US6810307B1 - Thermostat having a temperature stabilized superregenerative RF receiver - Google Patents
Thermostat having a temperature stabilized superregenerative RF receiver Download PDFInfo
- Publication number
- US6810307B1 US6810307B1 US10/713,991 US71399103A US6810307B1 US 6810307 B1 US6810307 B1 US 6810307B1 US 71399103 A US71399103 A US 71399103A US 6810307 B1 US6810307 B1 US 6810307B1
- Authority
- US
- United States
- Prior art keywords
- receiver
- superregenerative
- volatile memory
- thermostat
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/30—Circuits for homodyne or synchrodyne receivers
Definitions
- the present invention relates generally to an RF (radio frequency) controlled thermostat/controller for an HVAC (heating, ventilation, air conditioning) system having a superregenerative RF receiver which uses the temperature sensor of the thermostat for temperature stabilization.
- the superregenerative RF receiver provides a very low power drain always-on receiver for RF remote control of the thermostat/controller.
- RF security devices and other RF remote control devices In order to allow RF security devices and other RF remote control devices to interoperate with and control an HVAC (heating, ventilation, air conditioning) system, it is necessary for the RF security devices and other remote control RF transmitter/devices to send RF messages asynchronously to a battery powered RF controlled thermostat/controller in the HVAC system.
- the messages generated by the RF transmitters must comply with Part 15 of the FCC rules, meaning that they must adhere to strict duty cycle requirements on the transmitted RF messages, which makes it difficult to design a duty-cycled RF receiver compatible with the transmitted RF messages.
- Various schemes to overcome this problem involve the use of periodically transmitted synchronized RF messages, along with synchronizing schemes to maintain the RF receiver and the transmitted RF message in synchronization. This approach adds complexity and cost to the RF controlled thermostat/controller.
- the present invention provides a better solution of using an always-on superregenerative RF receiver which is a very low power drain RF receiver which is maintained in tune by a highly precisely calibrated temperature sensor of the thermostat/controller.
- Superregenerative RF receivers are rarely used in modem communications systems because of their poor frequency stability, their wide interference bandwidth, and their difficulty in manufacturing, primarily because each superregenerative RF receiver needs to be individually tuned after its manufacture because of the high Q self-oscillatory nature of the superregenerative RF receiver design.
- the present invention provides an RF controlled thermostat/controller for an HVAC system having a superregenerative RF receiver which uses the highly precisely calibrated temperature sensor of the thermostat for temperature stabilization thereof.
- the superregenerative RF receiver provides a very low power drain always-on receiver for RF remote control of the thermostat/controller.
- the thermostat/controller includes a microcontroller with a non-volatile memory. A digital value stored in the non-volatile memory, or a non-volatile memory of a separate component, is used to accurately tune the superregenerative RF receiver.
- FIG. 1 illustrates a first alternative embodiment of the present invention wherein a stored digital value is input to a digital to analog converter, typically in a microcontroller, the analog output of which is used to adjust a tunable varactor diode which regulates the frequency of a superregenerative RF receiver.
- FIG. 2 illustrates a second alternative embodiment of the present invention wherein a stored digital value is used directly to control a series of digitally switched tuning capacitors which regulate the frequency of a superregenerative RF receiver.
- FIG. 3 illustrates a third alternative embodiment of the present invention which employs a non-volatile digitally controlled capacitor wherein a desired capacitive value is stored in an on-chip EEPROM in the component, and is used directly to control a capacitor which regulates the frequency of a superregenerative RF receiver.
- FIG. 1 illustrates a first embodiment pursuant the present invention wherein a battery 10 operated RF (radio frequency) controlled thermostat/controller 12 for an HVAC (heating, ventilation, air conditioning) system is equipped with a superregenerative RF receiver 14 .
- the battery power supply could be replaced by a low voltage, low current power supply, as is available from a thermostat control.
- the superregenerative RF receiver 14 uses the highly precisely calibrated temperature sensor 16 of the thermostat/controller 12 for temperature stabilization and control of the superregenerative RF receiver 14 .
