US6913152B2 - Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples - Google Patents
Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples Download PDFInfo
- Publication number
- US6913152B2 US6913152B2 US10/263,838 US26383802A US6913152B2 US 6913152 B2 US6913152 B2 US 6913152B2 US 26383802 A US26383802 A US 26383802A US 6913152 B2 US6913152 B2 US 6913152B2
- Authority
- US
- United States
- Prior art keywords
- funnel
- base
- lid
- filter
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 136
- 238000003828 vacuum filtration Methods 0.000 title claims abstract description 134
- 244000005700 microbiome Species 0.000 title abstract description 29
- 230000002745 absorbent Effects 0.000 claims abstract description 157
- 239000002250 absorbent Substances 0.000 claims abstract description 157
- 238000007789 sealing Methods 0.000 claims abstract description 41
- 230000037303 wrinkles Effects 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims description 42
- 238000011144 upstream manufacturing Methods 0.000 claims description 32
- 238000004891 communication Methods 0.000 claims description 31
- 239000012530 fluid Substances 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 230000000284 resting effect Effects 0.000 claims description 6
- 239000000428 dust Substances 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 238000011109 contamination Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 description 79
- 239000001963 growth medium Substances 0.000 description 41
- 238000011534 incubation Methods 0.000 description 28
- 230000006835 compression Effects 0.000 description 21
- 238000007906 compression Methods 0.000 description 21
- 239000011148 porous material Substances 0.000 description 21
- -1 polypropylene Polymers 0.000 description 20
- 239000004743 Polypropylene Substances 0.000 description 13
- 229920001155 polypropylene Polymers 0.000 description 13
- 241000894006 Bacteria Species 0.000 description 12
- 239000003292 glue Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 11
- 238000013022 venting Methods 0.000 description 11
- 239000004793 Polystyrene Substances 0.000 description 10
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 10
- 229920002223 polystyrene Polymers 0.000 description 10
- 239000012528 membrane Substances 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 229920001903 high density polyethylene Polymers 0.000 description 5
- 239000004700 high-density polyethylene Substances 0.000 description 5
- 229920001684 low density polyethylene Polymers 0.000 description 4
- 239000004702 low-density polyethylene Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 TeflonĀ® Polymers 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D29/00—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
- B01D29/01—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
- B01D29/05—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D29/00—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
- B01D29/085—Funnel filters; Holders therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/18—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
- B01D63/081—Manufacturing thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
- B01D63/087—Single membrane modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4077—Concentrating samples by other techniques involving separation of suspended solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2201/00—Details relating to filtering apparatus
- B01D2201/30—Filter housing constructions
- B01D2201/301—Details of removable closures, lids, caps, filter heads
- B01D2201/305—Snap, latch or clip connecting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2201/00—Details relating to filtering apparatus
- B01D2201/34—Seals or gaskets for filtering elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/041—Connecting closures to device or container
- B01L2300/042—Caps; Plugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0681—Filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0832—Geometry, shape and general structure cylindrical, tube shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
- B01L2400/049—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics vacuum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
Definitions
- This invention relates to the filtration field, and more particularly, to an improved disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples.
- disposable vacuum filtration devices for detecting microorganisms and particulates in liquid samples available today.
- the currently available disposable vacuum filtration devices for detecting microorganisms and particulates in liquid samples contain a base section, a removable funnel section, and a removable lid.
- An absorbent pad, and microporous filter are inserted into the base section.
- the absorbent pad is placed into a well in the base section, and the microporous filter (normally of larger diameter than the absorbent pad) is inserted above the absorbent pad (i.e. on the upstream side of the absorbent pad).
- the absorbent pad provides support for the microporous filter.
- the base section also contains a filter support means which provides support for the absorbent pad and provides fluid flow communication between the downstream side of the absorbent pad and an outlet port located at the bottom of the base section.
- the removable funnel section is press fitted or snapped into the base section.
- the outer periphery of the microporous filter is either sealed to the base section or sealed between the bottom edge of the funnel section and the base section.
- the removable lid is press fitted onto the top of the removable funnel section preferably with a fit that allows easy removal, but that does not allow the lid to accidentally separate from the funnel section.
- the end user preferably removes a sterile vacuum filtration device from its shipping package in a laminar flow hood to prevent contaminating the device.
- the lid is then removed from the funnel section and a liquid sample to be tested is poured into the funnel section.
- the lid is then placed back onto the funnel section and the outlet port of the base section is connected to a vacuum means.
- the vacuum means sucks the liquid through the microporous filter, and through the absorbent pad, and then through the outlet port, into the vacuum means.
- Either the lid or the funnel section contains a venting means to allow air to replace the liquid in the funnel as vacuum removes the liquid from the funnel.
- the user will remove the vacuum filtration device from the vacuum means, and then remove the lid from the funnel section, and then remove the funnel section from the base section, and then place the lid onto the top of the base section, and then discard the funnel section.
- the lid should fit onto the top of the base section with a press fit that allows easy removal, but that does not allow the lid to accidentally separate from the base section when the base section is inverted. With the funnel removed, and with the lid attached to the top of the base section, the lid, base section assembly becomes a petri dish. Either the lid or base section should contain a venting means to allow the air in the interior of the base section with the lid attached to communicate with air outside of the base section.
- the outlet port of the base section is then plugged with a plug (normally supplied with the device), and the base section with lid and plug is inverted and placed into an oven to incubate, so that any bacteria that was trapped on the upstream side of the microporous filter will grow into colonies to be counted later.
- the particules can be counted on the upstream side of the microporous filter once the liquid sample has been filtered through the microporous filter.
- the microporous filter may contain a grid on its upstream side as an aid in counting either particles or microorganisms.
- Another object of the present invention is to provide a disposable vacuum filtration apparatus for detecting microorganisms and particulates in liquid samples that provides a means to keep the downstream side of the filter means in intimate contact with the upstream side of the absorbent pad disposed below it when the filter means and absorbent pad are both dry or both wet.
- Another object of the present invention is to provide a disposable vacuum filtration apparatus for detecting microorganisms and particulates in liquid samples that can be molded from materials such as polypropylene, or polyethylene, or from a combination of materials such as polypropylene and polystyrene.
- Another object of the present invention is to provide a disposable vacuum filtration apparatus for detecting microorganisms and particulates in liquid samples wherein the filter means can be sealed to the base in a manner that will prevent bypass of the microorganisms around the filter means.
- Another object of the present invention is to provide a disposable vacuum filtration apparatus for detecting microorganisms and particulates in liquid samples wherein the filter means can be sealed using a compression seal between the base and the funnel in a manner that will prevent bypass of the microorganisms around the filter means.
- the vacuum filtration apparatus for detecting microorganisms and particulates in liquid samples comprises a base, a funnel, and a lid.
- an integral flexible sealing means is provided between the funnel and base. This integral flexible sealing means allows any funnel that has been molded with a dimensional tolerance range of ā 0.004 of an inch to be mated to any base that has been molded with a dimensional tolerance range of ā 0.004 of an inch.
- the base is made of a sufficiently pliable material to allow a side wall of the base to conform to the shape of the lower portion of the funnel, which allows any funnel that has been molded with a dimensional tolerance range of ā 0.004 of an inch to be mated to any base that has been molded with a dimensional tolerance range of ā 0.004 of an inch.
- the funnel may contain an integral flexible sealing means for sealing the filter means with a compression seal between the integral flexible sealing means of the funnel and a seal surface of the base.
- the lid contains a flexible clamping means that allows any lid that has been molded within a dimensional tolerance range of ā 0.004 of an inch to be mated to any base that has been molded within a dimensional tolerance range of ā 0.004 of an inch, and that allows any lid that has been molded within a dimensional tolerance range of ā 0.004 of an inch to be mated to any funnel that has been molded within a dimensional tolerance range of ā 0.004 of an inch.
- FIG. 1 a is an isometric view, having portions thereof removed, of the assembled components that comprise the first embodiment of the prior art, with the components assembled as the user would receive them, ready for filtration;
- FIG. 1 b is a partial cross-sectional view of a bottom portion of the assembly depicted in FIG. 1 a;
- FIG. 1 c is a partial cross-sectional view of a bottom portion of the assembly depicted in FIG. 1 a , in which the component dimensions have changed from those shown in FIG. 1 b;
- FIG. 2 a is an isometric view, having portions thereof removed, of the assembled components that comprise the first embodiment of the prior art, without the funnel section, with the remaining components assembled in the petri dish mode;
- FIG. 2 b is an isometric view, having portions thereof removed, of the lid of the assembles depicted in FIG. 1 a and 2 a;
- FIG. 3 a is an isometric view, having portions thereof removed, of the assembled components that comprise the second embodiment of the prior art, with the components assembled as the user would receive them, ready for filtration;
- FIG. 3 b is a partial cross-sectional view of a top portion of the assembly depicted in FIG. 3 a;
- FIG. 3 c is a partial cross-sectional view of a bottom portion of the assembly depicted in FIG. 3 a;
- FIG. 3 d is a partial cross-sectional view of a bottom portion of the assembly depicted in FIG. 3 a , in which the component dimensions have changed from those shown in FIG. 3 c , and in which the microporous filter and the absorbent pad are shown compressed because of a negative pressure being applied to the downstream side of the absorbent pad;
- FIG. 4 is an exploded isometric view of the components that comprise the first embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, usable for detecting microorganisms and particulates in liquid samples;
- FIG. 5 is an isometric view, having portions thereof removed, of the base component of the assembly depicted in FIG. 4 ;
- FIG. 6 is a bottom isometric view of the base component of the assembly depicted in FIG. 4 ;
- FIG. 7 is a magnified partial isometric view of the base component of the assembly depicted in FIG. 4 , showing a venting means and a means for clamping the lid to the base;
- FIG. 8 is an isometric view, having portions thereof removed, of the funnel component of the assembly depicted in FIG. 4 ;
- FIG. 9 is a partial cross-sectional view of a bottom portion of the funnel depicted in FIG. 8 ;
- FIG. 10 is a magnified partial isometric view of the funnel component depicted in FIG. 8 , showing a venting means and a means for clamping the lid to the funnel;
- FIG. 11 is a bottom isometric view, of the lid component of the assembly depicted in FIG. 4 ;
- FIG. 12 is an isometric view, having portions thereof removed, of the assembled components that comprise the first embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, usable for detecting microorganisms and particulates in liquid samples;
- FIG. 13 a is a partial cross-sectional view of a bottom portion of the assembly depicted in FIG. 12 , with the sealing elements of the funnel shown in their non-deflected state;
- FIG. 13 b is a partial cross-sectional view of a bottom portion of the assembly depicted in FIG. 12 , with the sealing elements of the funnel shown in their deflected state;
- FIG. 14 a is a partial cross-sectional view of a top portion of the assembly depicted in FIG. 12 , with the sealing elements of the lid shown in their non-deflected state;
- FIG. 14 b is a partial cross-sectional view of a top portion of the assembly depicted in FIG. 12 , with the sealing elements of the lid shown in their deflected state;
- FIG. 15 a is a cross-sectional view of the assembled components that comprise the first embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, without the funnel section, with the remaining components assembled in the petri dish mode, with said assembly shown inverted;
- FIG. 15 b is a magnified partial cross-sectional view of the assembly shown in FIG. 15 a , showing the sealing means between the base and lid, and the venting means between the base and lid;
- FIG. 16 is a partial cross-sectional view of the bottom portion of a second embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, usable for detecting microorganisms and particulates in liquid samples, with the sealing elements of the funnel shown in their deflected state;
- FIG. 17 is an isometric view, having portions thereof removed, of the assembled components that comprise the third embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, usable for detecting microorganisms and particulates in liquid samples;
- FIG. 17 a is a partial cross-sectional view of the bottom portion of the assembly depicted in FIG. 17 , showing the filter sealing means, and a means to assist in removing the filter means from the base;
- FIG. 18 is an isometric view, having portions thereof removed, of the base component of the assembly depicted in FIG. 17 ;
- FIG. 18 a is a magnified partial isometric view of the center portion of the base component depicted in FIG. 18 ;
- FIG. 19 is a isometric view of a vented plug for the outlet port of the base component
- FIG. 20 is a partial cross-sectional view of the bottom portion of the assembly depicted in FIG. 12 , showing the filter means permanently sealed to the base;
- FIG. 21 is a partial cross-sectional view of the bottom portion of the assembly depicted in FIG. 17 , showing the filter means permanently sealed to the base;
- FIG. 22 is an isometric view of a filter seal ring
- FIG. 22 a is a partial cross-sectional view of the seal ring depicted in FIG. 22 ;
- FIG. 23 is a partial cross-sectional view of an assembly incorporating the filter seal ring depicted in FIG. 22 ;
- FIG. 24 is an exploded isometric view of the components that comprise the sixth embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, usable for detecting microorganisms and particulates in liquid samples;
- FIG. 25 is an isometric view of the funnel element of the apparatus shown in FIG. 24 ;
- FIG. 26 is a partial cross-sectional view of a sub-assembly of the base, absorbent pad, and filter elements of the apparatus shown in FIG. 24 ;
- FIG. 27 is an isometric view, having portions thereof removed, of the assembled filtration apparatus shown in FIG. 24 ;
- FIG. 28 is a partial cross-sectional view of the bottom portion of the assembly shown in FIG. 27 .
- FIG. 29 is a partial cross-sectional view of the bottom portion of the assembly that comprise the seventh embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, usable for detecting microorganisms and particulates in liquid samples;
- FIG. 30 shows a partial bottom cross-section of two funnels detailing different versions of a integral flexible filter seal
- FIG. 31 is an isometric view, having portions thereof removed, of the base component of the assembly depicted in FIG. 29 ;
- FIG. 32 is an exploded isometric view of the components that comprise the eighth embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, usable for detecting microorganisms and particulates in liquid samples;
- FIG. 33 a is an isometric view, having portions thereof removed, of the base component of the assembly depicted in FIG. 32 ;
- FIG. 33 b is a magnified partial isometric view of the center portion of the base component depicted in FIG. 33 a;
- FIG. 33 c is a partial cross-sectional view of a bottom portion of the base depicted in FIG. 33 a;
- FIG. 34 a is an isometric view, having portions thereof removed, of the funnel component of the assembly depicted in FIG. 32 ;
- FIG. 34 b is a partial cross-sectional view of a bottom portion of the funnel depicted in FIG. 34 a;
- FIG. 34 c is a partial cross-sectional view of a top portion of the funnel depicted in FIG. 34 a;
- FIG. 35 a is a top isometric view, of the lid component of the assembly depicted in FIG. 32 ;
- FIG. 35 b is a bottom isometric view, of the lid component of the assembly depicted in FIG. 32 ;
- FIG. 36 a is a cross-sectional view of the components that comprise the eighth embodiment of the filtration apparatus, shown in their pre-assembled state;
- FIG. 36 b is a partial cross-sectional view of the funnel and lid depicted in FIG. 36 a , shown in their pre-assembled state;
- FIG. 36 c is a partial cross-sectional view of the funnel and base depicted in FIG. 36 a , shown in their pre-assembled state;
- FIG. 37 a is a cross-sectional view of the components that comprise the eighth embodiment of the filtration apparatus, shown in their assembled state;
- FIG. 37 b is a partial cross-sectional view of the funnel and lid depicted in FIG. 37 a , shown in their assembled state;
- FIG. 37 c is a partial cross-sectional view of the funnel and base depicted in FIG. 37 a , shown in their assembled state;
- FIG. 38 a is a cross-sectional view of the components that comprise the eighth embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, without the funnel section, with the remaining components pre-assembled in the petri dish mode;
- FIG. 38 b is a cross-sectional view of the assembled components that comprise the eighth embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, without the funnel section, with the remaining components assembled in the petri dish mode, with said assembly shown inverted;
- FIG. 38 c is a partial cross-sectional view of the pre-assembled components shown in FIG. 38 a;
- FIG. 38 d is a partial cross-sectional view of the assembled components shown in FIG. 38 b;
- FIG. 39 a is an isometric view, having portions thereof removed, of the funnel component of the assembly depicted in FIG. 40 b;
- FIG. 39 b is a partial cross-sectional view of a bottom portion of the funnel depicted in FIG. 39 a;
- FIG. 40 a is a cross-sectional view of the components that comprise the ninth embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, shown in their pre-assembled state;
- FIG. 40 b is a cross-sectional view of the components that comprise the ninth embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, shown in their assembled state;
- FIG. 41 a is a partial cross-sectional view of a bottom portion of the pre-assembly depicted in FIG. 40 a with maximum interference between the base and funnel;
- FIG. 41 b is a partial cross-sectional view of a bottom portion of the assembly depicted in FIG. 40 b with maximum interference between the base and funnel;
- FIG. 41 c is a partial cross-sectional view of a bottom portion of the pre-assembly depicted in FIG. 40 a with minimum interference between the base and funnel;
- FIG. 41 d is a partial cross-sectional view of a bottom portion of the assembly depicted in FIG. 40 b with minimum interference between the base and funnel;
- FIG. 42 a is a cross-sectional view of the components that comprise the tenth embodiment of the filtration apparatus, constructed in accordance with the principles of the present invention, shown in their assembled state;
- FIG. 42 b is a partial cross-sectional view of a bottom portion of the assembly depicted in FIG. 42 a;
- FIG. 43 a is an isometric view of a vacuum base to be used with a vacuum filtration apparatus
- FIG. 43 b is a cross-sectional view of the vacuum base depicted in FIG. 43 a;
- FIG. 44 a is a cross-sectional view of an assembly containing the vacuum base depicted in FIG. 43 a , with a vacuum filtration apparatus positioned on the vacuum base;
- FIG. 44 b is a partial cross-sectional view of the bottom portion of the assembly depicted in FIG. 44 a;
- FIG. 45 a is an isometric view of the funnel used in the vacuum filtration apparatus depicted in FIG. 46 a;
- FIG. 45 b is an isometric view of the funnel depicted in FIG. 45 a , shown in the squeezed position;
- FIG. 46 a is a cross-sectional view of a vacuum filtration apparatus using the funnel shown in FIG. 45 a;
- FIG. 46 b is a cross-sectional view of the vacuum filtration apparatus shown in FIG. 46 a with the funnel shown in the squeezed position.
- FIG. 1 a through FIG. 2 b illustrate the first embodiment of the prior art.
- FIG. 1 a is an isometric view, having portions thereof removed, of assembly 500 that contains the component parts of the first embodiment of the prior art.
- This assembly contains a base 501 , a funnel 502 , a lid 511 , a microporous filter 503 , and an absorbent pad 515 .
- the outlet port and absorbent pad support structure of base 501 are not shown for simplicity.
- Funnel 502 is press fitted into base 501
- lid 511 is press fitted over funnel 502 .
- FIG. 1 b is a partial cross-sectional view of assembly 500 showing how funnel 502 is press fitted into base 501 .
- Outer wall 507 of funnel 502 engages inner wall 508 of base 501 .
- diameter 504 is the inside diameter of base 501 at the top face 509 of microporous filter 503
- diameter 516 is the outside diameter of funnel 502 at the bottom face 510 of funnel 502 .
- FIG. 1 c shows that if either the value of diameter 504 is reduced from that shown in FIG. 1 b , or if the value of diameter 516 is increased from that shown in FIG. 1 b , or if both conditions exist then funnel 502 will press fit into base 501 as shown in FIG.
- microorganisms are contained in the liquid that bypasses microporous filter 503 , these microorganisms will not be detected. If either the value of diameter 504 is increased from that shown in FIG. 1 b , or if the value of diameter 516 is decreased from that shown in FIG. 1 b , or if both conditions exist then a gap will exist between inner wall 508 of base 501 and outer wall 507 of funnel 502 , and funnel 502 will not press fit into base 501 , thus preventing funnel 502 from being assembled to base 501 . Referring to FIG.
- the value of angle 505 (the draft angle of outer wall 507 of funnel 502 , and the draft angle of inner wall 508 of base 501 ) is typically between 0.5Ā° and 2.0Ā°.
- Table 1 shows how gap 506 will vary relative to draft angle 505 , and relative to the dimension tolerance of the molded component parts (i.e. base 501 , funnel 502 , and lid 511 ). Because gap 506 is not dependent upon the actual value of diameter 504 , or upon the actual value of diameter 516 , these dimensions are represented by the symbolic value A, and a specific variation on the value of A.
- the height of inner wall 508 of base 501 is less than 0.251ā²ā², to keep the height of the petri dish to a minimum.
- microporous filter 503 may vary from a minimum of 0.001ā²ā² thick, to a maximum of about 0.012ā²ā² thick, depending upon the type of microporous filter needed for the application.
- Lid 511 is press fitted onto the top of funnel 502 so that inner wall 514 of lid 511 engages outer wall 513 of funnel 502 .
- Lid 511 should fit onto funnel 502 tightly enough so that it will not come loose, but not so tight as to make it difficult for the user to remove lid 511 from funnel 502 with one hand.
- the draft angle of outer wall 513 of funnel 502 , and the draft angle of inner wall 514 of lid 511 is typically between 0.5Ā° and 2.0Ā°.
- FIG. 2 a shows assembly 501 , with funnel 502 discarded, and with lid 511 press fitted onto base 501 to form a petri dish.
- lid 511 is press fitted onto the top of base 501 so that inner wall 514 of lid 511 engages outer wall 512 of base 501 .
- Lid 511 should fit onto base 501 tightly enough so that it will not come loose when inverted, but not so tight as to make it difficult for the user to remove lid 511 from base 501 with one hand.
- the draft angle of outer wall 512 of base 501 , and the draft angle of inner wall 514 of lid 511 is typically between 0.5Ā° and 2.0Ā°.
- a gap 506 may exist between the bottom face 510 of funnel 502 and the top surface 509 of microporous filter 503 , so that microporous filter 503 will not be sealed between bottom face 510 of funnel 502 and seal surface 517 of base 501 , thus allowing bypass around microporous filter 503 during the filtration process.
