US7090030B2 - Tranducerized torque wrench - Google Patents
Tranducerized torque wrench Download PDFInfo
- Publication number
- US7090030B2 US7090030B2 US10/654,504 US65450403A US7090030B2 US 7090030 B2 US7090030 B2 US 7090030B2 US 65450403 A US65450403 A US 65450403A US 7090030 B2 US7090030 B2 US 7090030B2
- Authority
- US
- United States
- Prior art keywords
- fastener
- torque
- motor
- chuck assembly
- driver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/14—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B21/00—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/14—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
- B25B23/147—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25F—COMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
- B25F5/00—Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
- B25F5/02—Construction of casings, bodies or handles
- B25F5/025—Construction of casings, bodies or handles with torque reaction bars for rotary tools
- B25F5/026—Construction of casings, bodies or handles with torque reaction bars for rotary tools in the form of an auxiliary handle
Definitions
- the invention relates generally to the field of automatic drivers for fasteners. More specifically, the present invention relates to an apparatus for driving fasteners that is automatic and controllable. Yet more specifically, the present invention relates to a device for driving fasteners, where the apparatus delivers a specified torque. Yet even more specifically, the present invention relates to an automatic apparatus where the torque delivered is controllable from about 1 in-lb up to about 50 in-lb.
- Some of these devices include means to measure the rotational force, or torque, exerted by the particular device. These means range from monitoring the current consumed by the device, pressure sensors applied to working parts of the device, and included various sensors within the device. Examples of prior art devices useful for driving fasteners can be found in U.S. Pat. Nos. 4,487,270, 4,887,499, 6,424,799, 4,571,696, and 4,502,549.
- the present invention involves a fastener driver comprising a motor capable of providing a rotational force connected to a chuck assembly.
- a fastener driver comprising a motor capable of providing a rotational force connected to a chuck assembly.
- a variable voltage device that is responsive to a magnetic field.
- the motor can be selectively controlled by operation of the variable voltage device—where the control includes on off switching as well as motor speed control.
- the variable voltage device can be a Hall effect sensor, either linear or digital.
- the present invention can further include a field device provided on the chuck assembly, where the field device is capable of emitting a magnetic field. Positioning the field device by selective movement of the chuck assembly controllably drives the motor. This is done since positioning the field device manipulates the magnitude of the magnetic field provided to the variable voltage device from the field device. The magnitude of the magnetic field proportionally relates to the proximity of the variable voltage device in relation to the field device.
- the fastener driver of the present invention can further include a lever assembly having a field device formed thereon.
- the field device within the lever is also capable of emitting a magnetic field.
- Positioning the field device within the lever by selective movement of the lever assembly can controllably drive the motor.
- Positioning the field device manipulates the magnitude of the magnetic field applied to the variable voltage device from the field device within the lever.
- the magnitude of the magnetic field within the lever field device proportionally relates to how close the variable voltage device is in relation to the field device.
- a handheld pistol grip assembly can be employed in lieu of the lever assembly.
- a torque transducer capable of measuring the value of the torque generated by the chuck assembly.
- at least one strain gauge in cooperative engagement with the torque transducer.
- the at least one strain gauge transmits data representing the torque generated by the chuck assembly. This data monitored by the strain gage is usable to terminate operation of the driver when the torque generated by the chuck assembly reaches a predetermined amount.
- At least one selector switch programmably capable of selectively reversing the polarity of the electrical power supplied to the driver. Additional selector switches can be included that are also programmable. The additional selector switches can be capable of selectively operating the driver in a different control mode.
- the present invention can comprise a system to drive fasteners comprising a fastener driver combinable with a controller assembly.
- the fastener driver includes a motor capable of providing a rotational force, a chuck assembly operatively connectable to the motor, and a variable voltage device responsive to a magnetic field.
- the motor is in operative communication with the variable voltage device.
- the controller assembly should be capable of providing control instructions to the fastener driver where the control instructions comprise maximum torque magnitude, speed, among other operational variables.
- FIG. 1A depicts one embodiment of the present invention.
- FIG. 1B illustrates an exploded view of one embodiment of the present invention.
- FIGS. 2A–2E provide a partial cut-away version of embodiments of the present invention.
- FIG. 2F provides a cutaway view of an embodiment of the present invention.
- FIG. 2G illustrates a frontal view of an embodiment of the present invention.
- FIG. 2H illustrates a side view of a tranducerized element.
- FIGS. 3A and 3B depict a cutaway view of an embodiment of the present invention.
- FIGS. 4A and 4B depict a cutaway view of an embodiment of the present invention.
- FIG. 5 presents an embodiment of the present invention combined with a controller.
- FIG. 6 provides an exploded view of a gear box in combination with a motor.
- FIGS. 7A and 7B provide a perspective view of a pistol grip assembly.
- the present invention considers a fastener driver system comprising a fastener driver combined with a controller system.
- a fastener driver 10 of the present invention is shown in perspective view in FIG. 1A and an exploded view in FIG. 1B .
- the fastener driver 10 is capable of driving fasteners, such as bolts, nuts, screws, self-threading screws, etc. Further, the fastener driver 10 is capable of repeatably applying fasteners to a precise specifiable torque.
- a motor 36 is included with the invention capable of initiating a force used to torque the fasteners.
- the motor is a brushless DC motor operating at 48V to 60V.
- the motor 36 employs a stator (not shown), a rotor (not shown), and a commutation module (not shown).
- the stator is comprised of a series of windings that surround the rotor. Magnets (not shown) are secured to the outer radius of the rotor and current is applied to the windings situated just counterclockwise of the magnets. The current within the stator creates an electromagnetic field that repels the magnets causing rotation of the rotor.
- the commutation module is attached to the rotor and has an indicator from which the angular location of the magnets is determined. By tracking the location of the magnets, the series of windings just counterclockwise of the magnets, at any given point in time, are energized which perpetuates rotation of the rotor.
- a gear box 38 is shown disposed adjacent the motor 36 is operative connected to the motor 36 .
- the gear box 38 contains a series of gears 39 configured into a gear train or system in mechanical cooperation with the motor 36 .
- the gears 39 are arranged to receive the output rotational force delivered by the motor 36 and convert that force into a specified torque at the output shaft 40 connected to the gear box 38 .
- the gear train is comprised of at least two gear stages, where each stage converts the rotational torque and speed produced by the motor 36 .
- the gear box 38 function to increase the torque delivered by the motor 36 with a corresponding decrease in the rotation speed of the motor 36 .
- the preferred range of torque to be output at the gear box 38 ranges from about 1 in-lb to about 50 in-lb.
- the preferred gear system is a planetary gear system comprising sun and planet gears.
- FIG. 6 provides an embodiment of a motor 36 combined with a gear box 38 , where the gear box 38 is shown in an exploded view.
- the first stage sun gear 86 is attached to the motor 36 and engages a series of preferably three planetary gears 88 .
- the planetary gears 88 are all attached to a planet carrier 91 , from which extends a second sun gear 93 into a second planetary gear stage 95 .
- the output shaft of the second gear stage is the output shaft 40 .
- the gearbox 38 is sealed, this eliminates gear maintenance and protects the gears from foreign matter such as dirt.
- the lubricant used be two parts gear oil with one part of motor grease.
- This combination of oil and grease provides an exceptional high-pressure lubricity, and low viscosity as compared to conventional power tool greases.
