US7083639B2 - Stent delivery catheter with grooved balloon and methods of making same - Google Patents
Stent delivery catheter with grooved balloon and methods of making same Download PDFInfo
- Publication number
- US7083639B2 US7083639B2 US09/965,473 US96547301A US7083639B2 US 7083639 B2 US7083639 B2 US 7083639B2 US 96547301 A US96547301 A US 96547301A US 7083639 B2 US7083639 B2 US 7083639B2
- Authority
- US
- United States
- Prior art keywords
- balloon
- proximal
- distal
- stent
- intermediate body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
- A61F2002/9583—Means for holding the stent on the balloon, e.g. using protrusions, adhesives or an outer sleeve
- A61F2002/9586—Means for holding the stent on the balloon, e.g. using protrusions, adhesives or an outer sleeve the means being inside the balloon
Definitions
- the invention relates to intraluminal stenting, and in particular, to a catheter having a grooved stent delivery balloon.
- Intraluminal stenting is useful in treating tubular vessels in the body which are narrowed or blocked and it is an alternative to surgical procedures that intend to bypass such an occlusion.
- the procedure When used in endovascular applications, the procedure involves inserting a prosthesis into an artery and expanding it to prevent collapse of the vessel wall.
- Percutaneous transluminal angioplasty is used to open coronary arteries which have been occluded by a build-up of cholesterol fats or atherosclerotic plaque.
- a guide catheter is inserted into a major artery in the groin and is passed to the heart, providing a conduit to the ostia of the coronary arteries from outside the body.
- a balloon catheter and guidewire are advanced through the guiding catheter and steered through the coronary vasculature to the site of therapy.
- the balloon at the distal end of the catheter is inflated, causing the site of the stenosis to widen.
- Dilation of the occlusion can form flaps, fissures or dissections which may threaten re-closure of the dilated vessel.
- Implantation of a stent can provide support for such flaps and dissections and thereby prevent reclosure of the vessel. Reducing the possibility of restenosis after angioplasty reduces the likelihood that a secondary angioplasty procedure or a surgical bypass operation will be necessary.
- a stent is typically a hollow, generally cylindrical device formed from wire(s) or a tube and the stent is commonly intended to act as a permanent prosthesis.
- a stent is deployed in a body lumen from a radially contracted configuration into a radially expanded configuration which allows it to contact and support a body lumen.
- the stent can be made to be either radially self-expanding or expandable by the use of an expansion device.
- the self expanding stent is made from a resilient material while the device-expandable stent is made from a material which is plastically deformable.
- a plastically deformable stent can be implanted during an angioplasty procedure by using a balloon catheter bearing the compressed stent which has been loaded onto the balloon.
- the stent radially expands as the balloon is inflated, forcing the stent into contact with the body lumen, thereby forming a support for the vessel wall.
- Deployment is effected after the stent has been introduced percutaneously, transported transluminally and positioned at a desired location by means of the balloon catheter.
- a balloon of appropriate size and pressure is first used to open the lesion.
- the process can be repeated with a stent loaded onto a balloon.
- Direct stenting involves simultaneously performing angioplasty and stent implantation using a stent mounted on a dilatation balloon. After the balloon is withdrawn, the stent remains as a scaffold for the injured vessel.
- FIG. 1 is a longitudinal view of a balloon in accordance with the invention
- FIGS. 2–5 are enlarged, longitudinal portions ( FIGS. 2 , 4 and 5 in section) of balloons in accordance with the invention, showing several alternative embodiments of circumferential grooves;
- FIG. 6 is a longitudinal view of a balloon catheter in accordance with the invention, shown with the balloon deflated;
- FIG. 7 is a longitudinal view of a stent delivery balloon catheter in accordance with the invention, shown with a stent mounted thereon and the balloon deflated;
- FIG. 8 shows the embodiment of FIG. 7 wherein the balloon has been inflated to deliver the stent in a vessel of a patient.
- Applicant's invention is useful with any expandable stent, such as those stents designed for delivery by a balloon.
- the stent may be generally cylindrical, and it may be mounted on a tubular balloon.
- FIG. 1 shows balloon 10 , which can retain a stent thereon during delivery.
- Proximal and distal circumferential grooves 15 , 20 respectively, surround balloon 10 adjacent the transitions between intermediate body 12 and proximal and distal cones 25 , 30 , respectively.
- Intermediate body 12 may be generally cylindrical in shape, and it may be centrally located between proximal and distal cones 25 , 30 .
- Proximal and distal cones 25 , 30 terminate in proximal and distal ends 35 , 40 , respectively, which are adapted to be mounted on catheter shaft 50 , as shown in FIG. 6 .
- proximal circumferential groove 15 is substantially U-shaped when viewed in longitudinal section, and the diameters of balloon 10 measured distal and proximal to groove 15 are substantially equal.
- Distal circumferential groove 20 is an alternative embodiment to groove 15 and is flat-bottomed, or rectangular in longitudinal section.
- FIGS. 2–5 show several other alternative embodiments of circumferential grooves in balloon 10 .
- circumferential groove 115 is substantially C-shaped in longitudinal section. Groove 115 may also be described as being generally circular in longitudinal section, with an open arc portion. Groove 115 is also shown as being optionally filled with flexible material 45 . Any of the circumferential grooves in the invention may be partially or fully filled with flexible material 45 , as will be described further below.
- circumferential groove 215 is substantially U-shaped. in longitudinal section. However, groove 215 is located toward the cone side of the transition between cylindrical intermediate body 12 and cone 225 , such that the diameters of balloon 10 measured distal and proximal to groove 215 are substantially unequal.
- circumferential groove 315 is substantially W-shaped in longitudinal section. Groove 315 may also be considered as two U-shaped circumferential grooves formed adjacent each other. As shown in FIG. 5 , circumferential groove 415 is, in longitudinal section, a polygon with an open side.
- Balloon 10 can be made according to stretch blow molding processes that are well known to those skilled in the arts of dilatation and stent delivery balloons. Molds used in balloon forming typically have hollow intermediate sections with removable end inserts for forming cones, and are made of metal such as brass. In known alternatives, balloon molds may be unitary tubular chambers that have been thermo-formed of a high temperature material such as glass. Circumferential grooves 15 , 20 , and their alternatives shown herein can be formed during conventional stretch blow molding, thus providing a generally uniform wall thickness throughout the balloon regions that include grooves 15 , 20 .
- a balloon mold can be adapted in a variety of ways to form balloon 10 with circumferential grooves 15 , 20 .
- ring members may be inserted inside a balloon mold such that balloon 10 forms around the ring members to create circumferential grooves 15 , 20 .
- the ring members can be cast, molded or machined of any material that will retain its shape during balloon forming, such as a metal, a ceramic, a thermoset polymer or a thermoplastic having a sufficiently high melting temperature.
- a conventional multi-part mold may have one or more internal grooves adapted to retain the ring members in the desired position within the mold. For instance, ring retaining grooves may be machined adjacent the interface between a mold center section and the mating removable inserts.
- a unitary glass balloon mold (see U.S. Pat. No. 5,163,989) can be formed to capture the ring members within the inner chamber.
- Balloon 10 can be made from single or multiple layers of thermoplastics such as polyolefins, polyurethanes, polyamides, blends or block copolymers that include these materials, or other polymers known to be suitable for dilatation and stent delivery balloons.
- Circumferential grooves 15 , 20 create a partial mechanical disengagement between balloon intermediate body 12 and cones 25 , 30 .
- the partial disengagement permits adjacent body 12 and cones 25 , 30 to move differently in the radial direction, comparable to the way a rolling diaphragm works in the axial direction.
- circumferential grooves 15 , 20 will allow a limited radial expansion of cones 25 , 30 , thus creating radial steps at both ends of intermediate body 12 .
- These radial steps can be heat set into balloon 10 , and can act as dams to prevent stent 60 from sliding off of balloon 10 .
- any of the circumferential grooves disclosed herein can be partially or completely filled with flexible material 45 , as mentioned above.
- the addition of such a material to a circumferential groove can reinforce or enhance the dam effect created by the radial steps at the ends of intermediate body 12 .
- Substances selected for flexible material 45 may be elastic or inelastic, thermoplastic or thermoset polymers, and may be foamed to enhance flexibility.
- Flexible material 45 may also comprise a formulation typically used for coating medical devices, including balloons, to either reduce or enhance friction properties. Elastic or elastomeric materials may provide a high coefficient of friction relative to the material of balloon 10 , thus enhancing stent retention thereon.
- material 45 should be adhered to balloon 10 , either by inherent adhesive properties of the material, or by a separate bonding component.
- FIG. 7 shows a stent delivery balloon catheter in accordance with the invention, and which has been made as follows.
- Balloon 10 is mounted on catheter shaft 50 .
- Balloon 10 is deflated about shaft 50 , and stent 60 is crimped or compressed about intermediate body 12 .
- inflation pressure is applied to balloon 10 .
- circumferential grooves 15 , 20 allow limited expansion of cones 25 , 30 to form proximal and distal steps 65 , 70 , respectively.
- Heat setting of balloon 10 imparts thereto a memory of the shapes of steps 65 , 70 . Heat setting can be performed with or without internal pressure in balloon 10 .
- steps 65 , 70 may be formed after deflation of balloon 10 by wrapping balloon 10 around shaft 50 and crimping stent 60 around intermediate body 12 .
- circumferential grooves 15 , 20 allow cones 25 , 30 to retain a larger deflated profile than that of intermediate body 12 . In this way, steps 65 , 70 can be formed without pressurizing balloon 10 .