- FIG. 3 a , FIG. 3 b , FIG. 3 c and FIG. 3 d depict a second embodiment of the prior art.
- Assembly 600 contains base 601 , funnel 602 , lid 611 , microporous filter 603 , and absorbent pad 615 .
- Lid 611 press fits onto funnel 602 in the same manner described above for lid 511 press fitting onto funnel 502 , hence this press fit has the same drawbacks described above.
- funnel 602 is discarded, and lid 611 is press fitted to base 601 to form a petri dish, in the same manner described above for lid 511 press fitting onto base 501 , hence this press fit has the same drawbacks described above.
- Funnel 602 snap fits into base 601 , with bead 621 of funnel 602 fitting into groove 626 of base 601 .
- microporous filter 603 , and absorbent pad 615 are compressed between bottom face 610 of funnel 602 , and seal surface 628 of base 601 .
- base 601 , and funnel 602 are molded from a pliable material such as polyethylene, or polypropylene.
- 3 d provides for a greater value of dimension tolerance between funnel 602 , and base 601 , than the press fit described above for assembly 500 , in production, with parts molded to a dimensional tolerance of ā 0.003ā²ā², it may be necessary to match funnels to bases.
- lid 611 is press fitted onto the top of funnel 602 so that inner wall 614 of lid 611 engages outer wall 631 of funnel seal ring 630 .
- Lid 611 should fit onto funnel 602 tightly enough so that it will not come loose, but not so a tight as to make it difficult for the user to remove lid 611 from funnel 602 with one hand.
- Lid 611 is normally molded from a rigid material such as polystyrene, and funnel 602 is normally molded from a more pliable material such as polypropylene.
- lid 611 , and funnel 602 are both molded with dimension tolerances of ā 0.003ā²ā², and if under nominal conditions lid 611 press fits onto funnel 602 with 0.001ā²ā² of interference between inner wall 614 of lid 611 , and outer wall 631 of funnel seal ring 630 ; then if the diameter of inner wall 614 of lid 611 is molded to its maximum dimension of nominal plus 0.003ā²ā², and if the diameter of outer wall 631 of funnel seal ring 630 is molded to its minimum dimension of nominal minus 0.003ā²ā², then lid 611 will not press fit onto funnel 602 , instead there will be 0.005ā²ā² of slop between inner wall 614 of lid 611 and outer wall 631 of funnel seal ring 630 , and lid 611 will fall off of funnel 602 if assembly 600 is accidentally tipped on its side.
- lid 611 will press fit onto funnel 602 with 0.007ā²ā² of interference between inner wall 614 of lid 611 , and outer wall 631 of funnel seal ring 630 . With this much interference it will not be possible to easily position lid 611 onto funnel 602 with one handed operation, nor will it be easy to remove lid 611 from funnel 602 with one handed operation.
- lid 611 When filtration is complete, funnel 602 will be discarded, and lid 611 will be press fitted onto base 601 with inner wall 614 of lid 611 engaging outer wall 612 of base seal ring 632 , to form a petri dish like the one shown in FIG. 2 a .
- Lid 611 is normally molded from a rigid material such as polystyrene, and base 601 is normally molded from a more pliable material such as polypropylene.
- lid 611 , and base 601 are both molded with dimension tolerances of ā 0.003ā²ā², and if under nominal conditions lid 611 press fits onto base 601 with 0.001ā²ā² of interference between inner wall 614 of lid 611 , and outer wall 612 of base seal ring 632 ; then if the diameter of inner wall 614 of lid 611 is molded to its maximum dimension of nominal plus 0.003ā²ā², and if the diameter of outer wall 612 of base seal ring 632 is molded to its minimum dimension of nominal minus 0.003ā²ā², then lid 611 will not press fit onto base 601 , instead there will be 0.005ā²ā² of slop between inner wall 614 of lid 611 and outer wall 612 of base seal ring 632 , and lid 611 will fall off of base 601 when the petri dish is inverted for incubation.
- lid 611 will press fit onto base 602 with 0.007ā²ā² of interference between inner wall 614 of lid 611 , and outer wall 612 of base seal ring 632 . With this much interference it will not be possible to easily position lid 611 onto base 601 with one handed operation, nor will it be easy to remove lid 611 from base 601 with one handed operation.
- microporous filter 603 and absorbent pad 615 are compressed between bottom face 610 of funnel 602 , and seal surface 628 of base 601 , as shown in FIG. 3 c .
- the interior of funnel 602 will contain the liquid to be filtered, with the space above the liquid being at atmospheric pressure.
- Either lid 611 , or funnel 602 contain a venting means (not shown) to maintain the space in funnel 602 above the liquid at atmospheric pressure during the filtration process. This liquid will wet the pores of the microporous filter (i.e. a hydrophilic filter).
- Filter underdrain 616 is in fluid flow communication with the base outlet port (not shown).
- microporous filter 603 When a negative pressure (i.e. vacuum) is applied to the outlet port, and therefore to filter underdrain 616 , the pressure on the upstream side of microporous filter 603 will be atmospheric plus the pressure head of the liquid above microporous filter 603 , and the pressure below the absorbent pad 615 will be the negative pressure of the vacuum source.
- Microporous filter 603 will have a pore size of between 0.2 ā m, and 1.0 ā m, and absorbent pad 615 will have a very large pore size compared to the pore size of microporous filter 603 . Therefore, most of the pressure drop (i.e.
- microporous filter 603 the difference between the positive pressure on the upstream side of microporous filter 603 , and the negative pressure on the downstream side of absorbent pad 615 ) will occur across microporous filter 603 .
- the pressure drop across microporous filter 603 will be in the approximate range of 10 pounds per square inch, to 14 pounds per square inch.
- Absorbent pad 615 is made of a material that is easy to compress. Therefore, the force that is applied to the top of microporous filter 603 (by the differential pressure applied across microporous filter 603 ), will compress absorbent pad 615 , as shown in FIG.
- microporous filter 603 will pass (as shown by arrow 617 ) through the gap between bottom face 610 of funnel 602 , and top face 609 of microporous filter 603 , and then into gap 619 , through or around absorbent pad 615 , and then into the vacuum source, thus bypassing microporous filter 603 . If the liquid that bypasses microporous filter 603 contains microorganisms, these microorganisms will not be trapped on the upstream side of microporous filter 603 . Therefore these microorganisms will not be detected.
- each embodiment enables the filtration apparatus to be made from component parts that have been molded within a dimensional tolerance range of ā 0.004ā²ā², and each embodiment provides an integral compression seal of the filter means, for filter means of varying thickness, and each embodiment provides a means to heat seal or otherwise seal the filter means with a non-releasable seal to the base.
- FIG. 4 One embodiment of the filtration apparatus constructed in accordance with the principles of the present invention, is shown in FIG. 4 through FIG. 15 b .
- exploded assembly 100 contains, base 1 , absorbent pad 91 , filter means 90 (preferably a microporous filter), funnel 30 , and lid 60 .
- base 1 contains funnel well 26 , bounded by filter seal surface 11 , and inside wall 5 .
- Inside wall 5 contains chamber 20 .
- Base 1 also contains pad well 27 disposed in the bottom of the funnel well, bounded by lower inside wall 8 , and bottom inside surface 9 .
- the common edge between filter seal surface 11 and lower inside wall 8 may contain round 21 .
- Base 1 contains outlet port 10 .
- Bottom inside surface 9 may slope downward from its outside periphery toward outlet port 10 .
- Outlet port 10 is in fluid flow communication with pad well 27 .
- Base 1 also contains a means to support absorbent pad 91 , shown here by pad support ribs 7 , which protrude upward from bottom inside surface 9 .
- the top surface of pad support ribs 7 preferably lie in a horizontal plane, said plane being located below filter seal surface 11 , a distance approximately equal to the thickness of absorbent pad 91 .
- pad support ribs 7 are shown as radial ribs, any filter support structure that provides sufficient support to absorbent pad 91 , and that provides the proper drainage of filtered liquid from pad well 27 to outlet port 10 may be used.
- Top outer wall 12 of base 1 contains one or more vent slots 3 , bounded by side walls 24 , and bottom wall 25 .
- Outside wall 6 of base 1 contains one or more lid clamp tabs 4 , that protrude from outside wall 6 .
- Each lid clamp tab 4 is bounded by side walls 22 , bottom wall 28 , sloped surface 13 , and outer surface 23 . Sloped surface 13 may terminate at bottom wall 28 , thus eliminating outer surface 23 .
- the one or more lid clamp tabs 4 should be positioned so that the bottom edge of each lid clamp tab is equidistant from top outer wall 12 of base 1 .
- Base 1 also contains support ring 29 , which protrudes from bottom outside wall 16 , and is bounded by inner side surface 18 , outer side surface 17 , and bottom surface 19 .
- Support ring 29 supports base 1 when base 1 is placed on a flat surface.
- Outlet tube 87 protrudes from bottom outside wall 16 , and is bound by outlet tube outside surface 14 , outlet tube inside surface 15 , and outlet tube bottom surface 2 .
- Outlet port 10 is bound by outlet tube inside surface 15 .
- Outlet port 10 is in fluid flow communication with pad well 27 .
- funnel 30 Details of funnel 30 are shown in FIG. 8 , FIG. 9 , and FIG. 10 .
- the bottom of funnel 30 contains an integral flexible filter seal 38 , disposed around the bottom of funnel 30 , bound by inner surface 43 , outer surface 58 , and bottom surface 44 .
- Inner surface 43 is preferably formed by revolving a round section around the central axis of funnel 30 , with the top of said round attached to the bottom inside edge of inner wall 40 of funnel 30 as depicted in FIG. 9 .
- Bottom surface 44 is preferably flat and contains round 45 at its outside edge as depicted in FIG. 9 .
- Outer surface 58 is a C-shaped surface as depicted in FIG. 9 .
- FIG. 9 is C-shaped with the open part of the C pointing outward, any shape that allows the seal to compensate for varying filter thickness by flexing could be used, such as a C-shaped integral flexible filter seal with the open part of the C pointing inward, or the types of integral flexible filter seals shown in FIG. 29 as integral flexible filter seal 838 , and in FIG. 30 as integral flexible filter seal 838 a or as integral flexible filter seal 838 b . All of the integral flexible filter seals shown in the FIG. 9 , FIG. 13 a , FIG. 13 b , FIG. 16 , FIG. 17 a , FIG. 20 , FIG. 21 , FIG. 23 , FIG. 28 , FIG. 29 , and FIG. 30 protrude from the bottom surface of the funnel.
- the bottom surface of the funnel is shown in FIG. 29 as bottom surface 899 of funnel 830 , and it is shown in FIG. 30 as bottom surface 899 a of funnel 830 a , and as bottom surface 899 b of funnel 830 b .
- the integral flexible filter seal could however, protrude from the inner wall of the funnel, or from the outer wall of the funnel.
- the important feature of the integral flexible filter seal is that can flex to maintain a leak tight seal between a portion of the integral flexible filter seal and the filter seal surface of the base, for varying thickness' of the filter means, and/or for dimension variations of either the funnel or the base, or both.
- the funnel could be molded of a first material such as polystyrene in a first molding cycle, and then the integral flexible filter seal 38 could be molded from a second much softer material such as polyethylene or rubber in a second molding cycle.
- the section of funnel 30 directly above integral flexible filter seal 38 is bound by inner wall 40 , and outer wall 59 .
- Inner wall 40 is preferably conical in shape with a draft angle of approximately 1 ā 2Ā°, to assist in removal from the mold from which it is molded.
- Outer wall 59 may have the same draft angle as inner wall 40 , or it may be vertical. Protruding from outer wall 59 is one or more integral flexible funnel seal ring 37 .
- Each integral flexible funnel seal ring is bounded by side walls 46 , and end wall 47 .
- Side walls 46 are preferably tapered to improve moldability, and end wall 47 is preferably round in shape as depicted in FIG. 9 .
- one or more integral flexible funnel seal rings 37 are shown in FIG. 9 as being composed of the same material as the rest of the funnel, the funnel could be molded of a first material such as polystyrene in a first molding cycle, and then the one or more integral flexible funnel seal rings 37 could be molded from a second much softer material such as polyethylene or rubber in a second molding cycle.
- the next section of funnel 30 is conical in shape and is bound by inner wall 31 , and outer wall 35 .
- the draft angle of outer wall 35 preferably matches that of inner wall 31 to maintain a uniform wall thickness.
- Funnel stop 36 protrudes from outer wall 35 and is bound by side walls 48 , and end wall 49 .
- Side walls 48 are preferably tapered to improve moldability.
- the top section of funnel 30 is bounded by inner wall 32 , outer wall 39 , and top wall 42 .
- Inner wall 32 is conical in shape and preferably has a draft angle of 1 ā 2Ā° or less.
- the draft angle of outer wall 39 is preferably the same as the draft angle of outside wall 6 of base 1 .
- top wall 42 contains one or more vent slots 33 , bounded by side walls 54 , and bottom wall 55 .
- Outer wall 39 of funnel 30 contains one or more lid clamp tabs 34 , that protrude from outer wall 39 .
- Each lid clamp tab 34 is bounded by side walls 52 , bottom wall 56 , sloped surface 43 , and outer surface 87 . Sloped surface 43 may terminate at bottom wall 56 , thus eliminating outer surface 87 .
- the outside diameter of outer surface 87 of the one or more lid clamp tabs of funnel 30 should equal the outside diameter of outer surface 23 of the one or more lid clamp tabs of base 1 .
- the one or more lid clamp tabs 34 should be positioned so that the bottom edge of each lid clamp tab is equidistant from top wall 42 of funnel 30 .
- Lid 60 is depicted in FIG. 11 and FIG. 12 .
- Lid 60 contains outer wall 77 , bounded by outer surface 74 , inner surface 71 , and bottom surface 72 .
- the draft angle of inner surface 71 , and outer surface 74 are preferably the same as the draft angle of outer wall 39 of funnel 30 , and the draft angle of outside wall 6 of base 1 .
- Bottom surface 72 may be extended beyond outer surface 74 to form lip 88 .
- Outer wall 77 contains a plurality of slots 64 , each slot 64 is bounded by side surfaces 66 , and top surface 65 . Each slot creates a gap in bottom surface 72 of lid 60 .
- the top surface 65 of slots 64 is preferably offset from inside top surface 63 .
- Filter hold down ring 75 protrudes from inside top surface 63 and is bounded by inner surface 69 , outer surface 70 , and bottom surface 76 .
- Filter hold down ring 75 contains one or more slots 67 .
- Nest ring 86 protrudes from outer flat surface 85 .
- the inside diameter of nest ring 86 should be slightly larger than the outside diameter of outer side surface 17 , of support ring 29 of base 1 , so that the bottom of support ring 29 of base 1 can be nested inside nest ring 86 of lid 60 , to enable devices to be stacked on top of each other.
- FIG. 12 is an isometric view with portions thereof removed of assembly 100 in its assembled state, shown as the end user would receive it.
- absorbent pad 91 is positioned in pad well 27 , of base 1
- filter means 90 is positioned in funnel well 26 of base 1 , with the downstream surface of filter means 90 lying in the same plane as filter seal surface 11 of base 1 .
- FIG. 13 a is a partial cross-sectional view of assembly 100 , showing theoretically how funnel 30 would fit into base 1 , without deflection of the funnel elements. Referring to FIG. 13 a , and FIG.
- the outside diameter of one or more integral flexible funnel seal ring 37 of funnel 30 must be greater than the inside diameter of inside wall 5 of funnel well 26 of base 1 , for the end wall 47 of integral flexible funnel seal ring 37 to seal to inside wall 5 of funnel well 26 of base 1 .
- the one or more integral flexible funnel seal rings allows the funnel to be releasably attached to the base over a much greater range of dimensional tolerances of both the base and the funnel, than an o-ring seal would allow.
- Dimension 57 is the uncompressed dimension of the open end of C-shaped outer surface 58 of integral flexible filter seal 38 of funnel 30 .
- FIG. 13 b is a partial cross-sectional view of assembly 100 , showing how funnel 30 actually fits into base 1 .
- the one or more integral flexible funnel seal rings 37 are forced to deflect upward as shown in FIG. 13 b , thereby releasably attaching funnel 30 to base 1 with an interference fit between end wall 47 of one or more integral flexible funnel seal rings 37 of funnel 30 and inside wall 5 of funnel well 26 of base 1 .
- chamber 20 of base 1 guides one or more integral flexible funnel seal rings 37 into funnel well 26 of base 1 during the assembly of the funnel to the base.
- Funnel 30 is pressed into base 1 until side wall 48 of funnel stop 36 of funnel 30 , hits top outer wall 12 of base 1 , so that dimension 59 shown in FIG. 13 b becomes zero, thus funnel stop 36 limits the distance funnel 30 can be inserted into base 1 .
- Funnel stop 36 also acts as a dust cap.
- the thickness and diameter of the one or more integral flexible funnel seal rings 37 should be sized so that funnel 30 is releasably attached to base 1 with sufficient force to prevent accidental disengagement of funnel 30 from base 1 , but not with enough force to make it difficult for the end user to remove funnel 30 from base 1 when the filtration process is complete.
- Integral flexible filter seal 38 of funnel 30 is compressed from its uncompressed dimension 57 shown in FIG. 13 a , to its compressed dimension 57 c , shown in FIG. 13 b , thus releasably sealing filter means 90 between filter seal-surface 11 of base 1 , and bottom surface 44 of integral flexible filter seal 38 of funnel 30 .
- integral flexible filter seal 38 can provide a leak tight seal for any type of filter means with a thickness ranging from a minimum of zero to a maximum of 0.025ā²ā² or more.
- Microporous filters are commonly used in applications for detecting bacteria, yeast, or mold, and range in thickness from 0.001ā²ā² to 0.012ā²ā².
- Funnel stop 36 assures that integral flexible filter seal 38 will not be over compressed. Referring to FIG. 9 , dimension 50 , and dimension 57 , combined with the location of funnel stop 36 relative to bottom surface 44 of integral flexible filter seal 38 , will determine the downward force exerted on the top surface of filter means 90 , by bottom surface 44 of integral flexible filter seal 38 , when funnel 30 is inserted into base 1 .
- filter means 90 can be releasably sealed between filter seal surface 11 of base 1 , and bottom surface 44 of integral flexible filter seal 38 of funnel 30 , by making the distance between bottom side wall 48 of funnel stop 36 and bottom surface 44 of integral flexible filter seal 38 greater than the height of inside wall 5 of funnel well 26 of base 1 , so that funnel 30 can be inserted into base 1 until bottom surface 44 presses against the top surface of filter means 90 .
- integral flexible filter seal 38 is eliminated, so that the bottom surface of funnel 30 as shown in FIG.
- filter means 90 can be releasably sealed between filter seal surface 11 of base 1 , and bottom surface of funnel 30 , by making the distance between bottom side wall 48 of funnel stop 36 and the bottom surface of funnel 30 greater than the height of inside wall 5 of funnel well 26 of base 1 , so that funnel 30 can be inserted into base 1 until the bottom surface of funnel 30 presses against the top surface of filter means 90 .
- integral flexible filter seal 38 may be eliminated.
- FIG. 14 a shows theoretically how lid 60 fits onto funnel 30 , with outer wall 77 of lid 60 in its relaxed position.
- the outside diameter of outer surface 87 of each lid clamp tab 34 of funnel 30 must be greater than the inside diameter of inner surface 71 of lid 60 , for lid 60 to fit on funnel 30 with an interference fit, to assure that lid 60 will not accidentally fall off of funnel 30 .
- FIG. 14 b shows how lid 60 actually fits onto funnel 30 .
- lid 60 When lid 60 is properly positioned on funnel 30 , inside top surface 63 of lid 60 will be in contact with top wall 42 of funnel 30 , and each segment of outer wall 77 of lid 60 that is in contact with a lid clamp tab 34 of funnel 30 , will be bent out so that inner surface 71 of lid 60 is in contact with a outer surface 87 of a corresponding lid clamp tab 34 .
- the height of inner surface 71 of outer wall 77 of lid 60 should be equal to or greater than the distance between top wall 42 of funnel 30 and the bottom edge of each lid clamp tab 34 of funnel 30 , and equal to or greater than the distance between top outer wall 12 of base 1 and the bottom edge of each lid clamp tab 4 of base 1 (shown in FIG.
- each lid clamp tab 34 of funnel 30 will force one and possibly two segments (two segments if lid 60 is aligned so that a slot 64 of lid 60 rests against outer surface 87 of a lid clamp tab 34 ) to bend outward when lid 60 is positioned on the top of funnel 30 .
- the maximum width of slot 64 of lid 60 must be less than the width of outer surface 87 of lid clamp tab 34 of funnel 30 .
- each segment As the length of each segment is reduced, the curvature of each segment will be reduced, therefore, the flexibility of each segment will be increased, thus enabling the segment to bend outward without breaking, even when the lid 60 is molded from a stiff material such as polystyrene.
- sloped surface 43 of lid clamp tab 34 initially contacts the bottom of inner surface 71 of lid 60 . Then as lid 60 is further pressed onto funnel 30 , sloped surface 43 causes inner surface 71 of the appropriate segment of outer wall 77 of lid 60 to bend outward gradually until lid 60 is fully seated on funnel 30 , and inner surface 71 of said segment of outer wall 77 of lid 60 is in contact with outer surface 87 of the corresponding lid clamp tab 34 .
- This arrangement of segmented outer wall 77 of lid 60 being press fitted onto one or more lid clamp tabs 34 of funnel 30 allows the funnel and lid to be molded within a dimensional tolerance range of ā 0.004ā²ā² or greater, while providing an adequate interference fit between the lid and funnel to prevent accidental disengagement of the lid from the funnel, while also allowing the end user to place the lid onto the funnel, or to remove the lid from the funnel with one hand.
- the firmness of the interference fit can be adjusted by increasing the number of lid clamp tabs 34 to increase the firmness, or by decreasing the number of lid clamp tabs 34 to reduce the firmness, while keeping all other variables constant.
- the dimensional tolerance range of ā 0.004ā²ā² is well within the normal production range of dimensional tolerances.
- funnel 30 when lid 60 is positioned on funnel 30 as described above, the interior of funnel 30 is in air flow communication with the outside atmosphere through one or more vent slots 33 of funnel 30 , and gap 83 between inner wall 71 of lid 60 and outer wall 39 of funnel 30 .
- One or more slots 33 could be replaced by one or more grooves in inside top surface 63 of lid 60 .
- funnel 30 is removed from base 1 , and lid 60 is removed from funnel 30 , lid 60 is then placed onto base 1 .
- Lid 60 will fit on base 1 the same as it fits on funnel 30 .
- the nominal diameter of outer surface 23 of one or more lid clamp tabs 4 of base 1 should be the same as the nominal diameter of outer surface 87 of one or more lid clamp tabs 34 of funnel 30 .
- lid 60 when lid 60 is positioned on base 1 as described above, the interior of base 1 is in air flow communication with the outside atmosphere through one or more vent slots 3 of base 1 , and gap 95 between inner wall 71 of lid 60 and outside wall 6 of base 1 .
- One or more slots 3 could be replaced by one or more grooves in inside top surface 63 of lid 60 .
- bottom surface 76 of filter hold down ring 75 of lid 60 holds filter means 90 in place so that the upstream surface of absorbent pad 91 remains in contact with the downstream surface of filter means 90 , even when assembly 101 is inverted as shown in FIG. 15 a . If the filter means is sealed to the base with a non-releasable seal (shown in FIG. 20 and FIG.
- filter hold down ring 75 of lid 60 can be eliminated, because the non-releasable seal will keep the upstream surface of absorbent pad 91 in contact with the downstream surface of filter means 90 .
- Filter means 90 should be a microporous filter with a pore size of 0.45 ā or less in applications where it is desired to count cultured bacteria, cultured yeast, or cultured mold.
- a microporous filter may also be used in applications where it is desired to count particulates, or in applications where it is desired to clarify a solution by filtration.
- filter means 90 may be a screen filter or depth filter.
- filter means 90 is a microporous filter.
- the filtration apparatus will preferably be purchased sterile, and will be removed from its packaging and operated in a clean environment (i.e. a laminar flow hood known in the art). The operator will remove lid 60 from funnel 30 , and then add a quantity of liquid to be tested to the interior of funnel 30 . The liquid will wet filter means 90 .
- a vacuum source is then connected to outlet port 10 of base 1 .
- Outlet port 10 is in fluid flow communication with pad well 27 of base 1 , hence the pressure in pad well 27 is the same as the pressure in outlet port 10 (positive or negative).
- the negative pressure i.e.
- the user may proceed in one of three ways.
- the first option is to add a quantity of liquid growth media to funnel 30 , and then to momentarily reapply the vacuum to outlet port 10 of base 1 .
- the vacuum will draw the liquid growth media through filter means 90 , and then into absorbent pad 91 , with any excess liquid growth media going into the vacuum source. It is important that the user turn off the vacuum source and vent outlet port 10 as soon as the level of the liquid growth media in funnel 30 reaches the top surface of filter means 90 , to prevent the vacuum source from sucking the liquid growth media out of absorbent pad 91 .
- the pores of filter means 90 will remain wet with liquid growth media because the bubble point of filter means 90 exceeds the pressure differential applied to filter means 90 by the vacuum source (i.e. vacuum pump). If the vacuum is left on too long the liquid growth media will be sucked out of absorbent pad 91 because of its large nominal pore size, and the subsequent incubation step will give a false result.
- the vacuum source i.e. vacuum pump
- One way to prevent keeping the vacuum source on to long during the step of adding liquid growth media to the apparatus as just described, is to provide the user with a vacuum pump controller that contains a continuous on/off switch to turn the vacuum pump on or off during the filtration step, and a second pulse switch that turns the vacuum pump on for a predetermined time interval (regardless of how long the user presses the pulse switch) to be used during the step of adding the liquid growth media.
- the controller should be designed to prevent the user from initiating a second pulse before the first time interval has been completed, this will prevent the user from accidentally turning on the vacuum pump to long, and thus sucking the liquid growth media from absorbent pad 90 .
- the controller may be designed to prevent the start of a second pulse until the first time interval has been completed, and until an additional delay time interval has also been completed.
- the predetermined time interval of the vacuum pump controller would be set at the factory so that the end user would have to press the pulse switch one or more times to draw the liquid growth media into filter means 90 , and into absorbent pad 91 , without sucking the liquid growth media out of absorbent pad 91 .
- the user will now remove lid 60 from funnel 30 , and then remove funnel 30 from base 1 , and then discard funnel 30 , and then place lid 60 onto base 1 , and then insert outlet port plug 99 into outlet port 10 of base 1 , and then place assembly 101 into an incubator, inverted as shown in FIG. 15 a . After the proper incubation time assembly 101 will be removed from the incubator, and the top surface of filter means 90 will be examined for growth of bacteria colonies, yeast colonies, or mold colonies.
- a gridded filter as shown in FIG. 4 may be used to assist in colony counting.
- filter hold down ring 75 of lid 60 can be eliminated, because the non-releasable seal will keep the upstream surface of absorbent pad 91 in contact with the downstream surface of filter means 90 .
- outlet port 10 of base 1 will be open (i.e. outlet port plug 99 will not be inserted in outlet port 10 as shown in FIG. 15 a ).
- a quantity of liquid growth media will now be dispensed into outlet port 10 of base 1 .
- the liquid growth media will flow from outlet port 10 of base 1 , into pad well 27 of base 1 , and then into absorbent pad 91 .
- a compression seal is used to seal filter means 90 to base 1 with a releasable seal
- the third option the user has is to remove lid 60 from funnel 30 , and then remove funnel 30 from base 1 , and then discard funnel 30 and lid 60 , and then remove filter means 90 from base 1 and place filter means 90 into a petri dish (known in the art) containing the desired growth media for incubation and colony counting.
- FIG. 16 An second embodiment of the filtration apparatus constructed in accordance with the principles of the present invention, is shown in FIG. 16 .
- This embodiment shown as assembly 102 contains the same component parts as the first embodiment described above, with the exception that funnel 30 is replaced with funnel 130 .
- the features of funnel 130 that are identical to those of funnel 30 have been given the same reference numbers as the corresponding feature of funnel 30 .
- funnel 130 contains seal bead 180 , which protrudes from bottom surface 44 , of integral flexible filter seal 38 .
- seal bead 180 as illustrated in FIG. 16 is circular in shape, it could be formed from any other shape such as rectangular, elliptical, ect.
- integral flexible filter seal 38 of funnel 130 When funnel 130 is inserted into base 1 , integral flexible filter seal 38 of funnel 130 will be compressed as explained above for funnel 30 . Hence filter means 90 will be sealed between filter seal surface 11 of base 1 , and the bottom of seal bead 180 of funnel 130 .
- the circular shape of seal bead 180 as shown in FIG. 16 , and its small contact area with filter means 90 , and the spring force applied to seal bead 180 from the compressed integral flexible filter seal 38 of funnel 130 provide a leak tight seal around the outer periphery of filter means 90 .
- FIG. 17 An third embodiment of the filtration apparatus constructed in accordance with the principles of the present invention, is shown in FIG. 17 .
- Assembly 200 shown in FIG. 17 contains, base 201 , funnel 30 (alternately funnel 130 could replace funnel 30 ), lid 60 , filter means 90 (preferably a microporous filter), absorbent pad 91 , and lower filter means 90 a (preferably a microporous filter).
- base 201 contains funnel well 26 , bounded by filter seal surface 11 , and inside wall 5 . Inside wall 5 contains chamber 20 .
- Base 201 also contains a pad well 27 , bounded by lower inside wall 8 , and bottom inside surface 9 .
- the outer edge of filter seal surface 11 contains groove 289 .
- Base 201 contains outlet port 10 . Bottom inside surface 9 may slope downward from its outside periphery toward outlet port 10 . Outlet port 10 is in fluid flow communication with pad well 27 .
- Base 201 also contains a means to support lower filter means 90 a , shown here by circular filter support ribs 207 , which protrude upward from bottom inside surface 9 .
- Circular filter support ribs 207 are interrupted by one or more radial drain channels 294 r .
- Circular drain channels 294 c i.e. the space between adjacent circular filter support ribs 207 ), are in fluid flow communication with radial drain channels 294 r .
- Base 201 also contains a means to support the portion of lower filter means 90 a that bridges outlet port 10 , shown in FIG.
- central filter support hub 298 and one or more radial filter support ribs 297 which attach central filter support hub 298 to the inner most circular filter support rib 207 .
- One or more passages 299 place one or more radial drain channels 294 r in fluid flow communication with outlet port 10 .
- the top surface of filter support ribs 207 preferably lie in a horizontal plane, said plane being located below filter seal surface 11 , a distance approximately equal to the sum of the thickness of absorbent pad 91 , plus the thickness of lower filter means 90 a .
- top outer wall 12 of base 201 contains one or more vent slots 3 that correspond to vent slots 3 of base 1 .
- Outside wall 6 of base 1 contains one or more lid clamp tabs 4 , that protrude from outside wall 6 , that correspond to clamp tabs 4 of base 1 .
- Base 201 also contains support ring 29 corresponding to support ring 29 of base 1 . Support ring 29 supports base 201 when base 201 is placed on a flat surface. Outlet port 10 is in fluid flow communication with pad well 27 .
- lower filter means 90 a is placed into pad well 27 of base 201 , so that the downstream surface of lower filter means 90 a rests on and is supported by circular filter support ribs 207 , central filter support hub 298 , and one or more radial filter support ribs 297 .
- the downstream surface of the outer periphery of lower filter means 90 a rests on seal surface 296 of the uninterrupted outer most circular support rib.
- Absorbent pad 91 is placed into pad well 27 of base 201 on top of lower filter means 90 a .
- Filter means 90 is placed into funnel well 26 , with the downstream surface of filter means 90 lying in the same plane as filter seal surface 11 of base 201 .
- the outer periphery of filter means 90 is sealed between bottom surface 44 of integral flexible filter seal 38 of funnel 30 , and filter seal surface 11 of base 201 , and the outer periphery of lower filter means 90 a is sealed between seal surface 296 of base 201 , and the outer periphery of the bottom face of absorbent pad 91 .
- lower filter means 90 a could be non-releasably sealed to seal surface 296 using a heat seal, an ultrasonic seal, a solvent seal, a glue seal or any other type of leak tight seal.
- filter means 90 could be non-releasably sealed to filter seal surface 11 using a heat seal, an ultrasonic seal, a solvent seal, a glue seal or any other type of leak tight seal.
- the end user will receive the filtration apparatus (i.e. assembly 200 ) assembled as shown in FIG. 17 .
- the filtration apparatus will preferably be purchased sterile, and will be removed from its packaging and operated in a clean environment (i.e. a laminar flow hood known in the art).
- the operator will remove lid 60 from funnel 30 , and then add a quantity of liquid to be tested to the interior of funnel 30 .
- the liquid will wet filter means 90 and absorbent pad 91 .
- a vacuum source is then connected to outlet port 10 of base 201 .
- Outlet port 10 is in fluid flow communication with one or more radial drain channels 294 r of pad well 27 of base 201 , through one or more passages 299 of pad well 27 of base 201 , and circular drain channels 294 c of pad well 27 of base 201 are in fluid flow communication with one or more radial drain channels 294 r of pad well 27 of base 201 , hence the pressure in pad well 27 is the same as the pressure in outlet port 10 (positive or negative).
- the negative pressure (i.e. vacuum) in pad well 27 of base 201 will suck the liquid in funnel 30 through filter means 90 , and then through absorbent pad 91 , and then through lower filter means 90 a , into pad well 27 , into outlet port 10 , and then into the vacuum source.
- the user will add a quantity of liquid growth media to funnel 30 , and then reapply the vacuum to outlet port 10 of base 201 .
- the vacuum will draw the liquid growth media through filter means 90 , and then through absorbent pad 91 , and then through lower filter means 90 a , with any excess liquid growth media going into the vacuum source. Because the bubble points of both filter means 90 , and lower filter means 90 a are greater than the negative pressure applied by the vacuum source, filter means 90 , absorbent pad 91 , and lower filter means 90 a , will all remain wetted with liquid growth media regardless of how long the vacuum source is kept on.
- the user will now remove lid 60 from funnel 30 , then remove funnel 30 from base 201 , then discard funnel 30 , then place lid 60 onto base 201 , then insert outlet port plug 99 (not shown) into outlet port 10 of base 201 , and then place the resultant assembly into an incubator, inverted as described above for the first embodiment. After the proper incubation time the assembly will be removed from the incubator, and the top surface of filter means 90 will be examined for growth of bacteria colonies, or yeast colonies, or mold colonies. Filter means 90 may be a gridded filter to assist the user in colony counting.
- filter means 90 may be placed into funnel well 26 of base 201 so that the central axis of filter means 90 is aligned with the central axis of funnel well 26 of base 201 , or filter means 90 may be placed into funnel well 26 of base 201 so that a portion of the outside edge of filter means 90 contacts a portion of the bottom of inside wall 5 of funnel well 26 of base 201 , or filter means 90 may be placed into funnel well 26 of base 201 somewhere in-between these two extremes.
- the outside diameter of filter means 90 should be made small enough so that regardless of the position of filter means 90 in funnel well 26 of base 201 , the user will be able to remove filter means 90 from base 201 (after funnel 30 has been removed from base 201 ), by placing the tip of a forceps into groove 289 of base 201 at a point where filter means 90 does not cover groove 289 , then grabbing the outer periphery of filter means 90 with the forceps and removing filter means 90 from base 201 with the forceps, so that filter means 90 may be placed into a separate petri dish.
- filter means 90 should be large enough so that regardless of the position of filter means 90 in funnel well 26 of base 201 , the outer periphery of filter means 90 will be sealed between bottom surface 44 of integral flexible filter seal 38 of funnel 30 and filter seal surface 11 of base 201 .
- Vented outlet port plug 399 shown in FIG. 19 contains one or more grooves 390 v , and an equal number of corresponding grooves 390 h . Otherwise vented outlet port plug 399 is identical to outlet port plug 99 shown in FIG. 15 a . Referring to FIG. 6 , FIG. 15 a , and FIG. 19 , outlet port plug 99 can be replaced by vented outlet port plug 399 .
- vented outlet port plug 399 With vented outlet port plug 399 inserted into outlet port 10 of base 1 , surface 395 of vented outlet port plug 399 will be press fitted into outlet tube inside surface 15 of base 1 , and surface 396 of vented outlet port plug 399 will be releasably sealed to outlet tube bottom surface 2 of base 1 , and one or more grooves 390 v , and corresponding one or more grooves 390 h will place the outside atmosphere in air flow communication with pad well 27 of base 1 . There are two advantages to using vented outlet port plug 399 .
- the first advantage is that as vented outlet port plug 399 is inserted into outlet port 10 of base 1 (after the step of adding liquid growth media), it is impossible to create a positive pressure in pad well 27 of base 1 , because of the vent grooves on vented outlet port plug 399 .
- outlet port plug 99 the non-vented outlet port plug
- a positive pressure may be developed in pad well 27 of base 1 , this positive pressure may dislodge a portion of the downstream surface of filter means 90 from a portion of the upstream surface of absorbent pad 91 , possibly preventing colony growth in the dislodged portion of filter means 90 during the incubation process.
- vented outlet port plug 399 A second advantage of using vented outlet port plug 399 is that pad well 27 is kept at atmospheric pressure during the incubation step. This will facilitate the flow of liquid growth media from absorbent pad 91 , into the pores of filter means 90 , to enhance colony growth on the top surface of filter means 90 .
- Vented outlet port plug 399 may also be used with base 201 in the same manner that it is used with base 1 .
- FIG. 20 and FIG. 21 A fourth embodiment of the filtration apparatus constructed in accordance with the principles of the present invention, is shown in FIG. 20 and FIG. 21 .
- Filter means 90 is permanently sealed with a non-releasable seal to the base of the apparatus in the fourth embodiment.
- the fourth embodiment can use the same component parts as the first embodiment, or as the second embodiment, or as the third embodiment, or any combination thereof.
- FIG. 20 using the components of assembly 100 shows that the outer periphery of filter means 90 may be permanently sealed to filter seal surface 11 , of base 1 , or of base 201 , using seal 380 outside of the seal provided by integral flexible filter seal 38 of funnel 30 .
- Seal 380 may be a heat seal, an ultrasonic seal, a solvent seal, a glue seal or any other type of leak tight seal.
- FIG. 21 using the components of assembly 200 , shows that the outer periphery of filter means 90 may be permanently sealed to filter seal surface 11 , of base 1 , or of base 201 , using seal 381 below the seal provided by integral flexible filter seal 38 of funnel 30 .
- Seal 381 may be a heat seal, an ultrasonic seal, a glue seal or any other type of leak tight seal.
- FIG. 22 shows filter seal ring 410 .
- FIG. 22 a shows a partial cross-section of filter seal ring 410 , taken through section AāA, shown in FIG. 22 .
- the bottom of filter seal ring 410 contains filter seal surface 412 , and surface 413 .
- Surface 413 is adjacent to filter seal surface 412 , and sloped at an angle 420 relative to filter seal surface 412 .
- Surface 416 of filter seal ring 410 is parallel to filter seal surface 412 , and surface 415 is parallel to surface 413 .
- End surface 414 is preferably rounded as shown.
- Surface 411 of filter seal ring 410 preferably contain round 417 .
- Filter seal ring 410 is formed by revolving the section shown in FIG. 22 a about axis BāB, shown in FIG. 22 .
- Assembly 400 shown in FIG. 23 uses the same component parts as assembly 200 shown in FIG. 17 . Assembly 400 could, however, use the component parts of assembly 100 shown in FIG. 12 , or the component parts of assembly 102 shown in FIG. 16 .
- Filter means 90 of assembly 400 is permanently sealed between filter seal surface 412 of filter seal ring 410 , and filter seal surface 11 of base 201 .
- End surface 414 of filter seal ring 410 is press fitted to inside wall 5 of funnel well 26 of base 201 .
- Assembly 400 is assembled by the manufacturer by first inserting the necessary filter means and absorbent pad into base 201 , and then press fitting filter seal ring 410 into the base.
- Filter seal ring 410 is preferably molded from a flexible plastic such as polypropylene, or polyethylene. The outside, diameter of filter seal ring 410 must be larger than the inside diameter of inside wall 5 of base 201 , or of base 1 .
- FIG. 24 is an exploded view of assembly 700 .
- Assembly 700 contains base 701 , absorbent pad 791 , filter means 90 (preferably a microporous filter), funnel 730 , and lid 60 .
- Base 701 is the same as base 201 shown in FIG. 18 with the exception that base 701 contains three or more filter centering tabs 779 (preferably equally spaced around the periphery of inside wall 705 ), and a counter bore defined by side wall 751 , and chamber 753 .
- Absorbent pad 791 is the same as absorbent pad 91 shown in FIG.
- absorbent pad 791 is thicker than absorbent pad 91 .
- Absorbent pad 791 may be comprised of two or more thin layers of absorbent pad material.
- Funnel 730 is the same as funnel 30 shown in FIG. 8 , FIG. 12 , and FIG. 17 , with the exception that funnel 730 contains funnel centering tabs 792 .
- funnel 730 is shown with one integral flexible funnel seal ring 737 , more than one integral flexible funnel seal ring could be used.
- Lid 60 is the same as lid 60 shown in FIG. 17 .
- FIG. 26 shows sub-assembly 700 a with absorbent pad 791 positioned in pad well 27 of base 701 (pad well 27 is shown in FIG. 18 and described above), and with filter means 90 positioned on top of absorbent pad 791 and centered in base 701 by three or more filter centering tabs 779 .
- the diameter of filter means 90 may be made slightly smaller than the inside diameter of filter centering tabs 779 so that a small gap 741 will exist between one or more filter centering tabs and filter means 741 . This small difference in diameter makes it easier to place filter means 90 into base 701 .
- FIG. 26 shows that the thickness 778 of absorbent pad 791 is substantially greater than the height 793 of pad well 27 of base 701 . Therefore when the filter means 90 is positioned on top of absorbent pad 791 as shown in FIG. 26 , a gap 779 will exist between the downstream side of filter means 90 and filter seal surface 711 of base 701 .
- FIG. 27 shows assembly 700 in the assembled state.
- FIG. 28 is a partial cross-sectional view of a portion of assembly 700 showing in detail how funnel 730 is assembled to base 701 .
- chamber 753 guides integral flexible funnel seal ring 737 of funnel 730 as it is deflected and pressed into the lower portion of inside wall 705 , to attain the press fit shown in FIG. 28 .
- one or more integral flexible funnel seal rings 737 of funnel 730 will secure funnel 730 to base 701 , and three or more funnel centering tabs 792 will be positioned in the counter bore of inside wall 705 of base 701 , defined by side wall 751 and chamber 753 . Funnel centering tabs 792 keep funnel 730 centered in base 701 .
- Compressed absorbent pad 791 exerts an upward force on filter means 90 , thus keeping filter means 90 in tension and wrinkle free.
- the outer periphery of filter means 90 may be non-releasably sealed to filter seal surface 711 (using a heat seal, an ultrasonic seal, a solvent seal, a glue seal, or any other type of non-releasable leak tight seal) before funnel 730 is inserted into base 701 , in which case the outer periphery of absorbent pad 791 will be compressed by filter means 90 .
- Compressed absorbent pad 791 will exert an upward force on filter means 90 , thus keeping filter means 90 in tension and wrinkle free.
- filter means 90 and absorbent pad 791 will be wetted. Because filter means 90 is very thin it will not swell appreciably in thickness, but will expand in diameter as it is wetted.
- filter means 90 will wrinkle if an absorbent pad with a thickness approximately equal to the height of pad well 27 is used (as described in the previous embodiments of the present invention). This wrinkling will prevent portions of the downstream surface of filter means 90 from contacting the upstream surface of absorbent pad 791 , which in turn will impede colony growth during the incubation cycle.
- filter means 90 will start out in tension (i.e. wrinkle free) when dry, and will remain in tension as absorbent pad 791 swells in thickness as it becomes wet. Because the thickness of absorbent pad 791 is much greater than the thickness of filter means 90 , absorbent pad 791 will swell much more in thickness than filter means 90 will, thereby keeping filter means 90 in tension and wrinkle free when both the filter means and the absorbent pad are wet.
- Absorbent pad 791 should be made thick enough to assure that filter means 90 remains wrinkle free throughout the filtration process, but not so thick to cause a brittle filter means to fracture in the region where it is compressed.
- any of the above assemblies can be used to detect particulates in a liquid sample.
- the procedure is the same with the exception that the addition of liquid growth media, and incubation step are not necessary.
- FIG. 29 and FIG. 31 A seventh embodiment of the filtration apparatus constructed in accordance with the principles of the present invention, is shown in FIG. 29 and FIG. 31 .
- Funnel 830 is press fitted into funnel well 826 of base 801 with an interference fit between outer wall 859 of funnel 830 and inside wall 805 of base 801 .
- the one or more integral flexible funnel seal rings are eliminated.
- Funnel 830 contains integral flexible filter seal 838 , disposed around the bottom edge of funnel 830 .
- Base 801 does not contain a pad well for an absorbent pad disposed in the bottom of funnel well 26 .
- a filter means 890 is compression sealed between bottom surface 844 of integral flexible filter seal 838 of funnel 830 , and filter seal surface 811 of base 801 .
- the filter means may be a microporous filter, a screen filter, or a depth filter.
- the filter means is supported by a filter support means shown as filter support ribs 807 disposed in the bottom of the funnel well.
- the filter support means could be any filter support arrangement that provides the proper support for the filter means, and that also provides a fluid flow communication means between the downstream side of the filter means, and outlet port 810 .
- the voids around filter support ribs 807 are in fluid flow communication with outlet port 810 .
- the apparatus shown in FIG. 29 could be used to count bacterial colonies, yeast colonies, or mold colonies, from a liquid sample as follows:
- the end user will receive the filtration apparatus (i.e. assembly 800 ) assembled as shown in FIG. 29 .
- the filtration apparatus will preferably be purchased sterile, and will be removed from its packaging and operated in a clean environment (i.e. a laminar flow hood known in the art).
- the operator will remove the lid (not shown) from funnel 830 , and then add a quantity of liquid to be tested to the interior of funnel 830 .
- the liquid will wet filter means 890 .
- a vacuum source is then connected to outlet port 810 of base 801 .
- the vacuum source will cause the liquid in the funnel to be filtered through filter means 890 , with the downstream liquid being sucked into the vacuum source.
- the filter means should be a microporous filter with a pore size of 0.45 ā or smaller.
- the bacteria, yeast, or mold in the liquid sample will be trapped on the upstream surface of filter means 890 .
- Funnel 830 will then be removed from base 805 , then filter means 890 will be removed from base 801 as described above, then filter means 890 will be placed into a petri dish that contains the proper growth media (not shown). The petri dish will then be placed into an oven for incubation of the bacteria, or of the yeast, or of the mold. When the incubation cycle is complete the colonies can be counted.
- the apparatus shown in FIG. 29 could be used to count particulates in a liquid sample as follows:
- the end user will receive the filtration apparatus (i.e. assembly 800 ) assembled as shown in FIG. 29 .
- the filtration apparatus will preferably be purchased sterile, and will be removed from its packaging and operated in a clean environment (i.e. a laminar flow hood known in the art).
- the operator will remove the lid (not shown) from funnel 830 , and then add a quantity of liquid to be tested to the interior of funnel 830 .
- the liquid will wet filter means 890 .
- a vacuum source is then connected to outlet port 810 of base 801 .
- the vacuum source will cause the liquid in the funnel to be filtered through filter means 890 , with the downstream liquid being sucked into the vacuum source.
- the filter means could be a microporous filter, a screen filter, or a depth filter, although a microporous filter is preferable with a pore size small enough to trap the smallest particles that are desired to be counted.
- the particles to be counted will be trapped on the upstream surface of the filter means, where they can be counted either in the funnel, or alternately the funnel can be carefully removed from the base, and then the trapped particles can be counted with the filter in the base, or the filter could be carefully removed from the base for counting.
- the vacuum filtration apparatus shown in FIG. 29 could use a funnel without an integral flexible filter seal 838 , in which case the filter means 890 would be sealed with a compression seal between filter seal surface 811 of base 801 , and bottom surface 899 of funnel 830 .
- the integral flexible filter seal could also be eliminated, and the filter means could be sealed between the seal surface of the appropriate base and the bottom surface of the appropriate funnel.
- the filter means could be sealed to the base with a non-releasable seal, such as a heat seal, an ultrasonic seal, a solvent seal, a glue seal, or any other leak tight non-releasable seal.
- base 901 contains funnel well 926 , bounded by filter seal surface 911 , and inner surface 905 of side wall 913 , with side wall 913 disposed above and substantially perpendicular to filter seal surface 911 .
- the base could contain a groove like groove 289 of base 201 , shown in FIG. 18 , in which case a portion of the side wall would be disposed above and substantially perpendicular to the filter seal surface.
- Inner surface 905 is preferably textured to increase its coefficient of friction, as shown by the cross hatching 905 a on inner surface 905 in FIG. 33 a and FIG. 33 c .
- inner surface 905 of side wall 913 lacks any projections or grooves that can be used to interlock with a corresponding groove or projection on the funnel, and inner surface 905 extends upward from filter seal surface 911 in a straight line to the top of base 901 .
- Base 901 also contains a pad well 927 , bounded by lower inside wall 908 , and bottom inside surface 909 .
- Base 901 contains outlet port 910 .
- Base 901 also contains a means to support absorbent pad 991 , shown here by circular filter support ribs 907 , which protrude upward from bottom inside surface 909 .
- Circular filter support ribs 907 are interrupted by one or more radial drain channels 994 r .
- Circular drain channels 994 c i.e. the space between adjacent circular filter support ribs 907 ), are in fluid flow communication with radial drain channels 994 r .
- Base 901 also contains a means to support the portion of absorbent pad 991 that bridges outlet port 910 , shown in FIG. 33 a , and FIG.
- central filter support hub 998 and one or more radial filter support ribs 997 which attach central filter support hub 998 to the inner most circular filter support rib 907 .
- One or more passages 999 place one or more radial drain channels 994 r in fluid flow communication with outlet port 910 .
- the top surface of filter support ribs 907 preferably lie in a horizontal plane, said plane being located below filter seal surface 11 , a distance that is preferably less than or equal to the thickness of absorbent pad 991 .
- base 901 may also contain support ring 929 corresponding to support ring 29 of base 1 .
- Support ring 929 supports base 901 when base 901 is placed on a flat surface.
- Outlet port 910 is in fluid flow communication with pad well 927 .
- the outer most circular filter support rib is preferably not interrupted.
- Base 901 is preferably made from a pliable material such as low density polyethylene, high density polyethylene, or polypropylene. Although it is preferred to make base 901 circular as shown, it could be made in another shape such as square or rectangular.ā
- FIG. 34 a , FIG. 34 b , and FIG. 34 c show funnel 930 .
- Funnel 930 contains outside wall 935 .
- the bottom of outside wall 935 may contain step 936 and chamfer 937 .
- step 936 has a bottom outside diameter D 2 that is preferably smaller than the outside diameter D 3 of outside wall 935 .
- Chamfer 937 acts as a transition between step 936 and outside wall 935 .
- Step 936 and outside wall 935 may contain an outward taper (i.e. their respective diameters may increase with height).
- the top portion 939 of outside wall 935 may contain an inward taper (i.e. its diameter may decrease with height).
- the portion of outside wall 935 that fits into base 901 preferably contains texture 933 (shown by cross-hatching in FIG. 34 a ) to increase its coefficient of friction.
- the portion of outer surface 933 above chamber 937 that fits into base 901 lacks any projections or grooves that can be used to engage the base.
- Funnel 930 may also contains lid clamp ring 934 . Referring to FIG. 34 c , lid clamp ring 934 contains sloped surface 943 , end surface 987 , and bottom surface 952 . Sloped surface 943 may terminate at bottom surface 952 , thus eliminating end surface 987 .
- Funnel 930 also contains inner wall 931 and filter seal surface 945 .
- inner wall 931 may contain chamfer 922 .
- Chamber 922 increases the surface area of filter seal surface 945 .
- Inner wall 931 is preferably tapered so that its diameter increases with height.
- the top portion 932 of inner wall 931 may contain a different taper than the lower portion of inner wall 931 .
- Funnel 930 is shown circular in shape to match base 901 . If base 901 is made from another shape such as square or rectangular, then funnel 930 must be made of the same shape to match base 901 so that referring to FIG.
- the shape of a closed curve defined as the intersection of a horizontal plane with the outside surface of funnel 930 will have the same shape as a closed curve defined as the intersection of the same horizontal plane with inner surface 905 of base 901 , and that the radius at any point on the funnel is defined as the length of a horizontal line that starts at the vertical centerline of the funnel and that ends at the intersection of a vertical plane that passes through the vertical centerline of the funnel and the point on the funnel to be measured, and a corresponding radius on the base is defined as the length of a horizontal line that starts at the vertical centerline of the funnel and that ends at the intersection of the same vertical plane and the point to be measured on the base.ā
- lid 960 is identical to lid 60 shown in FIG. 11 with the following exceptions. Lid 960 does not contain filter hold down ring 75 shown in FIG. 11 , and lid 960 contains one or more lid vent tabs 975 , while lid 60 does not contain one or more lid vent tabs 975 . If base 901 is made from another shape such as square or rectangular, then lid 960 must be made of the same shape to match base 901 .
- FIG. 36 a shows assembly 900 in its pre-assembled state with base 901 containing absorbent pad 991 , with filter element 990 non-releasably sealed to base 901 , said seal being a heat seal, an ultrasonic seal, a solvent seal, a glue seal, or any other type of leak tight non-releasable seal.
- FIG. 36 a shows absorbent pad 991 with a thickness greater than the height of pad well 927 of base 901 shown in FIG. 33 a .
- the outer periphery of filter element 990 is sealed to base 901 with non-releasable seal 981 .
- absorbent pad 991 is thicker than the height of pad well 927 of base 901 (as explained above), the outer periphery of absorbent pad 991 will be compressed by filter means 990 . Compressed absorbent pad 991 exerts an upward force on filter means 990 , thus keeping filter means 990 in tension and wrinkle free.
- Non-releasable seal 981 compresses absorbent pad 991 to keep filter means 996 in tension and wrinkle free, just as a compression seal does as described above with reference to FIG. 28 .
- funnel 930 is placed onto base 901 in its pre-assembled state. If diameter D 2 shown in FIG. 34 b is less than the inside diameter of inner surface 905 of side wall 913 of base 901 , and diameter D 3 also shown in FIG. 34 b , is greater than the inside diameter of inner surface 905 of side wall 913 of base 901 , then the funnel can easily be positioned onto the base with step 936 of funnel 930 inserted into funnel well 926 of base 901 (shown in FIG.
- Base 901 must be made of a more pliable material than funnel 930 as will become evident later.
- funnel 930 could be made from a clear material such as polystyrene, polycarbonate, or acrylic; or if base 901 is made from low density polyethylene, then funnel 930 could be made from materials such as polystyrene, polycarbonate, acrylic, or polypropylene, but the material combinations are not limited to those just listed.
- FIG. 37 a and FIG. 37 c show the vacuum filtration apparatus (i.e. assembly 900 ) with funnel 930 releasably attached to base 901 .
- This is accomplished by pushing funnel 930 down into base 901 from its pre-assembled state (shown in FIG. 36 a and FIG. 36 c ) to its assembled state shown in FIG. 37 a and FIG. 37 c , thereby releasably attaching funnel 930 to base 901 .
- the bottom portion of outside wall 935 of funnel 930 forces side wall 913 of base 901 to deflect outward as shown in FIG.
- the base be made of a material that is sufficiently pliable to allow the funnel to be inserted into the base as just described, and to deflect the side wall of the base outward.
- the interference fit between the bottom portion of outside wall 935 of funnel 930 and inner surface 905 of side wall 913 of base 901 will be adequate if the bottom portion of outside wall 935 of funnel 930 and inner surface 905 of side wall 913 of base 901 are made smooth, the strength of the interference fit will be improved if either the bottom portion of outside wall 935 of funnel 930 contains texture 933 or if the inner surface 905 of side wall 913 of base 901 contains texture 905 a , or if both surfaces are textured.
- both the base and funnel can be made to tolerances of ā 0.004ā²ā² while providing an adequate interference fit between the base and funnel, and also allowing the funnel to be fully inserted into the base so that the filter means can be reliably sealed with a compression seal between the filter seal surface of the base and the filter seal surface of the funnel.
- filter seal surface 945 of funnel 930 will press against the upstream surface of filter element 990 .
- non-releasable seal 981 could be eliminated, and filter element 990 could be releasably sealed with a compression seal between filter seal surface 945 of funnel 930 , and filter seal surface 911 of base 901 .
- a releasable seal it would be preferable that the inner edge of filter seal surface 945 of base 901 extend inward from its location shown in FIG. 37 c to the inner edge of filter seal surface 911 of base 901 shown in FIG. 33 a.
- lid 960 is shown in its pre-assembled state with edge 976 of lid 960 resting on surface 943 of lid clamp ring 934 of funnel 930 .
- Surface 943 is preferably sloped as shown in FIG. 36 b .
- lid 960 is shown in its assembled state releasably attached to funnel 930 with an interference fit between the bottom portion of inner surface 971 of lid 960 and outer edge 987 of lid clamp ring 934 of funnel 930 , with surface 949 of one or more lid vent tabs 975 in contact with top wall 942 of funnel 930 .
- a gap 993 will exist between top wall 942 of funnel 930 , and inside top surface 970 of lid 960 at all points on top wall 942 of funnel 930 that do not contact a lid vent tab 975 of lid 960 .
- all segments of outer wall 977 of lid 960 will contact lid clamp ring 934 of funnel 930 , and will be bent out so that inner surface 971 of lid 960 is in contact with outer surface 987 of lid clamp ring 934 .
- the height of inner surface 971 of outer wall 977 of lid 960 should be equal to or greater than the distance between top wall 942 of funnel 930 and the bottom surface 952 of lid clamp ring 934 of funnel 930 , and equal to or greater than the distance between top outer wall 912 of base 901 and edge 959 of base 901 (shown in FIG. 38 d ). Because outer wall 977 of lid 960 is segmented by slots 964 , lid clamp ring 934 of funnel 930 will force all segments to bend outward when lid 960 is positioned on the top of funnel 930 . By increasing the number of slots 964 of lid 960 , the length of each segment of outer wall 977 of lid 960 between adjacent slots 964 will be reduced.
- each segment As the length of each segment is reduced, the curvature of each segment will be reduced, therefore, the flexibility of each segment will be increased, thus enabling the segment to bend outward without breaking, even when the lid 960 is made from a stiff material such as polystyrene.
- surface 943 of lid clamp ring 934 initially contacts edge 976 of lid 960 . Then as lid 960 is further pressed onto funnel 930 , surface 943 causes inner surface 971 of outer wall 977 of lid 960 to bend outward gradually until lid 960 is fully seated on funnel 930 , and inner surface 971 of outer wall 977 of lid 960 is in contact with end surface 987 of lid clamp ring 934 .
- This arrangement of segmented outer wall 977 of lid 960 being press fitted onto lid clamp ring 934 of funnel 930 allows the funnel and lid to be made within a dimensional tolerance range of ā 0.004ā²ā² or greater, while providing an adequate interference fit between the lid and funnel to prevent accidental disengagement of the lid from the funnel, while also allowing the end user to place the lid onto the funnel, or to remove the lid from the funnel with one hand.
- the firmness of the interference fit can be adjusted by increasing the diameter of lid clamp ring 934 to increase the firmness, or by decreasing the diameter of lid clamp ring 934 to reduce the firmness, while keeping all other variables constant.
- the dimensional tolerance range of ā 0.004ā²ā² is well within the normal production range of dimensional tolerances. It should be noted that in some applications, such as counting particulates in a liquid sample the filtration apparatus may be used without the lid.
- the end user will use the vacuum filtration apparatus shown as assembly 900 the same as assembly 100 , assembly 200 , and assembly 700 were used, as explained above.
- filter means 990 and absorbent pad 991 will be wetted. Because filter means 990 is very thin it will not swell appreciably in thickness, but will expand in diameter as it is wetted. Filter means 990 will wrinkle if an absorbent pad with a thickness approximately equal to the height of pad well 927 is used (as described in the previous embodiments of the present invention). This wrinkling will prevent portions of the downstream surface of filter means 990 from contacting the upstream surface of absorbent pad 991 , which in turn will impede colony growth during the incubation cycle.
- filter means 990 will start out in tension (i.e. wrinkle free) when dry, and will remain in tension as absorbent pad 991 swells in thickness as it becomes wet. Because the thickness of absorbent pad 991 is much greater than the thickness of filter means 990 , absorbent pad 991 will swell much more in thickness than filter means 990 will, thereby keeping filter means 990 in tension and wrinkle free when both the filter means and the absorbent pad are wet.
- Filter means 990 will remain in tension and wrinkle free throughout the filtration cycle while a vacuum is applied to outlet port 910 , and remain in tension and wrinkle free when the filtration cycle is complete and outlet port 910 has been vented to atmosphere. This will assure uniform contact between the downstream surface of filter means 990 and the upstream surface of absorbent pad 991 , thus assuring proper incubation of any colonies trapped on the upstream surface of filter means 990 , during the incubation cycle.
- Absorbent pad 991 should be made thick enough to assure that filter means 990 remains wrinkle free throughout the filtration process, but not so thick to cause a brittle filter means to fracture in the region where it is compressed.
- the user may proceed in one of four ways.
- the first option is to add a quantity of liquid growth media to funnel 930 , and then to momentarily reapply the vacuum to outlet port 910 of base 901 .
- the vacuum will draw the liquid growth media through filter means 990 , and then into absorbent pad 991 , with any excess liquid growth media going into the vacuum source. It is important that the user turn off the vacuum source and vent outlet port 910 as soon as the level of the liquid growth media in funnel 930 reaches the top surface of filter means 990 , to prevent the vacuum source from sucking the liquid growth media out of absorbent pad 991 .
- the pores of filter means 990 will remain wet with liquid growth media because the bubble point of filter means 990 exceeds the pressure differential applied to filter means 990 by the vacuum source (i.e. vacuum pump). If the vacuum is left on too long the liquid growth media will be sucked out of absorbent pad 991 because of its large nominal pore size, and the subsequent incubation step will give a false result.
- the user will now remove lid 960 from funnel 930 , and then remove funnel 930 from base 901 , and then discard funnel 930 , and then place lid 960 onto base 901 , and then insert outlet port plug 99 (shown in FIG. 15 a ) into outlet port 910 of base 901 , and then place assembly 900 a into an incubator, inverted as shown in FIG.
- filter hold down ring 75 of lid 60 (shown in FIG. 11 ) must be added to lid 960 to keep filter element 990 and absorbent pad 991 in place during incubation as described in the first embodiment of the present invention.
- filter hold down ring 75 of lid 60 (shown in FIG. 11 ) must be added to lid 960 to keep filter element 990 and absorbent pad 991 in place during incubation as described in the first embodiment of the present invention.
- assembly 900 a will be removed from the incubator, and the top surface of filter means 990 will be examined for growth of bacteria colonies, yeast colonies, mold colonies, or the like.
- a gridded filter as shown in FIG. 4 may be used to assist in colony counting.
- FIG. 38 a and FIG. 38 c show assembly 900 a with lid 960 in its pre-assembled state on base 901 after funnel 930 has been removed from base 901 .
- edge 976 of lid 960 rests on surface 904 of base 901 .
- FIG. 38 b and FIG. 38 d show assembly 900 a with lid 960 in its assembled state on base 901 after funnel 930 has been removed from base 901 .
- the lower portion of inner surface 971 of lid 960 is releasably attached to edge 959 of base 901 with an interference fit.
- edge 959 of base 901 must be greater than the deflected outside diameter of top outer wall 912 of base 901 as shown in FIG. 38 d and greater than or equal to the outside diameter of end surface 987 of lid clamp ring 934 of funnel 930 (shown in FIG. 37 b ). Lid 960 will fit on base 901 the same as it fits on funnel 930 .
- the nominal diameter of edge 959 of base 901 should be equal to or greater than the nominal diameter of end surface 987 of lid clamp ring 934 of funnel 930 .
- the user has is to remove lid 960 from funnel 930 , and then remove funnel 930 from base 901 , and then discard funnel 930 , and then place lid 960 onto base 901 as described above, and then invert assembly 900 a , as shown in FIG. 38 b and FIG. 38 d .
- the filter means is sealed to the base with a releasable seal such as a compression seal, then filter hold down ring 75 of lid 60 (shown in FIG. 11 ) must be added to lid 960 to keep filter element 990 and absorbent pad 991 in place during incubation as described in the first embodiment of the present invention.
- outlet port 910 of base 901 will be open (i.e.
- outlet port plug 99 shown in FIG. 15 a will not be inserted in outlet port 910 ).
- a quantity of liquid growth media will now be dispensed into outlet port 910 of base 901 .
- the liquid growth media will flow from outlet port 910 of base 901 , into pad well 927 of base 901 , and then into absorbent pad 991 . Because the pores of filter means 990 remain wetted from the previous filtration step (because the bubble point pressure of filter means 990 is greater than the pressure differential that was applied to filter means 990 by the vacuum), air bubbles may get trapped in absorbent pad 991 , as absorbent pad 991 is wetted with the liquid growth media.
- the following incubation step may produce a false negative in the region of filter means 990 above said air bubble.
- the user will now insert outlet port plug 99 into outlet port 910 of base 901 as explained above, and then place assembly 900 a into an incubator, inverted as shown in FIG. 38 b . After the proper incubation time assembly 900 a will be removed from the incubator, and the top surface of filter means 990 will be examined for growth of bacteria colonies, yeast colonies, or mold colonies.
- a gridded filter as shown in FIG. 4 may be used to assist in colony counting.
- a compression seal is used to seal filter means 990 to base 901 with a releasable seal
- the third option the user has is to remove lid 960 from funnel 930 , and then remove funnel 930 from base 901 , and then discard funnel 930 and lid 960 , and then remove filter means 990 from base 901 and place filter means 990 into a petri dish (known in the art) containing the desired growth media for incubation and colony counting.
- the fourth option the user has is to remove the lid, and possibly remove the funnel and then count the particles trapped on the upstream surface of the filter means. In this type of application it may not be necessary to use a lid in the first place.
- the lid, base section assembly 900 a becomes a petri dish.
- the interior of this petri dish is in air flow communication with the outside atmosphere through a gap 993 between the top outer wall 912 of base 901 and the inside top surface 970 of lid 960 , through a gap 995 between the outside surface 906 of side wall 913 of base 901 and the inner surface 971 of lid 960 , through at least one slot in the side wall of lid 960 .
- the gap between the top outer wall 12 of base 1 and the inside top surface 63 of lid 60 is one or more vent slots 3 .
- lid 960 and lid 60 have a plurality of slots in their outer wall to make the outer wall flexible, a lid without these slots could be used, in which case at least one through hole could be used to place the gap between the outside wall of base and the inner surface of lid in air flow communication with the outside atmosphere.
- FIG. 39 a through FIG. 41 d A ninth embodiment of the filtration apparatus constructed in accordance with the principles of the present invention is shown in FIG. 39 a through FIG. 41 d .
- the ninth embodiment eliminates the gap 982 (shown in FIG. 37 c ) between the funnel and base.
- FIG. 40 b shows the filtration apparatus as assembly 1000 in the assembled state containing base 1001 , funnel 1030 , and filter element 990 .
- FIG. 40 a shows assembly 1000 in the pre-assembled state.
- Base 1001 is identical to base 901 with the exception that pad well 927 has been eliminated, therefore the same reference numbers are used to designate the features of base 1001 as were used to designate the features of base 901 .
- Base 901 could replace base 1001 in assembly 1000 in which case absorbent pad 991 would be added to assembly 1000 .
- Assembly 1000 could also include lid 60 or lid 960 .
- funnel 1030 is the same as funnel 930 with the following exceptions.
- the draft angle A 1 of the bottom portion of outside wall 1035 is equal to or greater than the minimum deflected angle of inner surface 905 of side wall 913 of base 1001 , and lid clamp ring 934 of funnel 930 is replaced with segmented lid clamp ring 1034 of funnel 1030 .
- the draft angle of the upper part of outside wall 1035 of funnel 1030 may or may not be equal to that of the bottom portion of outside wall 1035 .
- the bottom portion of outside wall 1035 that is inserted into the base contains textured surface 1033 .
- FIG. 41 a shows the bottom portion of assembly 1000 in the pre-assembled state with the maximum interference between base 1001 and funnel 1030 .
- inner surface 905 of base 1001 may contain an outward taper or draft angle, with the draft angle defined as the angle between the central axis of the base and inner surface 905 of the base, with the value of the draft angle being greater than or equal to zero degrees.
- vertical centerline 928 intersects corner 923 of base 1001 between inner surface 905 of base 1001 and filter seal surface 911 of base 1001 .
- Vertical centerline 928 also intersects corner 1066 of funnel 1030 between step 1036 of funnel 1030 and filter seal surface 1045 of funnel 1030 so that the maximum outside radius of corner 1066 is equal to the inside radius of the bottom of inner surface 905 of base 1001 as shown in FIG. 41 a .
- Vertical centerline 928 also intersects the bottom edge of chamfer 1037 so that the maximum outside radius of the bottom edge of the chamfer is equal to the inside radius of the bottom of inner surface 905 of base 1001 as shown in FIG. 41 a .
- chamfer 1037 of funnel 1030 rests on edge 927 of base 1001 .
- 41 b shows the bottom portion of assembly 1000 in the assembled state with funnel 1030 fully inserted into base 1001 , with the maximum interference between base 1001 and funnel 1030 .
- the portion of the outside wall of the funnel above chamfer 1037 that is inserted into base 1001 extends upward in a straight line.
- draft angle A 1 of the bottom portion of outside wall 1035 of funnel 1030 equal to or greater than the minimum deflected angle of inner surface 905 of side wall 913 of base 1001 , the entire part of the bottom portion of outside wall 1035 of funnel 1030 below top outside wall 912 of base 1001 will contact inner surface 905 of side wall 913 of base 1001 to form an interference fit in region 996 , thereby maximizing the surface area of the interference fit, thereby maximizing the strength of the interference fit.
- the minimum deflected angle of inner surface 905 of side wall 913 of base 1001 is defined as the minimum angle at which the entire part of the bottom portion of outside wall 1035 of funnel 1030 below top outside wall 912 of base 1001 will contact inner surface 905 of side wall 913 of base 1001 to form an interference fit in region 996 .
- filter element 990 With funnel 1030 fully seated in base 1001 as shown in FIG. 41 b , filter element 990 will be releasably sealed with a compression seal between filter seal surface 1045 of funnel 1030 and filter seal surface 911 of base 1001 .
- Filter element 990 could alternately be sealed to base 1001 with a non-releasable seal such as a heat seal, an ultrasonic seal, a glue seal, a solvent seal, or any other type of leak tight non-releasable seal.
- a non-releasable seal such as a heat seal, an ultrasonic seal, a glue seal, a solvent seal, or any other type of leak tight non-releasable seal.
- FIG. 41 c shows the bottom portion of assembly 100 in the pre-assembled state with the minimum interference between base 1001 and funnel 1030 .
- the bottom portion of outside wall 1035 of funnel 1030 rest on edge 927 of base of 1001 .
- FIG. 41 d shows the bottom portion of outside wall 1035 of assembled state with the minimum interference between base 1001 and funnel 1030 .
- filter element 990 With funnel 1030 fully seated in base 1001 as shown in FIG. 41 d , filter element 990 will be releasably sealed with a compression seal between filter seal surface 1045 of funnel 1030 and filter seal surface 911 of base 1001 . Filter element 990 could alternately be sealed to base 1001 with a non-releasable seal such as a heat seal, an ultrasonic seal, a glue seal, a solvent seal, or any other type of leak tight non-releasable seal. Gap 967 shown in FIG.
- 41 d is the maximum allowable tolerance on radius between base 1001 and funnel 1030 while still maintaining an interference fit over the entire region 996 .
- the maximum tolerance on diameter as referred to above is two times the value of gap 967 .
- the maximum allowable tolerance will be determined by the type of materials used, and by the thickness of side wall 913 of base 901 or of base 1001 .
- both the base and funnel can be made to tolerances of ā 0.004ā²ā² while providing an adequate interference fit between the base and funnel, and also allowing the funnel to be fully inserted into the base so that the filter means can be reliably sealed with a compression seal between the filter seal surface of the base and the filter seal surface of the funnel.
- FIG. 42 a and FIG. 42 b A tenth embodiment of the filtration apparatus constructed in accordance with the principles of the present invention, is shown in FIG. 42 a and FIG. 42 b .
- the filtration apparatus shown as assembly 1100 contains base 1001 , funnel 1130 , and lid 960 .
- Base 1001 is identical to base 901 with the exception that pad well 927 has been eliminated, therefore the same reference numbers are used to designate the features of base 1001 as were used to designate the features of base 901 .
- Base 901 could replace base 1001 in assembly 1100 in which case absorbent pad 991 would be added to assembly 1100 .
- Lid 60 could replace lid 960 in assembly 1100 , or the lid could be eliminated.
- Funnel 1130 contains all of the features of funnel 1030 plus the additional feature of funnel stop 1147 .
- Funnel 930 or funnel 1030 could replace funnel 1130 in assembly 1100 .
- Assembly 1100 also contains pliable sealing means 1146 .
- Pliable sealing means 1146 should be made from a compressible material such as silicon rubber, Teflon, Buna, or the like.
- Pliable sealing means 1146 could be an o-ring, or a gasket.
- Pliable sealing means 1146 could also be an integral part of funnel 1130 , in which case funnel 1130 would be molded from a first material such as styrene, acrylic, polycarbonate, or polypropylene, and pliable sealing means 1146 would be molded from a pliable material such as polyurethane.
- filter element 990 is sealed to base 1001 with a releasable compression seal between filter seal surface 911 of base 1001 and the bottom surface of pliable sealing means 1146 , and the bottom surface 1145 of funnel 1130 is sealed with a releasable compression seal to the top surface of pliable sealing means 1146 .
- funnel stop 1147 prevents pliable sealing means 1146 from being over compressed.
- funnel stop 1147 could be eliminated. Because pliable sealing means 1146 can be made from a soft material that will flex in all directions, this type of seal is better suited to seal very thin non-compressible filter means such as polycarbonate microporous membrane filters.
- Pliable sealing means 1146 could also be used in any of the previous embodiments of the present invention, or with any filtration apparatus in which the funnel is attached to the base with an interference fit.
- pliable sealing means could be used in the first embodiment (shown in FIG. 12 and FIG. 13 b ) with pliable sealing means 1146 being placed between bottom surface 44 of funnel 30 and the upstream surface of filter means 90 .
- Pliable sealing means 1146 could also be used in the first embodiment if integral flexible filter seal 38 were eliminated from funnel 30 , in which case pliable sealing means 1146 would be placed between the bottom surface of funnel 30 and the upstream surface of filter means 90 .
- Pliable sealing means could also be used in the sixth embodiment (shown in FIG. 24 through FIG.
- pliable sealing means 1146 will push down on the outer periphery of filter means 90 , so that the outer periphery of filter means 90 is sealed with a compression seal between bottom surface of pliable sealing means 1146 , and filter seal surface 711 of base 701 .
- absorbent pad 791 is substantially thicker than the height of pad well 27 of base 701 (as explained above), the outer periphery of absorbent pad 791 will be compressed by filter means 90 which is in turn will be compressed by pliable sealing means 1146 . Compressed absorbent pad 791 exerts an upward force on filter means 90 , thus keeping filter means 90 in tension and wrinkle free.
- FIG. 43 a and FIG. 43 b show vacuum base assembly 1200 to be used with a vacuum filtration apparatus as will be explained below.
- Vacuum base assembly 1200 contains a vacuum base 1277 .
- Vacuum base 1277 contains vacuum port 1288 disposed in wall 1250 of vacuum base 1277 , with wall 1250 disposed substantially horizontal.
- Vacuum port 1288 is located on wall 1250 of vacuum base 1277 so that the central axis of the outlet port of the vacuum filtration apparatus that is to be used with vacuum base 1277 substantially aligns with the central axis of vacuum port 1288 of vacuum base 1277 when the vacuum filtration apparatus is aligned with and disposed above vacuum base 1277 .
- Vacuum base 1277 may contain boss 1280 , in which case vacuum port 1288 extends through boss 1280 as shown in FIG. 43 b .
- Vacuum base 1277 may also contain a means to locate the vacuum filtration apparatus on vacuum base 1277 shown as ring 1283 disposed on wall 1250 of vacuum base 1277 . Another means could be used to locate the vacuum filtration apparatus on vacuum base 1277 such as a segmented ring or a pattern of pins.
- Vacuum base 1277 also contains a means to place vacuum port 1288 in fluid flow communication with a vacuum source shown as port 1273 . Alternately port 1273 could be eliminated and vacuum port 1288 could be placed in fluid flow communication with a vacuum source by a length of tubing.
- Vacuum base assembly 1200 may contain a means to clamp the vacuum filtration apparatus to vacuum base 1277 shown as a pair of cams 1278 which are supported by cam supports 1222 , and rotatable by handles 1248 .
- Cams 1278 are shown in the open or non-clamping position in FIG. 43 a and FIG. 43 b .
- Cams 1278 contain sloped surface 1252 . If cams 1278 are rotated by handles 1248 , 1800 in the direction shown by arrows 1279 cams 1278 will be in the closed or clamping position with clamp surfaces 1289 of cams 1278 positioned toward the center of vacuum base 1277 .
- Vacuum base assembly 1200 also contains gasket 1285 disposed on wall 1250 of vacuum base 1277 , with the bottom surface of gasket 1285 in contact with wall 1250 of vacuum base 1277 , and with vacuum port 1288 located within the inner periphery of gasket 1285 as shown in FIG. 43 b.
- FIG. 44 a and FIG. 44 b show filtration system 1300 containing vacuum base assembly 1200 and assembly 1100 described above. Vacuum base assembly 1200 is used in the following way. The user will place a vacuum filtration apparatus (shown in FIG. 44 a and FIG.
- a means to locate the vacuum filtration apparatus on vacuum base 1277 may be used to align the vacuum filtration apparatus on the vacuum base assembly.
- the gasket With the vacuum filtration apparatus positioned on vacuum base assembly 1200 , the gasket will seal the void between the portion of the bottom outside wall of the base of the vacuum filtration apparatus (shown as bottom outside wall 916 ) that is not in contact with gasket 1285 , to the wall 1250 of vacuum base assembly 1200 .
- a means must be provided to place the void between the portion of the bottom outside wall of the base of the vacuum filtration apparatus (shown as bottom outside wall 916 ) that is not in contact with gasket 1285 , and the wall 1250 of vacuum base assembly 1200 (shown as chamber 1372 ) in fluid flow communication with vacuum port 1288 of vacuum base 1277 .
- This means is shown as gap 1396 between the top wall of boss 1280 of vacuum base 1277 and the bottom outside wall of the base of the vacuum filtration apparatus, and gap 1396 a between the inside wall of vacuum port 1288 and the outside wall of the outlet port of the vacuum filtration apparatus.
- the user With the vacuum filtration apparatus positioned on vacuum base assembly 1200 as described in the previous paragraph and shown in FIG. 44 a and FIG. 44 b , the user will now remove the lid (shown as lid 960 ) from the vacuum filtration apparatus (shown as assembly 1100 ) and add a quantity of liquid to be filtered to the funnel (shown as funnel 1130 ). The lid will then be placed back onto the funnel. Vacuum will now be applied to vacuum port 1288 of vacuum base 1277 via port 1273 .
- the downward force created by the weight of the liquid in the funnel should be sufficient to make a seal between the bottom surface of the base of the filtration apparatus (shown as surface 914 of base 1101 ) and the top surface 1251 of gasket 1285 the user may have to momentarily press down on the filtration apparatus to make this seal.
- the vacuum applied to vacuum port 1288 of vacuum base 1277 will draw the air out of chamber 1372 via gap 1396 and gap 1396 a as shown by arrow 1254 in FIG. 44 b , thereby evacuating chamber 1372 .
- the vacuum in chamber 1372 will apply a downward force to the base of the vacuum filtration apparatus, thereby keeping the outer edge of gasket 1285 compressed and thereby maintaining a seal between the bottom outside wall of the base of the filtration apparatus and the top surface 1251 of gasket 1285 .
- the vacuum in vacuum port 1288 will also create a vacuum on the downstream side of the filter means in the vacuum filtration apparatus by drawing air out of the outlet port of the base of the vacuum filtration apparatus (shown as outlet port 1110 in FIG. 44 a ) as described above with respect to the operation of the first embodiment of the present invention.
- the vacuum on the downstream side of the filter means of the vacuum filtration apparatus will suck unfiltered liquid from the funnel of the vacuum filtration apparatus, through the filter means of the vacuum filtration apparatus, into the outlet port of the vacuum filtration apparatus, into vacuum port 1288 of vacuum base 1277 (shown by arrow 1253 ), into the vacuum source via port 1273 of vacuum base 1277 (shown by arrows 1255 ).
- the bottom of the outlet port of the vacuum filtration apparatus must be below the top of vacuum port 1288 of vacuum base 1277 as shown in FIG. 44 b .
- the vacuum on the downstream side of the filter means will be maintained after all of the unfiltered liquid in the funnel has been drawn through the filter means. Additional liquid may be added to the funnel either while liquid is being filtered or after all of the initial batch of liquid in the funnel has been filtered. Once all of the liquid that is desired to be filtered, has been filtered, the user will vent vacuum port 1288 of vacuum base 1277 to atmosphere, thereby venting chamber 1372 (shown in FIG. 44 b ), and thereby venting the downstream volume of the vacuum filtration apparatus.
- Vacuum base assembly 1200 can be used as described above with any of the embodiments of the present invention that are described above. Vacuum base assembly 1200 can also be used with any vacuum filtration apparatus containing:
- Vacuum base assembly 1200 can also be used as follows. The user will place a vacuum filtration apparatus (shown in FIG. 44 a and FIG. 44 b as assembly 1100 ) onto vacuum base assembly 1200 so that the outlet port of the base (shown as outlet port 1110 ) of the vacuum filtration apparatus is substantially aligned with the vacuum port 1288 of the vacuum base assembly, and with a portion of the bottom outside wall of the base of the vacuum filtration apparatus (shown as surface 914 of bottom outside wall 916 of base 1101 ) disposed above, and in contact with, the top surface 1251 of gasket 1285 of vacuum base assembly 1200 , with the bottom of the outlet port of the vacuum filtration apparatus preferably disposed below the top of the vacuum port 1288 of vacuum base assembly 1200 .
- a vacuum filtration apparatus shown in FIG. 44 a and FIG. 44 b as assembly 1100
- FIG. 44 a and FIG. 44 b show assembly 1100 releasably clamped to vacuum base assembly with cams 1278 in the closed or clamping position.
- Cams 1278 are designed so that with assembly 1100 positioned on vacuum base assembly 1200 as just described, sloped surface 1252 of cams 1278 will contact top surface 1162 of funnel stop 1147 as cams 1278 are rotated from the open position to the closed position as described above. When cams 1278 have been rotated to the closed position as shown in FIG.
- clamp surface 1289 of cams 1278 will contact top surface 1162 of funnel stop 1147 of funnel 1130 , with cams 1278 exerting a downward force on funnel stop 1147 , thereby assuring that funnel 1130 is fully seated in base 1101 , and that surface 914 of bottom outside wall 916 of base 1101 is in contact with top surface 1251 of gasket 1285 with gasket 1285 compressed as shown in FIG. 44 b .
- a clamping means could be used that pushes down on the top of the funnel, or on the top of the lid of the vacuum filtration apparatus.
- a clamping means could be used that pushes down on the top outer wall of the base (shown as top outer wall 912 ).
- the disadvantage of pushing down on the top outer wall of the base is that although the bottom surface of the base (shown as surface 914 of bottom wall 916 of base 1101 ) will be pushed against the top surface 1251 of gasket 1285 of vacuum base assembly 1200 as shown in FIG. 44 b , the clamping means will not assure that the funnel is fully seated in the base.
- a means must be provided to place chamber 1372 in air flow communication with vacuum port 1288 of vacuum base 1277 .
- This means is shown as gap 1396 between the top wall of boss 1280 of vacuum base 1277 and the bottom wall of the base of the vacuum filtration apparatus, and gap 1396 a between the inside wall of vacuum port 1288 and the outside wall of the outlet port of the vacuum filtration apparatus.
- the bottom of the outlet port of the vacuum filtration apparatus is preferably positioned below the top of vacuum port 1288 of vacuum base assembly 1200 as shown in FIG. 44 b .
- ring 1283 of vacuum base 1277 could be eliminated, and the vacuum filtration apparatus could be aligned to vacuum base assembly 1200 by aligning the outlet port of the vacuum filtration apparatus with vacuum port 1288 of vacuum base 1277 , in which case gasket 1285 could be properly positioned on vacuum base 1277 by the user, or gasket 1285 could have a smaller inside diameter and be positioned by the outside wall of boss 1280 of vacuum base 1277 .
- the user With the vacuum filtration apparatus positioned and clamped on vacuum base assembly 1200 as described in the previous two paragraphs and shown in FIG. 44 a and FIG. 44 b , the user will now remove the lid (shown as lid 960 ) from the vacuum filtration apparatus (shown as assembly 1100 ) and add a quantity of liquid to be filtered to the funnel (shown as funnel 1130 ). The lid will then be placed back onto the funnel. Vacuum will now be applied to vacuum port 1288 of vacuum base 1277 via port 1273 .
- the clamping means assures a good seal between the bottom surface of the base of the vacuum filtration apparatus and the top surface 1251 of gasket 1285 of the vacuum base assembly 1200 the user will not have to momentarily press down on the filtration apparatus to make a seal between the bottom surface of the base of the filtration apparatus (shown as surface 914 of base 1101 ) and the top surface 1251 of gasket 1285 .
- the vacuum applied to vacuum port 1288 of vacuum base 1277 will draw the air out of chamber 1372 via gap 1396 and gap 1396 a as shown by arrow 1254 in FIG. 44 b .
- the vacuum in chamber 1372 will apply a downward force to the base of the vacuum filtration apparatus, this downward force may compress gasket 1285 further than it is already compressed by the clamping means, thereby maintaining the seal between the bottom surface of the base of the filtration apparatus and the top surface 1251 of gasket 1285 .
- the vacuum in vacuum port 1288 will also create a vacuum on the downstream side of the filter means in the vacuum filtration apparatus by drawing air out of the base of the vacuum filtration apparatus via the outlet port of the base of the vacuum filtration apparatus (shown as outlet port 1110 in FIG. 44 a ) as described above with respect to the operation of the first embodiment of the present invention.
- the vacuum on the downstream side of the filter means of the vacuum filtration apparatus will suck unfiltered liquid from the funnel of the vacuum filtration apparatus, through the filter means of the vacuum filtration apparatus, into the outlet port of the vacuum filtration apparatus, into vacuum port 1288 of vacuum base 1277 (shown by arrow 1253 ), into the vacuum source via port 1273 of vacuum base 1277 (shown by arrows 1255 ).
- the bottom of the outlet port of the vacuum filtration apparatus must be below the top of vacuum port 1288 of vacuum base 1277 as shown in FIG. 44 b .
- the vacuum on the downstream side of the filter means will be maintained after all of the unfiltered liquid in the funnel has been drawn through the filter means. Additional liquid may be added to the funnel either while liquid is being filtered or after all of the initial batch of liquid in the funnel has been filtered. Once all of the liquid that is desired to be filtered has been filtered, the user will vent vacuum port 1288 of vacuum base 1277 to atmosphere, thereby venting chamber 1372 (shown in FIG. 44 b ), and thereby venting the downstream volume of the vacuum filtration apparatus.
- Vacuum base assembly 1200 with the appropriate clamping means can be used as just described with any of the embodiments of the present invention that are described above. Vacuum base assembly 1200 with the appropriate clamping means can also be used with any vacuum filtration apparatus containing an outlet port that can be aligned with vacuum port 1288 of vacuum base assembly 1200 , and a base that can be sealed to gasket 1285 of vacuum base assembly 1200 as just described.
- a funnel 1330 is the same as funnel 730 (shown in FIG. 25 , FIG. 27 , and FIG. 28 ) with the following exceptions.
- Funnel 1330 does not contain funnel centering tabs 792 or lid clamp tabs 734
- funnel 1330 contains integral flexible filter seal 1338 which is similar to integral flexible filter seal 838 a shown in FIG. 30 .
- Assembly 1400 shown in FIG. 46 a contains base 1301 , funnel 1330 , filter means 990 , and absorbent pad 991 .
- FIG. 46 a shows funnel 1330 in assembly 1400 , releasably attached to the base 1301 with an interference fit between end wall 1347 of one or more integral flexible funnel seal rings 1337 of funnel 1330 and inside wall 1305 of base 1301 .
- Funnel 1330 of assembly 1400 could be replaced with any funnel that contains one or more integral flexible funnel seal rings, and base 1301 could be replaced with any base to which a funnel containing one or more integral flexible seal rings can be releasably attached.
- Funnel 1330 must be made from a material which is flexible enough to allow the outside opposite faces of the funnel to be squeezed as described in the following paragraph. Suitable materials include but are not limited to, low density polyethylene, high density polyethylene, and polypropylene.
- Assembly 1400 is used the same as the assemblies of the prior embodiments, by first adding a quantity of liquid to be filtered to funnel 1330 , and then placing the outlet port of base 1301 in fluid flow communication with a vacuum source; allowing the vacuum means to suck the unfiltered liquid through filter means 990 , absorbent pad 991 , through the outlet port of the base, into the vacuum means; venting the outlet port of the base to atmosphere; and then removing the funnel from the base by squeezing the outside opposite faces of the funnel as shown in FIG. 45 b by arrows 1320 ; thereby causing the opposite faces of the funnel that are squeezed to distort inward as shown in FIG. 45 b ; thereby causing the bottom of the funnel to bow as shown in FIG.
- the funnel stop will lift the bottom of the funnel up and away from the filter means as the funnel is squeezed, thereby eliminating any rubbing of the filter means by the bottom of the funnel as the funnel is removed from the base.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Manufacturing & Machinery (AREA)
- Clinical Laboratory Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
-
- a) The bottom portion of the funnel section is press fitted to the base section, therefore the outside diameter of the funnel section must match the inside diameter of the base section. This means that the disposable molded parts must be molded to a very high tolerance, which leads to part matching (i.e. funnel sections being individually matched to base sections), high scrap rates, and higher production costs.
- b) The lid is press fitted to the top of the funnel section, and to the top of the base section, therefore the outside diameter of the top of the funnel section, and the outside diameter of the top of the base section must match the inside diameter of the lid. Again this means that the disposable molded parts must be molded to a very high tolerance, which leads to part matching (i.e. funnel sections and base sections being individually matched to a lid), high scrap rates, and higher production costs.
- c) For different applications different membrane filter types must be used. The different membrane filter types may be of different thickness. Therefore a funnel section, base section matched pair that works with one type of filter may not work with another type of filter.
- d) When the membrane filter wets during filtration, it will swell. The currently available devices do not provide a means to keep the swelled filter to remain in intimate contact with the absorbent pad. If the swelling causes the membrane filter to lift away from the absorbent pad, bacteria that is present on the upstream side of the membrane filter in the area that has lifted away from the absorbent pad will not grow when incubated. Therefore, these bacteria will not be detected.
- e) All of the above limitations of the present art are exasperated when parts are molded from materials such as polypropylene or polyethylene, which are difficult to mold to tight tolerances.
- f) In some applications it is necessary to remove the membrane filter from the base section after filtration is complete, and place said membrane filter into another petri dish for incubation. Currently available devices do not provide an easy means to remove the wet membrane filter from the base section.
TABLE 1 | ||||
| ||||
Angle | ||||
505 | Dia. 504 | Dia. 516 | |
Tolerance |
0.5Ā° | A | A | 0.000ā³ | Ā±0.000ā³ |
0.5Ā° | A ā 0.001ā³ | A + 0.001ā³ | 0.115ā³ | Ā±0.001ā³ |
0.5Ā° | A ā 0.002ā³ | A + 0.002ā³ | 0.229ā³ | Ā±0.002ā³ |
0.5Ā° | A ā 0.003ā³ | A + 0.003ā³ | 0.344ā³ | Ā±0.003ā³ |
1.0Ā° | A | A | 0.000ā³ | Ā±0.000ā³ |
1.0Ā° | A ā 0.001ā³ | A + 0.001ā³ | 0.057ā³ | Ā±0.001ā³ |
1.0Ā° | A ā 0.002ā³ | A + 0.002ā³ | 0.115ā³ | Ā±0.002ā³ |
1.0Ā° | A ā 0.003ā³ | A + 0.003ā³ | 0.172ā³ | Ā±0.003ā³ |
2.0Ā° | A | A | 0.000ā³ | Ā±0.000ā³ |
2.0Ā° | A ā 0.001ā³ | A + 0.001ā³ | 0.029 | Ā±0.001ā³ |
2.0Ā° | A ā 0.002ā³ | A + 0.002ā³ | 0.057ā³ | Ā±0.002ā³ |
2.0Ā° | A ā 0.003ā³ | A + 0.003ā³ | 0.086ā³ | Ā±0.003ā³ |
If all parts are assumed to be molded within a dimensional tolerance range of Ā±0.004ā³, and if
If all parts are assumed to be molded within a dimensional tolerance range of Ā±0.004ā³, and if
-
- (a) a funnel for receiving unfiltered liquid,
- (b) a base disposed below the funnel:
- (i) the base containing an outlet port that can be aligned with
vacuum port 1288 ofvacuum base assembly 1200 as described above, - (ii) the base further containing a surface that can be sealed to
gasket 1285 ofvacuum base assembly 1200 so that the outlet port of the base is located within the inner periphery of the gasket seal, as just described,
- (i) the base containing an outlet port that can be aligned with
- (c) a filter means sealed to the vacuum filtration apparatus, thereby preventing unfiltered liquid from flowing between the filter means and the outlet port of the base.
Claims (34)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/263,838 US6913152B2 (en) | 2000-12-04 | 2002-10-03 | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples |
US11/171,724 US7546925B1 (en) | 2000-12-04 | 2005-06-30 | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples |
US12/484,736 US20100000933A1 (en) | 2000-12-04 | 2009-06-15 | Disposable Vacuum Filtration Apparatus Capable of Detecting Microorganisms and Particulates in Liquid Samples |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25113000P | 2000-12-04 | 2000-12-04 | |
US29783201P | 2001-06-12 | 2001-06-12 | |
US10/005,856 US20020096468A1 (en) | 2000-12-04 | 2001-12-04 | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples |
US10/263,838 US6913152B2 (en) | 2000-12-04 | 2002-10-03 | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/005,856 Continuation-In-Part US20020096468A1 (en) | 2000-12-04 | 2001-12-04 | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/171,724 Continuation-In-Part US7546925B1 (en) | 2000-12-04 | 2005-06-30 | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030057148A1 US20030057148A1 (en) | 2003-03-27 |
US6913152B2 true US6913152B2 (en) | 2005-07-05 |
Family
ID=46281297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/263,838 Expired - Lifetime US6913152B2 (en) | 2000-12-04 | 2002-10-03 | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples |
Country Status (1)
Country | Link |
---|---|
US (1) | US6913152B2 (en) |
Cited By (350)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040002165A1 (en) * | 2000-10-18 | 2004-01-01 | Clarity Diagnostics, Inc. | Method and device for diluting a fluid and detecting analytes within a diluted fluid |
US20040063169A1 (en) * | 2002-02-05 | 2004-04-01 | Jeffrey Kane | Filtration assembly |
US20040149659A1 (en) * | 2001-05-31 | 2004-08-05 | Jeffrey Kane | Well for processing a fluid |
US20070144959A1 (en) * | 2005-09-02 | 2007-06-28 | Zuk Peter Jr | Systems, apparatus and methods for vacuum filtration |
US7255380B1 (en) * | 2003-12-03 | 2007-08-14 | Pratt David W | Bottom-emptying device for tapered bailer |
US20080057573A1 (en) * | 2006-08-15 | 2008-03-06 | Cytyc Corporation | Cell block cassette and filter assembly |
US20080063547A1 (en) * | 2006-09-11 | 2008-03-13 | Gm Global Technology Operations, Inc. | Integral Filter and Float for an Electromagnetic Pump |
US20080277327A1 (en) * | 2007-05-09 | 2008-11-13 | Contech Stormwater Solutions, Inc. | Stormwater Filter Assembly |
US20080290040A1 (en) * | 2007-05-23 | 2008-11-27 | Nypro Inc. | Methods and Apparatus for Foam Control in a Vacuum Filtration System |
US20090026126A1 (en) * | 2007-07-26 | 2009-01-29 | Nypro Inc. | Vacuum Base and Related Methods and Apparatus for Vacuum Filtration |
US20090026153A1 (en) * | 2007-07-26 | 2009-01-29 | Nypro Inc. | Method and apparatus for filtrate storage handling |
US20110143365A1 (en) * | 2009-11-04 | 2011-06-16 | Buchanan Thomas M | Methods and devices to enhance sensitivity and evaluate sample adequacy and reagent reactivity in rapid lateral flow immunoassays |
EP2476903A1 (en) | 2011-01-13 | 2012-07-18 | Pall Corporation | Peristaltic pumps and filtration assembly systems for use therewith |
US8434636B2 (en) | 2010-11-22 | 2013-05-07 | Byers Industries, Inc. | Culturing container with filter vents |
US8808552B2 (en) * | 2010-12-16 | 2014-08-19 | Zenpure (Hangzhou) Co., Ltd. | Stackable filter cup apparatus and method |
US20150150406A1 (en) * | 2013-12-01 | 2015-06-04 | Jake Miller | Beverage steeping and dispensing system |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10249577B2 (en) | 2016-05-17 | 2019-04-02 | Asm Ip Holding B.V. | Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method |
US10262859B2 (en) | 2016-03-24 | 2019-04-16 | Asm Ip Holding B.V. | Process for forming a film on a substrate using multi-port injection assemblies |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10312129B2 (en) | 2015-09-29 | 2019-06-04 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US10340125B2 (en) | 2013-03-08 | 2019-07-02 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US10361201B2 (en) | 2013-09-27 | 2019-07-23 | Asm Ip Holding B.V. | Semiconductor structure and device formed using selective epitaxial process |
US10366864B2 (en) | 2013-03-08 | 2019-07-30 | Asm Ip Holding B.V. | Method and system for in-situ formation of intermediate reactive species |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10364493B2 (en) | 2016-08-25 | 2019-07-30 | Asm Ip Holding B.V. | Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line |
US10381226B2 (en) | 2016-07-27 | 2019-08-13 | Asm Ip Holding B.V. | Method of processing substrate |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10438965B2 (en) | 2014-12-22 | 2019-10-08 | Asm Ip Holding B.V. | Semiconductor device and manufacturing method thereof |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10480072B2 (en) | 2009-04-06 | 2019-11-19 | Asm Ip Holding B.V. | Semiconductor processing reactor and components thereof |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10541173B2 (en) | 2016-07-08 | 2020-01-21 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US10561975B2 (en) | 2014-10-07 | 2020-02-18 | Asm Ip Holdings B.V. | Variable conductance gas distribution apparatus and method |
US10566223B2 (en) | 2012-08-28 | 2020-02-18 | Asm Ip Holdings B.V. | Systems and methods for dynamic semiconductor process scheduling |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
US10604847B2 (en) | 2014-03-18 | 2020-03-31 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US10622375B2 (en) | 2016-11-07 | 2020-04-14 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10665452B2 (en) | 2016-05-02 | 2020-05-26 | Asm Ip Holdings B.V. | Source/drain performance through conformal solid state doping |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10707106B2 (en) | 2011-06-06 | 2020-07-07 | Asm Ip Holding B.V. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US10714335B2 (en) | 2017-04-25 | 2020-07-14 | Asm Ip Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US10734497B2 (en) | 2017-07-18 | 2020-08-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US10734244B2 (en) | 2017-11-16 | 2020-08-04 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by the same |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US10741385B2 (en) | 2016-07-28 | 2020-08-11 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10787741B2 (en) | 2014-08-21 | 2020-09-29 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US10804098B2 (en) | 2009-08-14 | 2020-10-13 | Asm Ip Holding B.V. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US10832903B2 (en) | 2011-10-28 | 2020-11-10 | Asm Ip Holding B.V. | Process feed management for semiconductor substrate processing |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10847371B2 (en) | 2018-03-27 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US10851456B2 (en) | 2016-04-21 | 2020-12-01 | Asm Ip Holding B.V. | Deposition of metal borides |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10867786B2 (en) | 2018-03-30 | 2020-12-15 | Asm Ip Holding B.V. | Substrate processing method |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US10914004B2 (en) | 2018-06-29 | 2021-02-09 | Asm Ip Holding B.V. | Thin-film deposition method and manufacturing method of semiconductor device |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10928731B2 (en) | 2017-09-21 | 2021-02-23 | Asm Ip Holding B.V. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10934619B2 (en) | 2016-11-15 | 2021-03-02 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11001925B2 (en) | 2016-12-19 | 2021-05-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11013359B2 (en) * | 2018-02-05 | 2021-05-25 | Innodesign Co., Ltd | Drip container and portable coffee drinking container |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
US11056567B2 (en) | 2018-05-11 | 2021-07-06 | Asm Ip Holding B.V. | Method of forming a doped metal carbide film on a substrate and related semiconductor device structures |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US11069510B2 (en) | 2017-08-30 | 2021-07-20 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11114294B2 (en) | 2019-03-08 | 2021-09-07 | Asm Ip Holding B.V. | Structure including SiOC layer and method of forming same |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
US11127617B2 (en) | 2017-11-27 | 2021-09-21 | Asm Ip Holding B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US11127589B2 (en) | 2019-02-01 | 2021-09-21 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11171025B2 (en) | 2019-01-22 | 2021-11-09 | Asm Ip Holding B.V. | Substrate processing device |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
US11205585B2 (en) | 2016-07-28 | 2021-12-21 | Asm Ip Holding B.V. | Substrate processing apparatus and method of operating the same |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11222772B2 (en) | 2016-12-14 | 2022-01-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227789B2 (en) | 2019-02-20 | 2022-01-18 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11233133B2 (en) | 2015-10-21 | 2022-01-25 | Asm Ip Holding B.V. | NbMC layers |
US11251068B2 (en) | 2018-10-19 | 2022-02-15 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11251040B2 (en) | 2019-02-20 | 2022-02-15 | Asm Ip Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
US11270899B2 (en) | 2018-06-04 | 2022-03-08 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11274369B2 (en) | 2018-09-11 | 2022-03-15 | Asm Ip Holding B.V. | Thin film deposition method |
US11282698B2 (en) | 2019-07-19 | 2022-03-22 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11289326B2 (en) | 2019-05-07 | 2022-03-29 | Asm Ip Holding B.V. | Method for reforming amorphous carbon polymer film |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
US11315794B2 (en) | 2019-10-21 | 2022-04-26 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching films |
US11342216B2 (en) | 2019-02-20 | 2022-05-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11339476B2 (en) | 2019-10-08 | 2022-05-24 | Asm Ip Holding B.V. | Substrate processing device having connection plates, substrate processing method |
US11345999B2 (en) | 2019-06-06 | 2022-05-31 | Asm Ip Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
US11355338B2 (en) | 2019-05-10 | 2022-06-07 | Asm Ip Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
US11361990B2 (en) | 2018-05-28 | 2022-06-14 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11378337B2 (en) | 2019-03-28 | 2022-07-05 | Asm Ip Holding B.V. | Door opener and substrate processing apparatus provided therewith |
US11390946B2 (en) | 2019-01-17 | 2022-07-19 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11390945B2 (en) | 2019-07-03 | 2022-07-19 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11393690B2 (en) | 2018-01-19 | 2022-07-19 | Asm Ip Holding B.V. | Deposition method |
US11401605B2 (en) | 2019-11-26 | 2022-08-02 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11414760B2 (en) | 2018-10-08 | 2022-08-16 | Asm Ip Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11430640B2 (en) | 2019-07-30 | 2022-08-30 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US11443926B2 (en) | 2019-07-30 | 2022-09-13 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
US11469098B2 (en) | 2018-05-08 | 2022-10-11 | Asm Ip Holding B.V. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11476109B2 (en) | 2019-06-11 | 2022-10-18 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11482418B2 (en) | 2018-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Substrate processing method and apparatus |
US11488819B2 (en) | 2018-12-04 | 2022-11-01 | Asm Ip Holding B.V. | Method of cleaning substrate processing apparatus |
US11488854B2 (en) | 2020-03-11 | 2022-11-01 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11495459B2 (en) | 2019-09-04 | 2022-11-08 | Asm Ip Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
US11499226B2 (en) | 2018-11-02 | 2022-11-15 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
US11515187B2 (en) | 2020-05-01 | 2022-11-29 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11515188B2 (en) | 2019-05-16 | 2022-11-29 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11521851B2 (en) | 2020-02-03 | 2022-12-06 | Asm Ip Holding B.V. | Method of forming structures including a vanadium or indium layer |
US11527400B2 (en) | 2019-08-23 | 2022-12-13 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11530483B2 (en) | 2018-06-21 | 2022-12-20 | Asm Ip Holding B.V. | Substrate processing system |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US11530876B2 (en) | 2020-04-24 | 2022-12-20 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US11551912B2 (en) | 2020-01-20 | 2023-01-10 | Asm Ip Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
US11551925B2 (en) | 2019-04-01 | 2023-01-10 | Asm Ip Holding B.V. | Method for manufacturing a semiconductor device |
US11557474B2 (en) | 2019-07-29 | 2023-01-17 | Asm Ip Holding B.V. | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11594600B2 (en) | 2019-11-05 | 2023-02-28 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
US11594450B2 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
US11605528B2 (en) | 2019-07-09 | 2023-03-14 | Asm Ip Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
US11610775B2 (en) | 2016-07-28 | 2023-03-21 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11610774B2 (en) | 2019-10-02 | 2023-03-21 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US11615970B2 (en) | 2019-07-17 | 2023-03-28 | Asm Ip Holding B.V. | Radical assist ignition plasma system and method |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
US11626308B2 (en) | 2020-05-13 | 2023-04-11 | Asm Ip Holding B.V. | Laser alignment fixture for a reactor system |
US11626316B2 (en) | 2019-11-20 | 2023-04-11 | Asm Ip Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11629407B2 (en) | 2019-02-22 | 2023-04-18 | Asm Ip Holding B.V. | Substrate processing apparatus and method for processing substrates |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11637011B2 (en) | 2019-10-16 | 2023-04-25 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
US11639548B2 (en) | 2019-08-21 | 2023-05-02 | Asm Ip Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US11646204B2 (en) | 2020-06-24 | 2023-05-09 | Asm Ip Holding B.V. | Method for forming a layer provided with silicon |
US11644758B2 (en) | 2020-07-17 | 2023-05-09 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11646184B2 (en) | 2019-11-29 | 2023-05-09 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
US11658029B2 (en) | 2018-12-14 | 2023-05-23 | Asm Ip Holding B.V. | Method of forming a device structure using selective deposition of gallium nitride and system for same |
US11664245B2 (en) | 2019-07-16 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing device |
US11664199B2 (en) | 2018-10-19 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11664267B2 (en) | 2019-07-10 | 2023-05-30 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11674220B2 (en) | 2020-07-20 | 2023-06-13 | Asm Ip Holding B.V. | Method for depositing molybdenum layers using an underlayer |
US11680839B2 (en) | 2019-08-05 | 2023-06-20 | Asm Ip Holding B.V. | Liquid level sensor for a chemical source vessel |
US11688603B2 (en) | 2019-07-17 | 2023-06-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium structures |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11705333B2 (en) | 2020-05-21 | 2023-07-18 | Asm Ip Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11725277B2 (en) | 2011-07-20 | 2023-08-15 | Asm Ip Holding B.V. | Pressure transmitter for a semiconductor processing environment |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
US11735422B2 (en) | 2019-10-10 | 2023-08-22 | Asm Ip Holding B.V. | Method of forming a photoresist underlayer and structure including same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
USD998752S1 (en) * | 2020-02-14 | 2023-09-12 | Honeywell International Inc. | Cassette for bioaerosol sensor |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
US11781221B2 (en) | 2019-05-07 | 2023-10-10 | Asm Ip Holding B.V. | Chemical source vessel with dip tube |
US11804364B2 (en) | 2020-05-19 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11814747B2 (en) | 2019-04-24 | 2023-11-14 | Asm Ip Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
US11823866B2 (en) | 2020-04-02 | 2023-11-21 | Asm Ip Holding B.V. | Thin film forming method |
US11823876B2 (en) | 2019-09-05 | 2023-11-21 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11827981B2 (en) | 2020-10-14 | 2023-11-28 | Asm Ip Holding B.V. | Method of depositing material on stepped structure |
US11830738B2 (en) | 2020-04-03 | 2023-11-28 | Asm Ip Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
US11828707B2 (en) | 2020-02-04 | 2023-11-28 | Asm Ip Holding B.V. | Method and apparatus for transmittance measurements of large articles |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11840761B2 (en) | 2019-12-04 | 2023-12-12 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
US11873557B2 (en) | 2020-10-22 | 2024-01-16 | Asm Ip Holding B.V. | Method of depositing vanadium metal |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US11885023B2 (en) | 2018-10-01 | 2024-01-30 | Asm Ip Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11885020B2 (en) | 2020-12-22 | 2024-01-30 | Asm Ip Holding B.V. | Transition metal deposition method |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11887857B2 (en) | 2020-04-24 | 2024-01-30 | Asm Ip Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
US11891696B2 (en) | 2020-11-30 | 2024-02-06 | Asm Ip Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
US11901179B2 (en) | 2020-10-28 | 2024-02-13 | Asm Ip Holding B.V. | Method and device for depositing silicon onto substrates |
US11915929B2 (en) | 2019-11-26 | 2024-02-27 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
US11923181B2 (en) | 2019-11-29 | 2024-03-05 | Asm Ip Holding B.V. | Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing |
US11929251B2 (en) | 2019-12-02 | 2024-03-12 | Asm Ip Holding B.V. | Substrate processing apparatus having electrostatic chuck and substrate processing method |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
US11961741B2 (en) | 2020-03-12 | 2024-04-16 | Asm Ip Holding B.V. | Method for fabricating layer structure having target topological profile |
US11959168B2 (en) | 2020-04-29 | 2024-04-16 | Asm Ip Holding B.V. | Solid source precursor vessel |
US11967488B2 (en) | 2013-02-01 | 2024-04-23 | Asm Ip Holding B.V. | Method for treatment of deposition reactor |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
US11976359B2 (en) | 2020-01-06 | 2024-05-07 | Asm Ip Holding B.V. | Gas supply assembly, components thereof, and reactor system including same |
US11987881B2 (en) | 2020-05-22 | 2024-05-21 | Asm Ip Holding B.V. | Apparatus for depositing thin films using hydrogen peroxide |
US11986868B2 (en) | 2020-02-28 | 2024-05-21 | Asm Ip Holding B.V. | System dedicated for parts cleaning |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
US11996292B2 (en) | 2019-10-25 | 2024-05-28 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11993843B2 (en) | 2017-08-31 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US11996309B2 (en) | 2019-05-16 | 2024-05-28 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
US12006572B2 (en) | 2019-10-08 | 2024-06-11 | Asm Ip Holding B.V. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
US12020934B2 (en) | 2020-07-08 | 2024-06-25 | Asm Ip Holding B.V. | Substrate processing method |
US12027365B2 (en) | 2020-11-24 | 2024-07-02 | Asm Ip Holding B.V. | Methods for filling a gap and related systems and devices |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US12033885B2 (en) | 2020-01-06 | 2024-07-09 | Asm Ip Holding B.V. | Channeled lift pin |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US12043899B2 (en) | 2017-01-10 | 2024-07-23 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US12051602B2 (en) | 2020-05-04 | 2024-07-30 | Asm Ip Holding B.V. | Substrate processing system for processing substrates with an electronics module located behind a door in a front wall of the substrate processing system |
US12051567B2 (en) | 2020-10-07 | 2024-07-30 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including gas supply unit |
US12057314B2 (en) | 2020-05-15 | 2024-08-06 | Asm Ip Holding B.V. | Methods for silicon germanium uniformity control using multiple precursors |
US12074022B2 (en) | 2020-08-27 | 2024-08-27 | Asm Ip Holding B.V. | Method and system for forming patterned structures using multiple patterning process |
US12087586B2 (en) | 2020-04-15 | 2024-09-10 | Asm Ip Holding B.V. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US12106944B2 (en) | 2020-06-02 | 2024-10-01 | Asm Ip Holding B.V. | Rotating substrate support |
US12107005B2 (en) | 2020-10-06 | 2024-10-01 | Asm Ip Holding B.V. | Deposition method and an apparatus for depositing a silicon-containing material |
US12112940B2 (en) | 2019-07-19 | 2024-10-08 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US12125700B2 (en) | 2020-01-16 | 2024-10-22 | Asm Ip Holding B.V. | Method of forming high aspect ratio features |
US12131885B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Plasma treatment device having matching box |
US12129545B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Precursor capsule, a vessel and a method |
US12148609B2 (en) | 2020-09-16 | 2024-11-19 | Asm Ip Holding B.V. | Silicon oxide deposition method |
US12154824B2 (en) | 2020-08-14 | 2024-11-26 | Asm Ip Holding B.V. | Substrate processing method |
US12159788B2 (en) | 2020-12-14 | 2024-12-03 | Asm Ip Holding B.V. | Method of forming structures for threshold voltage control |
US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
US12195852B2 (en) | 2020-11-23 | 2025-01-14 | Asm Ip Holding B.V. | Substrate processing apparatus with an injector |
US12209308B2 (en) | 2020-11-12 | 2025-01-28 | Asm Ip Holding B.V. | Reactor and related methods |
US12211742B2 (en) | 2020-09-10 | 2025-01-28 | Asm Ip Holding B.V. | Methods for depositing gap filling fluid |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
US12217954B2 (en) | 2020-08-25 | 2025-02-04 | Asm Ip Holding B.V. | Method of cleaning a surface |
US12218269B2 (en) | 2020-02-13 | 2025-02-04 | Asm Ip Holding B.V. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
US12218000B2 (en) | 2020-09-25 | 2025-02-04 | Asm Ip Holding B.V. | Semiconductor processing method |
US12217946B2 (en) | 2020-10-15 | 2025-02-04 | Asm Ip Holding B.V. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT |
US12221357B2 (en) | 2020-04-24 | 2025-02-11 | Asm Ip Holding B.V. | Methods and apparatus for stabilizing vanadium compounds |
US12230531B2 (en) | 2018-04-09 | 2025-02-18 | Asm Ip Holding B.V. | Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method |
US12240760B2 (en) | 2019-05-29 | 2025-03-04 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2876115B1 (en) * | 2004-10-06 | 2007-11-30 | Acanthe Sarl | METHOD, DEVICE AND SYSTEM FOR AIR COLLECTION FOR MICROBIOLOGICAL ANALYSIS |
FR2885140B1 (en) * | 2005-04-29 | 2010-12-31 | Millipore Corp | METHOD FOR DETECTING AND CHARACTERIZING MICROORGARISTS ON A MEMBRANE |
US7749395B2 (en) * | 2006-06-01 | 2010-07-06 | Gryphon Environmental, Llc | Apparatus and methods for separating liquid from a waste product |
US7997423B2 (en) * | 2006-08-21 | 2011-08-16 | David Goodman | Container for storing a liquid such as cooking oil |
JP5215677B2 (en) * | 2008-01-21 | 2013-06-19 | åę·ē“”ēø¾ę Ŗå¼ä¼ē¤¾ | Porous filter cartridge |
US8978897B2 (en) * | 2008-08-14 | 2015-03-17 | Chemrus Inc. | Disposable polymer-structured filtering kit |
US8110016B2 (en) * | 2008-12-11 | 2012-02-07 | Dow Global Technologies Llc | Fluid filter assembly including seal |
DE102009013673A1 (en) * | 2009-03-09 | 2010-09-16 | Eppendorf Ag | Cell culture dish |
CN103068472B (en) | 2010-10-26 | 2015-04-29 | é¶ę°ēÆēęęÆęéč“£ä»»å ¬åø | Spiral wound module including membrane sheet with regions having different permeabilities |
US9157838B2 (en) | 2010-12-23 | 2015-10-13 | Emd Millipore Corporation | Chromatography apparatus and method |
US10549218B2 (en) | 2011-06-27 | 2020-02-04 | Emd Millipore Corporation | Method and apparatus for filtering a liquid sample |
US20140332477A1 (en) * | 2013-03-19 | 2014-11-13 | John R. Troost | Apparatus to Dispense Immiscible Liquid from an Inverted Bottle |
US9849418B2 (en) * | 2015-05-06 | 2017-12-26 | Denso International America, Inc. | Filter housing having vanes for filter optimization |
JP6894897B2 (en) * | 2015-11-27 | 2021-06-30 | ć”ć«ćÆ ććć³ć ć²ć¼ć«ć·ć£ćć ććć ćć·ć„ć¬ć³ćÆćć« ćććć³ć°ļ¼ļ½ ļ½ļ½ļ½ ļ¼°ļ½ļ½ļ½ ļ½ļ½ ļ¼§ļ½ ļ½ļ½ ļ½ļ½ļ½ļ½ļ½ļ½ļ½ļ½ ļ½ļ½ļ½ ļ½ļ½ ļ½ļ½ļ½ļ½ļ½ļ½ ļ½ļ½ļ½ļ½ ļ½ ļ¼Øļ½ļ½ļ½ļ½ļ½ļ½ | Membrane support and membrane filtration equipment |
CA3044946A1 (en) | 2018-09-17 | 2020-03-17 | McFarlen Engineering Ltd. | Filter support element and method of using same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234585A (en) * | 1991-12-19 | 1993-08-10 | Zuk, Incorporated | Vacuum filtration device |
US5308483A (en) * | 1992-08-27 | 1994-05-03 | Gelman Sciences Inc. | Microporous filtration funnel assembly |
US6358730B1 (en) * | 1997-01-29 | 2002-03-19 | Pall Corporation | Filtration assembly and culture device |
US6443314B2 (en) * | 2000-02-25 | 2002-09-03 | Elmex Limited | Membrane filtration system |
-
2002
- 2002-10-03 US US10/263,838 patent/US6913152B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234585A (en) * | 1991-12-19 | 1993-08-10 | Zuk, Incorporated | Vacuum filtration device |
US5308483A (en) * | 1992-08-27 | 1994-05-03 | Gelman Sciences Inc. | Microporous filtration funnel assembly |
US6358730B1 (en) * | 1997-01-29 | 2002-03-19 | Pall Corporation | Filtration assembly and culture device |
US6443314B2 (en) * | 2000-02-25 | 2002-09-03 | Elmex Limited | Membrane filtration system |
Cited By (467)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040002165A1 (en) * | 2000-10-18 | 2004-01-01 | Clarity Diagnostics, Inc. | Method and device for diluting a fluid and detecting analytes within a diluted fluid |
US20080220510A1 (en) * | 2000-10-18 | 2008-09-11 | Clarity Diagnostics, Inc. | Device for diluting a fluid and detecting analytes within a diluted fluid |
US7364914B2 (en) * | 2000-10-18 | 2008-04-29 | Clarity Diagnostics, Inc. | Method for diluting a fluid and detecting analytes within a diluted fluid |
US7371325B2 (en) | 2001-05-31 | 2008-05-13 | Pall Corporation | Well for processing a fluid |
US20040149659A1 (en) * | 2001-05-31 | 2004-08-05 | Jeffrey Kane | Well for processing a fluid |
US7135117B2 (en) * | 2001-05-31 | 2006-11-14 | Pall Corporation | Well for processing a fluid |
US20070059218A1 (en) * | 2001-05-31 | 2007-03-15 | Pall Corporation | Well for processing a fluid |
US20040063169A1 (en) * | 2002-02-05 | 2004-04-01 | Jeffrey Kane | Filtration assembly |
US7255380B1 (en) * | 2003-12-03 | 2007-08-14 | Pratt David W | Bottom-emptying device for tapered bailer |
US20070144959A1 (en) * | 2005-09-02 | 2007-06-28 | Zuk Peter Jr | Systems, apparatus and methods for vacuum filtration |
US7798333B2 (en) | 2005-09-02 | 2010-09-21 | Roush Life Sciences, Llc | Systems, apparatus and methods for vacuum filtration |
US7914738B2 (en) * | 2006-08-15 | 2011-03-29 | Cytyc Corporation | Cell block cassette and filter assembly |
US20080081351A1 (en) * | 2006-08-15 | 2008-04-03 | Cytyc Corporation | Methods for processing cell block |
US20080057573A1 (en) * | 2006-08-15 | 2008-03-06 | Cytyc Corporation | Cell block cassette and filter assembly |
US7914462B2 (en) | 2006-08-15 | 2011-03-29 | Cytyc Corporation | Methods for processing cell block |
US7758319B2 (en) * | 2006-09-11 | 2010-07-20 | Gm Global Technology Operations, Inc. | Integral filter and float for an electromagnetic pump |
US20080063547A1 (en) * | 2006-09-11 | 2008-03-13 | Gm Global Technology Operations, Inc. | Integral Filter and Float for an Electromagnetic Pump |
US8110099B2 (en) * | 2007-05-09 | 2012-02-07 | Contech Stormwater Solutions Inc. | Stormwater filter assembly |
US20080277327A1 (en) * | 2007-05-09 | 2008-11-13 | Contech Stormwater Solutions, Inc. | Stormwater Filter Assembly |
US20080290040A1 (en) * | 2007-05-23 | 2008-11-27 | Nypro Inc. | Methods and Apparatus for Foam Control in a Vacuum Filtration System |
US8158009B2 (en) | 2007-05-23 | 2012-04-17 | Roush Life Sciences, Llc | Methods and apparatus for foam control in a vacuum filtration system |
US20090026154A1 (en) * | 2007-07-26 | 2009-01-29 | Nypro Inc. | Methods and Apparatus for Supporting a Vacuum Filtration Device |
US20090026153A1 (en) * | 2007-07-26 | 2009-01-29 | Nypro Inc. | Method and apparatus for filtrate storage handling |
US20090026126A1 (en) * | 2007-07-26 | 2009-01-29 | Nypro Inc. | Vacuum Base and Related Methods and Apparatus for Vacuum Filtration |
US8231012B2 (en) | 2007-07-26 | 2012-07-31 | Roush Life Sciences, Llc | Filtrate storage system |
US8157104B2 (en) | 2007-07-26 | 2012-04-17 | Roush Life Sciences, Llc | Apparatus for supporting a vacuum filtration device |
US8235221B2 (en) | 2007-07-26 | 2012-08-07 | Roush Life Sciences, Llc | Methods for vacuum filtration |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US10844486B2 (en) | 2009-04-06 | 2020-11-24 | Asm Ip Holding B.V. | Semiconductor processing reactor and components thereof |
US10480072B2 (en) | 2009-04-06 | 2019-11-19 | Asm Ip Holding B.V. | Semiconductor processing reactor and components thereof |
US10804098B2 (en) | 2009-08-14 | 2020-10-13 | Asm Ip Holding B.V. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US8309366B2 (en) | 2009-11-04 | 2012-11-13 | Buchanan Thomas M | Methods and devices to enhance sensitivity and evaluate sample adequacy and reagent reactivity in rapid lateral flow immunoassays |
US20110143365A1 (en) * | 2009-11-04 | 2011-06-16 | Buchanan Thomas M | Methods and devices to enhance sensitivity and evaluate sample adequacy and reagent reactivity in rapid lateral flow immunoassays |
US8105843B2 (en) | 2009-11-04 | 2012-01-31 | Buchanan Thomas M | Methods and devices to enhance sensitivity and evaluate sample adequacy and reagent reactivity in rapid lateral flow immunoassays |
US8434636B2 (en) | 2010-11-22 | 2013-05-07 | Byers Industries, Inc. | Culturing container with filter vents |
US8808552B2 (en) * | 2010-12-16 | 2014-08-19 | Zenpure (Hangzhou) Co., Ltd. | Stackable filter cup apparatus and method |
EP2476903A1 (en) | 2011-01-13 | 2012-07-18 | Pall Corporation | Peristaltic pumps and filtration assembly systems for use therewith |
US10707106B2 (en) | 2011-06-06 | 2020-07-07 | Asm Ip Holding B.V. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US11725277B2 (en) | 2011-07-20 | 2023-08-15 | Asm Ip Holding B.V. | Pressure transmitter for a semiconductor processing environment |
US10832903B2 (en) | 2011-10-28 | 2020-11-10 | Asm Ip Holding B.V. | Process feed management for semiconductor substrate processing |
US10566223B2 (en) | 2012-08-28 | 2020-02-18 | Asm Ip Holdings B.V. | Systems and methods for dynamic semiconductor process scheduling |
US11501956B2 (en) | 2012-10-12 | 2022-11-15 | Asm Ip Holding B.V. | Semiconductor reaction chamber showerhead |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US11967488B2 (en) | 2013-02-01 | 2024-04-23 | Asm Ip Holding B.V. | Method for treatment of deposition reactor |
US10340125B2 (en) | 2013-03-08 | 2019-07-02 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US10366864B2 (en) | 2013-03-08 | 2019-07-30 | Asm Ip Holding B.V. | Method and system for in-situ formation of intermediate reactive species |
US10361201B2 (en) | 2013-09-27 | 2019-07-23 | Asm Ip Holding B.V. | Semiconductor structure and device formed using selective epitaxial process |
US20150150406A1 (en) * | 2013-12-01 | 2015-06-04 | Jake Miller | Beverage steeping and dispensing system |
US10278534B2 (en) * | 2013-12-01 | 2019-05-07 | Fellow Industries Inc. | Beverage steeping and dispensing system |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10604847B2 (en) | 2014-03-18 | 2020-03-31 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US10787741B2 (en) | 2014-08-21 | 2020-09-29 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US11795545B2 (en) | 2014-10-07 | 2023-10-24 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US10561975B2 (en) | 2014-10-07 | 2020-02-18 | Asm Ip Holdings B.V. | Variable conductance gas distribution apparatus and method |
US10438965B2 (en) | 2014-12-22 | 2019-10-08 | Asm Ip Holding B.V. | Semiconductor device and manufacturing method thereof |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US11742189B2 (en) | 2015-03-12 | 2023-08-29 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US11242598B2 (en) | 2015-06-26 | 2022-02-08 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10312129B2 (en) | 2015-09-29 | 2019-06-04 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US11233133B2 (en) | 2015-10-21 | 2022-01-25 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US11956977B2 (en) | 2015-12-29 | 2024-04-09 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US11676812B2 (en) | 2016-02-19 | 2023-06-13 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top/bottom portions |
US10720322B2 (en) | 2016-02-19 | 2020-07-21 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top surface |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US10262859B2 (en) | 2016-03-24 | 2019-04-16 | Asm Ip Holding B.V. | Process for forming a film on a substrate using multi-port injection assemblies |
US10851456B2 (en) | 2016-04-21 | 2020-12-01 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11101370B2 (en) | 2016-05-02 | 2021-08-24 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10665452B2 (en) | 2016-05-02 | 2020-05-26 | Asm Ip Holdings B.V. | Source/drain performance through conformal solid state doping |
US10249577B2 (en) | 2016-05-17 | 2019-04-02 | Asm Ip Holding B.V. | Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US11749562B2 (en) | 2016-07-08 | 2023-09-05 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US10541173B2 (en) | 2016-07-08 | 2020-01-21 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11094582B2 (en) | 2016-07-08 | 2021-08-17 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11649546B2 (en) | 2016-07-08 | 2023-05-16 | Asm Ip Holding B.V. | Organic reactants for atomic layer deposition |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US10381226B2 (en) | 2016-07-27 | 2019-08-13 | Asm Ip Holding B.V. | Method of processing substrate |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11610775B2 (en) | 2016-07-28 | 2023-03-21 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11205585B2 (en) | 2016-07-28 | 2021-12-21 | Asm Ip Holding B.V. | Substrate processing apparatus and method of operating the same |
US11694892B2 (en) | 2016-07-28 | 2023-07-04 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10741385B2 (en) | 2016-07-28 | 2020-08-11 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11107676B2 (en) | 2016-07-28 | 2021-08-31 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10364493B2 (en) | 2016-08-25 | 2019-07-30 | Asm Ip Holding B.V. | Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10943771B2 (en) | 2016-10-26 | 2021-03-09 | Asm Ip Holding B.V. | Methods for thermally calibrating reaction chambers |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US11810788B2 (en) | 2016-11-01 | 2023-11-07 | Asm Ip Holding B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10720331B2 (en) | 2016-11-01 | 2020-07-21 | ASM IP Holdings, B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10622375B2 (en) | 2016-11-07 | 2020-04-14 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10644025B2 (en) | 2016-11-07 | 2020-05-05 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10934619B2 (en) | 2016-11-15 | 2021-03-02 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US11396702B2 (en) | 2016-11-15 | 2022-07-26 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
US11222772B2 (en) | 2016-12-14 | 2022-01-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11851755B2 (en) | 2016-12-15 | 2023-12-26 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11970766B2 (en) | 2016-12-15 | 2024-04-30 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US12000042B2 (en) | 2016-12-15 | 2024-06-04 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11001925B2 (en) | 2016-12-19 | 2021-05-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US10784102B2 (en) | 2016-12-22 | 2020-09-22 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11251035B2 (en) | 2016-12-22 | 2022-02-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US12043899B2 (en) | 2017-01-10 | 2024-07-23 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US11410851B2 (en) | 2017-02-15 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US12106965B2 (en) | 2017-02-15 | 2024-10-01 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10468262B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US11658030B2 (en) | 2017-03-29 | 2023-05-23 | Asm Ip Holding B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10714335B2 (en) | 2017-04-25 | 2020-07-14 | Asm Ip Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
US10950432B2 (en) | 2017-04-25 | 2021-03-16 | Asm Ip Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US11848200B2 (en) | 2017-05-08 | 2023-12-19 | Asm Ip Holding B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US11976361B2 (en) | 2017-06-28 | 2024-05-07 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
US11164955B2 (en) | 2017-07-18 | 2021-11-02 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US10734497B2 (en) | 2017-07-18 | 2020-08-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11695054B2 (en) | 2017-07-18 | 2023-07-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11004977B2 (en) | 2017-07-19 | 2021-05-11 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US11802338B2 (en) | 2017-07-26 | 2023-10-31 | Asm Ip Holding B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US11417545B2 (en) | 2017-08-08 | 2022-08-16 | Asm Ip Holding B.V. | Radiation shield |
US11587821B2 (en) | 2017-08-08 | 2023-02-21 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10672636B2 (en) | 2017-08-09 | 2020-06-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11581220B2 (en) | 2017-08-30 | 2023-02-14 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11069510B2 (en) | 2017-08-30 | 2021-07-20 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11993843B2 (en) | 2017-08-31 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing apparatus |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
US10928731B2 (en) | 2017-09-21 | 2021-02-23 | Asm Ip Holding B.V. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11387120B2 (en) | 2017-09-28 | 2022-07-12 | Asm Ip Holding B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US11094546B2 (en) | 2017-10-05 | 2021-08-17 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US12033861B2 (en) | 2017-10-05 | 2024-07-09 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10734223B2 (en) | 2017-10-10 | 2020-08-04 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US12040184B2 (en) | 2017-10-30 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10734244B2 (en) | 2017-11-16 | 2020-08-04 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by the same |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US11127617B2 (en) | 2017-11-27 | 2021-09-21 | Asm Ip Holding B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US11682572B2 (en) | 2017-11-27 | 2023-06-20 | Asm Ip Holdings B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US11501973B2 (en) | 2018-01-16 | 2022-11-15 | Asm Ip Holding B.V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US11393690B2 (en) | 2018-01-19 | 2022-07-19 | Asm Ip Holding B.V. | Deposition method |
US12119228B2 (en) | 2018-01-19 | 2024-10-15 | Asm Ip Holding B.V. | Deposition method |
US11972944B2 (en) | 2018-01-19 | 2024-04-30 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
USD913980S1 (en) | 2018-02-01 | 2021-03-23 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
US11013359B2 (en) * | 2018-02-05 | 2021-05-25 | Innodesign Co., Ltd | Drip container and portable coffee drinking container |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11735414B2 (en) | 2018-02-06 | 2023-08-22 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11387106B2 (en) | 2018-02-14 | 2022-07-12 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US12173402B2 (en) | 2018-02-15 | 2024-12-24 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US11482418B2 (en) | 2018-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Substrate processing method and apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US11939673B2 (en) | 2018-02-23 | 2024-03-26 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
US12020938B2 (en) | 2018-03-27 | 2024-06-25 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10847371B2 (en) | 2018-03-27 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11398382B2 (en) | 2018-03-27 | 2022-07-26 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US10867786B2 (en) | 2018-03-30 | 2020-12-15 | Asm Ip Holding B.V. | Substrate processing method |
US12230531B2 (en) | 2018-04-09 | 2025-02-18 | Asm Ip Holding B.V. | Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US11469098B2 (en) | 2018-05-08 | 2022-10-11 | Asm Ip Holding B.V. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US11056567B2 (en) | 2018-05-11 | 2021-07-06 | Asm Ip Holding B.V. | Method of forming a doped metal carbide film on a substrate and related semiconductor device structures |
US11361990B2 (en) | 2018-05-28 | 2022-06-14 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11908733B2 (en) | 2018-05-28 | 2024-02-20 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11270899B2 (en) | 2018-06-04 | 2022-03-08 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11837483B2 (en) | 2018-06-04 | 2023-12-05 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US11530483B2 (en) | 2018-06-21 | 2022-12-20 | Asm Ip Holding B.V. | Substrate processing system |
US11296189B2 (en) | 2018-06-21 | 2022-04-05 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11952658B2 (en) | 2018-06-27 | 2024-04-09 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11814715B2 (en) | 2018-06-27 | 2023-11-14 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11168395B2 (en) | 2018-06-29 | 2021-11-09 | Asm Ip Holding B.V. | Temperature-controlled flange and reactor system including same |
US10914004B2 (en) | 2018-06-29 | 2021-02-09 | Asm Ip Holding B.V. | Thin-film deposition method and manufacturing method of semiconductor device |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US10755923B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11646197B2 (en) | 2018-07-03 | 2023-05-09 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11923190B2 (en) | 2018-07-03 | 2024-03-05 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11274369B2 (en) | 2018-09-11 | 2022-03-15 | Asm Ip Holding B.V. | Thin film deposition method |
US11804388B2 (en) | 2018-09-11 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
US11885023B2 (en) | 2018-10-01 | 2024-01-30 | Asm Ip Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11414760B2 (en) | 2018-10-08 | 2022-08-16 | Asm Ip Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
US11664199B2 (en) | 2018-10-19 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11251068B2 (en) | 2018-10-19 | 2022-02-15 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11735445B2 (en) | 2018-10-31 | 2023-08-22 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11499226B2 (en) | 2018-11-02 | 2022-11-15 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11866823B2 (en) | 2018-11-02 | 2024-01-09 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US11798999B2 (en) | 2018-11-16 | 2023-10-24 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US11411088B2 (en) | 2018-11-16 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US11244825B2 (en) | 2018-11-16 | 2022-02-08 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
US11488819B2 (en) | 2018-12-04 | 2022-11-01 | Asm Ip Holding B.V. | Method of cleaning substrate processing apparatus |
US11769670B2 (en) | 2018-12-13 | 2023-09-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11658029B2 (en) | 2018-12-14 | 2023-05-23 | Asm Ip Holding B.V. | Method of forming a device structure using selective deposition of gallium nitride and system for same |
US11959171B2 (en) | 2019-01-17 | 2024-04-16 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11390946B2 (en) | 2019-01-17 | 2022-07-19 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11171025B2 (en) | 2019-01-22 | 2021-11-09 | Asm Ip Holding B.V. | Substrate processing device |
US11127589B2 (en) | 2019-02-01 | 2021-09-21 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US12176243B2 (en) | 2019-02-20 | 2024-12-24 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
US11615980B2 (en) | 2019-02-20 | 2023-03-28 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11227789B2 (en) | 2019-02-20 | 2022-01-18 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11798834B2 (en) | 2019-02-20 | 2023-10-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11251040B2 (en) | 2019-02-20 | 2022-02-15 | Asm Ip Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
US11342216B2 (en) | 2019-02-20 | 2022-05-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11629407B2 (en) | 2019-02-22 | 2023-04-18 | Asm Ip Holding B.V. | Substrate processing apparatus and method for processing substrates |
US11901175B2 (en) | 2019-03-08 | 2024-02-13 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11114294B2 (en) | 2019-03-08 | 2021-09-07 | Asm Ip Holding B.V. | Structure including SiOC layer and method of forming same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
US11378337B2 (en) | 2019-03-28 | 2022-07-05 | Asm Ip Holding B.V. | Door opener and substrate processing apparatus provided therewith |
US11551925B2 (en) | 2019-04-01 | 2023-01-10 | Asm Ip Holding B.V. | Method for manufacturing a semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11814747B2 (en) | 2019-04-24 | 2023-11-14 | Asm Ip Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
US11781221B2 (en) | 2019-05-07 | 2023-10-10 | Asm Ip Holding B.V. | Chemical source vessel with dip tube |
US11289326B2 (en) | 2019-05-07 | 2022-03-29 | Asm Ip Holding B.V. | Method for reforming amorphous carbon polymer film |
US11355338B2 (en) | 2019-05-10 | 2022-06-07 | Asm Ip Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
US11515188B2 (en) | 2019-05-16 | 2022-11-29 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11996309B2 (en) | 2019-05-16 | 2024-05-28 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
US12240760B2 (en) | 2019-05-29 | 2025-03-04 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
US11345999B2 (en) | 2019-06-06 | 2022-05-31 | Asm Ip Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
US12195855B2 (en) | 2019-06-06 | 2025-01-14 | Asm Ip Holding B.V. | Gas-phase reactor system including a gas detector |
US11453946B2 (en) | 2019-06-06 | 2022-09-27 | Asm Ip Holding B.V. | Gas-phase reactor system including a gas detector |
US11476109B2 (en) | 2019-06-11 | 2022-10-18 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
US11908684B2 (en) | 2019-06-11 | 2024-02-20 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
US11746414B2 (en) | 2019-07-03 | 2023-09-05 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11390945B2 (en) | 2019-07-03 | 2022-07-19 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11605528B2 (en) | 2019-07-09 | 2023-03-14 | Asm Ip Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
US12107000B2 (en) | 2019-07-10 | 2024-10-01 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11664267B2 (en) | 2019-07-10 | 2023-05-30 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11996304B2 (en) | 2019-07-16 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing device |
US11664245B2 (en) | 2019-07-16 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing device |
US11688603B2 (en) | 2019-07-17 | 2023-06-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium structures |
US11615970B2 (en) | 2019-07-17 | 2023-03-28 | Asm Ip Holding B.V. | Radical assist ignition plasma system and method |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US12129548B2 (en) | 2019-07-18 | 2024-10-29 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US12112940B2 (en) | 2019-07-19 | 2024-10-08 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11282698B2 (en) | 2019-07-19 | 2022-03-22 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11557474B2 (en) | 2019-07-29 | 2023-01-17 | Asm Ip Holding B.V. | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
US11443926B2 (en) | 2019-07-30 | 2022-09-13 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11430640B2 (en) | 2019-07-30 | 2022-08-30 | Asm Ip Holding B.V. | Substrate processing apparatus |
US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11876008B2 (en) | 2019-07-31 | 2024-01-16 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11680839B2 (en) | 2019-08-05 | 2023-06-20 | Asm Ip Holding B.V. | Liquid level sensor for a chemical source vessel |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
US11639548B2 (en) | 2019-08-21 | 2023-05-02 | Asm Ip Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
US12040229B2 (en) | 2019-08-22 | 2024-07-16 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11594450B2 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
US12033849B2 (en) | 2019-08-23 | 2024-07-09 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane |
US11827978B2 (en) | 2019-08-23 | 2023-11-28 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11527400B2 (en) | 2019-08-23 | 2022-12-13 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11898242B2 (en) | 2019-08-23 | 2024-02-13 | Asm Ip Holding B.V. | Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11495459B2 (en) | 2019-09-04 | 2022-11-08 | Asm Ip Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
US11823876B2 (en) | 2019-09-05 | 2023-11-21 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
US11610774B2 (en) | 2019-10-02 | 2023-03-21 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US12230497B2 (en) | 2019-10-02 | 2025-02-18 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US11339476B2 (en) | 2019-10-08 | 2022-05-24 | Asm Ip Holding B.V. | Substrate processing device having connection plates, substrate processing method |
US12006572B2 (en) | 2019-10-08 | 2024-06-11 | Asm Ip Holding B.V. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
US11735422B2 (en) | 2019-10-10 | 2023-08-22 | Asm Ip Holding B.V. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
US11637011B2 (en) | 2019-10-16 | 2023-04-25 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
US11315794B2 (en) | 2019-10-21 | 2022-04-26 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching films |
US11996292B2 (en) | 2019-10-25 | 2024-05-28 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
US11594600B2 (en) | 2019-11-05 | 2023-02-28 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
US11626316B2 (en) | 2019-11-20 | 2023-04-11 | Asm Ip Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11401605B2 (en) | 2019-11-26 | 2022-08-02 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11915929B2 (en) | 2019-11-26 | 2024-02-27 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
US11646184B2 (en) | 2019-11-29 | 2023-05-09 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11923181B2 (en) | 2019-11-29 | 2024-03-05 | Asm Ip Holding B.V. | Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing |
US11929251B2 (en) | 2019-12-02 | 2024-03-12 | Asm Ip Holding B.V. | Substrate processing apparatus having electrostatic chuck and substrate processing method |
US11840761B2 (en) | 2019-12-04 | 2023-12-12 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US12119220B2 (en) | 2019-12-19 | 2024-10-15 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US12033885B2 (en) | 2020-01-06 | 2024-07-09 | Asm Ip Holding B.V. | Channeled lift pin |
US11976359B2 (en) | 2020-01-06 | 2024-05-07 | Asm Ip Holding B.V. | Gas supply assembly, components thereof, and reactor system including same |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US12125700B2 (en) | 2020-01-16 | 2024-10-22 | Asm Ip Holding B.V. | Method of forming high aspect ratio features |
US11551912B2 (en) | 2020-01-20 | 2023-01-10 | Asm Ip Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
US11521851B2 (en) | 2020-02-03 | 2022-12-06 | Asm Ip Holding B.V. | Method of forming structures including a vanadium or indium layer |
US11828707B2 (en) | 2020-02-04 | 2023-11-28 | Asm Ip Holding B.V. | Method and apparatus for transmittance measurements of large articles |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US12218269B2 (en) | 2020-02-13 | 2025-02-04 | Asm Ip Holding B.V. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
USD998752S1 (en) * | 2020-02-14 | 2023-09-12 | Honeywell International Inc. | Cassette for bioaerosol sensor |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
US11986868B2 (en) | 2020-02-28 | 2024-05-21 | Asm Ip Holding B.V. | System dedicated for parts cleaning |
US11488854B2 (en) | 2020-03-11 | 2022-11-01 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11837494B2 (en) | 2020-03-11 | 2023-12-05 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
US11961741B2 (en) | 2020-03-12 | 2024-04-16 | Asm Ip Holding B.V. | Method for fabricating layer structure having target topological profile |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
US11823866B2 (en) | 2020-04-02 | 2023-11-21 | Asm Ip Holding B.V. | Thin film forming method |
US11830738B2 (en) | 2020-04-03 | 2023-11-28 | Asm Ip Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US12087586B2 (en) | 2020-04-15 | 2024-09-10 | Asm Ip Holding B.V. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
US11887857B2 (en) | 2020-04-24 | 2024-01-30 | Asm Ip Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
US12130084B2 (en) | 2020-04-24 | 2024-10-29 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US11530876B2 (en) | 2020-04-24 | 2022-12-20 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US12221357B2 (en) | 2020-04-24 | 2025-02-11 | Asm Ip Holding B.V. | Methods and apparatus for stabilizing vanadium compounds |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
US11959168B2 (en) | 2020-04-29 | 2024-04-16 | Asm Ip Holding B.V. | Solid source precursor vessel |
US11515187B2 (en) | 2020-05-01 | 2022-11-29 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11798830B2 (en) | 2020-05-01 | 2023-10-24 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US12051602B2 (en) | 2020-05-04 | 2024-07-30 | Asm Ip Holding B.V. | Substrate processing system for processing substrates with an electronics module located behind a door in a front wall of the substrate processing system |
US11626308B2 (en) | 2020-05-13 | 2023-04-11 | Asm Ip Holding B.V. | Laser alignment fixture for a reactor system |
US12057314B2 (en) | 2020-05-15 | 2024-08-06 | Asm Ip Holding B.V. | Methods for silicon germanium uniformity control using multiple precursors |
US11804364B2 (en) | 2020-05-19 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11705333B2 (en) | 2020-05-21 | 2023-07-18 | Asm Ip Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
US11987881B2 (en) | 2020-05-22 | 2024-05-21 | Asm Ip Holding B.V. | Apparatus for depositing thin films using hydrogen peroxide |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
US12106944B2 (en) | 2020-06-02 | 2024-10-01 | Asm Ip Holding B.V. | Rotating substrate support |
US11646204B2 (en) | 2020-06-24 | 2023-05-09 | Asm Ip Holding B.V. | Method for forming a layer provided with silicon |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
US12020934B2 (en) | 2020-07-08 | 2024-06-25 | Asm Ip Holding B.V. | Substrate processing method |
US11644758B2 (en) | 2020-07-17 | 2023-05-09 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US12055863B2 (en) | 2020-07-17 | 2024-08-06 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11674220B2 (en) | 2020-07-20 | 2023-06-13 | Asm Ip Holding B.V. | Method for depositing molybdenum layers using an underlayer |
US12154824B2 (en) | 2020-08-14 | 2024-11-26 | Asm Ip Holding B.V. | Substrate processing method |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US12217954B2 (en) | 2020-08-25 | 2025-02-04 | Asm Ip Holding B.V. | Method of cleaning a surface |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
US12074022B2 (en) | 2020-08-27 | 2024-08-27 | Asm Ip Holding B.V. | Method and system for forming patterned structures using multiple patterning process |
US12211742B2 (en) | 2020-09-10 | 2025-01-28 | Asm Ip Holding B.V. | Methods for depositing gap filling fluid |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
US12148609B2 (en) | 2020-09-16 | 2024-11-19 | Asm Ip Holding B.V. | Silicon oxide deposition method |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12218000B2 (en) | 2020-09-25 | 2025-02-04 | Asm Ip Holding B.V. | Semiconductor processing method |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
US12107005B2 (en) | 2020-10-06 | 2024-10-01 | Asm Ip Holding B.V. | Deposition method and an apparatus for depositing a silicon-containing material |
US12051567B2 (en) | 2020-10-07 | 2024-07-30 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including gas supply unit |
US11827981B2 (en) | 2020-10-14 | 2023-11-28 | Asm Ip Holding B.V. | Method of depositing material on stepped structure |
US12217946B2 (en) | 2020-10-15 | 2025-02-04 | Asm Ip Holding B.V. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT |
US11873557B2 (en) | 2020-10-22 | 2024-01-16 | Asm Ip Holding B.V. | Method of depositing vanadium metal |
US11901179B2 (en) | 2020-10-28 | 2024-02-13 | Asm Ip Holding B.V. | Method and device for depositing silicon onto substrates |
US12209308B2 (en) | 2020-11-12 | 2025-01-28 | Asm Ip Holding B.V. | Reactor and related methods |
US12195852B2 (en) | 2020-11-23 | 2025-01-14 | Asm Ip Holding B.V. | Substrate processing apparatus with an injector |
US12027365B2 (en) | 2020-11-24 | 2024-07-02 | Asm Ip Holding B.V. | Methods for filling a gap and related systems and devices |
US11891696B2 (en) | 2020-11-30 | 2024-02-06 | Asm Ip Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US12159788B2 (en) | 2020-12-14 | 2024-12-03 | Asm Ip Holding B.V. | Method of forming structures for threshold voltage control |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
US12129545B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Precursor capsule, a vessel and a method |
US12131885B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Plasma treatment device having matching box |
US11885020B2 (en) | 2020-12-22 | 2024-01-30 | Asm Ip Holding B.V. | Transition metal deposition method |
US12243742B2 (en) | 2021-04-16 | 2025-03-04 | Asm Ip Holding B.V. | Method for processing a substrate |
US12243747B2 (en) | 2021-04-21 | 2025-03-04 | Asm Ip Holding B.V. | Methods of forming structures including vanadium boride and vanadium phosphide layers |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
US12243757B2 (en) | 2021-05-18 | 2025-03-04 | Asm Ip Holding B.V. | Flange and apparatus for processing substrates |
US12241158B2 (en) | 2021-07-15 | 2025-03-04 | Asm Ip Holding B.V. | Method for forming structures including transition metal layers |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
Also Published As
Publication number | Publication date |
---|---|
US20030057148A1 (en) | 2003-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6913152B2 (en) | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples | |
US7546925B1 (en) | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples | |
US20020096468A1 (en) | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples | |
JP4040107B2 (en) | Filtration assembly | |
US5308483A (en) | Microporous filtration funnel assembly | |
EP2574326B1 (en) | Filter vial having a tubular piston a retainer cup and a filter | |
US5288638A (en) | Apparatus and method for the microbiological testing of pressurized liquids | |
JPH04227033A (en) | Filter membrane supporter and filter funnel | |
JP7385557B2 (en) | Filtration assemblies and methods for microbiological testing | |
US6776294B2 (en) | Device for microbiological examination of a sample of liquid under pressure and method for draining this device | |
CN211620507U (en) | Microbial detection suction filtration sample cup by thin film filtration method | |
EP1240308B1 (en) | Device for microbiological examination of a sample of liquid under pressure and method for draining this device | |
EP1240307B1 (en) | Device for microbiological examination of a sample of liquid and method for draining this device | |
CN108348865B (en) | Membrane support and membrane filtration device | |
CN111936222B (en) | Filter head for a filtration system and funnel for use in combination with a filter head | |
US11814667B2 (en) | Filtration assembly | |
EP1611956A2 (en) | Detachably engageable plate liner for underdrains of microarrays and microarray kit | |
WO2011028704A2 (en) | Filtration device with removable membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: NYPRO INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZUK, PETER, JR.;REEL/FRAME:020483/0718 Effective date: 20080206 |
|
AS | Assignment |
Owner name: ROUSH LIFE SCIENCES, LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NYPRO INC.;REEL/FRAME:021785/0361 Effective date: 20081015 Owner name: ROUSH LIFE SCIENCES, LLC,MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NYPRO INC.;REEL/FRAME:021785/0361 Effective date: 20081015 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REFU | Refund |
Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: PNC BANK, NATIONAL ASSOCIATION, PENNSYLVANIA Free format text: SECURITY AGREEMENT;ASSIGNORS:ROUSH HOLDINGS, LLC;ROUSH ENTERPRISES, INC.;ROUSH LIFE SCIENCES, LLC;AND OTHERS;REEL/FRAME:028016/0123 Effective date: 20120404 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
AS | Assignment |
Owner name: ROUSH LIFE SCIENCES, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION;REEL/FRAME:031863/0400 Effective date: 20131230 |
|
AS | Assignment |
Owner name: FOXX LIFE SCIENCES, NEW HAMPSHIRE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROUSH LIFE SCIENCES, LLC;REEL/FRAME:033980/0163 Effective date: 20141008 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |