US7076261B2 - Synchronization of optical signaling beacons - Google Patents
Synchronization of optical signaling beacons Download PDFInfo
- Publication number
- US7076261B2 US7076261B2 US10/609,625 US60962503A US7076261B2 US 7076261 B2 US7076261 B2 US 7076261B2 US 60962503 A US60962503 A US 60962503A US 7076261 B2 US7076261 B2 US 7076261B2
- Authority
- US
- United States
- Prior art keywords
- signaling
- signal
- beacon
- recited
- beacons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/02—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
- G01S1/022—Means for monitoring or calibrating
- G01S1/024—Means for monitoring or calibrating of beacon transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/02—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
- G01S1/08—Systems for determining direction or position line
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/70—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
- G01S1/703—Details
- G01S1/7032—Transmitters
- G01S1/7038—Signal details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/72—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
- G01S1/74—Details
- G01S1/75—Transmitters
- G01S1/753—Signal details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/72—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
- G01S1/76—Systems for determining direction or position line
Definitions
- the present invention generally relates to optical signaling beacons to indicate the locations of persons and/or objects and, more particularly, to arrangements for synchronizing the signaling operations of a plurality of such beacons.
- Signaling beacons have been known for many years, particularly for purposes of navigation under adverse lighting conditions such as night or fog. Lighthouses are a particularly familiar example of signaling beacons used for such purposes over the last century and longer. In more recent times, a plurality of signaling beacons have been used together to indicate not only the location but the size and shape of an object, facilities or obstructions such as runways for aircraft, construction barriers, communication signaling towers and the like or even locations of personnel.
- flashing lights are often used in combination with constant, steady light beacons on communication towers and lights flashing in a sequence indicative of direction are often used for airport runways.
- the cooperative operation of plural beacons in such a manner not only unambiguously identifies the object but facilitates the visualization of its location, size, orientation and configuration.
- large, complex and generally expensive systems are required to achieve such effects and are generally applicable only to fixed installations with a predetermined number of regularly spaced beacons to be synchronized.
- the individual signaling beacons will operate in a free-running manner and, since the clocking arrangement is necessarily subject to drift, synchronization will invariably be lost and the twinkling or sparkling effect will be developed over a greater or lesser period of time depending on clock accuracy and stability; both of which are usually associated with increased cost.
- a perception of uniformity of operation of a plurality of signaling beacons is critical to recognition of the plurality of signaling beacons of arbitrary number and arrangement as constituting a single system or application. This is particularly true where individual signaling beacons are used to identify individual personnel or movable objects which must be distinguished from other personnel or movable objects (e.g. friend or foe discrimination) where it may even be attempted to emulate one system with another system. Uniformity of operation also assists in the perception of the array of beacons in applications such as route or boundary markers where the shape of the array is important, especially when the signaling beacons are operated with short duty cycle and/or long cycle times.
- order N e.g. serial synchronization operations for all beacons
- order 1 e.g. simultaneous synchronization of all beacons
- a system of signaling beacons wherein a signaling beacon of said system includes a timer providing timing signals, a controller for receiving the timing signals and controlling periodic energization of a signaling arrangement such as a visible or non-visible light source for providing a perceptible signal, and controls responsive to receipt of a periodic modulated synchronization signal from another signaling beacon for synchronizing the periodic energization of said signaling arrangement.
- a signaling beacon of said system includes a timer providing timing signals, a controller for receiving the timing signals and controlling periodic energization of a signaling arrangement such as a visible or non-visible light source for providing a perceptible signal, and controls responsive to receipt of a periodic modulated synchronization signal from another signaling beacon for synchronizing the periodic energization of said signaling arrangement.
- a method for synchronizing a system of signaling beacons including steps of providing periodic energization of a source of a perceptible signal at respective signaling beacons, transmitting a control signal in accordance with a communication protocol from a first signaling beacon, bringing a second signaling beacon within synchronization range of said control signal, and altering timing of the periodic energization of the second signaling beacon responsive to the control signal and the periodic energization of the first signaling beacon.
- FIG. 1 is a high-level functional block diagram of two signaling beacons of a system of signaling beacons in accordance with the invention
- FIG. 2 is a functional block diagram of a preferred form of a transceiver signaling beacon in accordance with the invention
- FIG. 3 is a diagram illustrating the synchronization operation of the invention.
- FIG. 4 is a preferred physical embodiment of the invention.
- FIG. 1 there is shown a high-level block diagram of the synchronization system 10 of the invention.
- the system illustrated in FIG. 1 is limited to two signaling beacons 12 , 14 in the interest of clarity but it is to be understood that the number of signaling beacons is arbitrary and may be very large.
- the individual beacons may be of three functional forms: a transmitter beacon 12 , a receiver beacon 14 and a transceiver or relay beacon which is a combination of transmitter and receiver beacons and depicted at both 12 and 14 of FIG. 1 by constituent elements illustrated with dashed lines in the respective beacon units 12 and 14 and, in more detail, in FIG. 2 .
- a transmitter beacon 12 a receiver beacon 14 and a transceiver or relay beacon which is a combination of transmitter and receiver beacons and depicted at both 12 and 14 of FIG. 1 by constituent elements illustrated with dashed lines in the respective beacon units 12 and 14 and, in more detail, in FIG. 2 .
- all beacon units it is possible for all beacon units to be constituted identically and selectively controllable to function as transmitter, receiver and/or transceiver.
- beacon units can be configured as transceiver units which may also provide certain economies and convenience. In such a case, it is preferred to provide for a transceiver beacon unit to function as a master unit or slave or relay unit.
- beacon units include a power supply 16 , such as a battery, a signaling light source 18 (which may be comprised of a plurality of light emitting devices as well as reflectors, lenses and the like, as desired) and a controller unit 20 .
- Transmitter beacon units may additionally include user controls 22 , a modulating and demodulating arrangement or modem 26 for applying a coded signal in accordance with an arbitrary communication protocol to the output of light source 18 and/or a discrete communication arrangement 28 which may be, for example, another light source in the visible or non-visible spectrum (e.g. infrared), a short-range radio or ultrasonic transmitter or the like.
- a beacon unit functioning as a receiver will include sensor 24 to receive transmitted signals and provide communicated synchronization information to controller 24 .
- modulator 26 and optional communication transmitter 28 would normally be omitted.
- a transceiver beacon unit would preferably include all of user control 22 , sensor 24 , modulator 26 and, if used, optional communication transmitter 28 in order to selectively provide functions of a transmitter beacon unit and/or a receiver beacon unit.
- Each signaling beacon is thus self-contained and physically independent of other beacon units and is capable of functioning as a signaling beacon in a free-running manner entirely independent of any other signaling beacon, for example, in an application where only a single signaling beacon is required.
- synchronization of all such beacons is achieved through an arbitrary communications protocol and a communication link using light source 18 or arbitrary relatively short range communication medium/transmitter 28 .
- an optical link using light source 18 is modulated in accordance with the chosen communication protocol only at a single transmitter beacon unit 12 which functions as a master beacon unit to which all other (e.g. receiver) beacon units are slaved.
- the master beacon unit may be freely changed between beacon units of the system and/or other beacon units may be used as a repeater or relay unit where or when a direct communication to the master beacon unit is unavailable.
- the communication protocol is preferably changed at such repeater or relay units to reduce the possibility of interference or ambiguity of control (e.g. feedback to the same beacon unit or reception of control signals from more than one master or relay unit). Control and synchronization signals are thus effectively broadcast and all units which receive the control and synchronization signals may be simultaneously automatically synchronized with the master beacon unit.
- beacon units are brought into synchronism with the master (and relay) beacon units immediately upon a communication link being established by bringing a beacon unit within synchronization range of a transmitting beacon, even if only briefly, such as for the duration of a single beacon cycle or data frame using light source 18 or even a small portion of a beacon cycle if transmitter 28 is used such that a data frame of reduced duration may be developed.
- FIG. 2 shows a more detailed block diagram of a transceiver beacon unit in accordance with a preferred embodiment of the invention.
- the controller details may be implemented in hardware, software or a combination thereof and may be application dependent; ranging from very simple to highly complex, depending on protocol, robustness and security as well as flexibility of functions desired for the system.
- the sensor 24 of FIG. 1 is shown in an expanded, preferred form including an infrared filter 21 , a photo diode 23 , a signal amplifier 25 and a bandpass filter 27 .
- Modem 26 is also shown in an expanded form comprising demodulator 26 a and modulator 26 b .
- a timer 31 (which may be crystal-controlled or controlled by an external transmitted signal such as GPS, WWVB, WWV, WWVH or the like for stability, portions of which signals may also be used as a control or synchronization signal for the perceptible signal of the signaling beacon), implicit in controller 20 of FIG. 1 is separately shown. It is also preferable to provide an additional amplifier 35 to drive light source 18 / 28 . However, it is to be understood that these additional elements and the details thereof are not critical to the practice of the invention and some elements may be omitted altogether in transmitter and receiver types of beacons in accordance with the invention, as discussed above.
- the master signaling beacon emits a signal which, if in the visible spectrum or otherwise perceptible by the senses would appear to have a periodic form depicted in waveform 40 .
- the individual pulses thereof are modulated to contain control signals as generally depicted in waveform 42 such that each pulse in waveform 40 includes a plurality of modulated pulses in a time sequence which preferably, but not necessarily, provides information in a highly redundant format in the course of one or more data frames within a signaling pulse.
- increased redundancy of information not only increases robustness and reliability of operation but may reduce the duration of the signal necessary to provide synchronization and desired control, depending on the complexity of the information, coding, encryption and the like.
- the nature of the modulation and communication protocol chosen are not important to the successful practice of the invention except to the extent that some readily detectable differences from the communication protocol of any similar system or source of detectable energy operating in the vicinity of the system should be provided so that potential interference can be rejected.
- This communication signal preferably infrared light, as illustrated, is passed by filter 21 and preferably detected by an energy sensor or transducer such as exemplary photo diode 23 which outputs a time-varying signal that is amplified by amplifier 25 .
- the output of amplifier 25 is also preferably bandpass filtered by filter 27 to increase signal-to-noise ratio (SNR) and further reduce interference.
- SNR signal-to-noise ratio
- the communication protocol is usually implemented as a subset of controller algorithms and it is a function of controller 20 to reject interference from signals which do not correspond to the communication protocol currently in use. Therefore, the depiction of communication protocol 30 in FIG. 2 is to be understood as schematic and reflecting the possibility of user or system control thereof and/or the remote possibility of external input of such a communication protocol algorithm even though such external input is generally impractical and is not preferred.
- the amplitude modulation type modulation scheme depicted is not necessarily related to the communication protocol of the system but is only intended to be a physical interpretation and representation of the information which is transferred in accordance with the chosen communication protocol which is, itself, not critical to the practice of the invention. That is, the controller employs the communication protocol implementation and the modulator/demodulator units are used to shift the data stream in the frequency domain to increase the SNR of the information over the physical medium.
- Controller 20 receives the output of the demodulator and amplified (and filtered, if desired) signal corresponding to the output of the photo diode 23 .
- Two separate signal paths are shown to represent two types of data delivered to the controller 20 : the basic timing signal corresponding to the master beacon operation (e.g. for human observation) and control signals which control such parameters as signaling carrier frequency, identifiers or particulars of the communication protocol, beacon signal parameters such as pattern, frequency, color and the like which further identify the beacon as part of the system and other information as may be required to support any of a plurality of operational features which may be desired, included in the system and controlled by controller 20 consistent with the basic principles thereof as will be evident to those skilled in the art and accommodated by a processor preferably used to constitute controller 20 .
- control signals that represent parameters such as signaling carrier frequency and color need not be input to the controller since the transducer 23 , filter 27 and demodulator 26 a would control the throughput of the signal that satisfies such criteria and which are features of the communication protocol.
- controller 20 could comprise little more than registers to contain control information corresponding to the communication protocol and user specified controls, if any, and a programmable, resettable counter to divide the frequency of the system clock or timer 31 and restart the count in synchronism with received input pulses 41 .
- controller 20 provides output pulses 41 a , representing a synchronous envelope of control signals, to modulator 33 and then to amplifier 35 and a signal 41 ′ substantially identical to and in synchronization with received pulses 41 which is supplied directly to amplifier 35 .
- Modulator 33 also may receive (optional) local user control 22 and communication protocol 30 (e.g.
- the output 41 a of controller 20 which represents data and protocol information is sent to modulator 26 b for modulation with a carrier frequency to increase the SNR for communication over the medium.
- the path that bypasses the modulator and is fed directly to the amplifier represents a larger time-scale output that controls the light source 18 / 28 according to the signaling pattern that is perceptible (e.g.
- one path, 41 a is modulated for beacon protocol communications and the other, 41 ′, the long term beacon signaling pulse patterns, where the signaling pulses are, for example, interleaved with modulated data frames to synchronize the surrounding beacons.
- a signaling beacon as illustrated in FIG. 2 can operate in a free-running manner in the absence of a synchronizing signal from a master or relay beacon and, when such a signal is received (e.g. by being brought within sight or range of the master or relay beacon), synchronization is achieved simultaneously and almost instantaneously by, for example, resetting a counter or register which is used for counting or dividing the frequency of timer 31 .
- N the synchronization for an arbitrary number, N, of beacons is of order 1 rather than order N, as would be the case if a physical link were employed for initial synchronization.
- the frequency of timer 31 is relatively stable and relatively resistant to frequency drift, reliability and continuity of the communication link becomes substantially less critical to system synchronization as will now be discussed.
- FIG. 3 a scenario is depicted in which the continuity of a communication path between a transmitter beacon and a receiver beacon is intermittent.
- FIG. 3 may be understood as a barrier having portions 100 and 110 which are interposed between a transmitter and receiver beacons which are moving from left to right.
- FIG. 3 is divided into four time intervals A–D: interval A being prior to synchronization having been achieved, while a communication path exists and operation is synchronous during intervals B and D. However, during interval C which follows a period of synchronous operation in accordance with an existing communication path, the communication path is interrupted.
- synchronization is substantially maintained in a free-running mode due to the stability of timer 31 and which can be adjusted during periods of synchronized operation via communicated signals and other means to even further minimize frequency drift while free-running. Therefore, only a very small timing shift is likely to occur even over a quite extended period of time and is corrected immediately when synchronous operation is resumed at the onset of interval D when the communication path is restored, if only very briefly (e.g. long enough to observe a pulse 41 or a data frame therein). It has been found, using stabilized oscillators (e.g. controlled by a crystal element or an external signal) in timers 31 , as alluded to above, that no perceptible loss of synchronism will occur in a free-running beacon (e.g.
- a communication link need only exist for a short period of time at similar intervals of hours or days.
- a system of signaling beacons can be reliably and conveniently synchronized simultaneously even when a communication link may be difficult to reliably maintain such as where beacons are used in connection with mobile objects moving in an arbitrary domain with random obstructions.
- Synchronization is established in accordance with the invention over systems of arbitrary size, extent and array shape that may be extended or otherwise altered during operation while providing single beacons which are capable of independent operation as stand-alone units.
- the beacon units in accordance with the invention may be produced at low cost and are capable of a wide range of functions to enhance visibility and identification such as controllable flashing patterns while being simple and generally compatible with various desired enhancements that will be apparent to those skilled in the art, particularly for specific applications.
- a preferred physical embodiment of a beacon in accordance with the invention will now be discussed with reference to FIG. 4 .
- the major portion of the volume of the beacon unit is constituted by power source battery 16 .
- the remainder of the beacon is constructed on a circuit board which is preferably of an angled configuration with portion 120 covering and providing connection to the battery terminals and portion 110 covering an adjacent lateral side of the battery 16 and carrying the remainder of the electronic components of the beacon.
- This configuration is preferred since it is compact while providing ample space for the electronic components and providing directionality for the beacon.
- the electronic components can be carried by portion 120 and portion 110 may be omitted.
- Dashed lines 130 depict an optional cover having apertures through which one or, preferably, more light sources 18 , 28 which are preferably distinctively arrayed and transducer 21 , 23 (possibly including demodulator 26 a , amplifier 25 and filter 27 in the same component) may protrude.
- the cover may be transparent. In either case, provision of a cover is preferred to protect the electronic components such as controller/processor 20 from physical damage and foreign materials.
- a beacon in accordance with the invention can be made very similar in dimensions and weight to the battery 16 used to power it.
- the battery may be of any convenient size and capacity capable of powering the beacon for a desired period of time between replacement.
- a standard nine volt battery having snap terminals (which provide a convenient mechanical attachment for the beacon) has been found to be satisfactory in this regard for most applications, particularly when it is considered that the principal load is that of the light sources 18 , 28 and power requirements may be diminished by reducing the duty cycle thereof.
- Very short duty cycles do not significantly reduce visibility of the beacons, particularly when operated in a synchronized array operated since visibility is substantially enhanced by the synchronization provided in accordance with the invention.
- the invention provides simultaneous synchronization of a system of signaling beacons where the number and array of beacons is arbitrary. No physical link is required for synchronization and the optical, infrared, acoustic, radio, etc. communication link is only required for a short duration at potentially widely separated intervals. Any communication protocol may be used and may be freely chosen to provide any desired level of functionality and freedom from interference.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
Description
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/609,625 US7076261B2 (en) | 2003-07-01 | 2003-07-01 | Synchronization of optical signaling beacons |
PCT/US2004/020817 WO2005020442A2 (en) | 2003-07-01 | 2004-06-29 | Synchronization of optical signaling beacons |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/609,625 US7076261B2 (en) | 2003-07-01 | 2003-07-01 | Synchronization of optical signaling beacons |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050003774A1 US20050003774A1 (en) | 2005-01-06 |
US7076261B2 true US7076261B2 (en) | 2006-07-11 |
Family
ID=33552253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/609,625 Expired - Fee Related US7076261B2 (en) | 2003-07-01 | 2003-07-01 | Synchronization of optical signaling beacons |
Country Status (2)
Country | Link |
---|---|
US (1) | US7076261B2 (en) |
WO (1) | WO2005020442A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060098676A1 (en) * | 2004-11-08 | 2006-05-11 | Motorola, Inc. | Method and apparatus to facilitate macrodiversity reception |
WO2012113082A1 (en) * | 2011-02-24 | 2012-08-30 | Ford Timothy D F | Situational marking and awareness tag (smart) beacon, system and method |
US20190190613A1 (en) * | 2017-12-20 | 2019-06-20 | Bae Systems Information And Electronic Systems Integration Inc. | Method of frequency encoding beacons for dismounted identification, friend or foe |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8786439B2 (en) * | 2005-09-02 | 2014-07-22 | Wg Security Products | Active antenna |
GB2475713A (en) * | 2009-11-27 | 2011-06-01 | Hochschule Bochum | Navigation / location system using location signals generated from light sources |
CN102291338B (en) * | 2010-08-20 | 2015-04-22 | 朱瀚 | Automatic acquisition and identification system of ship light signal |
US10564613B2 (en) | 2010-11-19 | 2020-02-18 | Hubbell Incorporated | Control system and method for managing wireless and wired components |
KR102230640B1 (en) * | 2013-07-02 | 2021-03-22 | 주식회사 케이티 | Method for channel access in wireless local area network system and apparatus therefor |
CN104483659B (en) * | 2014-11-03 | 2017-05-24 | 中国科学院半导体研究所 | Coal mine worker positioning system based on visible light communication |
US10271190B2 (en) * | 2017-05-01 | 2019-04-23 | Qualcomm Incorporated | Low energy beacon configuration on tap |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533871A (en) * | 1981-08-10 | 1985-08-06 | Dsl Dynamic Sciences Limited | Range-enable information system for plural mobile objects |
US5677927A (en) * | 1994-09-20 | 1997-10-14 | Pulson Communications Corporation | Ultrawide-band communication system and method |
US5804829A (en) * | 1995-06-08 | 1998-09-08 | Itt Corporation | Programmable infrared signal beacon |
US6028853A (en) * | 1996-06-07 | 2000-02-22 | Telefonaktiebolaget Lm Ericsson | Method and arrangement for radio communication |
US6195039B1 (en) * | 1997-11-26 | 2001-02-27 | Robert T. Glass, Jr. | Location signalling apparatus |
US6295461B1 (en) * | 1997-11-03 | 2001-09-25 | Intermec Ip Corp. | Multi-mode radio frequency network system |
US20030067392A1 (en) * | 2001-10-10 | 2003-04-10 | Monroe David A. | Networked personal security system |
US6571111B1 (en) * | 1998-08-05 | 2003-05-27 | Compaq Computer Corporation | Method and apparatus for reducing battery power consumption of transceivers in a communications network using an external generated timing signal |
US20040008661A1 (en) * | 2002-03-29 | 2004-01-15 | Myles Andrew F. | Method and apparatus for clock synchronization in a wireless network |
US20040233936A1 (en) * | 2003-05-21 | 2004-11-25 | Sheng-Yuan Cheng | Apparatus for generating a control signal of a target beacon transmission time and method for the same |
US20050068934A1 (en) * | 2003-02-03 | 2005-03-31 | Kazuyuki Sakoda | Radio communication system, radio communication device, radio communication method, and computer program |
-
2003
- 2003-07-01 US US10/609,625 patent/US7076261B2/en not_active Expired - Fee Related
-
2004
- 2004-06-29 WO PCT/US2004/020817 patent/WO2005020442A2/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533871A (en) * | 1981-08-10 | 1985-08-06 | Dsl Dynamic Sciences Limited | Range-enable information system for plural mobile objects |
US5677927A (en) * | 1994-09-20 | 1997-10-14 | Pulson Communications Corporation | Ultrawide-band communication system and method |
US5804829A (en) * | 1995-06-08 | 1998-09-08 | Itt Corporation | Programmable infrared signal beacon |
US6028853A (en) * | 1996-06-07 | 2000-02-22 | Telefonaktiebolaget Lm Ericsson | Method and arrangement for radio communication |
US6295461B1 (en) * | 1997-11-03 | 2001-09-25 | Intermec Ip Corp. | Multi-mode radio frequency network system |
US6195039B1 (en) * | 1997-11-26 | 2001-02-27 | Robert T. Glass, Jr. | Location signalling apparatus |
US6571111B1 (en) * | 1998-08-05 | 2003-05-27 | Compaq Computer Corporation | Method and apparatus for reducing battery power consumption of transceivers in a communications network using an external generated timing signal |
US20030067392A1 (en) * | 2001-10-10 | 2003-04-10 | Monroe David A. | Networked personal security system |
US20040008661A1 (en) * | 2002-03-29 | 2004-01-15 | Myles Andrew F. | Method and apparatus for clock synchronization in a wireless network |
US20050068934A1 (en) * | 2003-02-03 | 2005-03-31 | Kazuyuki Sakoda | Radio communication system, radio communication device, radio communication method, and computer program |
US20040233936A1 (en) * | 2003-05-21 | 2004-11-25 | Sheng-Yuan Cheng | Apparatus for generating a control signal of a target beacon transmission time and method for the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060098676A1 (en) * | 2004-11-08 | 2006-05-11 | Motorola, Inc. | Method and apparatus to facilitate macrodiversity reception |
WO2012113082A1 (en) * | 2011-02-24 | 2012-08-30 | Ford Timothy D F | Situational marking and awareness tag (smart) beacon, system and method |
US9213084B2 (en) | 2011-02-24 | 2015-12-15 | The Flewelling Ford Family Trust | Situational marking and awareness tag (SMART) beacon, system and method |
US20190190613A1 (en) * | 2017-12-20 | 2019-06-20 | Bae Systems Information And Electronic Systems Integration Inc. | Method of frequency encoding beacons for dismounted identification, friend or foe |
US10541755B2 (en) * | 2017-12-20 | 2020-01-21 | Bae Systems Information And Electronic Systems Integration Inc. | Method of frequency encoding beacons for dismounted identification, friend or foe |
Also Published As
Publication number | Publication date |
---|---|
WO2005020442A2 (en) | 2005-03-03 |
US20050003774A1 (en) | 2005-01-06 |
WO2005020442A3 (en) | 2006-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7076261B2 (en) | Synchronization of optical signaling beacons | |
US9213084B2 (en) | Situational marking and awareness tag (SMART) beacon, system and method | |
US6011510A (en) | GPS based search and rescue transceiver | |
US6970097B2 (en) | Location system using retransmission of identifying information | |
US20010034223A1 (en) | Method and system for providing location dependent and personal identification information to a public safety answering point | |
US7693216B1 (en) | Modulating transmission timing for data communications | |
ES453392A1 (en) | IMPROVEMENTS IN SATELLITE CONTROLLED DIGITAL CLOCK SYSTEMS. | |
WO2011014731A2 (en) | Traffic signal devices and methods of using the same | |
US4630289A (en) | Emergency locator transmitter incident time correlator | |
US5945947A (en) | Synthetic doppler direction finder for use with FSK encoded transmitters | |
ES2205106T3 (en) | PROCEDURE FOR RADIO TRANSMISSION OF ALARM SENSOR MEASUREMENT DATA AND RADIO DANGER ALARM INSTALLATION. | |
ES2438290T3 (en) | Synchronization of electronic article monitoring systems using a global positioning satellite signal | |
US20060255914A1 (en) | System and transmitter | |
US20180253955A1 (en) | Beacon device and beacon communication system | |
US20050118905A1 (en) | Maritime safety system | |
US20070147436A1 (en) | Sub-frame synchronized multiplexing | |
US10996340B1 (en) | Tracking system | |
JP2621811B2 (en) | Surveillance radar equipment | |
KR20000056008A (en) | System for remote controlling and synchronized flickering of emitting mark using trunked radio system | |
JPH0241760Y2 (en) | ||
CA1217841A (en) | Integrated radio location and communication system | |
GB2217968A (en) | Data storage and retrieval systems and locating systems | |
JP2002517732A (en) | Apparatus and method for locating multiple remote transmitters on earth | |
JPS5816237B2 (en) | Light buoy flashing synchronizer | |
JPS628074A (en) | Secret keeping system for hyperbolic navigation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COMSONICS, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AUSTMAN, ERIC D.;HAVELKA, TONY M.;REEL/FRAME:014982/0081 Effective date: 20030630 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: PNC BANK, NATIONAL ASSOCIATION, VIRGINIA Free format text: SECURITY INTEREST;ASSIGNOR:COMSONICS, INC.;REEL/FRAME:036166/0346 Effective date: 20150630 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180711 |
|
AS | Assignment |
Owner name: COMSONICS, INC., VIRGINIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION;REEL/FRAME:052283/0538 Effective date: 20200330 |