- the invention may be practiced with one or more circumferential grooves adjacent the ends of intermediate body 12 of balloon 10 .
- a single groove 20 may be formed in balloon 10 adjacent the transition between intermediate body 12 and distal cone 30 .
- a single groove 15 may be formed in balloon 10 adjacent the transition between intermediate body 12 and proximal cone 25 .
- two or more grooves may be formed next to each other adjacent a transition between intermediate body 12 and a cone. Any combinations of alternative embodiments of circumferential grooves are also possible, with or without flexible filler materials.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
Claims (20)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/965,473 US7083639B2 (en) | 2001-09-26 | 2001-09-26 | Stent delivery catheter with grooved balloon and methods of making same |
EP02775799A EP1429688A1 (en) | 2001-09-26 | 2002-09-13 | Stent delivery catheter with grooved balloon and methods of making same |
JP2003530175A JP2005525138A (en) | 2001-09-26 | 2002-09-13 | Stent delivery catheter with grooved balloon and method of manufacturing the same |
PCT/US2002/029077 WO2003026534A1 (en) | 2001-09-26 | 2002-09-13 | Stent delivery catheter with grooved balloon and methods of making same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/965,473 US7083639B2 (en) | 2001-09-26 | 2001-09-26 | Stent delivery catheter with grooved balloon and methods of making same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030060832A1 US20030060832A1 (en) | 2003-03-27 |
US7083639B2 true US7083639B2 (en) | 2006-08-01 |
Family
ID=25510014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/965,473 Expired - Lifetime US7083639B2 (en) | 2001-09-26 | 2001-09-26 | Stent delivery catheter with grooved balloon and methods of making same |
Country Status (4)
Country | Link |
---|---|
US (1) | US7083639B2 (en) |
EP (1) | EP1429688A1 (en) |
JP (1) | JP2005525138A (en) |
WO (1) | WO2003026534A1 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030014070A1 (en) * | 2001-05-08 | 2003-01-16 | Meens Hendrik Jozef Maria | Balloon catheter and method for manufacturing it |
US20040225318A1 (en) * | 2003-05-05 | 2004-11-11 | Tracee Eidenschink | Balloon catheter and method of making same |
US20060076708A1 (en) * | 2004-09-30 | 2006-04-13 | Bin Huang | Method of fabricating a biaxially oriented implantable medical device |
US20060135980A1 (en) * | 2004-12-20 | 2006-06-22 | Scimed Life Systems, Inc. | Balloon with stepped sections and implements |
US20080154352A1 (en) * | 2006-12-21 | 2008-06-26 | Medtronic Vascular, Inc. | Stent Balloon Assembly and Method of Making Same |
US20090001633A1 (en) * | 2007-06-29 | 2009-01-01 | Limon Timothy A | Method Of Manufacturing A Stent From A Polymer Tube |
US20090146348A1 (en) * | 2007-12-11 | 2009-06-11 | Bin Huang | Method of fabrication a stent from blow molded tubing |
US20100025894A1 (en) * | 2008-08-04 | 2010-02-04 | Abbott Cardiovascular Inc. | Tube expansion process for semicrystalline polymers to maximize fracture toughness |
US7731890B2 (en) | 2006-06-15 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Methods of fabricating stents with enhanced fracture toughness |
US7740791B2 (en) | 2006-06-30 | 2010-06-22 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a stent with features by blow molding |
US20100244304A1 (en) * | 2009-03-31 | 2010-09-30 | Yunbing Wang | Stents fabricated from a sheet with increased strength, modulus and fracture toughness |
US20110062638A1 (en) * | 2009-09-14 | 2011-03-17 | Thierry Glauser | Controlling Crystalline Morphology Of A Bioabsorbable Stent |
US20110066222A1 (en) * | 2009-09-11 | 2011-03-17 | Yunbing Wang | Polymeric Stent and Method of Making Same |
US8043553B1 (en) | 2004-09-30 | 2011-10-25 | Advanced Cardiovascular Systems, Inc. | Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article |
US8092536B2 (en) | 2006-05-24 | 2012-01-10 | Disc Dynamics, Inc. | Retention structure for in situ formation of an intervertebral prosthesis |
JP2012505050A (en) * | 2008-10-10 | 2012-03-01 | インターバルブ, インコーポレイテッド | Valvuloplasty catheter and method |
US8173062B1 (en) | 2004-09-30 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Controlled deformation of a polymer tube in fabricating a medical article |
US8192678B2 (en) | 2004-07-26 | 2012-06-05 | Advanced Cardiovascular Systems, Inc. | Method of fabricating an implantable medical device with biaxially oriented polymers |
US20120277785A1 (en) * | 2010-10-27 | 2012-11-01 | Cook Medical Technologies Llc | Valvuloplasty Balloon Catheter |
US8370120B2 (en) | 2010-04-30 | 2013-02-05 | Abbott Cardiovascular Systems Inc. | Polymeric stents and method of manufacturing same |
US20130150880A1 (en) * | 2011-12-09 | 2013-06-13 | Boston Scientific Scimed, Inc. | Subintimal recanalization with bio-absorbable stent |
US8778256B1 (en) | 2004-09-30 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Deformation of a polymer tube in the fabrication of a medical article |
US8956376B2 (en) | 2011-06-30 | 2015-02-17 | The Spectranetics Corporation | Reentry catheter and method thereof |
US8998936B2 (en) | 2011-06-30 | 2015-04-07 | The Spectranetics Corporation | Reentry catheter and method thereof |
US9198782B2 (en) | 2006-05-30 | 2015-12-01 | Abbott Cardiovascular Systems Inc. | Manufacturing process for polymeric stents |
US9216238B2 (en) | 2006-04-28 | 2015-12-22 | Abbott Cardiovascular Systems Inc. | Implantable medical device having reduced chance of late inflammatory response |
US9364588B2 (en) | 2014-02-04 | 2016-06-14 | Abbott Cardiovascular Systems Inc. | Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating |
US9517149B2 (en) | 2004-07-26 | 2016-12-13 | Abbott Cardiovascular Systems Inc. | Biodegradable stent with enhanced fracture toughness |
US9669194B2 (en) | 2013-03-14 | 2017-06-06 | W. L. Gore & Associates, Inc. | Conformable balloon devices and methods |
US9730726B2 (en) | 2011-10-07 | 2017-08-15 | W. L. Gore & Associates, Inc. | Balloon assemblies having controllably variable topographies |
US9814862B2 (en) | 2011-06-30 | 2017-11-14 | The Spectranetics Corporation | Reentry catheter and method thereof |
US10463519B2 (en) | 2014-04-09 | 2019-11-05 | Cook Medical Technologies Llc | Delivery system for implantable medical device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6726714B2 (en) * | 2001-08-09 | 2004-04-27 | Scimed Life Systems, Inc. | Stent delivery system |
US20050151304A1 (en) * | 2004-01-08 | 2005-07-14 | Abbott Laboratories Vascular Enterprises Limited | Method of trimming a balloon of a balloon catheter |
US8202245B2 (en) * | 2005-01-26 | 2012-06-19 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US7320702B2 (en) * | 2005-06-08 | 2008-01-22 | Xtent, Inc. | Apparatus and methods for deployment of multiple custom-length prostheses (III) |
US7654264B2 (en) * | 2006-07-18 | 2010-02-02 | Nellcor Puritan Bennett Llc | Medical tube including an inflatable cuff having a notched collar |
WO2014022213A1 (en) * | 2012-07-31 | 2014-02-06 | University Of Louisville Research Foundation, Inc. | Expandable graft and associated methods for deployment |
US10406011B2 (en) * | 2016-04-28 | 2019-09-10 | Medtronic Vascular, Inc. | Implantable medical device delivery system |
CA3075636A1 (en) * | 2017-10-04 | 2019-04-11 | Zorion Medical, Inc. | Delivery balloon with retractable retention cuffs |
CN111228008B (en) * | 2020-02-24 | 2022-05-27 | 恒壹(北京)医疗科技有限公司 | Transiently-implanted freeze-thaw drug stent delivery system and preparation and application thereof |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3810474A (en) * | 1971-09-24 | 1974-05-14 | Smiths Industries Ltd | Tubing |
US5074845A (en) | 1989-07-18 | 1991-12-24 | Baxter International Inc. | Catheter with heat-fused balloon with waist |
US5163989A (en) | 1990-08-27 | 1992-11-17 | Advanced Cardiovascular Systems, Inc. | Method for forming a balloon mold and the use of such mold |
US5295959A (en) | 1992-03-13 | 1994-03-22 | Medtronic, Inc. | Autoperfusion dilatation catheter having a bonded channel |
US5308356A (en) | 1993-02-25 | 1994-05-03 | Blackshear Jr Perry L | Passive perfusion angioplasty catheter |
US5320605A (en) * | 1993-01-22 | 1994-06-14 | Harvinder Sahota | Multi-wire multi-balloon catheter |
US5352199A (en) | 1993-05-28 | 1994-10-04 | Numed, Inc. | Balloon catheter |
US5409495A (en) | 1993-08-24 | 1995-04-25 | Advanced Cardiovascular Systems, Inc. | Apparatus for uniformly implanting a stent |
US5445646A (en) | 1993-10-22 | 1995-08-29 | Scimed Lifesystems, Inc. | Single layer hydraulic sheath stent delivery apparatus and method |
US5484411A (en) * | 1994-01-14 | 1996-01-16 | Cordis Corporation | Spiral shaped perfusion balloon and method of use and manufacture |
US5545132A (en) | 1993-12-21 | 1996-08-13 | C. R. Bard, Inc. | Helically grooved balloon for dilatation catheter and method of using |
US5620457A (en) | 1994-11-23 | 1997-04-15 | Medinol Ltd. | Catheter balloon |
US5728068A (en) * | 1994-06-14 | 1998-03-17 | Cordis Corporation | Multi-purpose balloon catheter |
US5836965A (en) | 1994-10-19 | 1998-11-17 | Jendersee; Brad | Stent delivery and deployment method |
US5910102A (en) * | 1997-01-10 | 1999-06-08 | Scimed Life Systems, Inc. | Conversion of beta radiation to gamma radiation for intravascular radiation therapy |
US5913871A (en) | 1996-09-25 | 1999-06-22 | Medtronic, Inc. | Balloon modification for improved stent fixation and deployment |
US5935135A (en) | 1995-09-29 | 1999-08-10 | United States Surgical Corporation | Balloon delivery system for deploying stents |
US6022359A (en) | 1999-01-13 | 2000-02-08 | Frantzen; John J. | Stent delivery system featuring a flexible balloon |
US6027510A (en) | 1997-12-08 | 2000-02-22 | Inflow Dynamics Inc. | Stent delivery system |
US6048350A (en) | 1999-06-14 | 2000-04-11 | Scimed Life Systems, Inc. | Segmented balloon delivery system |
US6059713A (en) * | 1997-03-06 | 2000-05-09 | Scimed Life Systems, Inc. | Catheter system having tubular radiation source with movable guide wire |
US6254608B1 (en) * | 1997-08-22 | 2001-07-03 | Ronald J. Solar | Sheathless delivery catheter for radially expandable intraluminal stents and stented grafts |
US6280412B1 (en) * | 1999-06-17 | 2001-08-28 | Scimed Life Systems, Inc. | Stent securement by balloon modification |
EP1132059A1 (en) | 2000-03-07 | 2001-09-12 | Cordis Corporation | Balloon catheter with balloon shoulders |
US6293959B1 (en) * | 1998-11-16 | 2001-09-25 | Cordis Corporation | Balloon catheter and stent delivery system having enhanced stent retention and method |
US6302893B1 (en) * | 1996-07-15 | 2001-10-16 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system |
US20020120321A1 (en) | 2001-02-26 | 2002-08-29 | Gunderson Richard C. | Stent retention mechanism |
US6464718B1 (en) * | 1998-11-16 | 2002-10-15 | Cordis Corporation | Balloon catheter for stent delivery having microchannels and method |
-
2001
- 2001-09-26 US US09/965,473 patent/US7083639B2/en not_active Expired - Lifetime
-
2002
- 2002-09-13 JP JP2003530175A patent/JP2005525138A/en active Pending
- 2002-09-13 WO PCT/US2002/029077 patent/WO2003026534A1/en active Application Filing
- 2002-09-13 EP EP02775799A patent/EP1429688A1/en not_active Withdrawn
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3810474A (en) * | 1971-09-24 | 1974-05-14 | Smiths Industries Ltd | Tubing |
US5074845A (en) | 1989-07-18 | 1991-12-24 | Baxter International Inc. | Catheter with heat-fused balloon with waist |
US5163989A (en) | 1990-08-27 | 1992-11-17 | Advanced Cardiovascular Systems, Inc. | Method for forming a balloon mold and the use of such mold |
US5295959A (en) | 1992-03-13 | 1994-03-22 | Medtronic, Inc. | Autoperfusion dilatation catheter having a bonded channel |
US5320605A (en) * | 1993-01-22 | 1994-06-14 | Harvinder Sahota | Multi-wire multi-balloon catheter |
US5308356A (en) | 1993-02-25 | 1994-05-03 | Blackshear Jr Perry L | Passive perfusion angioplasty catheter |
US5352199A (en) | 1993-05-28 | 1994-10-04 | Numed, Inc. | Balloon catheter |
US5409495A (en) | 1993-08-24 | 1995-04-25 | Advanced Cardiovascular Systems, Inc. | Apparatus for uniformly implanting a stent |
US5445646A (en) | 1993-10-22 | 1995-08-29 | Scimed Lifesystems, Inc. | Single layer hydraulic sheath stent delivery apparatus and method |
US5545132A (en) | 1993-12-21 | 1996-08-13 | C. R. Bard, Inc. | Helically grooved balloon for dilatation catheter and method of using |
US5484411A (en) * | 1994-01-14 | 1996-01-16 | Cordis Corporation | Spiral shaped perfusion balloon and method of use and manufacture |
US5728068A (en) * | 1994-06-14 | 1998-03-17 | Cordis Corporation | Multi-purpose balloon catheter |
US5836965A (en) | 1994-10-19 | 1998-11-17 | Jendersee; Brad | Stent delivery and deployment method |
US5620457A (en) | 1994-11-23 | 1997-04-15 | Medinol Ltd. | Catheter balloon |
US5935135A (en) | 1995-09-29 | 1999-08-10 | United States Surgical Corporation | Balloon delivery system for deploying stents |
US6302893B1 (en) * | 1996-07-15 | 2001-10-16 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system |
US6056906A (en) * | 1996-09-25 | 2000-05-02 | Medtronic, Inc. | Method of making an intervascular catheter system for implanting a radially expandable stent within a body vessel |
US5913871A (en) | 1996-09-25 | 1999-06-22 | Medtronic, Inc. | Balloon modification for improved stent fixation and deployment |
US5910102A (en) * | 1997-01-10 | 1999-06-08 | Scimed Life Systems, Inc. | Conversion of beta radiation to gamma radiation for intravascular radiation therapy |
US6059713A (en) * | 1997-03-06 | 2000-05-09 | Scimed Life Systems, Inc. | Catheter system having tubular radiation source with movable guide wire |
US6254608B1 (en) * | 1997-08-22 | 2001-07-03 | Ronald J. Solar | Sheathless delivery catheter for radially expandable intraluminal stents and stented grafts |
US6027510A (en) | 1997-12-08 | 2000-02-22 | Inflow Dynamics Inc. | Stent delivery system |
US6293959B1 (en) * | 1998-11-16 | 2001-09-25 | Cordis Corporation | Balloon catheter and stent delivery system having enhanced stent retention and method |
US6464718B1 (en) * | 1998-11-16 | 2002-10-15 | Cordis Corporation | Balloon catheter for stent delivery having microchannels and method |
US6022359A (en) | 1999-01-13 | 2000-02-08 | Frantzen; John J. | Stent delivery system featuring a flexible balloon |
US6048350A (en) | 1999-06-14 | 2000-04-11 | Scimed Life Systems, Inc. | Segmented balloon delivery system |
US6280412B1 (en) * | 1999-06-17 | 2001-08-28 | Scimed Life Systems, Inc. | Stent securement by balloon modification |
EP1132059A1 (en) | 2000-03-07 | 2001-09-12 | Cordis Corporation | Balloon catheter with balloon shoulders |
US20020120321A1 (en) | 2001-02-26 | 2002-08-29 | Gunderson Richard C. | Stent retention mechanism |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030014070A1 (en) * | 2001-05-08 | 2003-01-16 | Meens Hendrik Jozef Maria | Balloon catheter and method for manufacturing it |
US8083761B2 (en) * | 2001-05-08 | 2011-12-27 | C.R. Bard, Inc. | Balloon catheter and method for manufacturing it |
US20040225318A1 (en) * | 2003-05-05 | 2004-11-11 | Tracee Eidenschink | Balloon catheter and method of making same |
US7306616B2 (en) * | 2003-05-05 | 2007-12-11 | Boston Scientific Scimed, Inc. | Balloon catheter and method of making same |
US8192678B2 (en) | 2004-07-26 | 2012-06-05 | Advanced Cardiovascular Systems, Inc. | Method of fabricating an implantable medical device with biaxially oriented polymers |
US8715564B2 (en) | 2004-07-26 | 2014-05-06 | Advanced Cardiovascular Systems, Inc. | Method of fabricating an implantable medical device with biaxially oriented polymers |
US9517149B2 (en) | 2004-07-26 | 2016-12-13 | Abbott Cardiovascular Systems Inc. | Biodegradable stent with enhanced fracture toughness |
US10058439B2 (en) | 2004-09-30 | 2018-08-28 | Abbott Cardiovascular Systems Inc. | Deformation of a polymer tube in the fabrication of a medical article |
US8173062B1 (en) | 2004-09-30 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Controlled deformation of a polymer tube in fabricating a medical article |
US7875233B2 (en) * | 2004-09-30 | 2011-01-25 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a biaxially oriented implantable medical device |
US8043553B1 (en) | 2004-09-30 | 2011-10-25 | Advanced Cardiovascular Systems, Inc. | Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article |
US8778256B1 (en) | 2004-09-30 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Deformation of a polymer tube in the fabrication of a medical article |
US20060076708A1 (en) * | 2004-09-30 | 2006-04-13 | Bin Huang | Method of fabricating a biaxially oriented implantable medical device |
US7879053B2 (en) * | 2004-12-20 | 2011-02-01 | Boston Scientific Scimed, Inc. | Balloon with stepped sections and implements |
US20060135980A1 (en) * | 2004-12-20 | 2006-06-22 | Scimed Life Systems, Inc. | Balloon with stepped sections and implements |
US9216238B2 (en) | 2006-04-28 | 2015-12-22 | Abbott Cardiovascular Systems Inc. | Implantable medical device having reduced chance of late inflammatory response |
US8092536B2 (en) | 2006-05-24 | 2012-01-10 | Disc Dynamics, Inc. | Retention structure for in situ formation of an intervertebral prosthesis |
US9198782B2 (en) | 2006-05-30 | 2015-12-01 | Abbott Cardiovascular Systems Inc. | Manufacturing process for polymeric stents |
US9554925B2 (en) | 2006-05-30 | 2017-01-31 | Abbott Cardiovascular Systems Inc. | Biodegradable polymeric stents |
US10390979B2 (en) | 2006-05-30 | 2019-08-27 | Advanced Cardiovascular Systems, Inc. | Manufacturing process for polymeric stents |
US9522503B2 (en) | 2006-06-15 | 2016-12-20 | Abbott Cardiovascular Systems Inc. | Methods of treatment with stents with enhanced fracture toughness |
US8323329B2 (en) | 2006-06-15 | 2012-12-04 | Advanced Cardiovascular Systems, Inc. | Stents with enhanced fracture toughness |
US20110112627A1 (en) * | 2006-06-15 | 2011-05-12 | Advanced Cardiovascular Systems, Inc. | Stents with Enhanced Fracture Toughness |
US8658081B2 (en) | 2006-06-15 | 2014-02-25 | Advanced Cardiovascular Systems, Inc. | Methods of fabricating stents with enhanced fracture toughness |
US7731890B2 (en) | 2006-06-15 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Methods of fabricating stents with enhanced fracture toughness |
US20100289191A1 (en) * | 2006-06-15 | 2010-11-18 | Advanced Cardiovascular Systems, Inc. | Methods of fabricating stents with enhanced fracture toughness |
US7740791B2 (en) | 2006-06-30 | 2010-06-22 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a stent with features by blow molding |
US20100256742A1 (en) * | 2006-06-30 | 2010-10-07 | Klaus Kleine | Tapered Polymeric Stent And Method Of Fabricating Same |
US20080154352A1 (en) * | 2006-12-21 | 2008-06-26 | Medtronic Vascular, Inc. | Stent Balloon Assembly and Method of Making Same |
US20090001633A1 (en) * | 2007-06-29 | 2009-01-01 | Limon Timothy A | Method Of Manufacturing A Stent From A Polymer Tube |
US7666342B2 (en) | 2007-06-29 | 2010-02-23 | Abbott Cardiovascular Systems Inc. | Method of manufacturing a stent from a polymer tube |
US8268228B2 (en) | 2007-12-11 | 2012-09-18 | Abbott Cardiovascular Systems Inc. | Method of fabricating stents from blow molded tubing |
US20090146348A1 (en) * | 2007-12-11 | 2009-06-11 | Bin Huang | Method of fabrication a stent from blow molded tubing |
US8658082B2 (en) | 2007-12-11 | 2014-02-25 | Abbott Cardiovascular Systems Inc. | Method of fabricating stents from blow molded tubing |
US8828305B2 (en) | 2008-08-04 | 2014-09-09 | Abbott Cardiovascular Systems Inc. | Tube expansion processes for semicrystalline polymers to maximize fracture toughness |
US8303296B2 (en) | 2008-08-04 | 2012-11-06 | Abbott Cardiovascular Systems Inc. | Polymer tube expansion apparatus to maximize fracture toughness |
US8012402B2 (en) | 2008-08-04 | 2011-09-06 | Abbott Cardiovascular Systems Inc. | Tube expansion process for semicrystalline polymers to maximize fracture toughness |
US20100025894A1 (en) * | 2008-08-04 | 2010-02-04 | Abbott Cardiovascular Inc. | Tube expansion process for semicrystalline polymers to maximize fracture toughness |
JP2012505050A (en) * | 2008-10-10 | 2012-03-01 | インターバルブ, インコーポレイテッド | Valvuloplasty catheter and method |
US20100244304A1 (en) * | 2009-03-31 | 2010-09-30 | Yunbing Wang | Stents fabricated from a sheet with increased strength, modulus and fracture toughness |
US20110066222A1 (en) * | 2009-09-11 | 2011-03-17 | Yunbing Wang | Polymeric Stent and Method of Making Same |
US8501079B2 (en) | 2009-09-14 | 2013-08-06 | Abbott Cardiovascular Systems Inc. | Controlling crystalline morphology of a bioabsorbable stent |
US20110062638A1 (en) * | 2009-09-14 | 2011-03-17 | Thierry Glauser | Controlling Crystalline Morphology Of A Bioabsorbable Stent |
US9211682B2 (en) | 2009-09-14 | 2015-12-15 | Abbott Cardiovascular Systems Inc. | Controlling crystalline morphology of a bioabsorbable stent |
US8370120B2 (en) | 2010-04-30 | 2013-02-05 | Abbott Cardiovascular Systems Inc. | Polymeric stents and method of manufacturing same |
US8685054B2 (en) * | 2010-10-27 | 2014-04-01 | Cook Medical Technologies Llc | Valvuloplasty balloon catheter |
US20120277785A1 (en) * | 2010-10-27 | 2012-11-01 | Cook Medical Technologies Llc | Valvuloplasty Balloon Catheter |
US9814862B2 (en) | 2011-06-30 | 2017-11-14 | The Spectranetics Corporation | Reentry catheter and method thereof |
US8956376B2 (en) | 2011-06-30 | 2015-02-17 | The Spectranetics Corporation | Reentry catheter and method thereof |
US10709872B2 (en) | 2011-06-30 | 2020-07-14 | The Spectranetics Corporation | Reentry catheter and method thereof |
US10603467B2 (en) | 2011-06-30 | 2020-03-31 | The Spectranetics Corporation | Reentry catheter and method thereof |
US10183151B2 (en) | 2011-06-30 | 2019-01-22 | Spectranetics Corporation | Reentry catheter and method thereof |
US9408998B2 (en) | 2011-06-30 | 2016-08-09 | The Spectranetics Corporation | Reentry catheter and method thereof |
US9775969B2 (en) | 2011-06-30 | 2017-10-03 | The Spectranetics Corporation | Reentry catheter and method thereof |
US8998936B2 (en) | 2011-06-30 | 2015-04-07 | The Spectranetics Corporation | Reentry catheter and method thereof |
US9730726B2 (en) | 2011-10-07 | 2017-08-15 | W. L. Gore & Associates, Inc. | Balloon assemblies having controllably variable topographies |
US10881426B2 (en) | 2011-10-07 | 2021-01-05 | W. L. Gore & Associates, Inc. | Balloon assemblies having controllably variable topographies |
US20130150880A1 (en) * | 2011-12-09 | 2013-06-13 | Boston Scientific Scimed, Inc. | Subintimal recanalization with bio-absorbable stent |
US9302084B2 (en) * | 2011-12-09 | 2016-04-05 | Boston Scientific Scimed, Inc. | Subintimal recanalization with bio-absorbable stent |
US10716923B2 (en) | 2011-12-09 | 2020-07-21 | Boston Scientific Scimed, Inc. | Subintimal recanalization with bio-absorbable stent |
US10076642B2 (en) | 2013-03-14 | 2018-09-18 | W. L. Gore & Associates, Inc. | Conformable balloon devices |
US9669194B2 (en) | 2013-03-14 | 2017-06-06 | W. L. Gore & Associates, Inc. | Conformable balloon devices and methods |
US10617853B2 (en) | 2013-03-14 | 2020-04-14 | W. L. Gore & Associates, Inc. | Comformable balloon devices and methods |
US11690984B2 (en) | 2013-03-14 | 2023-07-04 | W. L. Gore & Associates, Inc. | Conformable balloon devices and methods |
US9364588B2 (en) | 2014-02-04 | 2016-06-14 | Abbott Cardiovascular Systems Inc. | Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating |
US10463519B2 (en) | 2014-04-09 | 2019-11-05 | Cook Medical Technologies Llc | Delivery system for implantable medical device |
Also Published As
Publication number | Publication date |
---|---|
EP1429688A1 (en) | 2004-06-23 |
WO2003026534A1 (en) | 2003-04-03 |
JP2005525138A (en) | 2005-08-25 |
US20030060832A1 (en) | 2003-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7083639B2 (en) | Stent delivery catheter with grooved balloon and methods of making same | |
US6200325B1 (en) | Balloon catheter and stent deploying catheter system | |
US7226472B2 (en) | Catheter balloon with advantageous cone design | |
US5980530A (en) | Stent delivery system | |
US6802849B2 (en) | Stent delivery system | |
US6007543A (en) | Stent delivery system with stent securement means | |
US5653691A (en) | Thickened inner lumen for uniform stent expansion and method of making | |
EP1517650B1 (en) | Stent delivery catheter with retention bands | |
US6986785B2 (en) | Stent balloon assembly and methods of making same | |
US5749851A (en) | Stent installation method using balloon catheter having stepped compliance curve | |
US5944726A (en) | Stent delivery system having stent securement means | |
US6306162B1 (en) | Stent delivery system utilizing novel balloon for obtaining variable post-deployment stent characteristics | |
WO1999015106A1 (en) | Balloon mounted stent and method therefor | |
US20030074044A1 (en) | Stent delivery system | |
CA2400284A1 (en) | Stent delivery balloon with stent securement means | |
CA2727676C (en) | Bifurcation catheter assembly with dynamic side branch lumen | |
US20080154352A1 (en) | Stent Balloon Assembly and Method of Making Same | |
JP5735132B2 (en) | Means and methods for preventing embolization of drug eluting stents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDTONIC AVE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUINAN, TERRY;FEENEY, TOM;REEL/FRAME:014046/0963 Effective date: 20030414 |
|
AS | Assignment |
Owner name: MEDTRONIC VASCULAR, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:MEDTRONIC AVE, INC.;REEL/FRAME:017769/0833 Effective date: 20030908 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |