from a plant of the present invention.
- any of the plants or parts thereof of the present invention may be processed to produce a feed, meal, protein or oil preparation.
- a particularly preferred plant part for this purpose is a seed.
- the feed, meal, protein or oil preparation is designed for ruminant animals.
- Methods to produce feed, meal, protein and oil preparations are known in the art. See, for example, U.S. Pat. Nos. 4,957,748, 5,100,679, 5,219,596, 5,936,069, 6,005,076, 6,146,669, and 6,156,227.
- the protein preparation is a high protein preparation.
- Such a high protein preparation preferably has a protein content of greater than 5% w/v, more preferably 10% w/v, and even more preferably 15% w/v.
- the oil preparation is a high oil preparation with an oil content derived from a plant or part thereof of the present invention of greater than 5% w/v, more preferably 10% w/v, and even more preferably 15% w/v.
- the oil preparation is a liquid and of a volume greater than 1, 5, 10 or 50 liters.
- the present invention provides for oil produced from plants of the present invention or generated by a method of the present invention. Such oil may be a minor or major component of any resultant product. Moreover, such oil may be blended with other oils.
- the oil produced from plants of the present invention or generated by a method of the present invention constitutes greater than 0.5%, 1%, 5%, 10%, 25%, 50%, 75% or 90% by volume or weight of the oil component of any product.
- the oil preparation may be blended and can constitute greater than 10%, 25%, 35%, 50% or 75% of the blend by volume.
- Oil produced from a plant of the present invention can be admixed with one or more organic solvents or petroleum distillates.
- Plants of the present invention can be part of or generated from a breeding program.
- the choice of breeding method depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of cultivar used commercially (e.g., F 1 hybrid cultivar, pureline cultivar, etc). Selected, non-limiting approaches, for breeding the plants of the present invention are set forth below.
- a breeding program can be enhanced using marker assisted selection of the progeny of any cross. It is further understood that any commercial and non-commercial cultivars can be utilized in a breeding program. Factors such as, for example, emergence vigor, vegetative vigor, stress tolerance, disease resistance, branching, flowering, seed set, seed size, seed density, standability, and threshability etc. will generally dictate the choice.
- breeding method can be used to transfer one or a few favorable genes for a highly heritable trait into a desirable cultivar. This approach has been used extensively for breeding disease-resistant cultivars.
- Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes. The use of recurrent selection in self-pollinating crops depends on the ease of pollination, the frequency of successful hybrids from each pollination, and the number of hybrid offspring from each successful cross.
- Breeding lines can be tested and compared to appropriate standards in environments representative of the commercial target area(s) for two or more generations. The best lines are candidates for new commercial cultivars; those still deficient in traits may be used as parents to produce new populations for further selection.
- One method of identifying a superior plant is to observe its performance relative to other experimental plants and to a widely grown standard cultivar. If a single observation is inconclusive, replicated observations can provide a better estimate of its genetic worth. A breeder can select and cross two or more parental lines, followed by repeated selfing and selection, producing many new genetic combinations.
- hybrid seed can be produced by manual crosses between selected male-fertile parents or by using male sterility systems.
- Hybrids are selected for certain single gene traits such as pod color, flower color, seed yield, pubescence color, or herbicide resistance, which indicate that the seed is truly a hybrid. Additional data on parental lines, as well as the phenotype of the hybrid, influence the breeder's decision whether to continue with the specific hybrid cross.
- Pedigree breeding and recurrent selection breeding methods can be used to develop cultivars from breeding populations. Breeding programs combine desirable traits from two or more cultivars or various broad-based sources into breeding pools from which cultivars are developed by selfing and selection of desired phenotypes. New cultivars can be evaluated to determine which have commercial potential.
- Pedigree breeding is used commonly for the improvement of self-pollinating crops. Two parents who possess favorable, complementary traits are crossed to produce an F 1 . A F 2 population is produced by selfing one or several F 1 's. Selection of the best individuals from the best families is carried out. Replicated testing of families can begin in the F 4 generation to improve the effectiveness of selection for traits with low heritability. At an advanced stage of inbreeding (i.e., F 6 and F 7 ), the best lines or mixtures of phenotypically similar lines are tested for potential release as new cultivars.
- Backcross breeding has been used to transfer genes for a simply inherited, highly heritable trait into a desirable homozygous cultivar or inbred line, which is the recurrent parent.
- the source of the trait to be transferred is called the donor parent.
- the resulting plant is expected to have the attributes of the recurrent parent (e.g., cultivar) and the desirable trait transferred from the donor parent.
- individuals possessing the phenotype of the donor parent are selected and repeatedly crossed (backcrossed) to the recurrent parent.
- the resulting parent is expected to have the attributes of the recurrent parent (e.g., cultivar) and the desirable trait transferred from the donor parent.
- the single-seed descent procedure in the strict sense refers to planting a segregating population, harvesting a sample of one seed per plant, and using the one-seed sample to plant the next generation.
- the plants from which lines are derived will each trace to different F 2 individuals.
- the number of plants in a population declines each generation due to failure of some seeds to germinate or some plants to produce at least one seed. As a result, not all of the F 2 plants originally sampled in the population will be represented by a progeny when generation advance is completed.
- breeders commonly harvest one or more pods from each plant in a population and thresh them together to form a bulk. Part of the bulk is used to plant the next generation and part is put in reserve.
- the procedure has been referred to as modified single-seed descent or the pod-bulk technique.
- the multiple-seed procedure has been used to save labor at harvest. It is considerably faster to thresh pods with a machine than to remove one seed from each by hand for the single-seed procedure.
- the multiple-seed procedure also makes it possible to plant the same number of seed of a population each generation of inbreeding.
- a transgenic plant of the present invention may also be reproduced using apomixis.
- Apomixis is a genetically controlled method of reproduction in plants where the embryo is formed without union of an egg and a sperm.
- pseudogamy or fertilization of the polar nuclei to produce endosperm is necessary for seed viability.
- a nurse cultivar can be used as a pollen source for endosperm formation in seeds.
- the nurse cultivar does not affect the genetics of the aposporous apomictic cultivar since the unreduced egg of the cultivar develops parthenogenetically, but makes possible endosperm production.
- Apomixis is economically important, especially in transgenic plants, because it causes any genotype, no matter how heterozygous, to breed true.
- heterozygous transgenic plants can maintain their genetic fidelity throughout repeated life cycles. Methods for the production of apomictic plants are known in the art. See, U.S. Pat. No. 5,811,636.
- a nucleic acid of the present invention may be introduced into any cell or organism such as a mammalian cell, mammal, fish cell, fish, bird cell, bird, algae cell, algae, fungal cell, fungi, or bacterial cell.
- a protein of the present invention may be produced in an appropriate cell or organism.
- Preferred host and transformants include: fungal cells such as Aspergillus , yeasts, mammals, particularly bovine and porcine, insects, bacteria, and algae. Methods to transform such cells or organisms are known in the art (EP 0 238 023; Yelton et al., Proc. Natl. Acad. Sci .
- overexpression of a protein or fragment thereof of the present invention in a cell or organism provides in that cell or organism, relative to a cell or organism with a similar genetic background, an increased level of tocotrienols.
- overexpression of a protein or fragment thereof of the present invention in a cell or organism provides in that cell or organism, relative to an untransformed cell or organism with a similar genetic background, an increased level of tocopherols.
- overexpression of a protein or fragment thereof of the present invention in a cell or organism provides in that cell or organism, relative to an untransformed cell or organism with a similar genetic background, an increased level of ⁇ -tocopherols.
- overexpression of a protein or fragment thereof of the present invention in a cell or organism provides in that cell or organism, relative to an untransformed cell or organism with a similar genetic background, an increased level of ⁇ -tocopherols.
- overexpression of a protein or fragment thereof of the present invention in a cell or organism provides in that cell or organism, relative to an untransformed cell or organism with a similar genetic background, an increased level of homogentisic acid.
- overexpression of a protein or fragment thereof of the present invention in a cell or organism provides in that cell or organism, relative to an untransformed cell or organism with a similar genetic background, an increased level of plastoquinols or plastoquinones.
- One aspect of the invention concerns antibodies, single-chain antigen binding molecules, or other proteins that specifically bind to one or more of the protein or peptide molecules of the invention and their homologs, fusions or fragments.
- the antibody specifically binds to a protein having the amino acid sequence set forth in SEQ ID NOs: 2 and 4 or a fragment thereof.
- the antibody specifically binds to a fusion protein comprising an amino acid sequence selected from the amino acid sequence set forth in SEQ ID NOs: 2 or 4 or a fragment thereof.
- the antibody specifically binds to a fusion protein comprising an amino acid sequence selected from the amino acid sequence set forth in SEQ ID NOs: 2 or 4 or a fragment thereof.
- Antibodies of the invention may be used to quantitatively or qualitatively detect the protein or peptide molecules of the invention, or to detect post translational modifications of the proteins.
- an antibody or peptide is said to “specifically bind” to a protein or peptide molecule of the invention if such binding is not competitively inhibited by the presence of non-related molecules.
- Nucleic acid molecules that encode all or part of the protein of the invention can be expressed, via recombinant means, to yield protein or peptides that can in turn be used to elicit antibodies that are capable of binding the expressed protein or peptide. Such antibodies may be used in immunoassays for that protein.
- Such protein-encoding molecules, or their fragments may be a “fusion” molecule (i.e., a part of a larger nucleic acid molecule) such that, upon expression, a fusion protein is produced. It is understood that any of the nucleic acid molecules of the invention may be expressed, via recombinant means, to yield proteins or peptides encoded by these nucleic acid molecules.
- the antibodies that specifically bind proteins and protein fragments of the invention may be polyclonal or monoclonal and may comprise intact immunoglobulins, or antigen binding portions of immunoglobulins fragments (such as (F(ab′), F(ab′) 2 ), or single-chain immunoglobulins producible, for example, via recombinant means. It is understood that practitioners are familiar with the standard resource materials which describe specific conditions and procedures for the construction, manipulation and isolation of antibodies (see, for example, Harlow and Lane, In: Antibodies: A Laboratory Manual , Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1988)).
- antibody molecules or their fragments may be used for diagnostic purposes.
- a ligand group such as biotin
- a detectable marker group such as a fluorescent group, a radioisotope or an enzyme
- the ability to produce antibodies that bind the protein or peptide molecules of the invention permits the identification of mimetic compounds derived from those molecules. These mimetic compounds may contain a fragment of the protein or peptide or merely a structurally similar region and nonetheless exhibits an ability to specifically bind to antibodies directed against that compound.
- Nucleic acid molecules and fragments thereof of the invention may be employed to obtain other nucleic acid molecules from the same species (nucleic acid molecules from maize may be utilized to obtain other nucleic acid molecules from maize).
- Such nucleic acid molecules include the nucleic acid molecules that encode the complete coding sequence of a protein and promoters and flanking sequences of such molecules.
- nucleic acid molecules include nucleic acid molecules that encode for other isozymes or gene family members.
- Such molecules can be readily obtained by using the above-described nucleic acid molecules or fragments thereof to screen cDNA or genomic libraries. Methods for forming such libraries are well known in the art.
- Nucleic acid molecules and fragments thereof of the invention may also be employed to obtain nucleic acid homologs.
- Such homologs include the nucleic acid molecules of plants and other organisms, including bacteria and fungi, including the nucleic acid molecules that encode, in whole or in part, protein homologues of other plant species or other organisms, sequences of genetic elements, such as promoters and transcriptional regulatory elements.
- Such molecules can be readily obtained by using the above-described nucleic acid molecules or fragments thereof to screen cDNA or genomic libraries obtained from such plant species. Methods for forming such libraries are well known in the art.
- Such homolog molecules may differ in their nucleotide sequences from those found in one or more of SEQ ID NOs: 1 and 3 and complements thereof because complete complementarity is not needed for stable hybridization.
- the nucleic acid molecules of the invention therefore also include molecules that, although capable of specifically hybridizing with the nucleic acid molecules may lack “complete complementarity.” Any of a variety of methods may be used to obtain one or more of the above-described nucleic acid molecules (Zamechik et al., Proc. Natl. Acad. Sci . ( U.S.A .) 83:4143-4146 (1986); Goodchild et al., Proc. Natl. Acad. Sci . ( U.S.A.
- the disclosed nucleic acid molecules may be used to define a pair of primers that can be used with the polymerase chain reaction (Mullis et al., Cold Spring Harbor Symp. Quant. Biol. 51:263-273 (1986); Erlich et al., European Patent 50,424; European Patent 84,796; European Patent 258,017; European Patent 237,362; Mullis, European Patent 201,184; Mullis et al., U.S. Pat. No. 4,683,202; Erlich, U.S. Pat. No. 4,582,788; and Saiki et al., U.S. Pat. No. 4,683,194) to amplify and obtain any desired nucleic acid molecule or fragment.
- the polymerase chain reaction Mullis et al., Cold Spring Harbor Symp. Quant. Biol. 51:263-273 (1986); Erlich et al., European Patent 50,424; European Patent 84,796; European Patent 258,017; European
- Promoter sequences and other genetic elements, including but not limited to transcriptional regulatory flanking sequences, associated with one or more of the disclosed nucleic acid sequences can also be obtained using the disclosed nucleic acid sequence provided herein.
- such sequences are obtained by incubating nucleic acid molecules of the present invention with members of genomic libraries and recovering clones that hybridize to such nucleic acid molecules thereof.
- methods of “chromosome walking,” or inverse PCR may be used to obtain such sequences (Frohman et al., Proc. Natl. Acad. Sci . ( U.S.A. ) 85:8998-9002 (1988); Ohara et al., Proc. Natl. Acad. Sci .
- chromosome walking means a process of extending a genetic map by successive hybridization steps.
- the nucleic acid molecules of the invention may be used to isolate promoters of cell enhanced, cell specific, tissue enhanced, tissue specific, developmentally or environmentally regulated expression profiles. Isolation and functional analysis of the 5′ flanking promoter sequences of these genes from genomic libraries, for example, using genomic screening methods and PCR techniques would result in the isolation of useful promoters and transcriptional regulatory elements. These methods are known to those of skill in the art and have been described (See, for example, Birren et al., Genome Analysis: Analyzing DNA, 1, (1997), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). Promoters obtained utilizing the nucleic acid molecules of the invention could also be modified to affect their control characteristics. Examples of such modifications would include but are not limited to enhancer sequences. Such genetic elements could be used to enhance gene expression of new and existing traits for crop improvement.
- nucleic acid molecules of the invention includes nucleic acid molecules that are markers.
- the markers can be used in a number of conventional ways in the field of molecular genetics.
- Such markers include nucleic acid molecules SEQ ID NOs: 1 and 3, complements thereof, and fragments of either that can act as markers and other nucleic acid molecules of the present invention that can act as markers.
- Genetic markers of the invention include “dominant” or “codominant” markers. “Codominant markers” reveal the presence of two or more alleles (two per diploid individual) at a locus. “Dominant markers” reveal the presence of only a single allele per locus. The presence of the dominant marker phenotype (e.g., a band of DNA) is an indication that one allele is in either the homozygous or heterozygous condition. The absence of the dominant marker phenotype (e.g., absence of a DNA band) is merely evidence that “some other” undefined allele is present. In the case of populations where individuals are predominantly homozygous and loci are predominately dimorphic, dominant and codominant markers can be equally valuable.
- Marker molecules can be, for example, capable of detecting polymorphisms such as single nucleotide polymorphisms (SNPs).
- SNPs single nucleotide polymorphisms
- a “polymorphism” is a variation or difference in the sequence of the gene or its flanking regions that arises in some of the members of a species.
- the variant sequence and the “original” sequence co-exist in the species' population. In some instances, such co-existence is in stable or quasi-stable equilibrium.
- a polymorphism is thus said to be “allelic,” in that, due to the existence of the polymorphism, some members of a population may have the original sequence (i.e., the original “allele”) whereas other members may have the variant sequence (i.e., the variant “allele”). In the simplest case, only one variant sequence may exist and the polymorphism is thus said to be di-allelic. In other cases, the species' population may contain multiple alleles and the polymorphism is termed tri-allelic, etc.
- a single gene may have multiple different unrelated polymorphisms. For example, it may have a di-allelic polymorphism at one site and a multi-allelic polymorphism at another site.
- the variation that defines the polymorphism may range from a single nucleotide variation to the insertion or deletion of extended regions within a gene.
- the DNA sequence variations are in regions of the genome that are characterized by short tandem repeats (STRs) that include tandem di- or tri-nucleotide repeated motifs of nucleotides.
- STRs short tandem repeats
- Polymorphisms characterized by such tandem repeats are referred to as “variable number tandem repeat” (“VNTR”) polymorphisms.
- VNTRs have been used in identity analysis (Weber, U.S. Pat. No. 5,075,217; Armour et al., FEBS Lett. 307:113-115 (1992); Jones et al., Eur. J. Haematol.
- the detection of polymorphic sites in a sample of DNA may be facilitated through the use of nucleic acid amplification methods. Such methods specifically increase the concentration of polynucleotides that span the polymorphic site, or include that site and sequences located either distal or proximal to it. Such amplified molecules can be readily detected by gel electrophoresis or other means.
- such polymorphisms can be detected through the use of a marker nucleic acid molecule that is physically linked to such polymorphism(s).
- marker nucleic acid molecules comprising a nucleotide sequence of a polynucleotide located within 1 mb of the polymorphism(s) and more preferably within 100 kb of the polymorphism(s) and most preferably within 10 kb of the polymorphism(s) can be employed.
- the identification of a polymorphism can be determined in a variety of ways. By correlating the presence or absence of it in a plant with the presence or absence of a phenotype, it is possible to predict the phenotype of that plant. If a polymorphism creates or destroys a restriction endonuclease cleavage site, or if it results in the loss or insertion of DNA (e.g., a VNTR polymorphism), it will alter the size or profile of the DNA fragments that are generated by digestion with that restriction endonuclease. As such, organisms that possess a variant sequence can be distinguished from those having the original sequence by restriction fragment analysis.
- RFLPs restriction fragment length polymorphisms
- Glassberg UK Patent Application 2135774; Skolnick et al., Cytogen. Cell Genet. 32:58-67 (1982); Botstein et al., Ann. J. Hum. Genet. 32:314-331 (1980); Fischer et al., (PCT Application WO90/13668; Uhlen, PCT Application WO90/11369).
- Polymorphisms can also be identified by Single Strand Conformation Polymorphism (SSCP) analysis (Elles, Methods in Molecular Medicine: Molecular Diagnosis of Genetic Diseases , Humana Press (1996)); Orita et al., Genomics 5:874-879 (989)).
- SSCP Single Strand Conformation Polymorphism
- a number of protocols have been described for SSCP including, but not limited to, Lee et al., Anal. Biochem. 205:289-293 (1992); Suzuki et al., Anal. Biochem. 192:82-84 (1991); Lo et al., Nucleic Acids Research 20:1005-1009 (1992); Sarkar et al., Genomics 13:441-443 (1992). It is understood that one or more of the nucleic acids of the invention, may be utilized as markers or probes to detect polymorphisms by SSCP analysis.
- Polymorphisms may also be found using a DNA fingerprinting technique called amplified fragment length polymorphism (AFLP), which is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA to profile that DNA (Vos et al., Nucleic Acids Res. 23:4407-4414 (1995)).
- AFLP amplified fragment length polymorphism
- This method allows for the specific co-amplification of high numbers of restriction fragments, which can be visualized by PCR without knowledge of the nucleic acid sequence. It is understood that one or more of the nucleic acids of the invention may be utilized as markers or probes to detect polymorphisms by AFLP analysis or for fingerprinting RNA.
- Polymorphisms may also be found using random amplified polymorphic DNA (RAPD) (Williams et al., Nucl. Acids Res. 18:6531-6535 (1990)) and cleaveable amplified polymorphic sequences (CAPS) (Lyamichev et al., Science 260:778-783 (1993)). It is understood that one or more of the nucleic acid molecules of the invention, may be utilized as markers or probes to detect polymorphisms by RAPD or CAPS analysis.
- RAPD random amplified polymorphic DNA
- CAS cleaveable amplified polymorphic sequences
- Single Nucleotide Polymorphisms generally occur at greater frequency than other polymorphic markers and are spaced with a greater uniformity throughout a genome than other reported forms of polymorphism.
- the greater frequency and uniformity of SNPs means that there is greater probability that such a polymorphism will be found near or in a genetic locus of interest than would be the case for other polymorphisms.
- SNPs are located in protein-coding regions and noncoding regions of a genome. Some of these SNPs may result in defective or variant protein expression (e.g., as a result of mutations or defective splicing). Analysis (genotyping) of characterized SNPs can require only a plus/minus assay rather than a lengthy measurement, permitting easier automation.
- SNPs can be characterized using any of a variety of methods. Such methods include the direct or indirect sequencing of the site, the use of restriction enzymes (Botstein et al., Am. J. Hum. Genet. 32:314-331 (1980); Konieczny and Ausubel, Plant J. 4:403-410 (1993)), enzymatic and chemical mismatch assays (Myers et al., Nature 313:495-498 (1985)), allele-specific PCR (Newton et al., Nucl. Acids Res. 17:2503-2516 (1989); Wu et al., Proc. Natl. Acad. Sci.
- Polymorphisms may also be detected using allele-specific oligonucleotides (ASO), which, can be for example, used in combination with hybridization based technology including southern, northern, and dot blot hybridizations, reverse dot blot hybridizations and hybridizations performed on microarray and related technology.
- ASO allele-specific oligonucleotides
- the stringency of hybridization for polymorphism detection is highly dependent upon a variety of factors, including length of the allele-specific oligonucleotide, sequence composition, degree of complementarity (i.e. presence or absence of base mismatches), concentration of salts and other factors such as formamide, and temperature. These factors are important both during the hybridization itself and during subsequent washes performed to remove target polynucleotide that is not specifically hybridized. In practice, the conditions of the final, most stringent wash are most critical.
- the amount of target polynucleotide that is able to hybridize to the allele-specific oligonucleotide is also governed by such factors as the concentration of both the ASO and the target polynucleotide, the presence and concentration of factors that act to “tie up” water molecules, so as to effectively concentrate the reagents (e.g., PEG, dextran, dextran sulfate, etc.), whether the nucleic acids are immobilized or in solution, and the duration of hybridization and washing steps.
- the reagents e.g., PEG, dextran, dextran sulfate, etc.
- Hybridizations are preferably performed below the melting temperature (T m ) of the ASO.
- T m melting temperature
- Other formulas for approximating T m are available and are known to those of ordinary skill in the art.
- Stringency is preferably adjusted so as to allow a given ASO to differentially hybridize to a target polynucleotide of the correct allele and a target polynucleotide of the incorrect allele.
- Requirements for marker-assisted selection in a plant breeding program are: (1) the marker(s) should co-segregate or be closely linked with the desired trait; (2) an efficient means of screening large populations for the molecular marker(s) should be available; and (3) the screening technique should have high reproducibility across laboratories and preferably be economical to use and be user-friendly.
- the genetic linkage of marker molecules can be established by a gene mapping model such as, without limitation, the flanking marker model reported by Lander and Botstein, Genetics 121:185-199 (1989) and the interval mapping, based on maximum likelihood methods described by Lander and Botstein, Genetics 121:185-199 (1989) and implemented in the software package MAPMAKER/QTL (Lincoln and Lander, Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL , Whitehead Institute for Biomedical Research, Massachusetts, (1990). Additional software includes Qgene, Version 2.23 (1996), Department of Plant Breeding and Biometry, 266 Emerson Hall, Cornell University, Ithaca, N.Y.). Use of Qgene software is a particularly preferred approach.
- a maximum likelihood estimate (MLE) for the presence of a marker is calculated, together with an MLE assuming no QTL effect, to avoid false positives.
- the LOD score essentially indicates how much more likely the data are to have arisen assuming the presence of a QTL than in its absence.
- the LOD threshold value for avoiding a false positive with a given confidence, say 95%, depends on the number of markers and the length of the genome. Graphs indicating LOD thresholds are set forth in Lander and Botstein, Genetics 121:185-199 (1989) and further described by Ar ⁇ s and Moreno-González, Plant Breeding , Hayward et al., (eds.) Chapman & Hall, London, pp. 314-331 (1993).
- the nucleic acid marker exhibits a LOD score of greater than 2.0, more preferably 2.5, even more preferably greater than 3.0 or 4.0 with the trait or phenotype of interest.
- the trait of interest is altered tocopherol levels or compositions.
- nucleic acid molecules of the invention may be used as molecular markers. It is also understood that one or more of the protein molecules of the invention may be used as molecular markers.
- the polymorphism is present and screened for in a mapping population, e.g. a collection of plants capable of being used with markers such as polymorphic markers to map genetic position of traits.
- a mapping population e.g. a collection of plants capable of being used with markers such as polymorphic markers to map genetic position of traits.
- the choice of appropriate mapping population often depends on the type of marker systems employed (Tanksley et al., J.P. Gustafson and R. Appels (eds.). Plenum Press, New York, pp. 157-173 (1988)). Consideration must be given to the source of parents (adapted vs. exotic) used in the mapping population. Chromosome pairing and recombination rates can be severely disturbed (suppressed) in wide crosses (adapted ⁇ exotic) and generally yield greatly reduced linkage distances. Wide crosses will usually provide segregating populations with a relatively large number of polymorphisms when compared to progeny in a narrow cross (adapted ⁇ adapted).
- An F 2 population is the first generation of selfing (self-pollinating) after the hybrid seed is produced.
- a single F 1 plant is selfed to generate a population segregating for all the genes in Mendelian (1:2:1) pattern.
- Maximum genetic information is obtained from a completely classified F 2 population using a codominant marker system (Mather, Measurement of Linkage in Heredity: Methuen and Co., (1938)).
- progeny tests e.g., F 3 , BCF 2
- F 3 , BCF 2 progeny tests
- Progeny testing of F 2 individuals is often used in map construction where phenotypes do not consistently reflect genotype (e.g. disease resistance) or where trait expression is controlled by a QTL. Segregation data from progeny test populations e.g. F 3 or BCF 2 ) can be used in map construction. Marker-assisted selection can then be applied to cross progeny based on marker-trait map associations (F 2 , F 3 ), where linkage groups have not been completely disassociated by recombination events (i.e., maximum disequilibrium).
- Recombinant inbred lines (genetically related lines; usually >F5, developed from continuously selfing F 2 lines towards homozygosity) can be used as a mapping population. Information obtained from dominant markers can be maximized by using RIL because all loci are homozygous or nearly so. Under conditions of tight linkage (i.e., about ⁇ 10% recombination), dominant and co-dominant markers evaluated in RIL populations provide more information per individual than either marker type in backcross populations (Reiter. Proc. Natl. Acad. Sci . ( U.S.A. ) 89:1477-1481 (1992)). However, as the distance between markers becomes larger (i.e., loci become more independent), the information in RIL populations decreases dramatically when compared to codominant markers.
- RIL Recombinant inbred lines
- Backcross populations (e.g., generated from a cross between a successful variety (recurrent parent) and another variety (donor parent) carrying a trait not present in the former) can be utilized as a mapping population.
- a series of backcrosses to the recurrent parent can be made to recover most of its desirable traits.
- a population is created consisting of individuals nearly like the recurrent parent but each individual carries varying amounts or mosaic of genomic regions from the donor parent.
- Backcross populations can be useful for mapping dominant markers if all loci in the recurrent parent are homozygous and the donor and recurrent parent have contrasting polymorphic marker alleles (Reiter et al., Proc. Natl. Acad. Sci . ( U.S.A.
- Backcross populations are more informative (at low marker saturation) when compared to RILs as the distance between linked loci increases in RIL populations (i.e. about 0.15% recombination). Increased recombination can be beneficial for resolution of tight linkages, but may be undesirable in the construction of maps with low marker saturation.
- NIL Near-isogenic lines
- BSA Bulk segregant analysis
- one or more of the nucleic molecules of the present invention are used to determine the level (i.e., the concentration of mRNA in a sample, etc.) in a plant (preferably canola, maize, Brassica campestris, Brassica napus , soybean, crambe, mustard, castor bean, peanut, sesame, cottonseed, linseed, safflower, oil palm, flax or sunflower) or pattern (i.e., the kinetics of expression, rate of decomposition, stability profile, etc.) of the expression of a protein encoded in part or whole by one or more of the nucleic acid molecule of the present invention (collectively, the “Expression Response” of a cell or tissue).
- a plant preferably canola, maize, Brassica campestris, Brassica napus , soybean, crambe, mustard, castor bean, peanut, sesame, cottonseed, linseed, safflower, oil palm, flax or sunflower
- pattern
- the Expression Response manifested by a cell or tissue is said to be “altered” if it differs from the Expression Response of cells or tissues of plants not exhibiting the phenotype.
- the Expression Response manifested by the cell or tissue of the plant exhibiting the phenotype is compared with that of a similar cell or tissue sample of a plant not exhibiting the phenotype.
- the phenotype of the organism is any of one or more characteristics of an organism (e.g. disease resistance, pest tolerance, environmental tolerance such as tolerance to abiotic stress, male sterility, quality improvement or yield etc.).
- a change in genotype or phenotype may be transient or permanent.
- a tissue sample is any sample that comprises more than one cell.
- a tissue sample comprises cells that share a common characteristic (e.g. derived from root, seed, flower, leaf, stem or pollen etc.).
- an evaluation can be conducted to determine whether a particular mRNA molecule is present.
- One or more of the nucleic acid molecules of the present invention are utilized to detect the presence or quantity of the mRNA species. Such molecules are then incubated with cell or tissue extracts of a plant under conditions sufficient to permit nucleic acid hybridization. The detection of double-stranded probe-mRNA hybrid molecules is indicative of the presence of the mRNA; the amount of such hybrid formed is proportional to the amount of mRNA. Thus, such probes may be used to ascertain the level and extent of the mRNA production in a plant's cells or tissues. Such nucleic acid hybridization may be conducted under quantitative conditions (thereby providing a numerical value of the amount of the mRNA present). Alternatively, the assay may be conducted as a qualitative assay that indicates either that the mRNA is present, or that its level exceeds a user set, predefined value.
- a number of methods can be used to compare the expression response between two or more samples of cells or tissue. These methods include hybridization assays, such as northerns, RNAse protection assays, and in situ hybridization. Alternatively, the methods include PCR-type assays. In a preferred method, the expression response is compared by hybridizing nucleic acids from the two or more samples to an array of nucleic acids. The array contains a plurality of suspected sequences known or suspected of being present in the cells or tissue of the samples.
- in situ hybridization over more conventional techniques for the detection of nucleic acids is that it allows an investigator to determine the precise spatial population (Angerer et al., Dev. Biol. 101:477-484 (1984); Angerer et al., Dev. Biol. 112:157-166 (1985); Dixon et al., EMBO J. 10:1317-1324 (1991)).
- In situ hybridization may be used to measure the steady-state level of RNA accumulation (Hardin et al., J. Mol. Biol. 202:417-431 (1989)).
- a number of protocols have been devised for in situ hybridization, each with tissue preparation, hybridization and washing conditions (Meyerowitz, Plant Mol. Biol. Rep.
- In situ hybridization also allows for the localization of proteins within a tissue or cell (Wilkinson, In Situ Hybridization , Oxford University Press, Oxford (1992); Langdale, In Situ Hybridization In: The Maize Handbook , Freeling and Walbot (eds.), pp. 165-179, Springer-Verlag, New York (1994)). It is understood that one or more of the molecules of the invention, preferably one or more of the nucleic acid molecules or fragments thereof of the invention or one or more of the antibodies of the invention may be utilized to detect the level or pattern of a protein or mRNA thereof by in situ hybridization.
- nucleic acid molecules of the invention may be used as probes or markers to localize sequences along a chromosome.
- tissue printing provides a way to screen, at the same time on the same membrane many tissue sections from different plants or different developmental stages (Yomo and Taylor, Planta 112:35-43 (1973); Harris and Chrispeels, Plant Physiol. 56:292-299 (1975); Cassab and Varner, J. Cell. Biol. 105:2581-2588 (1987); Spruce et al., Phytochemistry 26:2901-2903 (1987); Barres et al., Neuron 5:527-544 (1990); Reid and Pont-Lezica, Tissue Printing: Tools for the Study of Anatomy, Histochemistry and Gene Expression , Academic Press, New York, N.Y. (1992); Reid et al., Plant Physiol. 93:160-165 (1990); Ye et al., Plant J. 1:175-183 (1991)).
- Vectors pJX1, pJX181, and pJX184 are obtained (Zhao and Jensen of Molecular Evolution 36(2):107-20 (1993)).
- the tyrA gene is amplified by PCR using primers tyrA5′ (ACT GCC ATG GTG GCT GAA CTG ACC G (SEQ ID NO: 5)) and tyrA3′ (ACT GGA ATT CTT ATT ATG GGC GGC TGT CAT TG (SEQ ID NO: 6)) and plasmid DNA from vectors pJX1, pJX181, and pJX184 as template DNA.
- PCR reactions using the ExpandTM high fidelity PCR kit from Boehringer Mannheim are performed in a total volume of 50 ⁇ l according to the manufacturer's protocol.
- the tyrA gene is amplified by 30 PCR cycles under the following conditions: 10 min incubation at 95° C., followed by 30 cycles of 1 min at 95° C., 1 min annealing at 56° C. and 1.5 min extension at 72° C. These reactions were followed by a 5 min incubation at 72° C.
- the PCR product form pJX184 is chosen for gene cloning and digested with NcoI and EcoRI.
- the gel purified restriction fragment is ligated into NcoI/EcoRI-digested and gel purified pSE280 (Invitrogen Co., Carlsbad, Calif.) resulting in the formation of pMON26588 ( FIG. 2 ).
- the tyrA insert in pMON26588 is verified by DNA sequencing.
- the tyrA gene from E. coli is amplified by PCR using primers tyrAecoli5′ (ACT GCC ATG GTT GCT GAA TTG ACC G (SEQ ID NO: 7)) and tyrAecoli3′ (ACT GGA ATT CTT ATT ACT GGC GAT TG (SEQ ID NO:8)) and E. coli DH5 ⁇ total genomic DNA as template DNA.
- E. coli total genomic DNA is isolated using the Qiaamp Tissue Kit from Qiagen (Qiagen Inc. Valencia, Calif.). PCR reactions using the ExpandTM high fidelity PCR kit from Boehringer Mannheim are performed in a total volume of 50 ⁇ l according to the manufacturer's protocol.
- the tyrA gene is amplified by 30 PCR cycles under the following conditions: 10 min incubation at 95° C., followed by 30 cycles of 1 min at 95° C., 1 min annealing at 56° C. and 1.5 min extension at 72° C. These reactions are followed by a 5 min incubation at 72° C.
- the PCR product is digested with NcoI and EcoRI.
- the gel purified restriction fragment is ligated into NcoI/EcoRI-digested and gel purified pSE280 (Invitrogen Co., Carlsbad, Calif.) resulting in the formation of pMON26589 ( FIG. 3 ).
- the tyrA insert in pMON26589 is verified by DNA sequencing.
- Vectors pMON26588 and pMON26589 are transformed into E. coli DH5 ⁇ and cells are grown in a 15 ml LB culture to an optical density at 600 nm of about 0.6, and induced by adding IPTG to a final concentration of 0.66 ⁇ M. After incubation for 2 to 3 hours, cells are harvested. The cell pellet iss resuspended in 0.5 ml 25 mM Tris/HCl, pH8.2 and cells are disrupted by sonication. Membranes and cell debris are sedimented by centrifugation at 100,000 ⁇ g for three hours. The supernatant is used in enzyme assays as a crude cell extract.
- Prephenate dehydrogenase activity is measured in a final volume of 1.5 ml containing 1 mM EDTA, 1 mM DTE, 1 mM NAD, and 1 mM prephenate (Ba-salt) in 25 mM Tris/HCl pH 8.2.
- the specific activity of prephenate dehydrogenase is determined by monitoring the conversion of NAD + to NADH as described in Methods in Enzymology Vol. 17 (Part A) pages 564-574 (1970). Results are shown in table 1, below.
- the E. coli and E. herbicola tyrA genes are cleaved as NcoI/EcoRI fragments from pMON26589 and pMON26588, gel purified, and cloned into NcoI/EcoRI-digested and gel purified pMON26541 ( FIG. 28 ), resulting in the formation of pMON26591 and pMON26590, respectively ( FIGS. 4 and 5 ). These vectors place the tyrA gene under the control of the T7 promoter.
- the E. herbicola tyrA gene is chosen for plant expression.
- the gene is cleaved from pMON26590 by NcoI/EcoRI restriction digest, gel purified, and ligated into NcoI/EcoRI-digested and gel purified pMON26541 resulting in the formation of the shuttle vector pMON36510 ( FIG. 6 ).
- These ligations fuse the bacterial tyrA gene to CTP1, which is the chloroplast target peptide of the small subunit of the ribulose bisphosphate carboxylase from Arabidopsis , and place it under e35S promoter control.
- pMON36510 is digested with EcoRI, ends are filled in using the Klenow fragment (Maniatis), and the gel purified vector is digested with Bgl II.
- the smaller fragment encoding the tyrA gene fused to CTP1 is gel purified and ligated for ligation into digested and gel purified pCGN3223 ( FIG. 45 ).
- pCGN3224 is digested with PstI, ends are filled in with Klenow fragment (Maniatis) and subsequently the vector is digested with Bgl II and gel purified. Ligation of the purified vector and the purified CTP1:tyrA fusion results in the formation of pMON36512 ( FIG. 7 ).
- pMON36510 To transfer the E. herbicola tyrA gene into an Arabidopsis binary vector pMON36510 is digested with HindIII and Sac I and the gel purified fragment carrying the e35S promoter is fused to CTP1 and tyrA is ligated into HindIII/SacI-digested and gel purified pMON26543 ( FIG. 29 ), which results in the formation of pMON36511 ( FIG. 8 ).
- This vector contains tyrA under e35S promoter control.
- the pNapin binary expression vector is obtained by ligating the gel purified NotI fragment harboring the pNapin::CTP1::tyrA::napin 3′ expression cassette into NotI digested pMON36176 ( FIG. 30 ), which results in the formation of pMON36520 ( FIG. 9 ).
- Transformation of Arabidopsis with pMON36520 and pMON36511 are prepared as follows. 100 ⁇ l of an overnight culture are spread on an agar LB plate with antibiotics. The plate is placed upside down in a 30° C. chamber overnight. The plates are removed after colonies have grown (24-48 hours).
- a small scale culture is started by placing 10 ml of liquid LB media in a 50 ml tube. 10 ⁇ l Kanamycin (50 ⁇ g/ ⁇ L), 10 ⁇ l Spectinomycin (75-100 ⁇ g/ ⁇ L), and 10 ⁇ l Chloramphenicol (25 ⁇ g/ ⁇ L) are added. Agrobacterium is added from a plate, and the tube is shaken and placed in a 30° C. shaker overnight.
- the culture is removed to a 500 ml flask.
- 200 ml of liquid LB is placed in a flask, 200 ⁇ l Kanamycin (50 ⁇ g/mL), 200 ⁇ l Spectinomycin (75-100 ⁇ g/ ⁇ L), and 200 ⁇ l of Chloramphenicol (25 ⁇ g/ ⁇ L) are added, and the entire 10 ml overnight culture is then added.
- the 500 ml flask is placed in a 30° C. shaker and grown overnight.
- the entire 200 ml culture is placed in a centrifuge tube and centrifuged for 25 minutes at 3,750 rpm and 19° C. After centrifugation, the liquid is poured off and the pellet is resuspended in 25 ml of 5% Sucrose (0.05% Silwet) solution.
- Plants are soaked for at least 30 minutes in water prior to dipping.
- the bacterial solution is poured into a shallow plastic container, and above ground parts of the plant (bolts, rosettes) are dipped into the solution for 3-5 seconds with gentle agitation.
- Dipped plants are placed on their side in a diaper lined black tray, and covered by a dome overnight (16-24 hours) to maintain a high humidity. The cover is removed and normal plant growth conditions are resumed for 4 weeks.
- plants Following the transformation and high humidity treatment, plants are maintained at 22° C., 60% RH, and a 16 hour photoperiod for 4 weeks. 5-7 days after transformation, plants are coned. Fertilization with a weak 20-20-20 fertilizer is done weekly. After 4 weeks of growth, plants are placed in the greenhouse and all watering is stopped to encourage plant dry down for seed harvest. Plants are ready for seed harvest after 1-1.5 weeks of dry down.
- Seeds are harvested by cutting the base of the plant below the cones, holding the plant over a seed sieve and a white piece of paper, running bolts through the cone hole, and collecting clean seeds through sieving.
- Seeds are sterilized by connecting a vacuum dessicator hose to a vacuum in a fume hood/flow bench. 100 ml of bleach is placed in a 250 ml beaker, and 3 ml of concentrated HCl is added to the bleach. The beaker is placed in the dessicator, and seeds in seed tubes in a tube holder are placed in the dessicator. A cover is placed on the dessicator, and the vacuum is operated. The dessicator is left overnight but no longer than 16 hours.
- seeds are plated on selection media (prepared by adding 10 g (2 g/L) Phyta-Gel, 10.75 g (2.15 g/L) MS Basal Salts (M-5524 from Sigma), 50 g (10 g/L) Sucrose, and 6 ml (1.2 ml/L) Kanamycin solution (950 mg/ml), 5 ml (1 ml/L) Cefotaxime Solution (250 mg/ml), and 5 ml (1 ml/L) Carbenecillin Solution (250 mg/ml) to a total volume of 5 liters at a pH or 5.7). Seed tubes are tapped lightly over a plate in order to distribute the seeds sparsely. The plates are wrapped in parafilm and placed in a 4° C. refrigerator for 1-2 days of cold treatment. After this cold treatment the plates are placed in a 28° C. chamber for germination.
- selection media prepared by adding 10 g (2 g/L) Phyta-Gel, 10.75 g
- Selected plantlets are green and have secondary leaves developing.
- the selected plantlets are moved to soil after secondary leaves have developed.
- the plantlets are potted in soil and covered with a dome for 5 days to maintain high humidity.
- the plantlets are moved to a greenhouse after the bottom siliques begin to turn yellow.
- Seeds from the selected plantlets are grown in 2.5 inch pots with soil (1 ⁇ 2 Metro-200; 1 ⁇ 2 PGX Mix). The soil is mounded and the pot is covered with mesh screen. The screen is fastened to the pot with a rubber band. Seeds are sown and covered with a germination dome.
- the seedlings are grown in a 12 hr. photoperiod in 70% relative humidity at 22° C. Water is supplied every other day as needed and Peter's 20-20-20 fertilizer is applied from below, bi-weekly.
- Transformed seed plants from Example 6 representing 20 independent transformation events are grown and seeds harvested to produce T 2 seeds.
- the T 2 seeds are grown and tested for tocopherol levels.
- tocopherol levels are expressed as nanograms of total tocopherol per milligram of seed.
- Tocopherol levels are determined by adding 10 to 15 mg of Arabidopsis seed into a 2 mL microtube. A mass of 1 g of 0.5 mm microbeads (Biospecifics Technologies Corp., Lynbrook, N.Y.) and 500 ⁇ l 1% pyrogallol (Sigma Chem, St. Louis, Mo.) in ethanol containing 5 ⁇ g/mL tocol, are added to the tube.
- the sample is shaken twice for 45 seconds in a FastPrep (Bio101/Savant) at a speed of 6.5.
- the extract is filtered (Gelman PTFE acrodisc 0.2 ⁇ m, 13 mm syringe filters, Pall Gelman Laboratory Inc, Ann Arbor, Mich.) into an autosampler tube.
- HPLC is performed on a Zorbax silica HPLC column, 4.6 mm ⁇ 250 mm (5 ⁇ m) with a fluorescent detection using a Hewlett Packard HPLC (Agilent Technologies, Palo Alto Calif.). Sample excitation is performed at 290 nm, and emission is monitored at 336 nm.
- Tocopherols are separated with a hexane methyl-t-butyl ether gradient using an injection volume of 20 ⁇ l, a flow rate of 1.5 m/min, and a run time of 12 min (40° C.). Tocopherol concentration and composition is calculated based on standard curves for ⁇ , ⁇ , ⁇ , and ⁇ -tocopherol and ⁇ , ⁇ , ⁇ , and ⁇ -tocotrienols using Chemstation software (Agilent Technologies, Palo Alto Calif.).
- Canola, Brassica napes, Arabidopsis and soybean plants are transformed with a variety of DNA constructs using a particle bombardment approach essentially as set forth in Christou, In Particle Bombardment for the Genetic Engineering of Plants , Biotechnology Intelligence Unit Academic Press, San Diego, Calif. (1996) or using Agrobacterium mediated transformation.
- Two sets of DNA constructs are produced.
- the first set of constructs are “single gene constructs”.
- Each of the following genes is inserted into a separate plant DNA construct under the control of a napin promoter (Krindl et al., Seed Sci. Res.
- CTP 1 an encoded plastid target peptide such as CTP 1 (Keegstra, Cell 56(2):247-53 (1989); Nawrath, et al., Proc. Natl. Acad. Sci. U.S.A 91: 12760-12764 (1994)) or CTP2): an E. herbicola tyrA gene (Xia et al., J. Gen. Microbiol.
- strain PCC 7120 Kaneko et al., DNA Research 8(5): 205-213 (2001)
- TMT2 gene as disclosed in U.S. Application Ser. No. 60/330,563, filed on Oct. 25, 2001, which is herein incorporated by reference in its entirety
- GMT gene as disclosed in U.S. Application Ser. No. 60/312,758, filed on Aug.
- Crosses are carried out for each species to generate transgenic plants having one or more of the following combination of introduced genes: tyrA, slr1736, ATP2 dxs, dxr, GGH, GGPPS, HPPD, MT1, TMT2, GMT, AANT1, slr 1737, and an antisense construct for homogentisic acid dioxygenase.
- the nucleic acid construct or constructs encode, in addition to tyrA, HPPD and either slr1736 or ATPT2.
- the tocopherol composition and level in each plant generated by the crosses is also analyzed using the method set forth in example 7. Progeny of the transformants from these constructs will be crossed with each other to stack the additional genes to reach the desired level of tocopherol.
- a second set of DNA constructs is generated and referred to as the “multiple gene constructs.”
- the multiple gene constructs contain multiple genes each under the control of a napin promoter (Krindl et al., Seed Sci. Res. 1:209:219 (1991)) and the products of each of the genes are targeted to the plastid by an encoded plastid target peptide.
- the multiple gene construct can have two or more of the following genes: tyrA, slr1736, ATPT2, dxs, dxr, GGH, GGPPS, HPPD, MT1, TMT2, GMT, AANT1, slr 1737, and an antisense construct for homogentisic acid dioxygenase.
- the nucleic acid construct or constructs encode, in addition to tyrA, HPPD and either slr1736 or ATPT2.
- Each construct is then transformed into at least one canola, Brassica napus, Arabidopsis and soybean plant.
- the tocopherol composition and level in each plant is also analyzed using the method set forth in example 7. Progeny of the transformants from these constructs are crossed with each other to stack the additional genes to reach the desired level of tocopherol.
- Wild type Arabidopsis plants and Arabidopsis plant lines are transformed with the plasmid vector pMON69907 ( FIG. 12 ), are grown, and seed is collected as described in the above examples, and the seed is analyzed for tocopherol and tocotrienol content as described above.
- Plasmid pMON69907 encodes a bifunctional prephenate dehydrogenase (tyrA) and a phytyl prenyltransferase (ATPT2).
- FIG. 14 depicts the total tocopherol and tocotrienol content of Arabidopsis seeds from wild type plants and several plant lines transformed with the plasmid vector pMON69907.
- FIG. 15 depicts the total tocopherol content of Arabidopsis seeds from a wild type plant and several plant lines transformed with the plasmid vector pMON69907.
- FIG. 31 shows LC/MS standards for tocopherol and tocotrienol.
- FIG. 32 shows LC/MS results for selected lines, showing presence of tocotrienols.
- FIG. 33 shows an HPLC/FLD chromatogram of control seed extract showing no presence of tocotrienols.
- FIG. 34 shows an HPLC/FLD chromatogram of control seed extract showing the presence of tocotrienols in selected lines.
- Arabidopsis plants are transformed with the indicated vectors using the transformation techniques described in Example 8. Transformants are isolated and grown into individual lines by self pollination and seed from each line collected. The total tocopherol and tocotrienol composition of the seeds from each line are analyzed using the method set forth in Example 7.
- FIG. 16 shows total tocopherol and tocotrienol levels for plant lines harboring the described contructs or a control.
- An analysis of T2 seeds from plant lines derived by transformation with the vector pMON69909 relative to wild type is shown in FIG. 17 .
- Plant lines transformed with pMON69909 demonstrate a substantial increase in total tocopherols and total tocotrienols, with the largest increases in delta tocopherol, alpha tocotrieneol, delta tocotrienol, and gamma tocotrienol. Some seed from plants harboring the vector pMON69909 show a dark coloration as the result of homogentisic acid accumulation, which is confirmed by LC/MS analysis (see FIGS. 31 and 32 ).
- Heterologous expression of tyrA in seeds of transgenic Arabidopsis plants produces a 1.6-fold increase in seed tocopherol levels as compared to control lines.
- Another key enzyme essential for tocopherol biosynthesis is HPT, which is involved in the condensation of phytyl pyrophosphate (PPP) and homogentisate (HGA) to produced 2-methyl-6-phytylplastoquinol (2M6PPQ), a precursor for synthesis of four different isoforms of tocopherols.
- HPT Arabidopsis (ATPT2) and the HPT Synechocystis (slr1736) independently in seeds of transgenic A. thaliana results in a 1.6-fold increase in seed tocopherols.
- a putative adenylate transporter from A. thaliana (AANT1) expressed as a single gene is shown to increase seed tocopherol levels to 1.4-fold in A. thaliana .
- AANT1 A putative adenylate transporter from A. thaliana
- HPPD expressed as a single gene in A. thaliana result in a barely detectable increase of tocopherol levels.
- the combination of HPPD with ATPT2 does not result in a further increase of tocopherol levels as compared to lines harboring ATPT2 alone (data not shown).
- tocopherol and tocotrienol levels double compared to the tyrA, ATPT2 combination. Seeds harboring the triple gene construct pMON69909 appear much darker in color than control seeds.
- Plants are transformed with the DNA constructs shown in tables 2 and 3 below, employing the techniques described in Example 8.
- the constructs contain one or more genes under the control of a napin promoter (Krindl et al., Seed Sci. Res. 1:209:219 (1991)), the 7S ⁇ ′ promoter (Chen et al., PNAS 83(22):8560-8564 (1998)) or the Arc5 promoter (Goossens et al., Plant Physiol. 120:1095-1104 (1999)).
- the products of the genes can be targeted to the plastid by an encoded plastid target peptide such as CTP1 (Keegstra, Cell 56(2):247-53 (1989); Nawrath, et al., Proc. Natl. Acad. Sci. U.S.A. 91:12760-12764 (1994)) or CTP2.
- CTP1 Keegstra, Cell 56(2):247-53 (1989); Nawrath, et al., Proc. Natl. Acad. Sci. U.S.A. 91:12760-12764 (1994)
- CTP2 CTP1
- E. herbicola tyrA gene Xia et al., J. Gen. Microbiol.
- an AANT1 gene (Saint Guily, et al., Plant Physiol., 100(2):1069-1071 (1992)), an MT1 gene (as above for Example 8), a TMT2 gene (as above for example 8), a GMT gene (as above for example 8, and WO 00/32757, WO 00/10380), an slr1737 gene (in Cyanobase on the world wide web at kazusa.org.jp/cyanobase), and an antisense construct for homogentisic acid dioxygenase (denoted HGD AS )(Sato et al., J. DNA Res. 7 (1):31-63 (2000)).
- Each construct is transformed into at least one canola, Brassica napus, Arabidposis , and soybean plant.
- the tocopherol composition and level in each plant is also analyzed using the method set forth in example 7.
- Examples of transformed plants with tyrA and other tocopherol biosynthesis genes include Arabidopsis plants transformed with the constructs set forth in Table 2 and soy plants transformed with the constructs in Table 3.
- Plants with desired characteristics may be subject to further crosses to generate transgenic plants having one or more of the following combination of introduced genes: tyrA, slr1736, ATPT2, dxs, dxr, GGH, GGPPS, HPPD, MT1, TMT2, GMT, AANT1, slr 1737, and an antisense construct for homogentisic acid dioxygenase.
- the plants may be crossed to stack multiple copies of one or more of the aforementioned genes in a transgenic plant.
- each gene expression cassette includes a promoter, in this example the napin promoter, a terminator, a plastid target peptide (which can be the native plastid target peptide or an N-terminal fused chloroplast target peptide), and a gene of interest, as shown in FIGS. 18 a and 18 b .
- the expression cassettes can be oriented head to tail, head to head, or the orientation can vary.
- a shuttle vector (pMON36582 ( FIG. 19 )) is constructed by annealing primers SV MCS 1A and SV MCS 1B:
- All gene expression cassettes are set up to be flanked by Not I restriction sites. These cassettes are isolated by digesting the previous vectors with Not I, followed by gel purification of the expression cassettes.
- pMON36582 is digested with Eag I, which cuts twice in this vector, once within the Not I site, and once 19 bp upstream of the Not I site. Both overhangs are compatible with Not I.
- the Not I expression cassettes are ligated into gel purified Eag I digested pMON36582, resulting in a vector with a single Not I site.
- the expression cassette is therefore available as a Bsp120I/Not I cassette.
- An example of an expression cassette for the Arabidopsis homogentisate phytyltransferase available as a Bsp120 I/Not I cassette is shown as pMON36586 in FIG. 20 . This vector is obtained as described above.
- the assembly of expression cassettes are performed in a shuttle vector, such as pMON36586.
- Gene expression cassettes are released from other shuttle vectors by Bsp120I/Not I digests, and ligated into a shuttle vector such as pMON36586, which has been digested with Not I.
- the resulting vector harbors one additional gene expression cassette and a single Not I site. This procedure can be repeated as required.
- the combined expression cassettes can be released by Bsp120 I/Not I digest (pMON10098 ( FIG. 37 )).
- the resulting fragment carrying the expression cassettes is then purified and ligated into a single Not I site of a binary vector.
- the assembly of gene expression cassettes can be performed directly in a binary vector ( FIG. 21 ).
- a binary vector is defined by the presence of the right and left border sequences, which are necessary for DNA transfer from Agrobacterium into plant cells. All chemical reagents and enzymes for this manipulation are molecular grades. These reagents and enzymes are utilized according to the supplier's instructions. Standard molecular cloning techniques are used.
- FIGS. 18 a and 18 b Several examples of plant binary constructs, their components and plasmid maps are depicted. The examples depicted containing tyrA combinations with other genes of interest for tocopherol pathway engineering are listed in FIGS. 18 a and 18 b.
- FIGS. 22-27 represent various constructs.
- tyrA prephenate dehydrogenase
- the enzymes combined with tyrA include ATPT2, p-hydroxyphenylpyruvate dioxygenase (HPPD Arabidopsis ), and geranylgeranylpyrophosphate synthase (GGPPS Arabidopsis ) from Arabidopsis thaliana .
- tyrA was also tested in combination with ATPT2 and a putative adenylate transporter (AANT1 Arabidopsis ) from Arabidopsis thaliana.
- Construction of a double gene vector harboring seed specific tyrA and ATPT2 expression cassettes is performed as follows. Purified plasmid DNA of pMON36520 ( FIG. 38 ) is subjected to a partial KpnI digest and ligated with a 4.2 kbp gel purified Kpn I-fragment isolated from pMON43853 ( FIG. 39 ). The 4.2 kb insert from pMON43853 contains the PPT gene expression cassette (pNapin::ATPT2::Napin 3′). The resulting plant binary vector pMON69907 ( FIG. 12 ) is used for transformation of Arabidopsis thaliana to test the combinatorial effect of seed specific expression of tyrA and ATPT2.
- HPPD Arabidopsis is expressed in addition to tyrA, and ATPT2 in Arabidopsis thaliana seed. This was achieved by adding a seed specific expression cassette for HPPD Arabidopsis to pMON69907 resulting in the formation of pMON69909.
- the binary vector pMON69909 is constructed by partially digesting pMON69907 with KpnI.
- the single KpnI-cut pMON69907 is gel purified and ligated with a 4.6 kb KpnI/KpnI insert isolated from pMON36525 ( FIG. 40 ).
- the 4.6 kb KpnI/KpnI insert from pMON36525 contains the HPPD gene expression cassette, pNapin::CTP2::HPPD Arabidopsis ::Napin 3′ to direct seed specific plastid targeted expression of HPPD.
- the CTP2 is a chloroplast-target signal from the Arabidopsis 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene.
- EPSPS Arabidopsis 5-enolpyruvylshikimate-3-phosphate synthase
- the binary vector pMON69915 ( FIG. 35 ) is constructed to test the effect of three gene combinations, tyrA, ATPT2, and GGPPS Arabidopsis on seed tocopherol production.
- Vector pMON69907 is digested partially with KpnI.
- Single KpnI-cut pMON69907 is gel purified and ligated with a gel purified 4.3 kb, KpnI/KpnI fragment from pMON43861 ( FIG. 41 ) to create pMON69915.
- the KpnI fragment from pMON43861 contains the gene expression cassette for the Arabidopsis geranylgeranyldiphosphate synthase from Arabidopsis thaliana (pNapin::GGPPS Arabidopsis ::Napin 3′).
- the GGPPS cDNA is identified as an EST clone, by searching an EST database with sequence information available in the literature (Okada et al., Plant Physiol. 122:1045-1056 (2000)).
- the EST clone is digested with NcoI and blunt-ended by filling the 5′ overhang with the klenow-fragment.
- the clone is digested with BamHI and to excise the cDNA fragment.
- the gel purified BamHI/blunt cDNA fragment is ligated with BglII/SalI digested and (SalI blunt-ended) vector pCGN7770 ( FIG. 42 ) to create pMON43861.
- the plant binary vector pMON69919 ( FIG. 36 ) is constructed to test combined expression of tyrA, ATPT2, and AANT1 Arabidopsis on seed tocopherol levels.
- pMON69907 is partially digested with KpnI.
- Single KpnI-cut pMON69907 is gel purified, and ligated with a 4.2 kb gel-purified KpnI/KpnI fragment from pMON69911 ( FIG. 43 ).
- the 4.2 kb fragment contains a seed specific expression cassette for the Arabidopsis adenylate transporter AANT1 (pNapin::AANT1 Arabidopsis ::napin 3′).
- pMON69911 is generated by excising the AANTI fragment from pCGN11301 ( FIG. 44 ) with SalI and PstI (the PstI site is blunted by removing 3′ overhang with Klenow) and then ligated to SalI/XhoI digested (XhoI blunt-ended) pCGN7770.
- AANT1 Using the published partial sequence of AANT1 (Saint-Guily et al., Plant Physiol. 100(2):1069-1071 (1992)) several full-length clones are identified in EST databases.
- the AANT1 coding region is PCR-amplified using primers, AANT1F 5′-GGATCC GCGGCCGC ACCATGGTTGATCAAGTTCAGCA (SEQ ID NO: 11) and AANT1R 5′-GAGCT CCTGCAGG AAGCTTTTAGGCACCTCCTGATCCGT-3′ (SEQ ID NO: 12).
- the NotI site (underlined) is placed upstream of the start codon (italics) in primer AANT1F while the Sse8387I site (underlined) was placed downstream of the stop codon (italics) in AANT1R.
- the PCR products are first cloned into pCR2.1 and the inserts are verified by sequencing of both strands. Subsequently, the NotI/Sse8387I fragments are inserted into the NotI/Sse8387I sites of the napin expression cassette in pCGN9979 in sense orientation with respect to the napin promoter to generate pCGN11301.
- the plant expression constructs are used for transformation of Arabidopsis thaliana by Agrobacterium mediated transformation as described in above.
- This example describes the method involved in preparation of plant binary vectors to test tyrA alone and in combination with other key enzymes in the tocopherol biosynthetic pathway to enhance tocopherol production in transgenic Glycine max seeds.
- the table below describes the plant binary vectors prepared for G. max transformation with their respective gene of interest expression cassettes for seed-specific expression of the transgenes.
- the pMON36575 ( FIG. 46 ) is prepared by ligating the 3 kb gel purified NotI fragment from pMON38207R ( FIG. 47 ) at the NotI site of pMON36571 ( FIG. 48 ) that contains the p7S ⁇ ′::CTP1::tyrA E. herbicola ::E9 3′ expression cassette.
- the CTP1 encodes the chloroplast-target signal sequence from the Arabidopsis RUBISCO small subunit.
- the 3 kb NotI fragment contains the selectable marker cassette, pFMV::CTP2::CP4syn::E9 3′.
- the CTP2 encodes the chloroplast-target signal sequence from the Arabidopsis 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).
- EPSPS Arabidopsis 5-enolpyruvylshikimate-3-phosphate synthase
- the CP4syn is an EPSPS synthetic gene.
- Vector pMON36575 is further digested with HindIII to release 3 kb fragment containing the p7S ⁇ ′-::CTP1::tyrA E. herbicola ::E9 3′ expression cassette. The fragment is blunt-ended by filling the 5′ overhangs with the klenow-fragment, gel purified and ligated at the PmeI site of pMON36576 ( FIG. 49 ) which carries the expression cassette of p7S ⁇ ′::CTP2::HPPD Arabidopsis ::E9 3′ to generate the pMON69924 ( FIG. 50 ).
- the plant binary vector pMON69943 ( FIG. 51 ) is prepared by digesting pMON69929 ( FIG. 52 ), containing the p7S ⁇ ′::CTP2::HPPD Arabidopsis ::E9 3′ expression cassette, with NotI and ligating with 7.3 kb gel purified fragment generated by digestion of pMON69936 ( FIG. 53 ) with Bsp120I and NotI.
- This fragment contains the expression cassettes of p7S ⁇ ′::CTP1::tyrA E. herbicola ::E9 3′ and pArcelin-5::CTP1::slr1736::Arcelin 3′.
- Vector pMON69943 is further digested with NotI and ligated with a 4.5 kb Bsp120I/NotI gel purified fragment from pMON36592 ( FIG. 54 ) to generate pMON69945 ( FIG. 55 ).
- the fragment from pMON36592 contains the expression cassette of pNapin::GGH Arabidopsis ::napin 3′.
- Gluycine max is transformed with the described vectors according to the procedure set forth in WO 00/61771 A3 on pages 99-100.
- All gene expression cassettes used for expression in canola are prepared as Not I cassettes containing the napin promoter, a gene of interest, and the napin terminator. Genes of interest are N-terminally fused to a chloroplast target peptide, unless a natural chloroplast target peptide is present. All gene combinations are assembled in a single multi gene vector.
- the Not I expression cassettes are isolated by Not I digestion from pMON16602 ( FIG. 56 ), pMON36525 ( FIG. 57 ), pMON36520 ( FIG. 38 ) and cloned into Eag I digested and gel purified pMON36582 ( FIG. 19 ), resulting in the formation of pMON58171 (FIG. 58 )(slr1736 expression cassette), pMON58172 (FIG. 59 )(HPPD Arabidopsis expression cassette), and pMON58170 ( FIG. 60 ) (tyrA E. herbicola expression cassette). All of the resulting expression cassettes are flanked by Bsp120 I and Not I.
- a napin driven expression cassette for the Arabidopsis GGH is obtained by isolation and gel purification of a 3191 bp Not I/Hind III fragment from pMON36591 ( FIG. 61 ) and a 5612 bp Not I/Hind III-fragment from pMON36588 ( FIG. 62 ). These two purified fragments are ligated, resulting in the formation of pMON36592 ( FIG. 63 ).
- Vector pMON36592 is digested with Bsp120I and Not I, the GGH expression cassette is gel purified, and ligated into Eag I digested and gel purified pMON36582 ( FIG. 19 ), resulting in the formation of pMON58182 ( FIG. 64 ).
- Multi gene vectors combining these four genes are obtained by digesting vectors pMON58171, pMON58172, pMON58170, and pMON58182 with Bsp120I and Not I, followed by gel purification of the larger fragments from each construct. These fragments contain the slr1736, HPPD, tyrA, and GGH expression cassettes, respectively.
- the tyrA expression cassette from pMON58170 is ligated into Not I digested and alkaline phosphatase treated pMON58171, resulting in the formation of the double gene vector pMON58176 ( FIG. 65 ) containing gene expression cassettes for tyrA and slr1736, respectively.
- This vector is again digested with Not I, alkaline phosphatase treated, and ligated with the HPPD expression cassette from pMON58172.
- the resulting triple gene vector pMON58183 ( FIG. 66 ) contains the HPPD, tyrA, and slr1736 expression cassettes.
- pMON58183 is digested with Bsp120 I, alkaline phosphatase treated, and ligated with the gel purified GGH expression cassette (see purification above), resulting in the formation of pMON58185 ( FIG. 67 ).
- the shuttle vector pMON36593 ( FIG. 68 ) (containing tyrA and HPPD expression cassettes) is prepared by ligating a Bsp120I/Not I digested gel purified tyrA expression cassette from pMON36589 ( FIG. 69 ) into NotI digested and alkaline phosphatase treated pMON36590 ( FIG. 70 ).
- the combined gene expression cassettes are excised by Bsp120I/Not I digest from pMON36593 (HPPD/tyrA), pMON58183 (HPPD/tyrA/slr1736), and pMON58185 (HPPD, tyrA, slr1736, GGH).
- These combined gene expression cassettes are gel purified, and ligated into Not I digested, alkaline phosphatase treated pMON67162 ( FIG. 71 ), resulting in the formation of binary vectors pMON58178 ( FIG. 72 ), pMON58186 ( FIG. 73 ), and pMON58188 ( FIG. 74 ), respectively.
- the latter three binary vectors are used for canola transformation.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Nutrition Science (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Fats And Perfumes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/137,310 US7238855B2 (en) | 2001-05-09 | 2002-05-03 | TyrA genes and uses thereof |
AU2002308633A AU2002308633A1 (en) | 2001-05-09 | 2002-05-09 | Metabolite transporters |
EP02769376A EP1411761B1 (en) | 2001-05-09 | 2002-05-09 | Metabolite transporters |
BRPI0209536A BRPI0209536B1 (pt) | 2001-05-09 | 2002-05-09 | construto de dna que codifica transportador de adenilato em plantas e método para produzir planta com sementes tendo nível aumentado de tocoferol |
US10/141,478 US7161061B2 (en) | 2001-05-09 | 2002-05-09 | Metabolite transporters |
AT02769376T ATE455857T1 (de) | 2001-05-09 | 2002-05-09 | Metabolitentransporter |
DE60235168T DE60235168D1 (de) | 2001-05-09 | 2002-05-09 | Metabolitentransporter |
PCT/US2002/014445 WO2002090506A2 (en) | 2001-05-09 | 2002-05-09 | Metabolite transporters |
US11/436,909 US20060277629A1 (en) | 2001-05-09 | 2006-05-18 | Metabolite transporters |
US11/773,392 US20080086787A1 (en) | 2001-05-09 | 2007-07-03 | Tyra genes and uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28952701P | 2001-05-09 | 2001-05-09 | |
US10/137,310 US7238855B2 (en) | 2001-05-09 | 2002-05-03 | TyrA genes and uses thereof |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/141,478 Continuation-In-Part US7161061B2 (en) | 2001-05-09 | 2002-05-09 | Metabolite transporters |
US11/436,909 Continuation-In-Part US20060277629A1 (en) | 2001-05-09 | 2006-05-18 | Metabolite transporters |
US11/773,392 Division US20080086787A1 (en) | 2001-05-09 | 2007-07-03 | Tyra genes and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030176675A1 US20030176675A1 (en) | 2003-09-18 |
US7238855B2 true US7238855B2 (en) | 2007-07-03 |
Family
ID=23111919
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/137,310 Expired - Lifetime US7238855B2 (en) | 2001-05-09 | 2002-05-03 | TyrA genes and uses thereof |
US11/773,392 Abandoned US20080086787A1 (en) | 2001-05-09 | 2007-07-03 | Tyra genes and uses thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/773,392 Abandoned US20080086787A1 (en) | 2001-05-09 | 2007-07-03 | Tyra genes and uses thereof |
Country Status (13)
Country | Link |
---|---|
US (2) | US7238855B2 (zh) |
EP (1) | EP1392106B1 (zh) |
JP (1) | JP2004533244A (zh) |
CN (1) | CN1568141B (zh) |
AR (1) | AR034327A1 (zh) |
AT (1) | ATE419366T1 (zh) |
AU (1) | AU2002257237B8 (zh) |
BR (1) | BR0209483A (zh) |
CA (1) | CA2443865C (zh) |
DE (1) | DE60230608D1 (zh) |
ES (1) | ES2318004T3 (zh) |
MX (1) | MXPA03010220A (zh) |
WO (1) | WO2002089561A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070065910A1 (en) * | 2005-05-16 | 2007-03-22 | Gregory Stephanopoulos | Mutations for enhanced tyrosine production |
US20100216204A1 (en) * | 2000-10-14 | 2010-08-26 | Subramaniam S Sai | Nucleic acid sequences to proteins involved in tocopherol synthesis |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2369844C (en) | 1999-04-15 | 2013-02-26 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
WO2000068393A1 (en) | 1999-05-07 | 2000-11-16 | Pioneer Hi-Bred International, Inc. | Phytyl/prenyltransferase nucleic acids, polypeptides and uses thereof |
AR030124A1 (es) * | 2000-08-07 | 2003-08-13 | Monsanto Technology Llc | Genes de la via del fosfato de metil-d-eritritol |
FR2817557B1 (fr) * | 2000-12-05 | 2005-05-06 | Aventis Cropscience Sa | Nouvelles cibles pour herbicides et plantes transgeniques resistantes a ces herbicides |
EP1950305A1 (en) * | 2001-05-09 | 2008-07-30 | Monsanto Technology, LLC | Tyr a genes and uses thereof |
US7161061B2 (en) * | 2001-05-09 | 2007-01-09 | Monsanto Technology Llc | Metabolite transporters |
BR0209483A (pt) | 2001-05-09 | 2004-07-06 | Monsanto Technology Llc | Genes tyra e seus usos |
AU2002329759A1 (en) * | 2001-08-17 | 2003-03-03 | Monsanto Technology Llc | Methyltransferase genes and uses thereof |
US7262339B2 (en) * | 2001-10-25 | 2007-08-28 | Monsanto Technology Llc | Tocopherol methyltransferase tMT2 and uses thereof |
BRPI0308740B1 (pt) * | 2002-03-19 | 2018-11-21 | Monsanto Technology Llc | molécula de ácido nucléico codificando uma homogentisato prenil transferase (“hpt”) e método de produzir planta tendo semente com nível de tocoferol aumentado |
CN1681928A (zh) * | 2002-08-05 | 2005-10-12 | 孟山都技术公司 | 生育酚生物合成相关基因及其用途 |
FR2844142B1 (fr) * | 2002-09-11 | 2007-08-17 | Bayer Cropscience Sa | Plantes transformees a biosynthese de prenylquinones amelioree |
US7297541B2 (en) * | 2004-01-26 | 2007-11-20 | Monsanto Technology Llc | Genes encoding 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzymes for plant metabolic engineering |
MY166532A (en) * | 2006-02-10 | 2018-07-10 | Mannatech Inc | All natural multivitamin and multimineral dietary supplement formulations for enhanced absorption and biological utilization |
CA2735922A1 (en) * | 2008-09-30 | 2010-04-08 | Basf Plant Science Gmbh | Method for producing a transgenic plant cell, a plant or a part thereof with increased resistance biotic stress |
US9528119B2 (en) * | 2013-06-17 | 2016-12-27 | Los Alamos National Security, Llc | Transgenic cells with increased plastoquinone levels and methods of use |
CN108588115A (zh) * | 2018-05-09 | 2018-09-28 | 湖北文理学院 | 异戊烯转移酶基因作为筛选标记基因在培育转基因拟南芥植株中的应用 |
CN112237139A (zh) * | 2020-10-16 | 2021-01-19 | 云南省农业科学院花卉研究所 | 一种提高铁皮石斛种子变异率的诱变方法 |
CN113061619B (zh) * | 2021-04-30 | 2022-06-24 | 中国烟草总公司郑州烟草研究院 | 与烟气苯酚释放量相关的突变基因TyrA |
CN114717210B (zh) * | 2022-04-08 | 2023-07-04 | 四川农业大学 | 一种杨树香叶基香叶醇还原酶及其编码基因与应用 |
Citations (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB560529A (en) | 1942-04-16 | 1944-04-07 | Distillation Products Inc | Preparation of stabilized edible substances |
US4727219A (en) | 1986-11-28 | 1988-02-23 | Agracetus | Genic male-sterile maize using a linked marker gene |
WO1991002059A1 (en) | 1989-08-01 | 1991-02-21 | Pioneer Hi-Bred International, Inc. | Transcriptional activators of anthocyanin biosynthesis as visual markers for plant transformation |
WO1991009128A1 (en) | 1989-12-13 | 1991-06-27 | Imperial Chemical Industries Plc | Dna, constructs, cells and plants derived therefrom |
WO1991013078A1 (en) | 1990-03-02 | 1991-09-05 | Amoco Corporation | Biosynthesis of carotenoids in genetically engineered hosts |
EP0531639A2 (en) | 1991-07-18 | 1993-03-17 | F. Hoffmann-La Roche Ag | Tocopherol cyclase |
WO1993018158A1 (en) | 1992-03-03 | 1993-09-16 | Unilever Plc | Recombinant plant enzyme |
WO1994011516A1 (en) | 1992-11-17 | 1994-05-26 | E.I. Du Pont De Nemours And Company | Genes for microsomal delta-12 fatty acid desaturases and related enzymes from plants |
WO1994012014A1 (en) | 1992-11-20 | 1994-06-09 | Agracetus, Inc. | Transgenic cotton plants producing heterologous bioplastic |
WO1994018337A1 (en) | 1993-02-05 | 1994-08-18 | Monsanto Company | Altered linolenic and linoleic acid content in plants |
WO1995008914A1 (en) | 1993-09-30 | 1995-04-06 | Agracetus, Inc. | Transgenic cotton plants producing heterologous peroxidase |
US5429939A (en) | 1989-04-21 | 1995-07-04 | Kirin Beer Kabushiki Kaisha | DNA sequences useful for the synthesis of carotenoids |
WO1995018220A1 (fr) | 1993-12-27 | 1995-07-06 | Kirin Beer Kabushiki Kaisha | Chaine d'adn utilisee pour la synthese de xanthophylles, synthese et procede de preparation de xanthophylles |
WO1995023863A1 (en) | 1994-03-01 | 1995-09-08 | Centre National De La Recherche Scientifique (Cnrs) | Dna constructs, cells and plants derived therefrom |
EP0674000A2 (en) | 1994-03-24 | 1995-09-27 | Toyota Jidosha Kabushiki Kaisha | Geranylgeranyl diphosphate synthase and DNA coding therefor |
WO1995034668A2 (en) | 1994-06-16 | 1995-12-21 | Biosource Technologies, Inc. | The cytoplasmic inhibition of gene expression |
WO1996002650A2 (en) | 1994-07-18 | 1996-02-01 | Zeneca Limited | Dna, constructs, cells and plants derived therefrom |
WO1996006172A1 (fr) | 1994-08-23 | 1996-02-29 | Kirin Beer Kabushiki Kaisha | Enzyme d'introduction du groupe ceto, adn codant pour cette enzyme et procede d'elaboration de cetocarotenoide |
WO1996013149A1 (en) | 1994-10-28 | 1996-05-09 | Amoco Corporation | Enhanced carotenoid accumulation in storage organs of genetically engineered plants |
WO1996013159A1 (de) | 1994-10-26 | 1996-05-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Kryokonservierung und tieftemperaturbearbeitung von biologischen objekten |
EP0723017A2 (de) | 1995-01-23 | 1996-07-24 | Basf Aktiengesellschaft | Transketolase |
US5545816A (en) | 1990-03-02 | 1996-08-13 | Amoco Corporation | Phytoene biosynthesis in genetically engineered hosts |
WO1996036717A2 (en) | 1995-05-17 | 1996-11-21 | Centre National De La Recherche Scientifique | Dna sequences encoding a lycopene cyclase, antisense sequences derived therefrom and their use for the modification of carotenoids levels in plants |
WO1996038567A2 (fr) | 1995-06-02 | 1996-12-05 | Rhone-Poulenc Agrochimie | Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides |
EP0763542A2 (en) | 1995-09-01 | 1997-03-19 | Toyota Jidosha Kabushiki Kaisha | Long-chain prenyl diphosphate synthase |
WO1997017447A2 (en) | 1995-11-07 | 1997-05-15 | Calgene, Inc. | Plant vde genes and methods related thereto |
WO1997027285A1 (en) | 1996-01-29 | 1997-07-31 | Arizona Board Of Regents, On Behalf Of University Of Arizona | Cloned plant p-hydroxyphenyl pyruvic acid dioxygenase |
US5684238A (en) | 1990-03-02 | 1997-11-04 | Amoco Corporation | Biosynthesis of zeaxanthin and glycosylated zeaxanthin in genetically engineered hosts |
US5693507A (en) | 1988-09-26 | 1997-12-02 | Auburn University | Genetic engineering of plant chloroplasts |
WO1997049816A1 (en) | 1996-06-27 | 1997-12-31 | E.I. Du Pont De Nemours And Company | Plant gene for p-hydroxyphenylpyruvate dioxygenase |
WO1998004685A1 (en) | 1996-07-25 | 1998-02-05 | American Cyanamid Company | Hppd gene and inhibitors |
WO1998006862A1 (en) | 1996-08-09 | 1998-02-19 | Calgene Llc | Methods for producing carotenoid compounds and speciality oils in plant seeds |
WO1998018910A1 (en) | 1995-11-24 | 1998-05-07 | Yissum Research And Development Company Of The Hebrew University Of Jerusalem | Nucleic acid sequence encoding beta-c-4-oxygenase from haematococcus pluvialis for the biosynthesis of astaxanthin |
US5792903A (en) | 1993-10-25 | 1998-08-11 | Yissum Research Development Company Of Hebrew University Of Jerusalem | Lycopene cyclase gene |
WO1999004021A1 (de) | 1997-07-14 | 1999-01-28 | Basf Aktiengesellschaft | Dna-sequenz codierend für eine hydroxyphenylpyruvatdioxygenase und deren überproduktion in pflanzen |
WO1999004622A1 (en) | 1997-07-25 | 1999-02-04 | University Of Nevada | Transgenic plants with tocopherol methyltransferase |
WO1999006580A2 (en) | 1997-08-01 | 1999-02-11 | Performance Plants, Inc. | Stress tolerance and delayed senescence in plants |
WO1999007867A1 (en) | 1997-08-08 | 1999-02-18 | Calgene Llc | Methods for producing carotenoid compounds, and speciality oils in plant seeds |
US5876964A (en) | 1997-10-16 | 1999-03-02 | Washington State University Research Foundation | Geranyl diphosphate synthase from mint |
WO1999011757A1 (en) | 1997-09-02 | 1999-03-11 | Washington State University Research Foundation | NUCLEIC AND AMINO ACID SEQUENCES FOR A NOVEL TRANSKETOLASE FROM $i (MENTHA PIPERITA) |
US5908940A (en) | 1990-05-23 | 1999-06-01 | Lipogenics, Inc. | Processes for recovering tocotrienols, tocopherols and tocotrienol-like compounds |
WO1999055889A2 (en) | 1998-04-24 | 1999-11-04 | E.I. Du Pont De Nemours And Company | Carotenoid biosynthesis enzymes |
WO1999058649A1 (en) | 1998-05-13 | 1999-11-18 | University Of Maryland | Methods of modifying the production of isopentenyl pyrophosphate, dimethylallyl pyrophosphate and/or isoprenoids |
FR2778527A1 (fr) | 1998-05-18 | 1999-11-19 | Rhone Poulenc Agrochimie | Nouvelle methode de production de tocopherols dans les plantes et plantes obtenues |
WO2000001650A1 (en) | 1998-07-06 | 2000-01-13 | Dcv, Inc. Doing Business As Bio-Technical Resources | Method of vitamin production |
DE19835219A1 (de) | 1998-08-05 | 2000-02-10 | Basf Ag | DNA-Sequenz codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und deren Überproduktion in Pflanzen |
WO2000008187A2 (en) | 1998-08-04 | 2000-02-17 | Cropdesign N.V. | Genes involved in tolerance to environmental stress |
WO2000008169A1 (de) | 1998-08-05 | 2000-02-17 | Sungene Gmbh & Co.Kgaa | Dna-sequenz kodierend für eine 1-deoxy-d-xylulose-5-phosphat synthase und deren überproduktion in pflanzen |
WO2000011165A1 (en) | 1998-08-21 | 2000-03-02 | The Regents Of The University Of Michigan | ROLE OF HUMAN KIS (hKIS) AS AN INHIBITORY KINASE OF THE CYCLIN-DEPENDENT KINASE INHIBITOR P27. COMPOSITIONS, METHODS AND USES THEREOF TO CONTROL CELL PROLIFERATION |
WO2000010380A1 (en) | 1998-08-25 | 2000-03-02 | University Of Nevada | Manipulation of tocopherol levels in transgenic plants |
WO2000014207A2 (en) | 1998-09-08 | 2000-03-16 | E.I. Du Pont De Nemours And Company | Plant farnesyltransferases |
WO2000017233A2 (de) | 1998-09-22 | 2000-03-30 | Jomaa Pharmaka Gmbh | Gene des 1-desoxy-d-xylulose-biosynthesewegs |
WO2000022150A2 (en) | 1998-10-14 | 2000-04-20 | Pioneer Hi-Bred International, Inc. | Limonene and other metabolites of geranyl pyrophosphate for insect control |
WO2000028005A1 (en) | 1998-11-05 | 2000-05-18 | Washington State University Research Foundation | Nucleic acids encoding taxus geranylgeranyl diphosphate synthase, and methods of use |
WO2000032757A2 (en) | 1998-12-03 | 2000-06-08 | E.I. Du Pont De Nemours And Company | Plant vitamin e biosynthetic enzymes |
WO2000034448A1 (en) | 1998-12-04 | 2000-06-15 | E.I. Du Pont De Nemours And Company | Plant 1-deoxy-d-xylulose 5-phosphate reductoisomerase |
WO2000042205A2 (en) | 1999-01-15 | 2000-07-20 | Syngenta Participations Ag | Herbicide target gene and methods |
WO2000046346A1 (en) | 1999-02-03 | 2000-08-10 | Washington State University Research Foundation | 1-deoxy-d-xylulose-5-phosphate reductoisomerases, and methods of use |
EP1033405A2 (en) | 1999-02-25 | 2000-09-06 | Ceres Incorporated | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
WO2000061771A2 (en) | 1999-04-12 | 2000-10-19 | Monsanto Technology Llc | Transgenic plants containing altered levels of sterol compounds and tocopherols |
WO2000063389A1 (en) | 1999-04-15 | 2000-10-26 | Calgene Llc | Nucleic acid sequences to proteins involved in isoprenoid synthesis |
CA2372332A1 (en) | 1999-04-27 | 2000-11-02 | Basf Aktiengesellschaft | Overexpression of a dna sequence coding for a 1-desoxy-d-xylulose-5-phosphate reductoisomerase in plants |
WO2000068393A1 (en) | 1999-05-07 | 2000-11-16 | Pioneer Hi-Bred International, Inc. | Phytyl/prenyltransferase nucleic acids, polypeptides and uses thereof |
EP1063297A1 (en) | 1999-06-22 | 2000-12-27 | Korea Kumho Petrochemical Co. Ltd. | Farnesyl pyrophosphate synthase (FPS) derived from seedlings of sunflower (Helianthus annus) |
WO2001004330A1 (de) | 1999-07-09 | 2001-01-18 | Sungene Gmbh & Co. Kgaa | Identifizierung und überexpression einer dna-sequenz kodierend für eine 2-methyl-6-phytylhydrochinon-methyltransferase in pflanzen |
WO2001009341A2 (en) | 1999-07-30 | 2001-02-08 | Bayer Aktiengesellschaft | Method of determining the activity of 1-deoxy-d-xylulose-5-phosphate reductoisomerase and 1-deoxy-d-xylulose-5-phosphate synthase |
WO2001012827A2 (de) | 1999-08-11 | 2001-02-22 | Sungene Gmbh & Co. Kgaa | Verfahren zur herstellung transgener pflanzen mit erhöhtem tocopherol-gehalt |
WO2001021650A2 (en) | 1999-09-21 | 2001-03-29 | E.I. Du Pont De Nemours And Company | Cis-prenyltransferases from plants |
WO2001044276A2 (en) | 1999-12-16 | 2001-06-21 | Basf Plant Science Gmbh | Moss genes from physcomitrella patens encoding proteins involved in the synthesis of tocopherols carotenoids and aromatic amino acids |
WO2001062781A2 (de) | 2000-02-25 | 2001-08-30 | Sungene Gmbh & Co. Kgaa | Homogentisatphytyltransferase |
US6303365B1 (en) | 1999-07-30 | 2001-10-16 | Paradigm Genetics, Inc. R.T.P | Method of determining activity of 1-deoxy-D-xylulose-5-phosphate reductoisomerase and 1-deoxy-D-xylulose-5-phosphate synthase |
US20020069426A1 (en) | 2000-08-07 | 2002-06-06 | Albert Boronat | Methyl-D-erythritol phosphate pathway genes |
US20030148300A1 (en) | 2001-05-09 | 2003-08-07 | Valentin Henry E. | Metabolite transporters |
US20030150015A1 (en) | 2001-10-25 | 2003-08-07 | Norris Susan R. | Aromatic methyltransferases and uses thereof |
US20030154513A1 (en) | 2001-08-17 | 2003-08-14 | Eenennaam Alison Van | Methyltransferase genes and uses thereof |
US20030166205A1 (en) | 2001-02-08 | 2003-09-04 | Alison Van Eenennaam | Plant regulatory sequences |
US20030176675A1 (en) | 2001-05-09 | 2003-09-18 | Valentin Henry E. | TyrA genes and uses thereof |
US20030213017A1 (en) | 2002-03-19 | 2003-11-13 | Valentin Henry E. | Homogentisate prenyl transferase ("HPT") nucleic acids and polypeptides, and uses thereof |
US6653530B1 (en) * | 1998-02-13 | 2003-11-25 | Calgene Llc | Methods for producing carotenoid compounds, tocopherol compounds, and specialty oils in plant seeds |
US20040045051A1 (en) | 2002-08-05 | 2004-03-04 | Norris Susan R. | Tocopherol biosynthesis related genes and uses thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86105538A (zh) * | 1986-07-25 | 1988-02-24 | 平乡县粮食局油脂加工厂 | 一种食用油精炼方法 |
AR030430A1 (es) * | 2000-06-29 | 2003-08-20 | Sungene Gmbh & Co Kgaa | Procedimiento para la obtencion de quimicos finos por cultivo de organismos que presentan una via de shiquimato modificada, composicion de acido nucleinico, uso de dicho acido nucleinico para la obtencion de plantas transgenicas, organismo geneticamente modificado, procedimiento para la produccion d |
DE10046462A1 (de) * | 2000-09-19 | 2002-05-29 | Sungene Gmbh & Co Kgaa | Verbesserte Verfahren zur Vitamin E Biosynthese |
FR2817557B1 (fr) * | 2000-12-05 | 2005-05-06 | Aventis Cropscience Sa | Nouvelles cibles pour herbicides et plantes transgeniques resistantes a ces herbicides |
-
2002
- 2002-05-03 BR BR0209483-5A patent/BR0209483A/pt active IP Right Grant
- 2002-05-03 AU AU2002257237A patent/AU2002257237B8/en not_active Expired
- 2002-05-03 AT AT02726831T patent/ATE419366T1/de active
- 2002-05-03 JP JP2002586714A patent/JP2004533244A/ja active Pending
- 2002-05-03 CA CA2443865A patent/CA2443865C/en not_active Expired - Lifetime
- 2002-05-03 WO PCT/US2002/013898 patent/WO2002089561A1/en active Application Filing
- 2002-05-03 EP EP02726831A patent/EP1392106B1/en not_active Expired - Lifetime
- 2002-05-03 US US10/137,310 patent/US7238855B2/en not_active Expired - Lifetime
- 2002-05-03 CN CN02813539.3A patent/CN1568141B/zh not_active Expired - Lifetime
- 2002-05-03 ES ES02726831T patent/ES2318004T3/es not_active Expired - Lifetime
- 2002-05-03 MX MXPA03010220A patent/MXPA03010220A/es active IP Right Grant
- 2002-05-03 DE DE60230608T patent/DE60230608D1/de not_active Expired - Lifetime
- 2002-05-09 AR ARP020101690A patent/AR034327A1/es active IP Right Grant
-
2007
- 2007-07-03 US US11/773,392 patent/US20080086787A1/en not_active Abandoned
Patent Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB560529A (en) | 1942-04-16 | 1944-04-07 | Distillation Products Inc | Preparation of stabilized edible substances |
US4727219A (en) | 1986-11-28 | 1988-02-23 | Agracetus | Genic male-sterile maize using a linked marker gene |
US5693507A (en) | 1988-09-26 | 1997-12-02 | Auburn University | Genetic engineering of plant chloroplasts |
US5429939A (en) | 1989-04-21 | 1995-07-04 | Kirin Beer Kabushiki Kaisha | DNA sequences useful for the synthesis of carotenoids |
WO1991002059A1 (en) | 1989-08-01 | 1991-02-21 | Pioneer Hi-Bred International, Inc. | Transcriptional activators of anthocyanin biosynthesis as visual markers for plant transformation |
US5750865A (en) | 1989-12-13 | 1998-05-12 | Zeneca Limited | Process for modifying the production of carotenoids in plants, and DNA, constructs and cells therefor |
WO1991009128A1 (en) | 1989-12-13 | 1991-06-27 | Imperial Chemical Industries Plc | Dna, constructs, cells and plants derived therefrom |
US5304478A (en) | 1989-12-13 | 1994-04-19 | Imperial Chemical Industries Plc | Modification of carotenoid production in tomatoes using pTOM5 |
US5618988A (en) | 1990-03-02 | 1997-04-08 | Amoco Corporation | Enhanced carotenoid accumulation in storage organs of genetically engineered plants |
US5545816A (en) | 1990-03-02 | 1996-08-13 | Amoco Corporation | Phytoene biosynthesis in genetically engineered hosts |
US5684238A (en) | 1990-03-02 | 1997-11-04 | Amoco Corporation | Biosynthesis of zeaxanthin and glycosylated zeaxanthin in genetically engineered hosts |
WO1991013078A1 (en) | 1990-03-02 | 1991-09-05 | Amoco Corporation | Biosynthesis of carotenoids in genetically engineered hosts |
US5908940A (en) | 1990-05-23 | 1999-06-01 | Lipogenics, Inc. | Processes for recovering tocotrienols, tocopherols and tocotrienol-like compounds |
US5432069A (en) | 1991-07-18 | 1995-07-11 | Hoffmann-La Roche Inc. | Tocopherol cyclase isolated from Chlorella protothecoides, Dunaliella salina and wheat leaves |
EP0531639A2 (en) | 1991-07-18 | 1993-03-17 | F. Hoffmann-La Roche Ag | Tocopherol cyclase |
WO1993018158A1 (en) | 1992-03-03 | 1993-09-16 | Unilever Plc | Recombinant plant enzyme |
WO1994011516A1 (en) | 1992-11-17 | 1994-05-26 | E.I. Du Pont De Nemours And Company | Genes for microsomal delta-12 fatty acid desaturases and related enzymes from plants |
WO1994012014A1 (en) | 1992-11-20 | 1994-06-09 | Agracetus, Inc. | Transgenic cotton plants producing heterologous bioplastic |
WO1994018337A1 (en) | 1993-02-05 | 1994-08-18 | Monsanto Company | Altered linolenic and linoleic acid content in plants |
WO1995008914A1 (en) | 1993-09-30 | 1995-04-06 | Agracetus, Inc. | Transgenic cotton plants producing heterologous peroxidase |
US5792903A (en) | 1993-10-25 | 1998-08-11 | Yissum Research Development Company Of Hebrew University Of Jerusalem | Lycopene cyclase gene |
WO1995018220A1 (fr) | 1993-12-27 | 1995-07-06 | Kirin Beer Kabushiki Kaisha | Chaine d'adn utilisee pour la synthese de xanthophylles, synthese et procede de preparation de xanthophylles |
WO1995023863A1 (en) | 1994-03-01 | 1995-09-08 | Centre National De La Recherche Scientifique (Cnrs) | Dna constructs, cells and plants derived therefrom |
EP0674000A2 (en) | 1994-03-24 | 1995-09-27 | Toyota Jidosha Kabushiki Kaisha | Geranylgeranyl diphosphate synthase and DNA coding therefor |
WO1995034668A2 (en) | 1994-06-16 | 1995-12-21 | Biosource Technologies, Inc. | The cytoplasmic inhibition of gene expression |
WO1996002650A2 (en) | 1994-07-18 | 1996-02-01 | Zeneca Limited | Dna, constructs, cells and plants derived therefrom |
WO1996006172A1 (fr) | 1994-08-23 | 1996-02-29 | Kirin Beer Kabushiki Kaisha | Enzyme d'introduction du groupe ceto, adn codant pour cette enzyme et procede d'elaboration de cetocarotenoide |
WO1996013159A1 (de) | 1994-10-26 | 1996-05-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Kryokonservierung und tieftemperaturbearbeitung von biologischen objekten |
WO1996013149A1 (en) | 1994-10-28 | 1996-05-09 | Amoco Corporation | Enhanced carotenoid accumulation in storage organs of genetically engineered plants |
EP0723017A2 (de) | 1995-01-23 | 1996-07-24 | Basf Aktiengesellschaft | Transketolase |
WO1996036717A2 (en) | 1995-05-17 | 1996-11-21 | Centre National De La Recherche Scientifique | Dna sequences encoding a lycopene cyclase, antisense sequences derived therefrom and their use for the modification of carotenoids levels in plants |
WO1996038567A2 (fr) | 1995-06-02 | 1996-12-05 | Rhone-Poulenc Agrochimie | Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides |
EP0763542A2 (en) | 1995-09-01 | 1997-03-19 | Toyota Jidosha Kabushiki Kaisha | Long-chain prenyl diphosphate synthase |
WO1997017447A2 (en) | 1995-11-07 | 1997-05-15 | Calgene, Inc. | Plant vde genes and methods related thereto |
WO1998018910A1 (en) | 1995-11-24 | 1998-05-07 | Yissum Research And Development Company Of The Hebrew University Of Jerusalem | Nucleic acid sequence encoding beta-c-4-oxygenase from haematococcus pluvialis for the biosynthesis of astaxanthin |
WO1997027285A1 (en) | 1996-01-29 | 1997-07-31 | Arizona Board Of Regents, On Behalf Of University Of Arizona | Cloned plant p-hydroxyphenyl pyruvic acid dioxygenase |
WO1997049816A1 (en) | 1996-06-27 | 1997-12-31 | E.I. Du Pont De Nemours And Company | Plant gene for p-hydroxyphenylpyruvate dioxygenase |
WO1998004685A1 (en) | 1996-07-25 | 1998-02-05 | American Cyanamid Company | Hppd gene and inhibitors |
WO1998006862A1 (en) | 1996-08-09 | 1998-02-19 | Calgene Llc | Methods for producing carotenoid compounds and speciality oils in plant seeds |
WO1999004021A1 (de) | 1997-07-14 | 1999-01-28 | Basf Aktiengesellschaft | Dna-sequenz codierend für eine hydroxyphenylpyruvatdioxygenase und deren überproduktion in pflanzen |
WO1999004622A1 (en) | 1997-07-25 | 1999-02-04 | University Of Nevada | Transgenic plants with tocopherol methyltransferase |
WO1999006580A2 (en) | 1997-08-01 | 1999-02-11 | Performance Plants, Inc. | Stress tolerance and delayed senescence in plants |
WO1999007867A1 (en) | 1997-08-08 | 1999-02-18 | Calgene Llc | Methods for producing carotenoid compounds, and speciality oils in plant seeds |
WO1999011757A1 (en) | 1997-09-02 | 1999-03-11 | Washington State University Research Foundation | NUCLEIC AND AMINO ACID SEQUENCES FOR A NOVEL TRANSKETOLASE FROM $i (MENTHA PIPERITA) |
US5876964A (en) | 1997-10-16 | 1999-03-02 | Washington State University Research Foundation | Geranyl diphosphate synthase from mint |
WO1999019460A1 (en) | 1997-10-16 | 1999-04-22 | Washington State University Research Foundation | Geranyl diphosphate synthase from mint (mentha piperita) |
US6653530B1 (en) * | 1998-02-13 | 2003-11-25 | Calgene Llc | Methods for producing carotenoid compounds, tocopherol compounds, and specialty oils in plant seeds |
WO1999055889A2 (en) | 1998-04-24 | 1999-11-04 | E.I. Du Pont De Nemours And Company | Carotenoid biosynthesis enzymes |
WO1999058649A1 (en) | 1998-05-13 | 1999-11-18 | University Of Maryland | Methods of modifying the production of isopentenyl pyrophosphate, dimethylallyl pyrophosphate and/or isoprenoids |
FR2778527A1 (fr) | 1998-05-18 | 1999-11-19 | Rhone Poulenc Agrochimie | Nouvelle methode de production de tocopherols dans les plantes et plantes obtenues |
WO2000001650A1 (en) | 1998-07-06 | 2000-01-13 | Dcv, Inc. Doing Business As Bio-Technical Resources | Method of vitamin production |
WO2000008187A2 (en) | 1998-08-04 | 2000-02-17 | Cropdesign N.V. | Genes involved in tolerance to environmental stress |
DE19835219A1 (de) | 1998-08-05 | 2000-02-10 | Basf Ag | DNA-Sequenz codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und deren Überproduktion in Pflanzen |
WO2000008169A1 (de) | 1998-08-05 | 2000-02-17 | Sungene Gmbh & Co.Kgaa | Dna-sequenz kodierend für eine 1-deoxy-d-xylulose-5-phosphat synthase und deren überproduktion in pflanzen |
CA2339519A1 (en) | 1998-08-05 | 2000-02-17 | Sungene Gmbh & Co.Kgaa | Dna sequence coding for a 1-deoxy-d-xylulose-5-phosphate synthase and the overproduction thereof in plants |
WO2000011165A1 (en) | 1998-08-21 | 2000-03-02 | The Regents Of The University Of Michigan | ROLE OF HUMAN KIS (hKIS) AS AN INHIBITORY KINASE OF THE CYCLIN-DEPENDENT KINASE INHIBITOR P27. COMPOSITIONS, METHODS AND USES THEREOF TO CONTROL CELL PROLIFERATION |
WO2000010380A1 (en) | 1998-08-25 | 2000-03-02 | University Of Nevada | Manipulation of tocopherol levels in transgenic plants |
WO2000014207A2 (en) | 1998-09-08 | 2000-03-16 | E.I. Du Pont De Nemours And Company | Plant farnesyltransferases |
WO2000017233A2 (de) | 1998-09-22 | 2000-03-30 | Jomaa Pharmaka Gmbh | Gene des 1-desoxy-d-xylulose-biosynthesewegs |
CA2343919A1 (en) | 1998-09-22 | 2000-03-30 | Hassan Jomaa | Genes of the 1-desoxy-d-xylulose biosynthetic pathway |
WO2000022150A2 (en) | 1998-10-14 | 2000-04-20 | Pioneer Hi-Bred International, Inc. | Limonene and other metabolites of geranyl pyrophosphate for insect control |
WO2000028005A1 (en) | 1998-11-05 | 2000-05-18 | Washington State University Research Foundation | Nucleic acids encoding taxus geranylgeranyl diphosphate synthase, and methods of use |
WO2000032757A2 (en) | 1998-12-03 | 2000-06-08 | E.I. Du Pont De Nemours And Company | Plant vitamin e biosynthetic enzymes |
WO2000034448A1 (en) | 1998-12-04 | 2000-06-15 | E.I. Du Pont De Nemours And Company | Plant 1-deoxy-d-xylulose 5-phosphate reductoisomerase |
WO2000042205A2 (en) | 1999-01-15 | 2000-07-20 | Syngenta Participations Ag | Herbicide target gene and methods |
WO2000046346A1 (en) | 1999-02-03 | 2000-08-10 | Washington State University Research Foundation | 1-deoxy-d-xylulose-5-phosphate reductoisomerases, and methods of use |
US6281017B1 (en) | 1999-02-03 | 2001-08-28 | Washington State University Research Foundation | 1-deoxy-d-xylulose-5-phosphate reductoisomerases and method of use |
EP1033405A2 (en) | 1999-02-25 | 2000-09-06 | Ceres Incorporated | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
WO2000061771A2 (en) | 1999-04-12 | 2000-10-19 | Monsanto Technology Llc | Transgenic plants containing altered levels of sterol compounds and tocopherols |
WO2000063391A2 (en) | 1999-04-15 | 2000-10-26 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US20040018602A1 (en) | 1999-04-15 | 2004-01-29 | Lassner Michael W. | Nucleic acid sequences to proteins involved in tocopherol synthesis |
WO2000063389A1 (en) | 1999-04-15 | 2000-10-26 | Calgene Llc | Nucleic acid sequences to proteins involved in isoprenoid synthesis |
US20030170833A1 (en) | 1999-04-15 | 2003-09-11 | Lassner Michael W. | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US6541259B1 (en) * | 1999-04-15 | 2003-04-01 | Calgene Llc | Nucleic acid sequences to proteins involved in isoprenoid synthesis |
US20020108148A1 (en) | 1999-04-15 | 2002-08-08 | Albert Boronat | Nucleic acid sequences to proteins involved in isoprenoid synthesis |
WO2000065036A2 (de) | 1999-04-27 | 2000-11-02 | Basf Aktiengesellschaft | Überexpression einer dna-sequenz codierend für eine 1-desoxy-d-xylulose-5-phosphat reduktoisomerase in pflanzen |
CA2372332A1 (en) | 1999-04-27 | 2000-11-02 | Basf Aktiengesellschaft | Overexpression of a dna sequence coding for a 1-desoxy-d-xylulose-5-phosphate reductoisomerase in plants |
WO2000068393A1 (en) | 1999-05-07 | 2000-11-16 | Pioneer Hi-Bred International, Inc. | Phytyl/prenyltransferase nucleic acids, polypeptides and uses thereof |
EP1063297A1 (en) | 1999-06-22 | 2000-12-27 | Korea Kumho Petrochemical Co. Ltd. | Farnesyl pyrophosphate synthase (FPS) derived from seedlings of sunflower (Helianthus annus) |
WO2001004330A1 (de) | 1999-07-09 | 2001-01-18 | Sungene Gmbh & Co. Kgaa | Identifizierung und überexpression einer dna-sequenz kodierend für eine 2-methyl-6-phytylhydrochinon-methyltransferase in pflanzen |
US6303365B1 (en) | 1999-07-30 | 2001-10-16 | Paradigm Genetics, Inc. R.T.P | Method of determining activity of 1-deoxy-D-xylulose-5-phosphate reductoisomerase and 1-deoxy-D-xylulose-5-phosphate synthase |
WO2001009341A2 (en) | 1999-07-30 | 2001-02-08 | Bayer Aktiengesellschaft | Method of determining the activity of 1-deoxy-d-xylulose-5-phosphate reductoisomerase and 1-deoxy-d-xylulose-5-phosphate synthase |
WO2001012827A2 (de) | 1999-08-11 | 2001-02-22 | Sungene Gmbh & Co. Kgaa | Verfahren zur herstellung transgener pflanzen mit erhöhtem tocopherol-gehalt |
WO2001021650A2 (en) | 1999-09-21 | 2001-03-29 | E.I. Du Pont De Nemours And Company | Cis-prenyltransferases from plants |
WO2001044276A2 (en) | 1999-12-16 | 2001-06-21 | Basf Plant Science Gmbh | Moss genes from physcomitrella patens encoding proteins involved in the synthesis of tocopherols carotenoids and aromatic amino acids |
WO2001062781A2 (de) | 2000-02-25 | 2001-08-30 | Sungene Gmbh & Co. Kgaa | Homogentisatphytyltransferase |
US20020069426A1 (en) | 2000-08-07 | 2002-06-06 | Albert Boronat | Methyl-D-erythritol phosphate pathway genes |
US20030166205A1 (en) | 2001-02-08 | 2003-09-04 | Alison Van Eenennaam | Plant regulatory sequences |
US20030148300A1 (en) | 2001-05-09 | 2003-08-07 | Valentin Henry E. | Metabolite transporters |
US20030176675A1 (en) | 2001-05-09 | 2003-09-18 | Valentin Henry E. | TyrA genes and uses thereof |
US20030154513A1 (en) | 2001-08-17 | 2003-08-14 | Eenennaam Alison Van | Methyltransferase genes and uses thereof |
US20030150015A1 (en) | 2001-10-25 | 2003-08-07 | Norris Susan R. | Aromatic methyltransferases and uses thereof |
US20030213017A1 (en) | 2002-03-19 | 2003-11-13 | Valentin Henry E. | Homogentisate prenyl transferase ("HPT") nucleic acids and polypeptides, and uses thereof |
US20040045051A1 (en) | 2002-08-05 | 2004-03-04 | Norris Susan R. | Tocopherol biosynthesis related genes and uses thereof |
Non-Patent Citations (106)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100216204A1 (en) * | 2000-10-14 | 2010-08-26 | Subramaniam S Sai | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US8362324B2 (en) | 2000-10-14 | 2013-01-29 | Monsanto Technology Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US20070065910A1 (en) * | 2005-05-16 | 2007-03-22 | Gregory Stephanopoulos | Mutations for enhanced tyrosine production |
US7531345B2 (en) * | 2005-05-16 | 2009-05-12 | Massachusetts Institute Of Technology | Mutations for enhanced tyrosine production |
Also Published As
Publication number | Publication date |
---|---|
EP1392106A4 (en) | 2005-08-17 |
CA2443865C (en) | 2012-02-07 |
AU2002257237B8 (en) | 2008-06-05 |
DE60230608D1 (de) | 2009-02-12 |
CN1568141B (zh) | 2014-05-07 |
CN1568141A (zh) | 2005-01-19 |
BR0209483A (pt) | 2004-07-06 |
US20080086787A1 (en) | 2008-04-10 |
US20030176675A1 (en) | 2003-09-18 |
WO2002089561A1 (en) | 2002-11-14 |
CA2443865A1 (en) | 2002-11-14 |
AR034327A1 (es) | 2004-02-18 |
ATE419366T1 (de) | 2009-01-15 |
ES2318004T3 (es) | 2009-05-01 |
MXPA03010220A (es) | 2005-03-07 |
EP1392106A1 (en) | 2004-03-03 |
AU2002257237B2 (en) | 2008-05-29 |
EP1392106B1 (en) | 2008-12-31 |
JP2004533244A (ja) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080086787A1 (en) | Tyra genes and uses thereof | |
US7553952B2 (en) | Gamma tocopherol methyltransferase coding sequence identified in Cuphea and uses thereof | |
US20080083045A1 (en) | Aromatic methyltransferases and uses thereof | |
US20070079395A1 (en) | Homogentisate prenyl transferase ("HPT") nucleic acids and polypeptides, and uses thereof | |
US20060277629A1 (en) | Metabolite transporters | |
AU2002257237A1 (en) | Tyra genes and uses thereof | |
AU2002342114A1 (en) | Aromatic methyltransferases and uses thereof | |
EP1950305A1 (en) | Tyr a genes and uses thereof | |
EP1411761B1 (en) | Metabolite transporters | |
AU2003225879C1 (en) | Homogentisate prenyl transferase ("HPT") nucleic acids and polypeptides, and uses thereof | |
EP1897952A2 (en) | Methyltransferasegenes and uses thereof | |
AU2008202181A1 (en) | TyrA genes and uses thereof | |
BRPI0209483B1 (pt) | MOLÉCULA DE ÁCIDO NUCLÉICO tyrA, CÉLULA E MÉTODOS DE PRODUÇÃO DE PLANTA TENDO NÍVEIS AUMENTADOS DE TOCOFEROL E DE REDUÇÃO DOS NÍVEIS DE TOCOFEROL EM PLANTA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MONSANTO TECHNOLOGY LLC, MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VALENTIN, HENRY E.;MITSKY, TIMOTHY A.;REEL/FRAME:013260/0693;SIGNING DATES FROM 20020701 TO 20020702 |
|
AS | Assignment |
Owner name: MONSANTO TECHNOLOGY, L.L.C., MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAO, MING;KARUNANANDAA, BALASULOJINI;QI, QUUNGANG;REEL/FRAME:014582/0206;SIGNING DATES FROM 20030903 TO 20030909 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |