US7050387B2 - Optical storage medium - Google Patents
Optical storage medium Download PDFInfo
- Publication number
- US7050387B2 US7050387B2 US10/606,801 US60680103A US7050387B2 US 7050387 B2 US7050387 B2 US 7050387B2 US 60680103 A US60680103 A US 60680103A US 7050387 B2 US7050387 B2 US 7050387B2
- Authority
- US
- United States
- Prior art keywords
- layer
- dye
- storage medium
- optical storage
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased, expires
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 108
- 239000000758 substrate Substances 0.000 claims abstract description 133
- 229920005989 resin Polymers 0.000 claims abstract description 47
- 239000011347 resin Substances 0.000 claims abstract description 47
- 239000010410 layer Substances 0.000 description 299
- 239000000975 dye Substances 0.000 description 57
- 229920005668 polycarbonate resin Polymers 0.000 description 22
- 239000004431 polycarbonate resin Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000007650 screen-printing Methods 0.000 description 10
- 239000001045 blue dye Substances 0.000 description 9
- 239000000049 pigment Substances 0.000 description 9
- 239000001044 red dye Substances 0.000 description 9
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 8
- AYNDKKQQUZPETC-NXVVXOECSA-N (z)-2,3-bis(2,4,5-trimethylthiophen-3-yl)but-2-enedinitrile Chemical compound CC1=C(C)SC(C)=C1\C(C#N)=C(\C#N)C1=C(C)SC(C)=C1C AYNDKKQQUZPETC-NXVVXOECSA-N 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- OUCKAFOKXHCQPT-UHFFFAOYSA-N 3-[3,3,4,4,5,5-hexafluoro-2-(2-methyl-5-phenylthiophen-3-yl)cyclopenten-1-yl]-2-methyl-5-phenylthiophene Chemical group CC=1SC(C=2C=CC=CC=2)=CC=1C(C(C(F)(F)C1(F)F)(F)F)=C1C(=C(S1)C)C=C1C1=CC=CC=C1 OUCKAFOKXHCQPT-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000002355 dual-layer Substances 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 229910000763 AgInSbTe Inorganic materials 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 150000001988 diarylethenes Chemical class 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- PSXPTGAEJZYNFI-UHFFFAOYSA-N 1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indole] Chemical compound O1C2=CC=C([N+]([O-])=O)C=C2C=CC21C(C)(C)C1=CC=CC=C1N2C PSXPTGAEJZYNFI-UHFFFAOYSA-N 0.000 description 1
- HKGODBTXGKITRZ-UHFFFAOYSA-N 1',3',3'-trimethylspiro[2,4-dihydrophenanthro[9,10-b][1,4]oxazine-3,2'-indole] Chemical compound C12=CC=CC=C2C2=CC=CC=C2C(OC2)=C1NC12C(C)(C)C2=CC=CC=C2N1C HKGODBTXGKITRZ-UHFFFAOYSA-N 0.000 description 1
- CQTRKDFIQFOAQV-UHFFFAOYSA-N 1',3',3'-trimethylspiro[benzo[f][1,4]benzoxazine-3,2'-indole] Chemical compound C1=CC=CC2=C(N=CC3(C(C)(C)C4=CC=CC=C4N3C)O3)C3=CC=C21 CQTRKDFIQFOAQV-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- KHSACZVQYSVGDJ-UHFFFAOYSA-N 2h-indole Chemical compound C1=CC=CC2=NCC=C21 KHSACZVQYSVGDJ-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- ANYDHJQJXVIYHM-UHFFFAOYSA-N 3,4-bis(2,4,5-trimethylthiophen-3-yl)furan-2,5-dione Chemical compound CC1=C(C)SC(C)=C1C1=C(C=2C(=C(C)SC=2C)C)C(=O)OC1=O ANYDHJQJXVIYHM-UHFFFAOYSA-N 0.000 description 1
- OHZCQTZIDIVCPI-UHFFFAOYSA-N 3,4-bis(2,4,5-trimethylthiophen-3-yl)pyrrole-2,5-dione Chemical compound CC1=C(C)SC(C)=C1C1=C(C=2C(=C(C)SC=2C)C)C(=O)NC1=O OHZCQTZIDIVCPI-UHFFFAOYSA-N 0.000 description 1
- FORBLMAEPRTPAV-UHFFFAOYSA-N 3-(2,5-dimethylfuran-3-yl)-4-propan-2-ylideneoxolane-2,5-dione Chemical compound O=C1OC(=O)C(=C(C)C)C1C1=C(C)OC(C)=C1 FORBLMAEPRTPAV-UHFFFAOYSA-N 0.000 description 1
- LMGISDUEOGUWCA-UHFFFAOYSA-N 3-[2-(2,5-dimethylfuran-3-yl)ethylidene]oxolane-2,5-dione Chemical compound Cc1cc(CC=C2CC(=O)OC2=O)c(C)o1 LMGISDUEOGUWCA-UHFFFAOYSA-N 0.000 description 1
- WIFWCSTVYGGLAE-UHFFFAOYSA-N 4ah-benzo[f]chromene Chemical compound C1=CC=C2C3=CC=COC3C=CC2=C1 WIFWCSTVYGGLAE-UHFFFAOYSA-N 0.000 description 1
- VODQUQTUKIYWSU-UHFFFAOYSA-N 5'-chloro-1',3',3'-trimethylspiro[benzo[f][1,4]benzoxazine-3,2'-indole] Chemical compound C1=CC=CC2=C(N=CC3(C(C)(C)C4=CC(Cl)=CC=C4N3C)O3)C3=CC=C21 VODQUQTUKIYWSU-UHFFFAOYSA-N 0.000 description 1
- YPVXHRMUYMHMIT-UHFFFAOYSA-N 5'-methoxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indole] Chemical compound O1C2=CC=C([N+]([O-])=O)C=C2C=CC21N(C)C1=CC=C(OC)C=C1C2(C)C YPVXHRMUYMHMIT-UHFFFAOYSA-N 0.000 description 1
- SGACMEJZUBOUBY-UHFFFAOYSA-N 6,8-dibromo-1',3',3'-trimethylspiro[chromene-2,2'-indole] Chemical compound O1C2=C(Br)C=C(Br)C=C2C=CC21C(C)(C)C1=CC=CC=C1N2C SGACMEJZUBOUBY-UHFFFAOYSA-N 0.000 description 1
- ICAMZMGPBZILLD-UHFFFAOYSA-N 6-bromo-1',3',3'-trimethyl-8-nitrospiro[chromene-2,2'-indole] Chemical compound O1C(C(=CC(Br)=C2)[N+]([O-])=O)=C2C=CC21C(C)(C)C1=CC=CC=C1N2C ICAMZMGPBZILLD-UHFFFAOYSA-N 0.000 description 1
- IZDVWQPIYXTGIF-UHFFFAOYSA-N 8-methoxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indole] Chemical compound CN1C2=CC=CC=C2C(C)(C)C11C=CC(C=C(C=C2OC)[N+]([O-])=O)=C2O1 IZDVWQPIYXTGIF-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/002—Recording, reproducing or erasing systems characterised by the shape or form of the carrier
- G11B7/0037—Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/24018—Laminated discs
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/24094—Indication parts or information parts for identification
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
- G11B7/24038—Multiple laminated recording layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/21—Circular sheet or circular blank
Definitions
- the present invention relates to an optical storage medium.
- this invention relates to an optical storage medium having an information-visible zone indicating additional medium-related information.
- CDs and DVDs are popular optical storage media.
- Single-substrate-type optical storage media such as CDs have an information-visible zone on a label layer indicating additional medium-related information on the medium surface opposite to the signal-reproducing surface, by silk screen printing or offset printing.
- dual-substrate-type optical storage media such as DVDs do not have a space for such a label layer due to their disk diameter of 120 mm, center-hole diameter of 15 mm and inner storage-zone diameter of 46 mm, like CDs, thus, recording additional medium-related information being impossible.
- Japanese Unexamined-Patent Publication No. 10-143924 discloses “OPTICAL INFORMATION RECORDING MEDIUM”.
- the recording medium has two transparent disk substrates, formed on each substrate is a recording layer.
- the substrates are stuck to each other so that the recording layers face each other.
- RAM-type DVDs require rewritable information visibly formed thereon, related to the recorded contents, because users are allowed to rewrite the recorded contents.
- An object of the present invention to provide an optical storage medium having a visible and rewritable information layer.
- the present invention provides an optical disk comprising: a first substrate having a recording layer thereon, information to be recorded on the recording layer being reproducible with irradiation of a laser beam; a reflective layer formed on the recording layer; a second transparent substrate, the laser beam being incident to the second substrate in reproduction; and a bonding layer provided between the first and the second substrates, the substrates being bonded to each other by the bonding layer via the reflective layer, the bonding layer including ultraviolet-hardened resin and at least one type of photochromic dye, the photochromic dye being stable against the laser beam.
- the present invention provides an optical disk comprising: a transparent substrate having a recording layer thereon, information to be recorded on the recording layer being reproducible with irradiation of a laser beam; a reflective layer formed on the recording layer; and a hardcoat layer formed on a surface of the substrate opposite to another surface thereof having the recording layer thereon, the laser beam being incident to the hardcoat layer in reproduction, the hardcoat layer including ultraviolet-hardened resin and at least one type of photochromic dye, the photochromic dye being stable against the laser beam.
- the present invention provides an optical disk comprising: a first substrate having a recording layer thereon, information to be recorded on the recording layer being reproducible with irradiation of a laser beam; a reflective layer formed on the recording layer; and a second transparent substrate, the laser beam being incident to the second substrate in reproduction; a bonding layer provided between the first and the second substrates, the substrates being bonded to each other by the bonding layer via the reflective layer; and a hardcoat layer formed on the second substrate at a surface thereof through which the laser beam is incident to the second substrate in reproduction, the hardcoat layer including ultraviolet-hardened resin and at least one type of photochromic dye, the photochromic dye being stable against the laser beam.
- the present invention provides an optical disk comprising: a first transparent substrate having a first recording layer thereon, information to be recorded on the first recording layer being reproducible with irradiation of a first laser beam; a first reflective layer formed on the first recording layer; a second transparent substrate having a second recording layer thereon, information to be recorded on the second recording layer being reproducible with irradiation of a second laser beam; a second reflective layer formed on the second recording layer; a bonding layer provided between the first and the second substrates, the substrates being bonded to each other by the bonding layer via the first and the second reflective layers; a first hardcoat layer formed on the first substrate at a surface thereof through which the first laser beam is incident to the first substrate in reproduction, the first hardcoat layer including ultraviolet-hardened resin and at least one type of photochromic dye, the photochromic dye being stable against the first laser beam; and a second hardcoat layer formed on the second substrate at a surface thereof through which the second laser beam is incident to the second substrate in reproduction, the second hardcoat layer formed
- FIG. 1 illustrates a cross section of a first embodiment of optical storage medium according to the present invention
- FIGS. 2A to 2F illustrate a first exemplary procedure of multi-color displaying on an optical storage medium according to the present invention
- FIGS. 3A to 3F illustrate a second exemplary procedure of multi-color displaying on an optical storage medium according to the present invention
- FIG. 4 illustrates a laser-beam exposure (writing) system used for an optical storage medium according to the present invention
- FIG. 5 illustrates a cross section of a second embodiment of optical storage medium according to the present invention
- FIG. 6 illustrates a cross section of a third embodiment of optical storage medium according to the present invention.
- FIG. 7 illustrates a cross section of a fourth embodiment of optical storage medium according to the present invention.
- FIG. 8 illustrates a cross section of a fifth embodiment of optical storage medium according to the present invention.
- FIG. 9 illustrates a cross section of a sixth embodiment of optical storage medium according to the present invention.
- FIG. 10 illustrates a cross section of a seventh embodiment of optical storage medium according to the present invention.
- FIG. 11 illustrates a cross section of an eighth embodiment of optical storage medium according to the present invention.
- FIG. 12 illustrates a cross section of a ninth embodiment of optical storage medium according to the present invention.
- FIG. 13 illustrates a cross section of a tenth embodiment of optical storage medium according to the present invention
- FIG. 14 illustrates a cross section of an eleventh embodiment of optical storage medium according to the present invention.
- FIG. 15 illustrates a cross section of a twelfth embodiment of optical storage medium according to the present invention
- FIG. 16 illustrates a DVD with additional information recorded on a dye-contained layer according to the present invention and visibly displayed on the DVD;
- FIG. 17 illustrates a CD with a photo recorded on the dye-contained layer according to the present invention and visibly displayed on the CD;
- FIG. 18 illustrates a DVD with additional information recorded, by a user, on the dye-contained layer according to the present invention and visibly displayed on the DVD.
- FIG. 1 Illustrated in FIG. 1 is a cross section of a first embodiment of optical storage medium according to the present invention.
- An optical storage medium 10 shown in FIG. 1 is a single-layer DVD-type optical storage medium.
- a transparent base substrate 4 is made of polycarbonate resin having 0.6 mm in thickness and 120 mm in diameter.
- the base substrate 4 may not be transparent.
- Formed on the substrate 4 is a recording layer 4 a , information recorded thereon being optically reproducible.
- Formed on the recording layer 4 a is a reflective layer 3 made of 70-nm-thick aluminum.
- a 40- ⁇ m-thick dye-contained bonding layer 2 is provided on the reflective layer 3 .
- a transparent substrate 1 having 0.6 mm in thickness and 120 mm in diameter.
- the label layer 5 is formed by screen printing with dye (pigment)-contained ultraviolet-hardened resin. Recorded on the label layer 5 is information related to the contents recorded on the optical storage medium 10 .
- the dye-contained bonding layer 2 will be disclosed in detail.
- Photochromic dyes are added to liquid-state ultraviolet-hardened resin.
- the dye-added ultraviolet-hardened resin is then heated.
- the heated resin is applied over the transparent substrate 1 .
- the reflective layer formed on the base substrate 4 is placed on the resin.
- the substrates are being spun while forming the bonding layer 2 which is then hardened with irradiation of ultraviolet rays.
- UV-hardened resin Used as ultraviolet-hardened resin is XR98 (made by Sumitomo Chemical Co. Ltd.) which is epoxyacrylate resin. Acrylate resin is feasible as ultraviolet-hardened resin for its high strength and adhesiveness. In addition to epoxyacrylate, urethane acrylate or their compound can be used as ultraviolet-hardened resin.
- the photochromic dyes are added to the ultraviolet-hardened resin at 1% by weight for red-color emission and also at 1% by weight for blue-color emission.
- a photochromic dye is colored when exposed to light of a specific wavelength (such as, ultraviolet rays) whereas it becomes colorless when exposed to light (such as, white light) of another specific wavelength at which the color is absorbed.
- a photochromic dye feasible in this invention is stable, or does not suffer color absorption against laser wavelength in reproduction (780 nm for CDs, 650 nm for DVDs and 405 nm for next-generation optical media).
- a laser beam can reproduce information from an optical medium with no reflection and refraction even when such a photochromic dye is being colored.
- the photochromic dye used for red color in this invention is cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl) ethene. That for blue color is 1,2-bis(5-phenyl-2-methylthiophene-3-yl)perfluorocyclopentene.
- Such a photochromic dye can be selected from spirooxazines, spiropyrans, fulgides, and diaryl ethene.
- One requirement for the photochromic dye in this invention is that it will not absorb a laser beam when colored.
- Dyes in fulgide type feasible in this invention are 2,5-dimethyl-3-furylethylidene succinic anhydride, and 2,5-dimethyl-3-furylisopropylidene succinic anhydride.
- dyes in diaryl ethene type feasible in this invention are 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride, 2,3-bis(2,4,5-trimethyl-3-thienyl)maleimide, and cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene.
- Disclosed next is a method of displaying (recording) information on a dye-contained layer (the dye-contained bonding layer 2 ).
- the method is also feasible for dye-contained hardcoat layers and dye-contained substrates.
- FIGS. 2A to 2F Illustrated in FIGS. 2A to 2F is a first exemplary procedure of multi-color displaying on an optical storage medium according to the present invention. Illustrated in FIGS. 3A to 3F is a second exemplary procedure of multi-color displaying on an optical storage medium according to the present invention.
- FIGS. 2A to 2F Disclosed first with reference to FIGS. 2A to 2F is recording graphic and/or character information on a dye-contained layer with masks (a first method of graphic-/character-pattern formation or multi-color displaying).
- a dye-contained layer 122 having a certain thickness is formed on a substrate 121 , by spin coating.
- the dye-contained layer 122 is made of ultraviolet-hardened resin containing two types of photochromic dyes which will be colored in blue and red, respectively, like the dye-contained bonding layer 2 , explained above.
- the dye-contained layer 122 is then exposed to ultraviolet rays (UV light) 123 over the surface for 10 seconds to 60 seconds, as shown in FIG. 2B .
- the layer 122 is thus hardened to become a colored dye-contained layer 122 A. Red and blue dyes contained in the layer 122 A are both colored, thus the layer 122 A is colored in purple.
- the UV light 123 is emitted from a light source (ENF-26OC/J, made by Spectonics Co.) for emitting black light of 365-nm wavelength.
- a light source EMF-26OC/J, made by Spectonics Co.
- a mask 127 is placed over the purple-colored dye-contained layer 122 A, as shown in FIG. 2C . It is patterned to have light-through openings 127 A only over zones 122 AR to be colored in red on the layer 122 A. In other words, the mask pattern corresponds to a graphic or character pattern to be displayed in red on the layer 122 A.
- the purple-colored dye-contained layer 122 A is then exposed to a laser beam 124 through the mask 127 , at a blue-absorbing wavelength ( ⁇ max).
- the zones 122 AR of the layer 122 A are exposed to the laser beam 124 through the openings 127 A, with blue dyes on the zones 122 AR becoming colorless whereas red dyes on the same zones being colored unchanged, thus the zones 122 AR being turned into red-colored dye-contained layers.
- the mask 127 is replaced with a mask 128 over the dye-contained layer 122 A, as shown in FIG. 2D .
- the mask 128 is patterned to have light-through openings 128 A only over zones 122 AB to be colored in blue on the layer 122 A.
- the mask pattern corresponds to a graphic or character pattern to be displayed in blue on the layer 122 A.
- the dye-contained layer 122 A is then exposed to a laser beam 128 through the mask 128 , at a red-absorbing wavelength ( ⁇ max).
- the zones 122 AB of the layer 122 A are exposed to the laser beam 125 through the openings 128 A, with red dyes on the zones 122 AB becoming colorless whereas blue dyes on the same zones being colored unchanged, thus the zones 122 AB being turned into blue-colored dye-contained layers.
- the mask 128 is replaced with a mask 129 over the dye-contained layer 122 A, as shown in FIG. 2E , to make colorless or transparent (quasi-white) the purple-colored zones of the layer 122 A, according to need.
- the mask 129 is patterned to have light-through openings 129 A only over zones 122 AW to be colorless on the layer 122 A.
- the dye-contained layer 122 A is then exposed to a white light 126 through the mask 129 for 5 seconds to 20 seconds.
- the zones 122 AW of the layer 122 A are exposed to the white light beam 126 through the openings 129 A, with red and blue dyes on the zones 122 AW becoming colorless, thus the zones 122 AW being turned into transparent dye-contained layers.
- the white light 126 is emitted from MEGALIGHT (made by Hoya Co., Ltd.)
- the mask 129 is removed, as shown in FIG. 2F , thus a disk 130 being produced, having the dye-contained layer 122 A with a graphic or a character pattern of red, blue and transparent, corresponding to an additional information to be displayed (recorded) on an optical storage medium having the disk 130 .
- FIGS. 3A to 3F Disclosed next with respect to FIGS. 3A to 3F is recording graphic and/or character information on a dye-contained layer with filters and masks (a second method of graphic-/character-pattern formation or multi-color displaying).
- FIGS. 3A to 3F that are identical or analogous to elements shown in FIGS. 2A to 2F are referenced by the same reference numerals and will not be explained in detail.
- a dye-contained layer 122 having a certain thickness is formed on a substrate 121 , by spin coating.
- the dye-contained layer 122 is then exposed to ultraviolet rays (UV light) 123 over the surface, as shown in FIG. 3B .
- the layer 122 is hardened to become a colored dye-contained layer 122 A. Red and blue dyes contained in the layer 122 A are both colored, thus the layer 122 A is colored in purple.
- a mask 127 and also a filter 131 are placed over the purple-colored dye-contained layer 122 A, as shown in FIG. 3C .
- the filter 131 allows light (red light) only to pass therethrough having a wavelength ( ⁇ max) at which the blue dye becomes colorless.
- the mask 127 is patterned to have light-through openings 127 A only over zones 122 AR to be colored in red on the layer 122 A, the mask pattern corresponding to a graphic or a character pattern to be displayed in red on the layer 122 A, like shown in FIG. 2C .
- the dye-contained layer 122 A is then exposed to a white light 126 through the filter 131 and the mask 127 .
- the layer 122 A is exposed to the white light beam 126 through the openings 127 A, with the blue dye on the zones 122 AR becoming colorless whereas the red dye on the same zones being colored unchanged, thus the zones 122 AR being turned into red-colored dye-contained layers.
- the filter 131 and the mask 127 are replaced with a filter 132 and a mask 128 , respectively, over the dye-contained layer 122 A, as shown in FIG. 3D .
- the filter 132 allows light (yellow-green light) only to pass therethrough having a wavelength ( ⁇ max) at which the red dye becomes colorless.
- the mask 128 is patterned to have light-through openings 128 A only over zones 122 AB to be colored in blue on the layer 122 A, the mask pattern corresponding to a graphic or a character pattern to be displayed in blue on the layer 122 A.
- the dye-contained layer 122 A is then exposed to the white light 126 again through the filter 132 and the mask 128 .
- the layer 122 A is exposed to the white light beam 126 through the openings 128 A.
- the white light 126 is converted into a yellow-green light through filter 132 and the openings 128 A to reach the layer 122 A, the red dye on the zones 122 AB becoming colorless whereas the blue dye on the same zones being colored unchanged, thus the zones 122 AB being turned into blue-colored dye-contained layers.
- the filter 132 and the mask 128 are removed and a mask 129 is placed instead, as shown in FIG. 3E , to make colorless or transparent (quasi-white) the purple-colored zones of the layer 122 A, according to need.
- the mask 129 is patterned to have light-through openings 129 A only over zones 122 AW to be colorless on the layer 122 A.
- the dye-contained layer 122 A is then exposed to the white light 126 again through the mask 129 .
- the zones 122 AW of the layer 122 A are exposed to the white light beam 126 through the openings 129 A, with red and blue dyes on the zones 122 AW becoming colorless, thus the zones 122 AW being turned into transparent dye-contained layers.
- the mask 129 is removed, as shown in FIG. 3F , thus a disk 130 being produced, having the dye-contained layer 122 A with a graphic or a character pattern of red, blue and transparent, corresponding to a certain information to be displayed (recorded) on an optical storage medium having the disk 130 .
- a laser-beam exposure (writing) system for directly radiating a laser beam having a certain wavelength to a dye-contained layer.
- a laser-beam exposure system 150 is equipped with a semiconductor laser 141 , a collimator lens 142 , an aperture 143 , a movable mirror 144 , and an exposure lens 145 .
- the optical components 142 to 145 are arranged in order along a light path of a laser beam to be emitted from the semiconductor laser 141 .
- An optical storage medium 146 is set on a stage (not shown) under the exposure lens 145 .
- a dye-contained layer 147 made of ultraviolet-hardened resin containing photochromic dyes, disclosed above.
- a laser beam having a certain wavelength is emitted from the semiconductor laser 141 .
- the emitted laser beam is converted into a parallel beam through the collimator lens 142 .
- the parallel beam is adjusted as having a certain beam diameter by the aperture 143 and then incident to the movable mirror 144 .
- the movable mirror 144 is movable along the axis perpendicular to its plane (surface) against the incident laser beam to change the direction of a reflected beam, like two-dimensional a fan beam, under control by a control signal supplied from a controller (not shown).
- the two-dimensional laser beam reflected at the movable mirror 144 is refracted by the exposure lens 145 and perpendicularly incident to the dye-contained layer 147 .
- the stage (not shown) is movable in the directions perpendicular to the plane of FIG. 4 .
- the laser beam is modulated by intensity modulation in accordance with pixels of a graphic or a character image to be displayed (recorded) on the dye-contained layer 147 .
- the movable mirror 144 and the stage are adjusted in angle and location, respectively, in accordance with the pixel arrangements.
- the dye-contained layer 147 is then exposed to the modulated laser beam under the mirror/stage adjustments, thus the layer 147 being colored.
- the colored dye-contained layer 147 becomes colorless when exposed to white light. Partial discoloring is achieved with a laser beam having a discoloring wavelength radiated onto the zones to be partially discolored on the colored dye-contained layer 147 . Thus, information displayed (recorded) on the dye-contained layer is rewritable.
- FIG. 5 Illustrated in FIG. 5 is a cross section of a second embodiment of optical storage medium according to the present invention.
- An optical storage medium 20 shown in FIG. 5 is a dual-layer DVD-type optical storage medium.
- a transparent substrate 11 and a transparent base substrate 14 are made of polycarbonate resin, both having 0.6 mm in thickness and 120 mm in diameter.
- the base substrate 14 may not be transparent.
- Formed on the substrates 11 and 14 are recording layers 11 a and 14 a , respectively, information recorded thereon being optically reproducible.
- a semi-transparent reflective layer 16 made of gold or silicon having thickness in the range from 5 nm to 10 nm.
- a reflective layer 13 made of 70-nm-thick aluminum.
- the transparent substrate 11 and the base substrate 14 are bonded each other via a 40- ⁇ m-thick dye-contained bonding layer 12 so that the semi-transparent reflective layer 16 and the reflective layer 13 face each other.
- a label layer 15 Formed on the base substrate 14 but opposite to the recording layer 14 a is a label layer 15 , like the label layer 5 disclosed in the first embodiment.
- the dye-contained bonding layer 12 is formed in the same way as the counterpart 2 in the first embodiment.
- a visible information pattern can be displayed (recorded) on the dye-contained bonding layer 12 with irradiation of a colored beam 18 ′ incident to the transparent substrate 11 , in accordance with the first or the second method of graphic-/character-pattern formation or multi-color displaying, disclosed in the first embodiment.
- the visible information pattern can be erased with irradiation of a discoloring light 18 having a wavelength ( ⁇ max) at which the colored dye becomes colorless. Another information pattern can be displayed after erasure.
- a laser beam 19 is radiated on the optical storage medium 20 when reproducing information recorded on the recording layers 11 a and 14 a , which is not affected by the dye-contained bonding layer 12 when passing therethrough.
- a reflective layer 23 made of 70-nm-thick aluminum.
- a 10- ⁇ m-thick protective layer 26 made of epoxyacrylate resin which is ultraviolet-hardened resin.
- the label layer 25 is formed by screen printing with pigment (dye)-contained ultraviolet-hardened resin. Recorded on the label layer 25 is information related to the contents recorded on the optical storage medium 30 .
- a 20- ⁇ m-thick hardcoat layer 27 Formed on the substrate 21 but opposite to the recording layer 21 a is a 20- ⁇ m-thick hardcoat layer 27 .
- photochromic dyes are added to ultraviolet-hardened resin.
- the resin is heated to melt the photochromic dyes.
- the dye-melted resin is applied, by spin coating, onto the substrate 21 but opposite to the recording layer 21 a .
- the coated resin is exposed to ultraviolet rays to be hardened to become the hardcoat layer 27 .
- the photochromic dye used for red color is cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene. That for blue color is 1,2-bis(5-phenyl-2-methylthiophene-3-yl)perfluorocyclopentene.
- a graphic or a character information pattern of blue, red, colorless and purple can be displayed on the dye-contained hardcoat layer 27 with irradiation of a colored beam 28 ′, in accordance with the first or the second method of graphic-/character-pattern formation or multi-color displaying, disclosed in the first embodiment.
- Red, blue or purple graphic or character information pattern can be discolored with irradiation of light (discoloring light 28 ) having a wavelength at which the corresponding colored photochromic dye is colorless, thus information represented by the graphic or character information pattern being rewritable.
- White light discolors all of the red, blue and purple patterns.
- a laser beam 29 is radiated on the optical storage medium 30 when reproducing information recorded on the recording layer 21 a , which is not affected by the dye-contained hardcoat layer 27 when passing therethrough.
- FIG. 7 Illustrated in FIG. 7 is a cross section of a fourth embodiment of optical storage medium according to the present invention.
- An optical storage medium 40 shown in FIG. 7 is a single-layer DVD-type optical storage medium.
- a transparent base substrate 34 is made of polycarbonate resin, having 0.6 mm in thickness and 120 mm in diameter.
- the base substrate 34 may not be transparent.
- Formed on the substrate 34 is a recording layer 34 a , information recorded thereon being optically reproducible.
- a reflective layer 33 made of 70-nm-thick aluminum.
- Bonded on the substrate 34 via the reflective layer 33 with a 40- ⁇ m-thick bonding layer 32 is a transparent substrate 31 made of polycarbonate resin having 0.6 mm in thickness and 120 mm in diameter.
- the label layer 35 is formed by screen printing with pigment (dye)-contained ultraviolet-hardened resin. Recorded on the label layer 35 is information related to the contents recorded on the optical storage medium 40 .
- ultraviolet-hardened resin Used as the bonding layer 32 , ultraviolet-hardened resin, is XR98 (made by Sumitomo Chemical Co. Ltd.) which is epoxyacrylate resin.
- the epoxyacrylate resin XR98 is applied over the substrate 31 .
- the substrate 34 is placed on the substrate 31 via the reflective layer 33 .
- the stacked substrates are spun and then exposed to ultraviolet rays to harden the epoxyacrylate resin to form the bonding layer 32 .
- a dye-contained hardcoat layer 37 Formed on the substrate 31 but opposite to the bonding layer 32 is a dye-contained hardcoat layer 37 , in the same way as the counterpart 27 in the third embodiment.
- a desired graphic or character pattern can be displayed (recorded) on the dye-contained hardcoat layer 37 , as rewritable, while information recorded on the recording layer 34 a is reproducible.
- FIG. 8 Illustrated in FIG. 8 is a cross section of a fifth embodiment of optical storage medium according to the present invention.
- An optical storage medium 50 shown in FIG. 8 is a dual-layer DVD-type optical storage medium, like the second embodiment.
- a transparent substrate 41 and a transparent base substrate 44 are made of polycarbonate resin, both having 0.6 min thickness and 120 mm in diameter.
- the base substrate 44 may not be transparent.
- Formed on the substrates 41 and 44 are recording layers 41 a and 44 a , respectively, information recorded thereon being optically reproducible.
- a semi-transparent reflective layer 46 made of gold or silicon having thickness in the range from 5 nm to 10 nm.
- a reflective layer 43 made of 70-nm-thick aluminum.
- the transparent substrate 41 and the base substrate 44 are bonded each other via a 40- ⁇ m-thick bonding layer 42 so that the semi-transparent reflective layer 46 and the reflective layer 43 face each other.
- a dye-contained hardcoat layer 47 Formed on the transparent substrate 41 but opposite to the semi-transparent reflective layer 46 is a dye-contained hardcoat layer 47 , in the same as the counterpart 27 in the third embodiment.
- a desired graphic or character pattern can be displayed on the dye-contained hardcoat layer 47 , as rewritable, with a discoloring light 48 and a coloring light 48 ′, while information recorded on the recording layer 44 a is reproducible with a laser beam 49 .
- FIG. 9 Illustrated in FIG. 9 is a cross section of a sixth embodiment of optical storage medium according to the present invention.
- An optical storage medium 60 shown in FIG. 9 is a dual-layer optical disk writable on both sides, like, DVD-RW.
- Transparent substrates 51 and 51 a are made of polycarbonate resin, both having 0.6 mm in thickness and 120 mm in diameter.
- phase-change recording layers 54 and 54 a are formed on the substrates 51 and 51 a , respectively, both made of an AgInSbTe compound having about 50 nm in thickness.
- phase-change recording layers 54 and 54 a Formed on the phase-change recording layers 54 and 54 a are reflective layers 53 and 53 a , respectively, both made of 70-nm-thick aluminum.
- a dye-contained hardcoat layer 57 Formed on the substrate 51 but opposite to the phase-change recording layer 54 is a dye-contained hardcoat layer 57 . Moreover, formed on the substrate 51 a but opposite to the phase-change recording layer 54 a is a dye-contained hardcoat layer 57 a.
- the dye-contained hardcoat layers 57 and 57 a are formed in the same way as the counterpart 27 in the third embodiment.
- the substrates 51 and 51 a are bonded each other via a bonding layer 52 so that the reflective layers 53 and 53 a face each other.
- the bonding layer 52 is made of a 40- ⁇ m-thick sheet thermal-hardened acrylic adhesive.
- Red, blue or purple graphic or character information pattern can be discolored with irradiation of light (discoloring light 58 and 58 a ) having a wavelength at which the corresponding colored photochromic dye is colorless, thus information represented by the graphic or character information pattern being rewritable.
- White light discolors all of the red, blue and purple patterns.
- Laser beams 59 and 59 a are radiated on the optical storage medium 60 when reproducing information recorded on the phase-change recording layers 54 and 54 a , respectively, which are not affected by the dye-contained hardcoat layers 57 and 57 a , respectively, when passing therethrough.
- FIG. 10 Illustrated in FIG. 10 is a cross section of a seventh embodiment of optical storage medium according to the present invention.
- An optical storage medium 70 shown in FIG. 10 is a single-layer CD-type optical storage medium, like the third embodiment. However, different from the third embodiment, the optical storage medium 70 is equipped with a dye-contained transparent substrate 61 made of polycarbonate resin having 1.2 mm in thickness and 120 mm in diameter.
- the dye-contained substrate 61 is produced, by injection molding, from a polycarbonate-resin pellet. Photochromic dyes of 1% by weight are added to polycarbonate resin which is then kneaded to be the pellet.
- a photochromic dye used for red color is cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene. That for blue color is 1,2-bis(5-phenyl-2-methylthiophene-3-yl)perfluorocyclopentene.
- a recording layer 61 a Formed on the dye-contained substrate 61 is a recording layer 61 a , information recorded thereon being optically reproducible.
- a reflective layer 63 made of 70-nm-thick aluminum.
- a 10- ⁇ m-thick protective layer 26 made of epoxyacrylate resin which is ultraviolet-hardened resin.
- the label layer 65 is formed by screen printing with pigment (dye)-contained ultraviolet-hardened resin. Recorded on the label layer 65 is information related to the contents recorded on the optical storage medium 70 .
- a graphic or a character information pattern of blue, red, colorless and purple can be displayed on the dye-contained substrate 61 with irradiation of a colored beam 68 ′, in accordance with the first or the second method of graphic-/character-pattern formation or multi-color displaying, disclosed in the first embodiment.
- Red, blue or purple graphic or character information pattern can be discolored with irradiation of light (discoloring light 68 ) having a wavelength at which the corresponding colored photochromic dye is colorless, thus information represented by the graphic or character information pattern being rewritable.
- White light discolors all of the red, blue and purple patterns.
- a laser beam 69 is radiated on the optical storage medium 70 when reproducing information recorded on the recording layer 61 a , which is not affected by the dye-contained substrate 61 when passing therethrough.
- FIG. 11 Illustrated in FIG. 11 is a cross section of an eighth embodiment of optical storage medium according to the present invention.
- An optical storage medium 80 shown in FIG. 11 is a single-layer DVD-type optical storage medium, like the first embodiment. However, different from the first embodiment, the optical storage medium 80 is equipped with a dye-contained substrate 71 made of polycarbonate resin having 0.6 mm in thickness and 120 mm in diameter.
- the dye-contained substrate 71 is a transparent substrate containing blue and red photochromic dyes, like the counterpart 61 in the seventh embodiment.
- the optical storage medium 80 is also equipped with a transparent base substrate 74 made of polycarbonate resin having 0.6 mm in thickness and 120 mm in diameter. Formed on the substrate 74 is a recording layer 74 a , information recorded thereon being optically reproducible. Formed on the recording layer 74 a is a reflective layer 73 made of 70-nm-thick aluminum.
- the dye-contained substrate 71 and the base substrate 74 are bonded each other via the reflective layer 73 with a transparent bonding layer 72 .
- the label layer 75 is formed by screen printing with pigment (dye)-contained ultraviolet-hardened resin. Recorded on the label layer 75 is information related to the contents recorded on the optical storage medium 80 .
- a graphic or a character information pattern of blue, red, colorless and purple can be displayed on the dye-contained substrate 71 with irradiation of a colored beam 78 ′, in accordance with the first or the second method of graphic-/character-pattern formation or multi-color displaying, disclosed in the first embodiment.
- Red, blue or purple graphic or character information pattern can be discolored with irradiation of light (discoloring light 78 ) having a wavelength at which the corresponding colored photochromic dye is colorless, thus information represented by the graphic or character information pattern being rewritable.
- White light discolors all of the red, blue and purple patterns.
- a laser beam 79 is radiated on the optical storage medium 80 when reproducing information recorded on the recording layer 74 a , which is not affected by the dye-contained substrate 71 when passing therethrough.
- FIG. 12 Illustrated in FIG. 12 is a cross section of a ninth embodiment of optical storage medium according to the present invention.
- An optical storage medium 90 shown in FIG. 12 is a dual-layer DVD-type optical storage medium, like the second embodiment. However, different from the second embodiment, the optical storage medium 90 is equipped with a dye-contained substrate 81 made of polycarbonate resin having 0.6 mm in thickness and 120 mm in diameter.
- the dye-contained substrate 81 is a transparent substrate containing blue and red photochromic dyes, like the counterpart 61 in the seventh embodiment.
- a recording layer 81 a Formed on the substrate 81 is a recording layer 81 a , information recorded thereon being optically reproducible.
- a semi-transparent reflective layer 86 made of gold or silicon having a thickness in the range from 5 nm to 10 nm.
- the optical storage medium 90 is also equipped with a transparent base substrate 84 made of polycarbonate resin, having 0.6 mm in thickness and 120 mm in diameter. Formed on the substrate 84 is a recording layer 84 a , information recorded thereon being optically reproducible. Formed on the recording layer 84 a is a reflective layer 83 made of 70-nm-thick aluminum.
- the dye-contained substrate 81 and the base substrate 84 are bonded each other via a transparent bonding layer 82 so that the reflective layer 83 and the semi-transparent reflective layer 86 face each other.
- the label layer 85 is formed by screen printing with pigment (dye)-contained ultraviolet-hardened resin. Recorded on the label layer 85 is information related to the contents recorded on the optical storage medium 90 .
- a graphic or a character information pattern of blue, red, colorless and purple can be displayed on the dye-contained substrate 81 with irradiation of a colored beam 88 ′, in accordance with the first or the second method of graphic-/character-pattern formation or multi-color displaying, disclosed in the first embodiment.
- Red, blue or purple graphic or character information pattern can be discolored with irradiation of light (discoloring light 88 ) having a wavelength at which the corresponding colored photochromic dye is colorless, thus information represented by the graphic or character information pattern being rewritable.
- White light discolors all of the red, blue and purple paterns.
- a laser beam 89 is radiated on the optical storage medium 90 when reproducing information recorded on the recording layers 81 a and 84 a , which is not affected by the dye-contained substrate 81 when passing therethrough.
- FIG. 13 Illustrated in FIG. 13 is a cross section of a tenth embodiment of optical storage medium according to the present invention.
- An optical storage medium 100 shown in FIG. 13 is equipped with a transparent base substrate 94 made of polycarbonate resin, having 1.1 mm in thickness and 120 mm in diameter.
- the base substrate 94 may not be transparent.
- Formed on the substrate 94 is a recording layer 94 a , information recorded thereon being optically reproducible.
- Formed on the recording layer 94 a is a reflective layer 93 made of 70-nm-thick aluminum.
- a transparent cover layer 91 made of polycarbonate resin having 0.1 mm in thickness and 120 mm in diameter via a 40- ⁇ m-thick dye-contained boding layer 92 .
- the transparent cover layer 91 is a transparent substrate thinner than the base substrate 94 .
- the boding layer 92 is formed in the same way as the counterpart 2 in the first embodiment, containing blue and red photochromic dyes.
- the label layer 95 is formed by screen printing with pigment (dye)-contained ultraviolet-hardened resin. Recorded on the label layer 95 is information related to the contents recorded on the optical storage medium 100 .
- a graphic or a character information pattern of blue, red, colorless and purple can be displayed on the dye-contained bonding layer 92 with irradiation of a colored beam 98 ′, in accordance with the first or the second method of graphic-/character-pattern formation or multi-color displaying, disclosed in the first embodiment.
- Red, blue or purple graphic or character information pattern can be discolored with irradiation of light (discoloring light 98 ) having a wavelength at which the corresponding colored photochromic dye is colorless, thus information represented by the graphic or character information pattern being rewritable.
- White light discolors all of the red, blue and purple patterns.
- a laser beam 99 is radiated on the optical storage medium 100 when reproducing information recorded on the recording layer 94 a , which is not affected by the dye-contained bonding layer 92 when passing therethrough.
- FIG. 14 Illustrated in FIG. 14 is a cross section of an eleventh embodiment of optical storage medium according to the present invention.
- An optical storage medium 110 shown in FIG. 14 is equipped with a transparent base substrate 104 made of polycarbonate resin having 1.1 mm in thickness and 120 mm in diameter. Formed on the substrate 104 is a recording layer 104 a , information recorded thereon being optically reproducible. Formed on the recording layer 104 a is a reflective layer 103 made of 70-nm-thick aluminum.
- a transparent dye-contained cover layer 101 made of polycarbonate resin having 0.1 mm in thickness and 120 mm in diameter via a 40- ⁇ m-thick bonding layer 102 made of ultraviolet-hardened resin.
- the dye-contained cover layer 101 is produced, by sheet molding, from a polycarbonate-resin pellet. Photochromic dyes of 1% by weight are added to polycarbonate resin which is then kneaded to be the pellet.
- a photochromic dye used for red color is cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene. That for blue color is 1,2-bis(5-phenyl-2-methylthiophene-3-yl)perfluorocyclopentene.
- the label layer 105 is formed by screen printing with pigment (dye)-contained ultraviolet-hardened resin. Recorded on the label layer 105 is information related to the contents recorded on the optical storage medium 110 .
- a graphic or a character information pattern of blue, red, colorless and purple can be displayed on the dye-contained cover layer 101 with irradiation of a colored beam 108 ′, in accordance with the first or the second method of graphic-/character-pattern formation or multi-color displaying, disclosed in the first embodiment.
- Red, blue or purple graphic or character information pattern can be discolored with irradiation of light (discoloring light 108 ) having a wavelength at which the corresponding colored photochromic dye is colorless, thus information represented by the graphic or character information pattern being rewritable.
- White light discolors all of the red, blue or purple patterns.
- a laser beam 109 is radiated on the optical storage medium 110 when reproducing information recorded on the recording layer 104 a , which is not affected by the dye-contained cover layer 101 when passing therethrough.
- FIG. 15 Illustrated in FIG. 15 is a cross section of a twelfth embodiment of optical storage medium according to the present invention.
- An optical storage medium 120 shown in FIG. 15 is equipped with a transparent base substrate 114 made of polycarbonate resin having 1.1 mm in thickness and 120 mm in diameter.
- the base substrate 114 may not be transparent.
- a recording layer 117 Formed on the base substrate 114 is a recording layer 117 made of an AgInSbTe compound having a thickness in the range from 50 nm to 60 nm. Information can be recorded/reproduced on/from the recording layer 117 with radiation of a laser beam 119 .
- the optical storage medium 120 is also equipped with a transparent cover layer 111 made of polycarbonate resin having 0.1 mm in thickness and 120 mm in diameter.
- the transparent cover layer 111 is transparent substrate thinner than the base substrate 114 .
- a recording layer 116 made of an AgInSbTe compound having a thickness in the range from 10 nm to 20 nm.
- the recording layers 116 and 117 are bonded each other via a 40- ⁇ m-thick dye-contained bonding layer 112 .
- the bonding layer 112 is formed in the same way as the counterpart 2 in the first embodiment, containing blue and red photochromic dyes.
- the label layer 115 is formed by screen printing with pigment (dye)-contained ultraviolet-hardened resin. Recorded on the label layer 115 is information related to the contents recorded on the optical storage medium 120 .
- the laser beam 119 partially passes through the recording layer 116 whereas it is completely reflected at the recording layer 117 (total reflection)
- a graphic or a character information pattern of blue, red, colorless and purple can be displayed on the dye-contained bonding layer 112 with irradiation of a colored beam 118 ′, in accordance with the first or the second method of graphic/character-pattern formation or multi-color displaying, disclosed in the first embodiment.
- Red, blue or purple graphic or character information pattern can be discolored with irradiation of light (discoloring light 118 ) having a wavelength at which the corresponding colored photochromic dye is colorless, thus information represented by the graphic or character information pattern being rewritable.
- White light discolors all of the red, blue and purple patterns.
- the laser beam 119 is radiated on the optical storage medium 120 when reproducing/reproduction on/from the recording layers 116 and 117 , which is not affected by the dye-contained bonding layer 112 when passing therethrough.
- Disclosed on dispersion of photochromic dyes in a dye-contained layer is kneading the dyes in a resin material of a transparent substrate or a bonding material of a bonding layer.
- photochromic dyes may be penetrated into a transparent substrate over the surface by vapor transportation etc.
- a dye-contained layer may be formed on a bonding layer by deposition, etc.
- the present invention is applicable to card-type optical storage media, such as medical cards used at hospitals.
- medical history is recorded on a CD-ROM area or a CD-R area on a medical card
- additional information such as, next appointment date and time, can be visibly recorded on a dye-contained layer on the medical card formed according to the present invention.
- the present invention is applicable to a variety of fields, thanks to advantages of the dye-contained layer, such as, no effects to recording/reproduction of information on/from an optical storage medium, high visibility, high artistry, high user customizability, high productivity and low cost.
- the dye-contained layer according to the present invention can be used as a water mark on an optical storage disk for disk (security) management.
- a title of song, a photo and an autograph of a singer, etc., can be visibly recorded, as shown in FIG. 17 , on the dye-contained layer according to the present invention, at CD and DVD makers.
- Any message can be visibly recorded on the dye-contained layer according to the present invention, formed on CDs and DVDs, for example, when a customer buys a CD or DVD as a gift to someone at a CD shop.
- a customer can be offered a special service when he or she buys a CD or DVD at a CD shop installing a special printing machine.
- a customer stands in front of the machine. He or she presses a button to choose the face of a singer singing songs for a CD or DVD he or she bought as a background of his or her photo, then presses another button to take his or her picture. An image of him or her with the singer is then visibly recorded on the dye-contained layer according to the present invention formed on the CD or DVD he or she bought.
- an image of him with a girl friend may be visibly recorded on the dye-contained layer according to the present invention.
- a user can visibly record any information on the dye-contained layer according to the present invention formed on a writable CD or DVD.
- a DVD recorder may be equipped with additional-information recording and erasing functions (with laser wavelengths 405 nm and 650 nm, respectively) in addition to a usual DVD-data recording function (with a laser wavelength 650 nm).
- any additional information can be visibly and rewritably recorded, as shown in FIG. 18 , on the dye-contained layer according to the present invention formed on a CD- or DVD-RW through a label layer whereas DVD data can be recorded on the transparent-substrate side.
- the present invention offers a dye-contained layer, such as, a dye-contained bonding layer, a dye-contained hardcoat layer, a dye-contained cover layer, and a dye-contained substrate, made of ultraviolet-hardened resin and at least one type of photochromic dye stable against a laser beam, formed as a component layer of an optical storage medium.
- a dye-contained layer such as, a dye-contained bonding layer, a dye-contained hardcoat layer, a dye-contained cover layer, and a dye-contained substrate, made of ultraviolet-hardened resin and at least one type of photochromic dye stable against a laser beam, formed as a component layer of an optical storage medium.
- the present invention provides an optical storage medium having the dye-contained layer, for which any additional information related to the information recorded on the optical storage medium can be visibly and rewritably displayed (recorded) on the dye-contained layer.
Landscapes
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/507,047 USRE42343E1 (en) | 2002-06-28 | 2006-08-21 | Optical storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-190115 | 2002-06-28 | ||
JP2002190115 | 2002-06-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/507,047 Reissue USRE42343E1 (en) | 2002-06-28 | 2006-08-21 | Optical storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040008612A1 US20040008612A1 (en) | 2004-01-15 |
US7050387B2 true US7050387B2 (en) | 2006-05-23 |
Family
ID=30112258
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/606,801 Ceased US7050387B2 (en) | 2002-06-28 | 2003-06-27 | Optical storage medium |
US11/507,047 Expired - Lifetime USRE42343E1 (en) | 2002-06-28 | 2006-08-21 | Optical storage medium |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/507,047 Expired - Lifetime USRE42343E1 (en) | 2002-06-28 | 2006-08-21 | Optical storage medium |
Country Status (2)
Country | Link |
---|---|
US (2) | US7050387B2 (en) |
JP (1) | JP2004087097A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040063006A1 (en) * | 2002-07-01 | 2004-04-01 | Hiroyuki Takahashi | Optical memory device and process for operating the same |
US20050037285A1 (en) * | 2003-08-11 | 2005-02-17 | Van Brocklin Andrew L. | Systems and methods for storing data on an optical disk |
US20060172135A1 (en) * | 2004-12-20 | 2006-08-03 | Satish Agrawal | Layered envirochromic materials, applications and methods of preparation thereof |
US20070025225A1 (en) * | 2005-07-28 | 2007-02-01 | Kabushiki Kaisha Toshiba | Information storage medium, information recording/reproducing apparatus and information recording/reproducing method |
US20070070175A1 (en) * | 2005-09-26 | 2007-03-29 | Van Brocklin Andrew L | Optical printhead |
US20070082167A1 (en) * | 2005-10-12 | 2007-04-12 | Kuohua Wu | Optical media |
WO2007053643A2 (en) * | 2005-11-01 | 2007-05-10 | Verification Technologies, Inc. | Hard-coat for anti-shrink-anti-copy optical medium |
US20080020170A1 (en) * | 2006-07-19 | 2008-01-24 | Haubrich Jeanne E | Substrate possessing a transparent protective layer derived from a radiation-curable acrylate composition |
US20080121815A1 (en) * | 2006-09-15 | 2008-05-29 | Satish Agrawal | Phosphorescent compositions and methods for identification using the same |
US20080121818A1 (en) * | 2006-09-15 | 2008-05-29 | Satish Agrawal | Phosphorescent compositions for identification |
US20090004822A1 (en) * | 2007-06-26 | 2009-01-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor substrate, manufacturing method of semiconductor substrate, and semiconductor device and electronic device using the same |
US20090071365A1 (en) * | 2007-09-13 | 2009-03-19 | Satish Agrawal | Tissue marking compositions |
US20090076535A1 (en) * | 2007-09-13 | 2009-03-19 | Satish Agrawal | Tissue markings and methods for reversibly marking tissue employing the same |
USRE42343E1 (en) * | 2002-06-28 | 2011-05-10 | Victor Company Of Japan | Optical storage medium |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7809259B2 (en) * | 2004-07-26 | 2010-10-05 | Panasonic Corporation | Optical disk and optical disk device |
TW200627441A (en) * | 2004-10-05 | 2006-08-01 | Fuji Photo Film Co Ltd | Optical disc |
US8675464B2 (en) * | 2005-11-03 | 2014-03-18 | Cinram Group, Inc. | Dual sided optical storage media and method for making same |
US7684309B2 (en) * | 2005-11-03 | 2010-03-23 | Cinram International Inc. | Multi-purpose high-density optical disc |
US20080063900A1 (en) * | 2006-09-11 | 2008-03-13 | Hewlett-Packard Development Company Lp | Optical storage medium |
JP4726137B2 (en) * | 2006-12-27 | 2011-07-20 | 株式会社リコー | Image display medium and image forming apparatus |
US7586960B2 (en) | 2007-01-23 | 2009-09-08 | Corning Incorporated | Forced wavelength chirping in semiconductor lasers |
JP5206045B2 (en) * | 2008-03-17 | 2013-06-12 | 株式会社リコー | Photochromic composition, image display medium, image forming apparatus, and image erasing apparatus |
JP5206046B2 (en) * | 2008-03-17 | 2013-06-12 | 株式会社リコー | Photochromic composition, image display medium, image forming apparatus, and image erasing apparatus |
JP5459528B2 (en) * | 2008-09-02 | 2014-04-02 | 株式会社リコー | Photochromic composition, image display medium, and image forming apparatus |
JP5645045B2 (en) * | 2008-09-02 | 2014-12-24 | 株式会社リコー | Photochromic composition, image display medium, and image forming apparatus |
US8739299B1 (en) | 2009-12-24 | 2014-05-27 | Cinram Group, Inc. | Content unlocking |
WO2016140996A1 (en) * | 2015-03-03 | 2016-09-09 | Corning Incorporated | Privacy filter |
US10382578B2 (en) * | 2015-06-05 | 2019-08-13 | Apple Inc. | Provision of a lease for streaming content |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0246442A (en) * | 1988-08-08 | 1990-02-15 | Nippon Telegr & Teleph Corp <Ntt> | Organic medium functioning as optical disc |
US5338646A (en) * | 1989-06-22 | 1994-08-16 | Sharp Kabushiki Kaisha | Optical memory device having an improved light reflection or optical memory layer |
US5702792A (en) * | 1995-07-14 | 1997-12-30 | Pioneer Electronic Corporation | Optical recording medium |
JPH1083568A (en) | 1996-09-04 | 1998-03-31 | Victor Co Of Japan Ltd | Optical disk |
JPH10143924A (en) | 1996-11-07 | 1998-05-29 | Nippon Columbia Co Ltd | Optical information recording medium |
US5876823A (en) * | 1994-10-03 | 1999-03-02 | Matsushita Electric Industrial Co., Ltd. | Optical information medium, method for producing the optical information medium, and unit for producing the optical information medium |
US6280811B1 (en) * | 1998-06-22 | 2001-08-28 | Target Technology Company, Llc | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
US6309729B1 (en) * | 1997-05-08 | 2001-10-30 | Tridstore Ip, L.L.C. | Optical memory device and a method for manufacturing thereof |
US20020020484A1 (en) * | 1999-02-12 | 2002-02-21 | Feist Thomas P. | Methods for making data storage media and the resultant media |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05169820A (en) | 1991-09-13 | 1993-07-09 | Pioneer Electron Corp | Rewriting type photochromic optical disk |
JPH05333462A (en) | 1992-06-04 | 1993-12-17 | Tokimec Inc | Image forming device |
JPH06130546A (en) | 1992-10-20 | 1994-05-13 | Mita Ind Co Ltd | Optical recording medium |
JPH07199401A (en) | 1993-12-10 | 1995-08-04 | Minnesota Mining & Mfg Co <3M> | Color image material and color image formation using material thereof |
JP3513910B2 (en) | 1994-05-27 | 2004-03-31 | 松下電器産業株式会社 | Display board |
JPH1049053A (en) * | 1996-08-02 | 1998-02-20 | Dainippon Printing Co Ltd | Reversible display label for recording media |
JPH10217610A (en) * | 1997-02-10 | 1998-08-18 | Toshiba Corp | Re-writing type multi-color heat-sensitive sheet, re-writing card and recording device using it |
US7052812B1 (en) * | 1999-04-12 | 2006-05-30 | The Regents Of The University Of California | Three-dimensional optical data storage in fluorescent dye-doped photopolymer |
US7172991B2 (en) * | 2001-10-11 | 2007-02-06 | Hewlett-Packard Development Company, L.P. | Integrated CD/DVD recording and labeling |
JP2003177491A (en) | 2001-12-07 | 2003-06-27 | Ricoh Co Ltd | Multicolor image display method and device |
US7050387B2 (en) * | 2002-06-28 | 2006-05-23 | Victor Company Of Japan, Ltd. | Optical storage medium |
US7125644B2 (en) * | 2003-08-11 | 2006-10-24 | Hewlett-Packard Development Company, L.P. | Systems and methods for storing data on an optical disk |
US7678438B2 (en) * | 2005-10-12 | 2010-03-16 | Hewlett-Packard Development Company, L.P. | Optical media |
US7547894B2 (en) * | 2006-09-15 | 2009-06-16 | Performance Indicator, L.L.C. | Phosphorescent compositions and methods for identification using the same |
-
2003
- 2003-06-27 US US10/606,801 patent/US7050387B2/en not_active Ceased
- 2003-06-27 JP JP2003184523A patent/JP2004087097A/en active Pending
-
2006
- 2006-08-21 US US11/507,047 patent/USRE42343E1/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0246442A (en) * | 1988-08-08 | 1990-02-15 | Nippon Telegr & Teleph Corp <Ntt> | Organic medium functioning as optical disc |
US5338646A (en) * | 1989-06-22 | 1994-08-16 | Sharp Kabushiki Kaisha | Optical memory device having an improved light reflection or optical memory layer |
US5876823A (en) * | 1994-10-03 | 1999-03-02 | Matsushita Electric Industrial Co., Ltd. | Optical information medium, method for producing the optical information medium, and unit for producing the optical information medium |
US5702792A (en) * | 1995-07-14 | 1997-12-30 | Pioneer Electronic Corporation | Optical recording medium |
JPH1083568A (en) | 1996-09-04 | 1998-03-31 | Victor Co Of Japan Ltd | Optical disk |
JPH10143924A (en) | 1996-11-07 | 1998-05-29 | Nippon Columbia Co Ltd | Optical information recording medium |
US6309729B1 (en) * | 1997-05-08 | 2001-10-30 | Tridstore Ip, L.L.C. | Optical memory device and a method for manufacturing thereof |
US6280811B1 (en) * | 1998-06-22 | 2001-08-28 | Target Technology Company, Llc | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
US20020020484A1 (en) * | 1999-02-12 | 2002-02-21 | Feist Thomas P. | Methods for making data storage media and the resultant media |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE42343E1 (en) * | 2002-06-28 | 2011-05-10 | Victor Company Of Japan | Optical storage medium |
US20040063006A1 (en) * | 2002-07-01 | 2004-04-01 | Hiroyuki Takahashi | Optical memory device and process for operating the same |
US20050037285A1 (en) * | 2003-08-11 | 2005-02-17 | Van Brocklin Andrew L. | Systems and methods for storing data on an optical disk |
US7125644B2 (en) * | 2003-08-11 | 2006-10-24 | Hewlett-Packard Development Company, L.P. | Systems and methods for storing data on an optical disk |
US20060172135A1 (en) * | 2004-12-20 | 2006-08-03 | Satish Agrawal | Layered envirochromic materials, applications and methods of preparation thereof |
US8287757B2 (en) | 2004-12-20 | 2012-10-16 | Performance Indicator, Llc | High-intensity, persistent photoluminescent formulations and objects, and methods for creating the same |
US8293136B2 (en) | 2004-12-20 | 2012-10-23 | Performance Indicator, Llc | High-intensity, persistent photoluminescent formulations and objects, and methods for creating the same |
US8282858B2 (en) | 2004-12-20 | 2012-10-09 | Performance Indicator, Llc | High-intensity, persistent photoluminescent formulations and objects, and methods for creating the same |
US8409662B2 (en) | 2004-12-20 | 2013-04-02 | Performance Indicator, Llc | High-intensity, persistent photoluminescent formulations and objects, and methods for creating the same |
US20070025225A1 (en) * | 2005-07-28 | 2007-02-01 | Kabushiki Kaisha Toshiba | Information storage medium, information recording/reproducing apparatus and information recording/reproducing method |
US20070070175A1 (en) * | 2005-09-26 | 2007-03-29 | Van Brocklin Andrew L | Optical printhead |
US7728859B2 (en) * | 2005-09-26 | 2010-06-01 | Hewlett-Packard Development Company, L.P. | Optical printhead |
US7678438B2 (en) * | 2005-10-12 | 2010-03-16 | Hewlett-Packard Development Company, L.P. | Optical media |
US20070082167A1 (en) * | 2005-10-12 | 2007-04-12 | Kuohua Wu | Optical media |
WO2007053643A3 (en) * | 2005-11-01 | 2008-12-11 | Verification Technologies Inc | Hard-coat for anti-shrink-anti-copy optical medium |
WO2007053643A2 (en) * | 2005-11-01 | 2007-05-10 | Verification Technologies, Inc. | Hard-coat for anti-shrink-anti-copy optical medium |
US20080020170A1 (en) * | 2006-07-19 | 2008-01-24 | Haubrich Jeanne E | Substrate possessing a transparent protective layer derived from a radiation-curable acrylate composition |
USRE44254E1 (en) | 2006-09-15 | 2013-06-04 | Performance Indicator, Llc | Phosphorescent compositions and methods for identification using the same |
US20080121818A1 (en) * | 2006-09-15 | 2008-05-29 | Satish Agrawal | Phosphorescent compositions for identification |
US20080121815A1 (en) * | 2006-09-15 | 2008-05-29 | Satish Agrawal | Phosphorescent compositions and methods for identification using the same |
US7910022B2 (en) | 2006-09-15 | 2011-03-22 | Performance Indicator, Llc | Phosphorescent compositions for identification |
US20090004822A1 (en) * | 2007-06-26 | 2009-01-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor substrate, manufacturing method of semiconductor substrate, and semiconductor device and electronic device using the same |
US7867873B2 (en) * | 2007-06-26 | 2011-01-11 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of a semiconductor substrate using a damaged region |
US8039193B2 (en) | 2007-09-13 | 2011-10-18 | Performance Indicator Llc | Tissue markings and methods for reversibly marking tissue employing the same |
US7842128B2 (en) | 2007-09-13 | 2010-11-30 | Performance Indicatior LLC | Tissue marking compositions |
US20090076535A1 (en) * | 2007-09-13 | 2009-03-19 | Satish Agrawal | Tissue markings and methods for reversibly marking tissue employing the same |
US20090071365A1 (en) * | 2007-09-13 | 2009-03-19 | Satish Agrawal | Tissue marking compositions |
Also Published As
Publication number | Publication date |
---|---|
JP2004087097A (en) | 2004-03-18 |
USRE42343E1 (en) | 2011-05-10 |
US20040008612A1 (en) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE42343E1 (en) | Optical storage medium | |
US20060204894A1 (en) | Optical recording medium and displaying method on surface of the medium | |
US20060257615A1 (en) | Three-dimensional optical recording medium and optical disk cartridge | |
US20070133359A1 (en) | Label on laser entry side of an optical disc | |
US9358806B2 (en) | Laser reactive media and apparatus and method for writing an image onto such media | |
US6983475B2 (en) | Method and data storage device that utilizes blocking material | |
JP3431464B2 (en) | Optical information media | |
JPH113543A (en) | Information recording medium | |
US20090034390A1 (en) | Optical information recording medium and drawing method therefor | |
JPH11167750A (en) | Optical disk | |
JP2000113516A (en) | Optical information recording medium | |
JPH11167749A (en) | Optical disk | |
JP2007335059A (en) | Optical information recording medium and optical information recording medium display method | |
US20080068964A1 (en) | Optical information recording medium and display method therefor | |
JPH10143924A (en) | Optical information recording medium | |
JP3228148B2 (en) | Optical disk and method of manufacturing optical disk | |
JPH11316979A (en) | Optical information recording medium | |
JP4865660B2 (en) | Optical information recording medium | |
JP2008186507A (en) | Optical information recording medium | |
JPH09274738A (en) | Optical disk | |
JPH09212919A (en) | Optical information recording medium | |
KR20070007365A (en) | How to Record Recording Media and Images | |
JPH10208301A (en) | Information recording medium | |
JP2008041233A (en) | Optical information recording medium and its display method | |
JPH10247340A (en) | Optical information recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VICTOR COMPANY OF JAPAN, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TSUJITA, KOUJI;OKUMURA, MIKIO;REEL/FRAME:014253/0722 Effective date: 20030620 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
RF | Reissue application filed |
Effective date: 20060821 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: JVC KENWOOD CORPORATION, JAPAN Free format text: MERGER;ASSIGNOR:VICTOR COMPANY OF JAPAN, LTD.;REEL/FRAME:028489/0961 Effective date: 20120216 |
|
AS | Assignment |
Owner name: RAKUTEN, INC., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JVC KENWOOD CORPORATION;REEL/FRAME:028525/0760 Effective date: 20120611 |
|
AS | Assignment |
Owner name: RAKUTEN, INC., JAPAN Free format text: CHANGE OF ADDRESS;ASSIGNOR:RAKUTEN, INC.;REEL/FRAME:037751/0006 Effective date: 20150824 |
|
AS | Assignment |
Owner name: RAKUTEN GROUP, INC., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:RAKUTEN, INC.;REEL/FRAME:058314/0657 Effective date: 20210901 |
|
AS | Assignment |
Owner name: RAKUTEN GROUP, INC., JAPAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENT NUMBERS 10342096;10671117; 10716375; 10716376;10795407;10795408; AND 10827591 PREVIOUSLY RECORDED AT REEL: 58314 FRAME: 657. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:RAKUTEN, INC.;REEL/FRAME:068066/0103 Effective date: 20210901 |