- the combination further exhibits sufficient tackiness that in turn minimizes the amount of lubricant used that in turn greatly reduces viscous shear.
- Needle rollers 89 can be included between the annulus between the inner diameter of each planet gear (of each stage) and the outer diameter of the spindle 93 it rides on.
- the needle rollers 89 also hold lubrication very well.
- the quantity of needle rollers 89 for use with each gear depends on the size of the individual gear and the gear box, it is believed that determining this quantity is within the scope of those skilled in the art.
- axle bearing 90 is disposed into a conical cavity between the planets on the centerline of each planet carrier ( 91 and 97 ).
- the axle bearing is comprised of a hardened metal ball, such as 440C SS or 52100 chrome steel, which is a common bearing material. This ball could be made from any number of hardenable materials. This configuration produces very little friction since the axle bearing 90 and the sun gears ( 86 and 93 ) are in tangential contact.
- the bearing on the outboard most end of the gearbox is a conventional radial bearing. This bearing is meant to carry any side loads placed on the output shaft 40 as well as a small amount of axial load.
- the inboard bearing is an angular contact bearing. This bearings primary function is to carry the axial loads, which are transmitted down the output shaft as well as a small amount of radial load.
- the load coupling of these two bearings is accomplished by a small spacer of a precisely held thickness, which is sandwiched between the inner races of both bearings.
- the splined output shaft 40 was strengthened to carry more torsional load.
- the gearbox output shaft retainer ring (not shown) was improved to carry more axial load without breaking free.
- Nitriding was added to surfaces on the planet carriers that come into contact with rotating planet gears. 9310 alloy axles were included with the planet carriers to improve fatigue properties also the thickness of rear gearbox end cap was adjusted to minimize axial gear clearances.
- Table 1 provides a summary of sample configurations of gear systems providing varying output torque, included with the table are the corresponding speed and rations of the possible stages in the particular gear system.
- the fastener driver 10 can be tranducerized to provide a real-time monitoring of the magnitude of the torque exerted onto a fastener by the fastener driver 10 .
- the torque monitoring system include a flexure 25 secured to the gear box 38 on the end of the gear box 38 opposite to where it is connected to the motor 36 .
- At least one strain gauge 85 can be included within the flexure 25 that senses the torque supplied by the motor 36 and transmits that sensed torque information to the tool controller 80 .
- Preferably four strain gages 85 are included with the flexure 25 .
- the flexure 25 is connected on its other end to the nose cap 26 . As can be seen in FIG.
- the nose cap 26 includes slots 27 on its outer surface that mate with tabs 17 formed on the front end of the body 12 of the fastener driver 10 .
- the motor 36 supplies torque to the fastener, the motor 36 in turn transmits an identical torque value to nose cap 26 .
- the flexure 25 experiences the torque supplied by the motor 36 .
- the torque output of the motor 36 can be measured by the at least one strain gage 85 .
- the torque output of the at least one strain gage 85 connects to the tool controller 80 as well.
- the tool controller 80 is programmable to immediately deactivate power to the fastener driver 10 , thus ensuring that the fastener being secured by the fastener driver 10 is not over tightened.
- the at least one strain gage 85 is calibrated as an assembly using what is know as a dead weight calibrator. Weights, which are certified and traceable to NIHST, are used to generate a static moment by placing them on an arm at a specific distance. The calibration does not occur until the at least one strain gage 85 is combined within the fastener driver 10 . This is done in order to take into account frictional losses in the tool.
- the at least one strain gage 85 can be a standard encapsulated strain gage that is modulus compensated for use on aluminum flexures.
- the signal produced by the detection of strain in the at least one strain gage 85 is carried to the controller 80 analog via a flex circuit 44 and the tool cable 82 .
- the flex circuit 44 attaches directly to the flex circuit therefore eliminating wiring in the fastener driver 10 .
- the four strain gages are attached to each other in a wheatstone bridge configuration using fine polyester varnished wire.
- the four dual element strain gages 85 are located 90° from each other on the flexure 36 .
- the use of four strain gages 85 is employed in order to minimize bending cross talk and improve accuracy.
- a chuck assembly 28 is provided with the embodiment of the present invention of FIGS. 1A and 1B .
- the chuck assembly 28 is connectable to the output shaft 40 , preferably through corresponding spline grooves formed on the outer surface of the shaft 40 and an aperture (not shown) formed axially within the shaft 29 of the chuck assembly 28 .
- the length of the aperture should be long enough to allow the shaft 29 to slide back and forth along a portion of the length of the output shaft 40 .
- a socket 31 is provided on one end of the chuck assembly 28 , the socket 31 shown is suitable for receiving a fitting (not shown) specifically sized to fit the particular fastener being driven by the fastener driver 10 .
- a sleeve 33 is provided that when tugged axially retracts a retaining ball within the socket 31 thereby enabling adding or removing the particular fitting for use with the fastener driver 10 .
- a collar 35 slidable along the shaft 29 .
- the collar 35 includes threads 32 on the outer surface adjacent the nut 30 formed to fit threads (not shown) in the nose cap 26 .
- a ring magnet 34 is disposed on the end of the shaft 29 opposite the socket 31 .
- a snap ring (not shown) is included on the shaft 29 that retains the collar 35 on the shaft between the sleeve 33 and the snap ring.
- illumination light emitting diodes (LEDS) 58 can be disposed on the forward end of the fastener driver 10 .
- LEDS 58 Preferably four illumination LEDS 58 can be included that reside in ports 60 formed on the nose cap 26 .
- the illumination LEDS 58 should emit white light to provide illumination for the operator so the fastener driver 10 can be used in dark spaces.
- indicator LEDs 62 of various colors Illumination of an indicator LED 62 of a certain color can provide operational information pertinent to the fastener driver 10 .
- one of the indicator LEDS 62 can be designed to emit a green light when it has been determined that a fastener has been torqued to a correct torque value.
- a red indicator LED 62 can be activated and if too little torque has been applied a yellow indicator LED 62 can be lit.
- the colors of the illumination LEDS 62 is merely illustrative and not meant to constrict the scope of the invention as any color light can be chosen to represent a particular torque condition.
- VVD variable voltage devices
- the output voltage of the VVD depends on the magnetic flux density applied to the VVD.
- the output voltage of a VVD can be increased by subjecting the VVD to a magnetic field.
- the output voltage of the VVD can be eliminated by removing the magnetic field.
- a switching mechanism can be produced by combining a field device that produces a magnetic field, such as a magnet, with a VVD.
- a simple application of this phenomenon involves creating a voltage source by positioning a magnet (either permanent or electro) close to a Hall effect sensor.
- the preferred field device is a permanent magnet
- the preferred VVD is a Hall effect sensor.
- FIGS. 3A and 3B one example of such a switching device can be seen.
- the chuck assembly VVD 73 is disposed on the flexure 25 .
- the shaft 29 is slideable within the collar 35 and is thus axially moveable with respect to the rest of the fastener driver 10 . Absent a force urging the shaft 29 inward toward the fastener driver 10 , it is pushed outward by a spring 42 and is in its extended position as seen in FIG. 3A .
- the magnetic field emitted by the field device 34 has little or no effect on the chuck assembly VVD 73 and the chuck assembly VVD 73 will emit no voltage.
- the field device 34 when the shaft 29 is pushed inward into a retracted position, the field device 34 should be sufficiently proximate to the chuck assembly VVD 73 that it will emit voltage. It is preferred that when the shaft 29 is fully retracted that the interaction between the field device 34 and the chuck assembly VVD 73 be such that the chuck assembly VVD 73 emit its maximum voltage. The voltage emitted from the chuck assembly VVD 73 should be used to drive the motor 36 . Therefore, the motor 36 can be activated or deactivated by retracting and extending the shaft 29 .
- the chuck assembly VVD 73 will begin to emit a higher voltage in response to an increase in the strength of the magnetic field applied to it by the field device 34 .
- the closer the field device 34 is to the chuck assembly VVD 73 the more voltage the chuck assembly VVD 73 will emit, and in turn the faster the motor 36 will operate.
- one of the many advantages of the present invention is the ability to initiate operation of the motor 36 by slowly retracting the shaft 29 , and to operate the motor 36 at variable speeds depending on how far inward the shaft 29 is retracted. This introduces a novel approach to the operation of such devices.
- the motor 36 of the fastener driver 10 can be variably driven by manipulation of the lever 20 .
- a lever field device 76 preferably a permanent magnet, is disposed within the body of the lever 20 .
- the lever 20 is hingedly attached to the fastener driver 10 on one of its ends via pins 54 inserted into ports of the end cap 18 .
- a corresponding lever VVD 78 is preferably positioned within a groove 47 formed on the outer surface of a wiring shell 46 .
- a spring 21 is included to urge the free end of the lever 20 outward away from the body of the fastener driver 10 .
- the lever field device 76 When an external force is applied to the lever 21 , such as by an operator, urging the lever 21 toward the body of the fastener driver 10 , the lever field device 76 should begin to approach the proximity of the lever VVD 78 . Also similar to the operation of the chuck assembly VVD 73 , the lever VVD 78 will begin to emit voltage to the motor 36 as the lever field device 76 approaches it. Thus the motor 36 can be manipulated by depressing the lever 21 in much the same manner as it is manipulated by retracting the shaft 29 .
- the lever 21 can be replaced by a pistol grip assembly 61 , where the pistol grip assembly 61 comprises a handle 65 , a base 69 , and trigger 72 .
- the handle 65 provides a grip for the users hand.
- the base 69 is secured to the handle 65 and securable to the body 12 of the fastener driver 10 .
- the trigger 72 can be hingedly attached to the base 69 and include a trigger field device 74 disposed thereon such that when the trigger 72 is depressed the trigger field device 74 is moved towards the body 12 .
- the pistol grip assembly 61 should be secured to the body 12 such that the trigger field device 74 will be proximate to the lever VVD 78 when the trigger 72 is depressed.
- the fastener driver 10 can be actuated by depressing the trigger 72 .
- selector buttons ( 14 and 16 ) can optionally be provided with the present invention to enhance the flexibility of the fastener driver 10 functions.
- Each selector button ( 14 and 16 ) can contain a field device, such as a permanent magnet within.
- the selector buttons ( 14 and 16 ) should be aligned with selector button VVDS ( 70 and 71 ) disposed within the groove 47 .
- Springs 15 should be included with each selector button ( 14 and 16 ) to urge the buttons outward from the body 12 of the fastener driver 10 absent a force pushing the buttons inward.
- actuation of the selector buttons ( 14 and 16 ) inward can vary the function of the fastener driver 10 .
- the controller 80 can be programmed such that inwardly pressing the first selector button 14 will toggle the polarity of the voltage delivered to the motor 36 thereby reversing the rotational direction of the chuck assembly 28 .
- Additional options include the requirement that the buttons ( 14 and 16 ) be depressed twice, similar to the operation of a mouse of a personal computer, before the requested function occur.
- the selector buttons ( 14 and 16 ) can be programmed to initiate or control any number of external devices or process either directly or indirectly related to the operation of the tool. More commonly the selector buttons ( 14 and 16 ) can be used to control the direction of rotation of the tool as well as changing preprogrammed tool set points or parameter sets. It is believed that the programming of the associated controller 80 can be accomplished by those skilled in the art without undue experimentation.
- the circuitry of the fastener driver be included on the flex circuit 44 .
- the flex circuit 44 can provide a way to conduct power to drive the motor 36 and provide wiring to conduct control commands as well.
- the flex circuit 44 can be comprised of a flexible resin like material, as such the flex circuit 44 can be tailored to fit within the present invention while consuming a minimum amount of space within the fastener driver 10 .
- the illumination LEDS 58 , the indication LEDS 62 , and lever and selector button VVDS ( 70 , 71 , and 78 ) can be situated directly on the flex circuit 44 . Design of an appropriate flex circuit 44 for use with the present invention is well within the capabilities of those skilled in the art.
- a memory chip should be included with the fastener driver 10 preferably included with the flex circuit 44 .
- the memory chip is programmed at least with identification, calibration, and operating conditions desired by the fastener driver 10 .
- the information can include the model number of the specific fastener driver 10 , serial number, date of manufacture, date of calibration, maximum speed and maximum torque that the fastener driver 10 can attain, the calibration value, the motor angle counter per tool output revolution (this describes the gear ratio), and other useful operating parameters. Operation of the system requires constant real-time communication with a tool controller 80 . Programmed within the tool controller 80 are the operating parameters for the specific fastener driver 10 being used.
- the tool controller 80 interrogates the memory chip within the specific fastener driver 10 to ensure that the specific tool is capable of performing the intended task. If the tool is capable of performing the task at hand, the controller will allow the specific fastener driver 10 to be operated; otherwise the controller 80 will not activate the tool. This interrogation happens upon power up or when the specific fastener driver 10 is first connected to the controller 80 .
- the controller can be programmed with a lap top computer using a graphic user interface under the Windows operating system.
- the fastener driver 10 can be connected to the controller 80 via a cable 82 and the interrogation step is initiated. As noted above, as soon as the controller 80 determines that the fastener driver 10 is adequate to carry out the programmed function it can then provide power to the fastener driver 10 . Upon being powered up, the fastener driver 10 is ready for use. As is well known, the fastener driver 10 is used by inserting a fitting into the socket 31 , then coupling the fitting with the fastener that is to be driven. The fastener driver 10 can be activated in either a push to start mode, or by depressing the lever 20 .
- Activation by the push to start mode includes the step of first inserting the fastener where it is to be fastened.
- the fastener is a threaded screw
- the screw will be inserted into the hole (threaded or unthreaded) where it is to be secured. Then a force can be applied by the operator to the rear end of the fastener driver 10 that in turn pinches the screw between the fitting and the hole. As long as this force applied by the operator exceeds the spring constant of the spring 42 , the shaft 29 will be retracted within the collar 35 .
- the field device 34 is located proximate to the chuck assembly VVD 73 —as is illustrated in FIG. 3B .
- voltage is emitted from the chuck assembly VVD 73 that in turn begins to drive the motor 36 .
- Driving the motor 36 produces rotation of the chuck assembly 28 via the gear box 38 and output shaft 42 . Rotation of the chuck assembly 28 can be used to drive the fastener into securing engagement with the associated hole by the transfer of rotational force from the chuck assembly 28 to the fastener.
- the fastener driver 10 can be operated by depressing the lever 20 up against the body 12 of the fastener driver 10 .
- a lever field device 76 is shown disposed within the lever 20 .
- the lever field device 76 approaches the lever VVD 78 .
- the lever VVD 78 begins to emit a voltage whose magnitude is in relation to the strength of the magnetic field applied to it by the lever field device 76 .
- the voltage emitted by the lever VVD 78 can then be applied to driver the motor 36 where the magnitude of the voltage emitted by the lever VVD 78 directly corresponds to the rotational speed of the motor 36 .
- the push to start and throttle lever can either be used individually or in combination with each other. There are however instances where they are useful in combination.
- the magnitude of the torque delivered to the fastener by the fastener driver 10 is measured by the at least one strain gage 85 disposed within the flexure 25 .
- the strain gage bridge produces an analog output that is continuously monitored during tool operation.
- the strain gages should be arranged in such a fashion as to be only sensitive to torsion along the axis of the flexure 25 .
- Each strain gage 85 has two elements that are oriented 90 degrees to each other and 45 degrees to the axis of the flexure 25 . There are four gages arrayed around the circumference of the flexure in 90° intervals.
- the torque value measured by the at least one strain gage 85 is uploaded to the controller 80 as the controller 80 interrogates data from the fastener driver 10 .
- a real time measurement of the torque applied to the fastener can be obtained by the controller 80 through its constant monitoring of the at least one strain gage 85 .
- the controller 80 can be programmed to instantaneously deactivate the fastener driver 10 when the torque measured by the at least one strain gage 85 matches the shut off torque stored in the controller 80 .
- the controller 80 immediately and actively stops rotation of the tool, thus ensuring that the fastener being secured by the tool is not over tightened.
- the braking or stopping of the tool is accomplished through the use of plug reversing and dynamic braking.
- Plug reversing involves applying full reverse power to the motor 36 until the strain gage 85 and controller 80 senses zero torque.
- Dynamic braking takes advantage of the fact that a motor 36 is also a generator. By shorting the power leads of the motor 36 to each other, the effect is to force the motor 36 to resist its own rotation in proportion to its rotational velocity.
- one of the many advantages realized by the present invention is the ability to precisely tighten fasteners exactly to a desired torque without the danger of over or undertightening a fastener.
- This advantage is due in part to the real time monitoring of torque and the instantaneous response of the controller 80 actively deactivating the fastener driver 10 .
- the controller can be programmed with a target torque and speed.
- the controller can be set to run the fastener driver 10 at two different speeds. The first speed would be relatively high and would run until a selected torque, which is not the target torque, is reached. The second, or downshift speed, would run slower and then stop at the target torque. For example if the target torque is 20 in-lbs the controller may be set as follows: Initial speed of 1000 rpm until a down shift torque of 12 in-lbs is reached. Then a down shift speed of 250 rpm until the target torque is reached. Additionally, angle measurement and control can be implemented. Angle control can either be substituted for torque or used in combination with torque. An AND relationship can be established with torque and angle.
- both targets have to be met or exceeded in order to count as a successfully fastened joint.
- the angle count is started at a threshold torque of perhaps 10 to 20 percent of the target torque. In this case that would be 2 to 4 in-lbs.
- Other parameters can be set to form upper and lower torque and angle limits around the targets. For example with a 20 in-lb target the limits may include a torque low limit of 18 in-lbs and a high limit of 22 in-lbs with an angle low limit of 50° with an angle high limit of 70°. These limits are used to form a window around the target for the purposes of establishing the criteria for a properly torqued fastener. If the angle is to low before achieving the target torque then the fastener has likely cross threaded. If the angle is to high then the fastener has likely stripped, broken or was not present.
- the dimensions of the present invention enable it to be used by an operator with a single hand thus being a hand held device. Accordingly the dimensions of the fastener driver 10 should be in the range of from 7–9 inches in length and from about 1–2 inches in diameter.
- the motor 36 is a Maxon EC motor, model EC 22 , 22 mm, brushless, and 50 Watt that can be purchased from Maxon Precision Motors, inc., 838 Mitten Road, Burlingame, Calif. 94010.
- the gear box 38 comprises two gear stages, where the two stages provide a conversion of speed to torque of 6.75:1 and 4.285:1 respectively.
- the overall torque conversion is an increase of 28.92:1 (6.75 ⁇ 4.285) with a corresponding reduction in velocity.
- the preferred torque capacity is 20 in-lbs with a rotational velocity of 1,100 rpm.
- the preferred gear system is a planetary gear system.
- the first stage sun gear is attached to the motor output shaft and engages a series of three planetary gears.
- the planetary gears are all attached to a planet carrier, from which extends a second sun gear into the next planetary gear stage.
- the output shaft of the second gear stage which has a spline gear formed thereon, mates with the output drive.
- the gearboxes be in a sealed oil gearbox. Sealing the gearbox eliminates gear maintenance, helps keep the gears clean, and protects the gears from foreign matter.
- the light oil in lieu of a more viscous lubricant, such as grease, greatly enhances the efficiency of torque transmission.
- the preferred lubrication for this configuration is a mix of two parts 75W-90 MOBIL-ONE® synthetic gear oil with one part LUBRIPLATE® No. 105 motor assembly grease. This combination provides a balance of good high-pressure lubricity, low viscosity as compared to conventional power tool greases, and enough tackiness to require only 1 milliliter of oil therefore greatly reducing viscous shear.
- the field device 34 is a ring magnet that is plastic injection molded using Neodymium Iron Born magnet particles suspended in Nylon. This configuration provides relatively high field density combined with low cost. Further, the ring magnet should be radially magnetized, the outer diameter of the ring magnet is magnetized as a north pole and the inner diameter is oppositely polarized as entirely all south pole. However, the inner ring could be magnetized as all north pole and the outer diameter could be magnetized as all south pole. This is done so that the output of the Hall sensor within the chuck assembly VVD 73 stays consistent regardless of the rotational orientation of the shaft 29 . It is preferred that the Hall output vary as a result of axial movement only.
- the Hall effect sensors in the exemplary embodiment of the present invention are preferably model numbers 3515 or 3516 for the linear sensors, and the 3100 series digital hall effect sensors for the digital sensors: these sensors can be purchased from Allegro MicroSystems, Inc. of 115 Northeast Cutoff Box 15036, Worcester, Mass. 01615-0036.
- Nitraloy 135. This material was selected because of its hardness and heat-treating properties.
- Nitraloy 135 was designed to be heat-treated using a process called gas or ion nitriding. Instead of using carbon to create surface or case hardness this material utilizes nitrogen. When conventional gear materials are carborized they tend to distort due to the high heat of the process including swelling or growth due to carbon absorption. Additionally, it is difficult to control case depth in small parts using carborizing. In contrast, Nitraloy 135 in combination with gas nitriding can produce very hard surfaces at very controlled case depths with almost no distortion. Gear teeth experience two types of stresses, bending stress and contract stress. The surface hardness of Nitraloy 135, which has been gas nitrided, handles contact stress very well. Many gears made from alternative methods fail because surface stresses cause the tooth faces to become pitted and ultimately fail from crack propagation.
- Nitraloy 135 is also used in the planet carriers. Through the application of copper plating to the planet carriers nitriding can be selectively applied to the surfaces, which require hardness for wear and avoid unnecessary hardness in areas, which do not need it. With respect to the planet carriers, only the surfaces that come into contact with rotating gear surfaces are hardened. The other surfaces, particularly the axle holes, are formed to be soft in order to prevent cracking when the axles are pressed in during assembly.
- the gear axles are made from a material called 9310 that is a high strength carborizing gear material with excellent bending fatigue properties.
- Some of the advantages realized by the present invention include a high degree of reliability and durability.
- the operating limit of many fastening tools before failure is about 500,000 cycles, in fact tools that are capable of operating up to 1,000,000 cycles without failure are considered very durable.
- the present invention has been found to operate in excess of 5,000,000 cycles without failure, which greatly exceeds the durability expectations of such a tool.
- the present invention is also capable of this high number of cycles when subjected to high duty cycle applications. That is when an operating process is being repeated very quickly with many cycles per hour.
- the performance of a gear box 38 produced in accordance with the specifications of this application is superior to many other gear boxes used for similar applications.
- similar type gear boxes generally have a maximum operation rotational speed at up to 7000–8000 revolutions per minute (rpm), whereas the gear box 38 of the present invention is capable of rotational speeds up to 50,000 rpm.
- the present invention described herein is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. For example, the push to start feature can be physically disabled. Also, all four torque capacities can optionally be available in fixture mount configurations. A different front end cap is supplied with the tool to allow for easier and more reliable mounting of the tool in fixtured applications. Instead of a tapered end cap with headlights, a threaded end cap with a shoulder is provided including two different styles of mounting flanges. The fixture mounted configuration allows for the minimization of center to center mounting distances.
- variable voltage device can be any device that responds to some external stimulus, such as voltage, current, pressure, or magnetic, or that switches at a threshold of stimulus.
- the variable voltage device can be selected from items such as a linear response device, or a digital response device.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
Abstract
Description
TABLE 1 | ||||||
1st stage | 2nd stage | 3rd stage | combined | |||
Torque | Speed | ratio | | ratio | ratio | |
10 | 1800 | 4.285:1 | 4.285:1 | none | 18.36:1 |
in/ |
|||||
20 | 1100 | 6.75:1 | 4.285:1 | none | 28.92:1 |
in/ |
|||||
35 | 800 | 6.75:1 | 6.75:1 | none | 45.56:1 |
in/ |
|||||
50 | 500 | 4.285:1 | 4.285:1 | 4.285:1 | 78.68:1 |
in/lb | |||||
Claims (21)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/654,504 US7090030B2 (en) | 2002-09-03 | 2003-09-03 | Tranducerized torque wrench |
US11/315,952 US7210541B2 (en) | 2002-09-03 | 2005-12-22 | Transducerized rotary tool |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40778602P | 2002-09-03 | 2002-09-03 | |
US10/654,504 US7090030B2 (en) | 2002-09-03 | 2003-09-03 | Tranducerized torque wrench |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US29/245,448 Continuation-In-Part USD534777S1 (en) | 2003-09-03 | 2005-12-22 | Rotary mechanized tool |
US11/315,952 Continuation-In-Part US7210541B2 (en) | 2002-09-03 | 2005-12-22 | Transducerized rotary tool |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040040727A1 US20040040727A1 (en) | 2004-03-04 |
US7090030B2 true US7090030B2 (en) | 2006-08-15 |
Family
ID=31981545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/654,504 Expired - Lifetime US7090030B2 (en) | 2002-09-03 | 2003-09-03 | Tranducerized torque wrench |
Country Status (1)
Country | Link |
---|---|
US (1) | US7090030B2 (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050131436A1 (en) * | 2002-03-22 | 2005-06-16 | Gyrus Ent L.L.C. | Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus |
US20060111214A1 (en) * | 2004-11-22 | 2006-05-25 | National Cheng Kung University | Geared motor with planetary gear assembly |
US20070114049A1 (en) * | 2006-03-24 | 2007-05-24 | The Stanley Works | Power tool with improved start actuator |
US20070144753A1 (en) * | 2005-12-22 | 2007-06-28 | Microtorq, L.L.C. | Transducerized rotary tool |
US20080115636A1 (en) * | 2006-11-17 | 2008-05-22 | General Electric | Radio frequency identification enabled wrench system and a method of operating the same |
US20080115589A1 (en) * | 2006-11-17 | 2008-05-22 | General Electric | Wireless-enabled tightening system for fasteners and a method of operating the same |
US20080131228A1 (en) * | 2006-11-30 | 2008-06-05 | Caterpillar Inc. | Fastener tightening system utilizing ultrasonic technology |
US20090256502A1 (en) * | 2008-04-14 | 2009-10-15 | The Stanley Works | Battery management system for a cordless tool |
US7828077B1 (en) | 2008-05-27 | 2010-11-09 | Jergens, Inc. | Rotary angle tool |
US20110127059A1 (en) * | 2008-08-06 | 2011-06-02 | Kurt Limberg | Precision torque tool |
US20110203821A1 (en) * | 2010-01-07 | 2011-08-25 | Black & Decker Inc. | Power screwdriver having rotary input control |
US20110259619A1 (en) * | 2008-12-22 | 2011-10-27 | Atlas Copco Tools Ab | Portable power wrench with a manually operated power control means |
US20110278035A1 (en) * | 2010-05-12 | 2011-11-17 | Bach Pangho Chen | Power control structure for electric power tools |
US20130037292A1 (en) * | 2011-08-12 | 2013-02-14 | Riyan Pneumatic Co., Ltd. | Reversing actuating module for a reciprocating pneumatic tool |
US20130047799A1 (en) * | 2010-05-06 | 2013-02-28 | Loesomat Schraubtechnik Neef Gmbh | Apparatus for producing a precise tightening torque for screw connections |
US8418778B2 (en) | 2010-01-07 | 2013-04-16 | Black & Decker Inc. | Power screwdriver having rotary input control |
USRE44311E1 (en) | 2004-10-20 | 2013-06-25 | Black & Decker Inc. | Power tool anti-kickback system with rotational rate sensor |
USD703017S1 (en) | 2011-01-07 | 2014-04-22 | Black & Decker Inc. | Screwdriver |
US20150174750A1 (en) * | 2012-07-20 | 2015-06-25 | Peter John Hosking | Power tools and hand operated electrical devices |
US9266178B2 (en) | 2010-01-07 | 2016-02-23 | Black & Decker Inc. | Power tool having rotary input control |
US9406915B2 (en) | 2014-05-18 | 2016-08-02 | Black & Decker, Inc. | Power tool system |
US9475180B2 (en) | 2010-01-07 | 2016-10-25 | Black & Decker Inc. | Power tool having rotary input control |
US9878428B2 (en) | 2013-06-13 | 2018-01-30 | Stanley Black & Decker, Inc. | Wireless tool system |
US9893384B2 (en) | 2014-05-18 | 2018-02-13 | Black & Decker Inc. | Transport system for convertible battery pack |
US10176416B1 (en) | 2017-06-28 | 2019-01-08 | Lenlok Holdings, Llc | Energy harvesting RFID circuit, energy harvesting RFID tag, and associated methods |
US10357871B2 (en) | 2015-04-28 | 2019-07-23 | Milwaukee Electric Tool Corporation | Precision torque screwdriver |
US10589413B2 (en) | 2016-06-20 | 2020-03-17 | Black & Decker Inc. | Power tool with anti-kickback control system |
US10663093B2 (en) | 2015-09-24 | 2020-05-26 | Lenlock Holdings, Llc | Pipe fitting with sensor |
US10926368B2 (en) | 2017-09-27 | 2021-02-23 | Ingersoll-Rand Industrial U.S., Inc. | Part illumination status lights |
US20210154806A1 (en) * | 2019-11-22 | 2021-05-27 | Jacob D. White | Powered and cordless box wrench device to ease difficulty in turning hard-to-reach fasteners |
US11211664B2 (en) | 2016-12-23 | 2021-12-28 | Black & Decker Inc. | Cordless power tool system |
US11285590B2 (en) * | 2016-12-15 | 2022-03-29 | Atlas Copco Industrial Technique Ab | Method, monitoring node and computer program of monitoring energy flow in a tightening tool |
US11400570B2 (en) | 2015-04-28 | 2022-08-02 | Milwaukee Electric Tool Corporation | Precision torque screwdriver |
US11453105B2 (en) | 2016-09-13 | 2022-09-27 | Milwaukee Electric Tool Corporation | Powered ratcheting torque wrench |
US11759914B2 (en) | 2020-08-06 | 2023-09-19 | Mate Precision Technologies Inc. | Vise assembly |
US11766770B2 (en) * | 2016-09-13 | 2023-09-26 | Milwaukee Electric Tool Corporation | Powered ratcheting torque wrench |
US11878381B2 (en) | 2020-08-06 | 2024-01-23 | Mate Precision Technologies Inc. | Tooling base assembly |
US11890741B2 (en) | 2019-05-13 | 2024-02-06 | Milwaukee Electric Tool Corporation | Contactless trigger with rotational magnetic sensor for a power tool |
US12059777B2 (en) | 2020-08-10 | 2024-08-13 | Milwaukee Electric Tool Corporation | Powered screwdriver including clutch setting sensor |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7210541B2 (en) * | 2002-09-03 | 2007-05-01 | Microtorq Llc | Transducerized rotary tool |
DE602004018264D1 (en) * | 2004-03-22 | 2009-01-22 | Cooper Power Tools Gmbh & Co | Intelligent spindle for tightening with integrated transducer, servo amplifier and data processing system |
DE602004007235T2 (en) * | 2004-03-22 | 2007-10-11 | Cooper Power Tools Gmbh & Co. | Transmission of power and data from one power source to multiple electrically driven tools in a multi-tool station |
DE102004055237A1 (en) * | 2004-11-16 | 2006-05-18 | Robert Bosch Gmbh | Carrying and locking device |
US7643884B2 (en) * | 2005-01-31 | 2010-01-05 | Warsaw Orthopedic, Inc. | Electrically insulated surgical needle assembly |
US20060178594A1 (en) * | 2005-02-07 | 2006-08-10 | Neubardt Seth L | Apparatus and method for locating defects in bone tissue |
US8092455B2 (en) * | 2005-02-07 | 2012-01-10 | Warsaw Orthopedic, Inc. | Device and method for operating a tool relative to bone tissue and detecting neural elements |
FR2887166A1 (en) * | 2005-06-15 | 2006-12-22 | Renault Sas | SCREW TIGHTENING METHOD USING AN AUTOMATIC TOOL |
DE102006010902A1 (en) * | 2006-03-09 | 2007-09-13 | Klingenburg Gmbh | Rotary heat exchangers |
SE0602574L (en) * | 2006-12-01 | 2008-04-15 | Atlas Copco Tools Ab | Power tools with an electronic control unit |
DE102007001061B4 (en) * | 2007-01-03 | 2017-07-27 | Festool Gmbh | screwdriving |
JP5241224B2 (en) * | 2007-12-20 | 2013-07-17 | キヤノン株式会社 | Printing apparatus, printing apparatus control method, and program |
US7950295B2 (en) * | 2008-01-16 | 2011-05-31 | Plastic Technologies, Inc. | Handheld torque and linear force meter |
US20090299439A1 (en) * | 2008-06-02 | 2009-12-03 | Warsaw Orthopedic, Inc. | Method, system and tool for surgical procedures |
DE102010056524B4 (en) * | 2010-12-29 | 2019-11-28 | Robert Bosch Gmbh | Portable tool and method for performing operations with this tool |
SE539838C2 (en) * | 2015-10-15 | 2017-12-19 | Atlas Copco Ind Technique Ab | Electric handheld pulse tool |
US11622392B2 (en) | 2016-06-06 | 2023-04-04 | Milwaukee Electric Tool Corporation | System and method for establishing a wireless connection between power tool and mobile device |
TWM555274U (en) | 2016-06-06 | 2018-02-11 | 米沃奇電子工具公司 | Mobile device for connection to a power tool device |
US11534903B2 (en) * | 2017-08-28 | 2022-12-27 | Apex Brands, Inc. | Power tool two-stage trigger |
EP3501740A1 (en) * | 2017-12-20 | 2019-06-26 | HILTI Aktiengesellschaft | Setting method for threaded connection by means of impact wrench |
EP3822035A1 (en) * | 2019-11-14 | 2021-05-19 | Hilti Aktiengesellschaft | Handle device for a machine tool |
DE102021203415A1 (en) * | 2021-04-07 | 2022-10-13 | Robert Bosch Gesellschaft mit beschränkter Haftung | Hand tool with an activation unit |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3710874A (en) * | 1971-03-10 | 1973-01-16 | Ingersoll Rand Co | Electronic torque measurement system |
US4502549A (en) * | 1982-03-25 | 1985-03-05 | Robert Bosch Gmbh | Spring-coupled power screwdriver |
US4987806A (en) * | 1989-02-13 | 1991-01-29 | Gse, Inc. | Electronic control circuitry for a nutrunner |
US5115701A (en) * | 1990-09-26 | 1992-05-26 | Gse, Inc. | Drive mechanism and strain gauge mounting for a nutrunner appliance |
US5315501A (en) * | 1992-04-03 | 1994-05-24 | The Stanley Works | Power tool compensator for torque overshoot |
US5501107A (en) * | 1993-02-23 | 1996-03-26 | Snyder; Robert F. | Torque tool |
US5544534A (en) * | 1993-10-01 | 1996-08-13 | Ricoh Company, Ltd. | Rotary power tool |
US5637968A (en) * | 1993-10-25 | 1997-06-10 | The Stanley Works | Power tool with automatic downshift feature |
US5708216A (en) * | 1991-07-29 | 1998-01-13 | Magnetoelastic Devices, Inc. | Circularly magnetized non-contact torque sensor and method for measuring torque using same |
US5898598A (en) * | 1996-10-25 | 1999-04-27 | Cooper Technologies Company | System and apparatus for a torque transducer with data processing capabilities |
US6167788B1 (en) * | 1996-09-12 | 2001-01-02 | Saltus-Werk Max Forst Gmbh | Torque Wrench |
US6311786B1 (en) * | 1998-12-03 | 2001-11-06 | Chicago Pneumatic Tool Company | Process of determining torque output and controlling power impact tools using impulse |
US6523442B2 (en) * | 2000-12-07 | 2003-02-25 | Acradyne Inc. | Torque tool assembly |
-
2003
- 2003-09-03 US US10/654,504 patent/US7090030B2/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3710874A (en) * | 1971-03-10 | 1973-01-16 | Ingersoll Rand Co | Electronic torque measurement system |
US4502549A (en) * | 1982-03-25 | 1985-03-05 | Robert Bosch Gmbh | Spring-coupled power screwdriver |
US4987806A (en) * | 1989-02-13 | 1991-01-29 | Gse, Inc. | Electronic control circuitry for a nutrunner |
US5115701A (en) * | 1990-09-26 | 1992-05-26 | Gse, Inc. | Drive mechanism and strain gauge mounting for a nutrunner appliance |
US5708216A (en) * | 1991-07-29 | 1998-01-13 | Magnetoelastic Devices, Inc. | Circularly magnetized non-contact torque sensor and method for measuring torque using same |
US5315501A (en) * | 1992-04-03 | 1994-05-24 | The Stanley Works | Power tool compensator for torque overshoot |
US5501107A (en) * | 1993-02-23 | 1996-03-26 | Snyder; Robert F. | Torque tool |
US5544534A (en) * | 1993-10-01 | 1996-08-13 | Ricoh Company, Ltd. | Rotary power tool |
US5637968A (en) * | 1993-10-25 | 1997-06-10 | The Stanley Works | Power tool with automatic downshift feature |
US6167788B1 (en) * | 1996-09-12 | 2001-01-02 | Saltus-Werk Max Forst Gmbh | Torque Wrench |
US5898598A (en) * | 1996-10-25 | 1999-04-27 | Cooper Technologies Company | System and apparatus for a torque transducer with data processing capabilities |
US6311786B1 (en) * | 1998-12-03 | 2001-11-06 | Chicago Pneumatic Tool Company | Process of determining torque output and controlling power impact tools using impulse |
US6523442B2 (en) * | 2000-12-07 | 2003-02-25 | Acradyne Inc. | Torque tool assembly |
Cited By (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050131436A1 (en) * | 2002-03-22 | 2005-06-16 | Gyrus Ent L.L.C. | Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus |
USRE45112E1 (en) | 2004-10-20 | 2014-09-09 | Black & Decker Inc. | Power tool anti-kickback system with rotational rate sensor |
USRE44311E1 (en) | 2004-10-20 | 2013-06-25 | Black & Decker Inc. | Power tool anti-kickback system with rotational rate sensor |
USRE44993E1 (en) | 2004-10-20 | 2014-07-08 | Black & Decker Inc. | Power tool anti-kickback system with rotational rate sensor |
US20060111214A1 (en) * | 2004-11-22 | 2006-05-25 | National Cheng Kung University | Geared motor with planetary gear assembly |
US7211016B2 (en) * | 2004-11-22 | 2007-05-01 | National Cheng Kung University | Geared motor with planetary gear assembly |
US20070144753A1 (en) * | 2005-12-22 | 2007-06-28 | Microtorq, L.L.C. | Transducerized rotary tool |
US8230942B2 (en) | 2006-03-24 | 2012-07-31 | Stanley Black & Decker, Inc. | Power tool with improved start actuator |
US7836968B2 (en) | 2006-03-24 | 2010-11-23 | The Stanley Works | Power tool with improved start actuator |
US20110042114A1 (en) * | 2006-03-24 | 2011-02-24 | The Stanley Works | Power tool with improved start actuator |
US20070114049A1 (en) * | 2006-03-24 | 2007-05-24 | The Stanley Works | Power tool with improved start actuator |
US20080115589A1 (en) * | 2006-11-17 | 2008-05-22 | General Electric | Wireless-enabled tightening system for fasteners and a method of operating the same |
US7984657B2 (en) | 2006-11-17 | 2011-07-26 | General Electric Company | Method for operating a torque system configured to tighten a series of fasteners |
US20080115636A1 (en) * | 2006-11-17 | 2008-05-22 | General Electric | Radio frequency identification enabled wrench system and a method of operating the same |
US20080131228A1 (en) * | 2006-11-30 | 2008-06-05 | Caterpillar Inc. | Fastener tightening system utilizing ultrasonic technology |
US20090256502A1 (en) * | 2008-04-14 | 2009-10-15 | The Stanley Works | Battery management system for a cordless tool |
USRE45897E1 (en) | 2008-04-14 | 2016-02-23 | Stanley Black & Decker, Inc. | Battery management system for a cordless tool |
US8310177B2 (en) | 2008-04-14 | 2012-11-13 | Stanley Black & Decker, Inc. | Battery management system for a cordless tool |
US7828077B1 (en) | 2008-05-27 | 2010-11-09 | Jergens, Inc. | Rotary angle tool |
US8851201B2 (en) | 2008-08-06 | 2014-10-07 | Milwaukee Electric Tool Corporation | Precision torque tool |
US20110127059A1 (en) * | 2008-08-06 | 2011-06-02 | Kurt Limberg | Precision torque tool |
US20110259619A1 (en) * | 2008-12-22 | 2011-10-27 | Atlas Copco Tools Ab | Portable power wrench with a manually operated power control means |
US8857533B2 (en) * | 2008-12-22 | 2014-10-14 | Atlas Copco Industrial Technique Aktiebolag | Portable power wrench with a manually operated power control means |
US9199362B2 (en) | 2010-01-07 | 2015-12-01 | Black & Decker Inc. | Power tool having rotary input control |
US9475180B2 (en) | 2010-01-07 | 2016-10-25 | Black & Decker Inc. | Power tool having rotary input control |
US9321155B2 (en) | 2010-01-07 | 2016-04-26 | Black & Decker Inc. | Power tool having switch and rotary input control |
US20110203821A1 (en) * | 2010-01-07 | 2011-08-25 | Black & Decker Inc. | Power screwdriver having rotary input control |
US8418778B2 (en) | 2010-01-07 | 2013-04-16 | Black & Decker Inc. | Power screwdriver having rotary input control |
US8286723B2 (en) | 2010-01-07 | 2012-10-16 | Black & Decker Inc. | Power screwdriver having rotary input control |
US9321156B2 (en) | 2010-01-07 | 2016-04-26 | Black & Decker Inc. | Power tool having rotary input control |
US9266178B2 (en) | 2010-01-07 | 2016-02-23 | Black & Decker Inc. | Power tool having rotary input control |
US10160049B2 (en) | 2010-01-07 | 2018-12-25 | Black & Decker Inc. | Power tool having rotary input control |
US9211636B2 (en) | 2010-01-07 | 2015-12-15 | Black & Decker Inc. | Power tool having rotary input control |
US20130047799A1 (en) * | 2010-05-06 | 2013-02-28 | Loesomat Schraubtechnik Neef Gmbh | Apparatus for producing a precise tightening torque for screw connections |
US8689901B2 (en) * | 2010-05-12 | 2014-04-08 | X'pole Precision Tools Inc. | Electric power tool |
US20110278035A1 (en) * | 2010-05-12 | 2011-11-17 | Bach Pangho Chen | Power control structure for electric power tools |
USD703017S1 (en) | 2011-01-07 | 2014-04-22 | Black & Decker Inc. | Screwdriver |
US20130037292A1 (en) * | 2011-08-12 | 2013-02-14 | Riyan Pneumatic Co., Ltd. | Reversing actuating module for a reciprocating pneumatic tool |
US20150174750A1 (en) * | 2012-07-20 | 2015-06-25 | Peter John Hosking | Power tools and hand operated electrical devices |
US9914204B2 (en) * | 2012-07-20 | 2018-03-13 | Peter John Hosking | Power tools and hand operated electrical devices |
US9878428B2 (en) | 2013-06-13 | 2018-01-30 | Stanley Black & Decker, Inc. | Wireless tool system |
US9583793B2 (en) | 2014-05-18 | 2017-02-28 | Black & Decker Inc. | Power tool system |
US10972041B2 (en) | 2014-05-18 | 2021-04-06 | Black & Decker, Inc. | Battery pack and battery charger system |
US9871484B2 (en) | 2014-05-18 | 2018-01-16 | Black & Decker Inc. | Cordless power tool system |
US9406915B2 (en) | 2014-05-18 | 2016-08-02 | Black & Decker, Inc. | Power tool system |
US10177701B2 (en) | 2014-05-18 | 2019-01-08 | Black & Decker, Inc. | Cordless power tool system |
US12155043B2 (en) | 2014-05-18 | 2024-11-26 | Black & Decker Inc. | Transport system for battery pack |
US10236819B2 (en) | 2014-05-18 | 2019-03-19 | Black & Decker Inc. | Multi-voltage battery pack |
US10250178B2 (en) | 2014-05-18 | 2019-04-02 | Black & Decker Inc. | Cordless power tool system |
US10291173B2 (en) | 2014-05-18 | 2019-05-14 | Black & Decker Inc. | Power tool powered by power supplies having different rated voltages |
US10333454B2 (en) | 2014-05-18 | 2019-06-25 | Black & Decker Inc. | Power tool having a universal motor capable of being powered by AC or DC power supply |
US10333453B2 (en) | 2014-05-18 | 2019-06-25 | Black & Decker Inc. | Power tool having a universal motor capable of being powered by AC or DC power supply |
US9893384B2 (en) | 2014-05-18 | 2018-02-13 | Black & Decker Inc. | Transport system for convertible battery pack |
US10361651B2 (en) | 2014-05-18 | 2019-07-23 | Black & Decker Inc. | Cordless power tool system |
US10541639B2 (en) | 2014-05-18 | 2020-01-21 | Black & Decker, Inc. | Cordless power tool system |
US11152886B2 (en) | 2014-05-18 | 2021-10-19 | Black & Decker Inc. | Battery pack and battery charger system |
US10608574B2 (en) | 2014-05-18 | 2020-03-31 | Black And Decker, Inc. | Convertible battery pack |
US10615733B2 (en) | 2014-05-18 | 2020-04-07 | Black & Decker Inc. | Power tool having a brushless motor capable of being powered by AC or DC power supplies |
US11005412B2 (en) | 2014-05-18 | 2021-05-11 | Black & Decker Inc. | Battery pack and battery charger system |
US11005411B2 (en) | 2014-05-18 | 2021-05-11 | Black & Decker Inc. | Battery pack and battery charger system |
US10840559B2 (en) | 2014-05-18 | 2020-11-17 | Black & Decker Inc. | Transport system for convertible battery pack |
US10357871B2 (en) | 2015-04-28 | 2019-07-23 | Milwaukee Electric Tool Corporation | Precision torque screwdriver |
US11400570B2 (en) | 2015-04-28 | 2022-08-02 | Milwaukee Electric Tool Corporation | Precision torque screwdriver |
US12059778B2 (en) | 2015-04-28 | 2024-08-13 | Milwaukee Electric Tool Corporation | Precision torque screwdriver |
US10663093B2 (en) | 2015-09-24 | 2020-05-26 | Lenlock Holdings, Llc | Pipe fitting with sensor |
US11192232B2 (en) | 2016-06-20 | 2021-12-07 | Black & Decker Inc. | Power tool with anti-kickback control system |
US10589413B2 (en) | 2016-06-20 | 2020-03-17 | Black & Decker Inc. | Power tool with anti-kickback control system |
US12097596B2 (en) | 2016-09-13 | 2024-09-24 | Milwaukee Electric Tool Corporation | Powered ratcheting torque wrench |
US11766770B2 (en) * | 2016-09-13 | 2023-09-26 | Milwaukee Electric Tool Corporation | Powered ratcheting torque wrench |
US11453105B2 (en) | 2016-09-13 | 2022-09-27 | Milwaukee Electric Tool Corporation | Powered ratcheting torque wrench |
US11285590B2 (en) * | 2016-12-15 | 2022-03-29 | Atlas Copco Industrial Technique Ab | Method, monitoring node and computer program of monitoring energy flow in a tightening tool |
US11211664B2 (en) | 2016-12-23 | 2021-12-28 | Black & Decker Inc. | Cordless power tool system |
US10176416B1 (en) | 2017-06-28 | 2019-01-08 | Lenlok Holdings, Llc | Energy harvesting RFID circuit, energy harvesting RFID tag, and associated methods |
US10657431B2 (en) | 2017-06-28 | 2020-05-19 | Lenlock Holdings, Llc | Energy harvesting RFID circuit, energy harvesting RFID tag, and associated methods |
US10926368B2 (en) | 2017-09-27 | 2021-02-23 | Ingersoll-Rand Industrial U.S., Inc. | Part illumination status lights |
US11890741B2 (en) | 2019-05-13 | 2024-02-06 | Milwaukee Electric Tool Corporation | Contactless trigger with rotational magnetic sensor for a power tool |
US12115644B2 (en) | 2019-05-13 | 2024-10-15 | Milwaukee Electric Tool Corporation | Contactless trigger with rotational magnetic sensor for a power tool |
US20210154806A1 (en) * | 2019-11-22 | 2021-05-27 | Jacob D. White | Powered and cordless box wrench device to ease difficulty in turning hard-to-reach fasteners |
US11931869B2 (en) * | 2019-11-22 | 2024-03-19 | Jacob D White | Powered and cordless box wrench device to ease difficulty in turning hard-to-reach fasteners |
US11878381B2 (en) | 2020-08-06 | 2024-01-23 | Mate Precision Technologies Inc. | Tooling base assembly |
US11759914B2 (en) | 2020-08-06 | 2023-09-19 | Mate Precision Technologies Inc. | Vise assembly |
US12059777B2 (en) | 2020-08-10 | 2024-08-13 | Milwaukee Electric Tool Corporation | Powered screwdriver including clutch setting sensor |
Also Published As
Publication number | Publication date |
---|---|
US20040040727A1 (en) | 2004-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7090030B2 (en) | Tranducerized torque wrench | |
US7210541B2 (en) | Transducerized rotary tool | |
US20070144753A1 (en) | Transducerized rotary tool | |
US12059778B2 (en) | Precision torque screwdriver | |
US6523442B2 (en) | Torque tool assembly | |
US10357871B2 (en) | Precision torque screwdriver | |
US20240033883A1 (en) | Impact tool | |
US7494437B2 (en) | Impact power tool | |
EP1127227B1 (en) | Servo-motor brake | |
EP1431001A3 (en) | Electric clamp apparatus | |
JP7558207B2 (en) | Power tool and torque-responsive gear unit for power tool | |
US8074732B2 (en) | Discontinuous drive power tool spindle and socket interface | |
US12186876B2 (en) | Power tool and two-speed gear assembly for a power tool | |
MXPA06004551A (en) | Power tool for and method of moving elements relative to an object. | |
US20090008115A1 (en) | Hand-held power tool with a slip clutch | |
US20090173194A1 (en) | Impact wrench structure | |
JP7383591B2 (en) | Electric screwdriver and electric screwdriver torque control device | |
KR200492689Y1 (en) | Torque adjusting assembly for electric screwdriver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICROTORQ L.L.C., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MILLER, JERRY EDWARD;REEL/FRAME:017405/0814 Effective date: 20051128 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: JERGENS, INC.,OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROTORQ L.L.C.;REEL/FRAME:024424/0761 Effective date: 20100521 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
REIN | Reinstatement after maintenance fee payment confirmed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140815 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
PRDP | Patent reinstated due to the acceptance of a late maintenance fee |
Effective date: 20150325 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 12 |