- the superregenerative RF receiver 14 of the thermostat/controller 12 allows RF security devices 18 and other RF remote control devices 20 to interoperate with and control the HVAC (heating, ventilation, air conditioning) system.
- microcontrollers include built-in temperature sensors which may be used, however the built-in temperature sensors are generally not as precise and accurate as the highly precisely calibrated temperature sensor of the thermostat/controller.
- the always-on low power drain superregenerative RF receiver typically operates on 70 micro-amps, as opposed to 7 milli-amps for other more stable RF receivers, and is maintained in tune by the highly accurately calibrated temperature sensor 16 of the thermostat/controller 12 .
- Superregenerative RF receivers have very poor frequency stability, a wide interference bandwidth, and are difficult to manufacture, primarily because each receiver needs to be individually tuned following manufacture because of the high Q self-oscillatory nature of the receiver design, and the tuning methods using manually adjusted tuning capacitors or inductors are prone to long term drift and are susceptible to variation caused by local temperature variation.
- a unique aspect of the superregenerative RF receiver of the thermostat/controller of the present invention is that the thermistor or temperature sensing device 16 of the thermostat 12 , which is highly accurately calibrated to an absolute value during the manufacturing process, provides a highly accurate temperature measurement that is used internally by the device to stabilize the tuning of the superregenerative RF receiver 14 input by compensating for the frequency shift caused by temperature variation.
- the frequency is measured after manufacture with several digital or analog outputs. Then a computer controlling a manufacturing fixture calculates a best fit curve for the points on the slope, thus providing an approximation to the MHz/V equation.
- the present invention provides a highly accurately tuned superregenerative RF receiver in an RF controlled thermostat/controller receiver application for an HVAC system.
- the RF controlled thermostat/controller includes a microprocessor or microcontroller 20 , typically a MSP430 or equivalent, with a non-volatile memory which retains data stored in memory even during power outages and losses.
- This non-volatile memory, or a non-volatile memory in a separate component as described below in one of the embodiments herein, can be used in one of several technical approaches and embodiments to solve the tuning/drift problem of the superregenerative RF receiver.
- the frequency of the superregenerative RF receiver is regulated by a digital value which is permanently stored in the non-volatile memory.
- FIG. 1 illustrates a first alternative embodiment of the present invention wherein the stored digital value is input to a digital to analog converter 22 , typically in the microcontroller 20 , or external thereto in alternative embodiments, the analog output of which is used to adjust a tunable varactor diode 24 which regulates the frequency of the superregenerative RF receiver.
- FIG. 2 illustrates a second alternative embodiment of the present invention wherein the stored digital value is used directly to control a series of digitally switched tuning capacitors 26 which regulate the frequency of the superregenerative RF receiver.
- FIG. 3 illustrates a third alternative embodiment of the present invention which employs a non-volatile digitally controlled capacitor component 28 that has recently become commercially available from XICOR corporation, Milpitas Calif. 95035-7493.
- the non-volatile digitally controlled capacitor component 28 can be set to 1 of 32 discrete capacitive 30 values ranging from 7.5 pF to 14.5 pF in 0.20 pF increments.
- a desired capacitive value can be selected via an up/down interface for the component 28 , and is stored in an on-chip EEPROM 32 in the component 28 .
- the chip also has an integrated power-on-recall circuit that restores the preset capacitor value from the EEPROM during power up, thus eliminating the need for microcontroller initialization. Accordingly, the digital value used to tune the superregenerative RF receiver can be stored directly in the on-chip EEPROM of the non-volatile digitally controlled capacitor component 28 .
- a digital output of the MSP430 microcontroller is used to control L/C tuning components of the superregenerative RF receiver.
- a second output via a D/A internal to the MPS430 microcontroller can control a varactor to compensate for variation in the oscillator semiconductor's operation point due to temperature variation.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Selective Calling Equipment (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/713,991 US6810307B1 (en) | 2003-11-14 | 2003-11-14 | Thermostat having a temperature stabilized superregenerative RF receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/713,991 US6810307B1 (en) | 2003-11-14 | 2003-11-14 | Thermostat having a temperature stabilized superregenerative RF receiver |
Publications (1)
Publication Number | Publication Date |
---|---|
US6810307B1 true US6810307B1 (en) | 2004-10-26 |
Family
ID=33160065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/713,991 Expired - Lifetime US6810307B1 (en) | 2003-11-14 | 2003-11-14 | Thermostat having a temperature stabilized superregenerative RF receiver |
Country Status (1)
Country | Link |
---|---|
US (1) | US6810307B1 (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070114293A1 (en) * | 2005-11-18 | 2007-05-24 | Gugenheim Stephen J | Thermostat Adjustment System |
US20090140059A1 (en) * | 2007-11-30 | 2009-06-04 | Honeywell International Inc. | Hvac remote control unit and methods of operation |
US20090140060A1 (en) * | 2007-11-30 | 2009-06-04 | Honeywell International Inc. | Building control system with remote control unit and methods of operation |
US8167216B2 (en) | 2007-11-30 | 2012-05-01 | Honeywell International Inc. | User setup for an HVAC remote control unit |
US8892223B2 (en) | 2011-09-07 | 2014-11-18 | Honeywell International Inc. | HVAC controller including user interaction log |
US8902071B2 (en) | 2011-12-14 | 2014-12-02 | Honeywell International Inc. | HVAC controller with HVAC system fault detection |
US9002523B2 (en) | 2011-12-14 | 2015-04-07 | Honeywell International Inc. | HVAC controller with diagnostic alerts |
US9002481B2 (en) | 2010-07-14 | 2015-04-07 | Honeywell International Inc. | Building controllers with local and global parameters |
US9206993B2 (en) | 2011-12-14 | 2015-12-08 | Honeywell International Inc. | HVAC controller with utility saver switch diagnostic feature |
US9366448B2 (en) | 2011-06-20 | 2016-06-14 | Honeywell International Inc. | Method and apparatus for configuring a filter change notification of an HVAC controller |
US9442500B2 (en) | 2012-03-08 | 2016-09-13 | Honeywell International Inc. | Systems and methods for associating wireless devices of an HVAC system |
US9477239B2 (en) | 2012-07-26 | 2016-10-25 | Honeywell International Inc. | HVAC controller with wireless network based occupancy detection and control |
US9488994B2 (en) | 2012-03-29 | 2016-11-08 | Honeywell International Inc. | Method and system for configuring wireless sensors in an HVAC system |
US9584119B2 (en) | 2013-04-23 | 2017-02-28 | Honeywell International Inc. | Triac or bypass circuit and MOSFET power steal combination |
US9628074B2 (en) | 2014-06-19 | 2017-04-18 | Honeywell International Inc. | Bypass switch for in-line power steal |
US9673811B2 (en) | 2013-11-22 | 2017-06-06 | Honeywell International Inc. | Low power consumption AC load switches |
US9683749B2 (en) | 2014-07-11 | 2017-06-20 | Honeywell International Inc. | Multiple heatsink cooling system for a line voltage thermostat |
US9806705B2 (en) | 2013-04-23 | 2017-10-31 | Honeywell International Inc. | Active triac triggering circuit |
US9857091B2 (en) | 2013-11-22 | 2018-01-02 | Honeywell International Inc. | Thermostat circuitry to control power usage |
US9890971B2 (en) | 2015-05-04 | 2018-02-13 | Johnson Controls Technology Company | User control device with hinged mounting plate |
US9983244B2 (en) | 2013-06-28 | 2018-05-29 | Honeywell International Inc. | Power transformation system with characterization |
US10094585B2 (en) | 2013-01-25 | 2018-10-09 | Honeywell International Inc. | Auto test for delta T diagnostics in an HVAC system |
US10139843B2 (en) | 2012-02-22 | 2018-11-27 | Honeywell International Inc. | Wireless thermostatic controlled electric heating system |
US10162327B2 (en) | 2015-10-28 | 2018-12-25 | Johnson Controls Technology Company | Multi-function thermostat with concierge features |
US10318266B2 (en) | 2015-11-25 | 2019-06-11 | Johnson Controls Technology Company | Modular multi-function thermostat |
US10410300B2 (en) | 2015-09-11 | 2019-09-10 | Johnson Controls Technology Company | Thermostat with occupancy detection based on social media event data |
US10452084B2 (en) | 2012-03-14 | 2019-10-22 | Ademco Inc. | Operation of building control via remote device |
US10458669B2 (en) | 2017-03-29 | 2019-10-29 | Johnson Controls Technology Company | Thermostat with interactive installation features |
US10488062B2 (en) | 2016-07-22 | 2019-11-26 | Ademco Inc. | Geofence plus schedule for a building controller |
US10533761B2 (en) | 2011-12-14 | 2020-01-14 | Ademco Inc. | HVAC controller with fault sensitivity |
US10534383B2 (en) | 2011-12-15 | 2020-01-14 | Ademco Inc. | HVAC controller with performance log |
US10534331B2 (en) | 2013-12-11 | 2020-01-14 | Ademco Inc. | Building automation system with geo-fencing |
US10546472B2 (en) | 2015-10-28 | 2020-01-28 | Johnson Controls Technology Company | Thermostat with direction handoff features |
US10655881B2 (en) | 2015-10-28 | 2020-05-19 | Johnson Controls Technology Company | Thermostat with halo light system and emergency directions |
US10677484B2 (en) | 2015-05-04 | 2020-06-09 | Johnson Controls Technology Company | User control device and multi-function home control system |
US10712038B2 (en) | 2017-04-14 | 2020-07-14 | Johnson Controls Technology Company | Multi-function thermostat with air quality display |
US10747243B2 (en) | 2011-12-14 | 2020-08-18 | Ademco Inc. | HVAC controller with HVAC system failure detection |
US10760809B2 (en) | 2015-09-11 | 2020-09-01 | Johnson Controls Technology Company | Thermostat with mode settings for multiple zones |
US10811892B2 (en) | 2013-06-28 | 2020-10-20 | Ademco Inc. | Source management for a power transformation system |
US10928087B2 (en) | 2012-07-26 | 2021-02-23 | Ademco Inc. | Method of associating an HVAC controller with an external web service |
US10941951B2 (en) | 2016-07-27 | 2021-03-09 | Johnson Controls Technology Company | Systems and methods for temperature and humidity control |
US11054448B2 (en) | 2013-06-28 | 2021-07-06 | Ademco Inc. | Power transformation self characterization mode |
US11107390B2 (en) | 2018-12-21 | 2021-08-31 | Johnson Controls Technology Company | Display device with halo |
US11112128B2 (en) * | 2013-05-02 | 2021-09-07 | Eric Douglass Clifton | Wireless wall thermostat |
US11131474B2 (en) | 2018-03-09 | 2021-09-28 | Johnson Controls Tyco IP Holdings LLP | Thermostat with user interface features |
US11162698B2 (en) | 2017-04-14 | 2021-11-02 | Johnson Controls Tyco IP Holdings LLP | Thermostat with exhaust fan control for air quality and humidity control |
US11216020B2 (en) | 2015-05-04 | 2022-01-04 | Johnson Controls Tyco IP Holdings LLP | Mountable touch thermostat using transparent screen technology |
US11277893B2 (en) | 2015-10-28 | 2022-03-15 | Johnson Controls Technology Company | Thermostat with area light system and occupancy sensor |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5621756A (en) * | 1995-01-30 | 1997-04-15 | Motorola, Inc. | Method super-regenerative transceiver, and computer system for providing short range communication with reduced current drain |
US5630216A (en) * | 1994-09-06 | 1997-05-13 | The Regents Of The University Of California | Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer |
US5751197A (en) * | 1996-06-18 | 1998-05-12 | Rf Monolithics, Inc. | Low-power, self-quenching superregenerative detector |
US5927599A (en) * | 1997-03-12 | 1999-07-27 | Marley Electric Heating | Wireless air conditioning control system |
US6046674A (en) * | 1997-11-12 | 2000-04-04 | Headwaters Research & Development, Inc. | Multi-station RF thermometer and alarm system |
US6118828A (en) * | 1995-06-05 | 2000-09-12 | The Chamberlain Group, Inc. | Digital super-regenerative detector RF receiver |
US6300871B1 (en) * | 1997-11-12 | 2001-10-09 | Headwaters Research & Development, Inc. | Multi-station RF thermometer and alarm system |
US6421535B1 (en) * | 1999-05-12 | 2002-07-16 | Xetron Corporation | Superregenerative circuit |
US6624750B1 (en) * | 1998-10-06 | 2003-09-23 | Interlogix, Inc. | Wireless home fire and security alarm system |
US6680673B1 (en) * | 1998-03-19 | 2004-01-20 | Acumen, Inc. | Remote control with safety features |
-
2003
- 2003-11-14 US US10/713,991 patent/US6810307B1/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5630216A (en) * | 1994-09-06 | 1997-05-13 | The Regents Of The University Of California | Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer |
US5621756A (en) * | 1995-01-30 | 1997-04-15 | Motorola, Inc. | Method super-regenerative transceiver, and computer system for providing short range communication with reduced current drain |
US6118828A (en) * | 1995-06-05 | 2000-09-12 | The Chamberlain Group, Inc. | Digital super-regenerative detector RF receiver |
US5751197A (en) * | 1996-06-18 | 1998-05-12 | Rf Monolithics, Inc. | Low-power, self-quenching superregenerative detector |
US5927599A (en) * | 1997-03-12 | 1999-07-27 | Marley Electric Heating | Wireless air conditioning control system |
US6046674A (en) * | 1997-11-12 | 2000-04-04 | Headwaters Research & Development, Inc. | Multi-station RF thermometer and alarm system |
US6300871B1 (en) * | 1997-11-12 | 2001-10-09 | Headwaters Research & Development, Inc. | Multi-station RF thermometer and alarm system |
US20020017988A1 (en) * | 1997-11-12 | 2002-02-14 | Irwin Michael Bruce Christopher | Multi-station RF thermometer and alarm system |
US6680673B1 (en) * | 1998-03-19 | 2004-01-20 | Acumen, Inc. | Remote control with safety features |
US6624750B1 (en) * | 1998-10-06 | 2003-09-23 | Interlogix, Inc. | Wireless home fire and security alarm system |
US6421535B1 (en) * | 1999-05-12 | 2002-07-16 | Xetron Corporation | Superregenerative circuit |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070114293A1 (en) * | 2005-11-18 | 2007-05-24 | Gugenheim Stephen J | Thermostat Adjustment System |
US9151510B2 (en) | 2007-11-30 | 2015-10-06 | Honeywell International Inc. | Display for HVAC systems in remote control units |
US20090140060A1 (en) * | 2007-11-30 | 2009-06-04 | Honeywell International Inc. | Building control system with remote control unit and methods of operation |
US7900849B2 (en) | 2007-11-30 | 2011-03-08 | Honeywell International Inc. | HVAC remote control unit and methods of operation |
US8167216B2 (en) | 2007-11-30 | 2012-05-01 | Honeywell International Inc. | User setup for an HVAC remote control unit |
US8224491B2 (en) | 2007-11-30 | 2012-07-17 | Honeywell International Inc. | Portable wireless remote control unit for use with zoned HVAC system |
US8276829B2 (en) | 2007-11-30 | 2012-10-02 | Honeywell International Inc. | Building control system with remote control unit and methods of operation |
US8387892B2 (en) | 2007-11-30 | 2013-03-05 | Honeywell International Inc. | Remote control for use in zoned and non-zoned HVAC systems |
US9765983B2 (en) | 2007-11-30 | 2017-09-19 | Honeywell International Inc. | User setup for an HVAC remote control unit |
US20090140059A1 (en) * | 2007-11-30 | 2009-06-04 | Honeywell International Inc. | Hvac remote control unit and methods of operation |
US9002481B2 (en) | 2010-07-14 | 2015-04-07 | Honeywell International Inc. | Building controllers with local and global parameters |
US9366448B2 (en) | 2011-06-20 | 2016-06-14 | Honeywell International Inc. | Method and apparatus for configuring a filter change notification of an HVAC controller |
US8892223B2 (en) | 2011-09-07 | 2014-11-18 | Honeywell International Inc. | HVAC controller including user interaction log |
US9157647B2 (en) | 2011-09-07 | 2015-10-13 | Honeywell International Inc. | HVAC controller including user interaction log |
US10747243B2 (en) | 2011-12-14 | 2020-08-18 | Ademco Inc. | HVAC controller with HVAC system failure detection |
US9002523B2 (en) | 2011-12-14 | 2015-04-07 | Honeywell International Inc. | HVAC controller with diagnostic alerts |
US8902071B2 (en) | 2011-12-14 | 2014-12-02 | Honeywell International Inc. | HVAC controller with HVAC system fault detection |
US10533761B2 (en) | 2011-12-14 | 2020-01-14 | Ademco Inc. | HVAC controller with fault sensitivity |
US9206993B2 (en) | 2011-12-14 | 2015-12-08 | Honeywell International Inc. | HVAC controller with utility saver switch diagnostic feature |
US10534383B2 (en) | 2011-12-15 | 2020-01-14 | Ademco Inc. | HVAC controller with performance log |
US10139843B2 (en) | 2012-02-22 | 2018-11-27 | Honeywell International Inc. | Wireless thermostatic controlled electric heating system |
US9442500B2 (en) | 2012-03-08 | 2016-09-13 | Honeywell International Inc. | Systems and methods for associating wireless devices of an HVAC system |
US10452084B2 (en) | 2012-03-14 | 2019-10-22 | Ademco Inc. | Operation of building control via remote device |
US10635119B2 (en) | 2012-03-29 | 2020-04-28 | Ademco Inc. | Method and system for configuring wireless sensors in an HVAC system |
US9971364B2 (en) | 2012-03-29 | 2018-05-15 | Honeywell International Inc. | Method and system for configuring wireless sensors in an HVAC system |
US9488994B2 (en) | 2012-03-29 | 2016-11-08 | Honeywell International Inc. | Method and system for configuring wireless sensors in an HVAC system |
US10928087B2 (en) | 2012-07-26 | 2021-02-23 | Ademco Inc. | Method of associating an HVAC controller with an external web service |
US10133283B2 (en) | 2012-07-26 | 2018-11-20 | Honeywell International Inc. | HVAC controller with wireless network based occupancy detection and control |
US9477239B2 (en) | 2012-07-26 | 2016-10-25 | Honeywell International Inc. | HVAC controller with wireless network based occupancy detection and control |
US10613555B2 (en) | 2012-07-26 | 2020-04-07 | Ademco Inc. | HVAC controller with wireless network based occupancy detection and control |
US11493224B2 (en) | 2012-07-26 | 2022-11-08 | Ademco Inc. | Method of associating an HVAC controller with an external web service |
US10094585B2 (en) | 2013-01-25 | 2018-10-09 | Honeywell International Inc. | Auto test for delta T diagnostics in an HVAC system |
US9806705B2 (en) | 2013-04-23 | 2017-10-31 | Honeywell International Inc. | Active triac triggering circuit |
US9584119B2 (en) | 2013-04-23 | 2017-02-28 | Honeywell International Inc. | Triac or bypass circuit and MOSFET power steal combination |
US10396770B2 (en) | 2013-04-23 | 2019-08-27 | Ademco Inc. | Active triac triggering circuit |
US10404253B2 (en) | 2013-04-23 | 2019-09-03 | Ademco Inc. | Triac or bypass circuit and MOSFET power steal combination |
US11747033B2 (en) | 2013-05-02 | 2023-09-05 | Orison, Inc. | Wireless wall thermostat |
US11112128B2 (en) * | 2013-05-02 | 2021-09-07 | Eric Douglass Clifton | Wireless wall thermostat |
US11054448B2 (en) | 2013-06-28 | 2021-07-06 | Ademco Inc. | Power transformation self characterization mode |
US10811892B2 (en) | 2013-06-28 | 2020-10-20 | Ademco Inc. | Source management for a power transformation system |
US9983244B2 (en) | 2013-06-28 | 2018-05-29 | Honeywell International Inc. | Power transformation system with characterization |
US9857091B2 (en) | 2013-11-22 | 2018-01-02 | Honeywell International Inc. | Thermostat circuitry to control power usage |
US9673811B2 (en) | 2013-11-22 | 2017-06-06 | Honeywell International Inc. | Low power consumption AC load switches |
US10768589B2 (en) | 2013-12-11 | 2020-09-08 | Ademco Inc. | Building automation system with geo-fencing |
US10712718B2 (en) | 2013-12-11 | 2020-07-14 | Ademco Inc. | Building automation remote control device with in-application messaging |
US10649418B2 (en) | 2013-12-11 | 2020-05-12 | Ademco Inc. | Building automation controller with configurable audio/visual cues |
US10591877B2 (en) | 2013-12-11 | 2020-03-17 | Ademco Inc. | Building automation remote control device with an in-application tour |
US10534331B2 (en) | 2013-12-11 | 2020-01-14 | Ademco Inc. | Building automation system with geo-fencing |
US10353411B2 (en) | 2014-06-19 | 2019-07-16 | Ademco Inc. | Bypass switch for in-line power steal |
US9628074B2 (en) | 2014-06-19 | 2017-04-18 | Honeywell International Inc. | Bypass switch for in-line power steal |
US9683749B2 (en) | 2014-07-11 | 2017-06-20 | Honeywell International Inc. | Multiple heatsink cooling system for a line voltage thermostat |
US10088174B2 (en) | 2014-07-11 | 2018-10-02 | Honeywell International Inc. | Multiple heatsink cooling system for a line voltage thermostat |
US10808958B2 (en) | 2015-05-04 | 2020-10-20 | Johnson Controls Technology Company | User control device with cantilevered display |
US10907844B2 (en) | 2015-05-04 | 2021-02-02 | Johnson Controls Technology Company | Multi-function home control system with control system hub and remote sensors |
US11216020B2 (en) | 2015-05-04 | 2022-01-04 | Johnson Controls Tyco IP Holdings LLP | Mountable touch thermostat using transparent screen technology |
US10627126B2 (en) | 2015-05-04 | 2020-04-21 | Johnson Controls Technology Company | User control device with hinged mounting plate |
US9890971B2 (en) | 2015-05-04 | 2018-02-13 | Johnson Controls Technology Company | User control device with hinged mounting plate |
US9964328B2 (en) | 2015-05-04 | 2018-05-08 | Johnson Controls Technology Company | User control device with cantilevered display |
US10677484B2 (en) | 2015-05-04 | 2020-06-09 | Johnson Controls Technology Company | User control device and multi-function home control system |
US10510127B2 (en) | 2015-09-11 | 2019-12-17 | Johnson Controls Technology Company | Thermostat having network connected branding features |
US11080800B2 (en) | 2015-09-11 | 2021-08-03 | Johnson Controls Tyco IP Holdings LLP | Thermostat having network connected branding features |
US11087417B2 (en) | 2015-09-11 | 2021-08-10 | Johnson Controls Tyco IP Holdings LLP | Thermostat with bi-directional communications interface for monitoring HVAC equipment |
US10559045B2 (en) | 2015-09-11 | 2020-02-11 | Johnson Controls Technology Company | Thermostat with occupancy detection based on load of HVAC equipment |
US10760809B2 (en) | 2015-09-11 | 2020-09-01 | Johnson Controls Technology Company | Thermostat with mode settings for multiple zones |
US10410300B2 (en) | 2015-09-11 | 2019-09-10 | Johnson Controls Technology Company | Thermostat with occupancy detection based on social media event data |
US10180673B2 (en) | 2015-10-28 | 2019-01-15 | Johnson Controls Technology Company | Multi-function thermostat with emergency direction features |
US10345781B2 (en) | 2015-10-28 | 2019-07-09 | Johnson Controls Technology Company | Multi-function thermostat with health monitoring features |
US10546472B2 (en) | 2015-10-28 | 2020-01-28 | Johnson Controls Technology Company | Thermostat with direction handoff features |
US10310477B2 (en) | 2015-10-28 | 2019-06-04 | Johnson Controls Technology Company | Multi-function thermostat with occupant tracking features |
US11277893B2 (en) | 2015-10-28 | 2022-03-15 | Johnson Controls Technology Company | Thermostat with area light system and occupancy sensor |
US10969131B2 (en) | 2015-10-28 | 2021-04-06 | Johnson Controls Technology Company | Sensor with halo light system |
US10732600B2 (en) | 2015-10-28 | 2020-08-04 | Johnson Controls Technology Company | Multi-function thermostat with health monitoring features |
US10162327B2 (en) | 2015-10-28 | 2018-12-25 | Johnson Controls Technology Company | Multi-function thermostat with concierge features |
US10655881B2 (en) | 2015-10-28 | 2020-05-19 | Johnson Controls Technology Company | Thermostat with halo light system and emergency directions |
US10318266B2 (en) | 2015-11-25 | 2019-06-11 | Johnson Controls Technology Company | Modular multi-function thermostat |
US10488062B2 (en) | 2016-07-22 | 2019-11-26 | Ademco Inc. | Geofence plus schedule for a building controller |
US10941951B2 (en) | 2016-07-27 | 2021-03-09 | Johnson Controls Technology Company | Systems and methods for temperature and humidity control |
US11441799B2 (en) | 2017-03-29 | 2022-09-13 | Johnson Controls Tyco IP Holdings LLP | Thermostat with interactive installation features |
US10458669B2 (en) | 2017-03-29 | 2019-10-29 | Johnson Controls Technology Company | Thermostat with interactive installation features |
US11162698B2 (en) | 2017-04-14 | 2021-11-02 | Johnson Controls Tyco IP Holdings LLP | Thermostat with exhaust fan control for air quality and humidity control |
US10712038B2 (en) | 2017-04-14 | 2020-07-14 | Johnson Controls Technology Company | Multi-function thermostat with air quality display |
US11131474B2 (en) | 2018-03-09 | 2021-09-28 | Johnson Controls Tyco IP Holdings LLP | Thermostat with user interface features |
US11107390B2 (en) | 2018-12-21 | 2021-08-31 | Johnson Controls Technology Company | Display device with halo |
US12033564B2 (en) | 2018-12-21 | 2024-07-09 | Johnson Controls Technology Company | Display device with halo |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6810307B1 (en) | Thermostat having a temperature stabilized superregenerative RF receiver | |
US7332975B2 (en) | Reference-less clock circuit | |
US20170085271A1 (en) | Temperature compensation for an oscillator crystal | |
US20080100391A1 (en) | Resistor-capacitor oscillation circuit capable of adjusting oscillation frequency and method of the same | |
EP3435549A1 (en) | Oscillator calibration system | |
US9680413B2 (en) | Systems and methods of low power clocking for sleep mode radios | |
KR101077730B1 (en) | Oscillation frequency control circuit | |
WO2007068283A1 (en) | Sensor interface | |
US20110257706A1 (en) | Low energy communications for implanted medical devices | |
US8970287B1 (en) | Apparatus and method of adjusting analog parameters for extended temperature operation | |
US20230031981A1 (en) | Measuring energy-charging rate of an energy harvester | |
US9094021B2 (en) | Semiconductor device and variation information obtaining program | |
US9838023B2 (en) | Slow-clock calibration method and unit, clock circuit, and mobile communication terminal | |
US8731501B2 (en) | Systems and methods for tuning a broadcast radio receiver with digital display | |
US8890633B2 (en) | Resonant circuit with automated trimming capabilities | |
US8873692B2 (en) | Configurable baseband in a GPS receiver | |
US10411717B2 (en) | Device and method for multiple reference system timer | |
EP1233520A3 (en) | Phase and frequency-locked loop circuits | |
JP5248923B2 (en) | OSCILLATOR CIRCUIT, RADIO RECEPTION CIRCUIT USING THE SAME, AND SWITCH DEVICE | |
US20250096824A1 (en) | Rf transmiter integrated circuit including crystal-less vco and electronic tag including the same | |
US11689053B2 (en) | Techniques for tuning an antenna of an energy harvester | |
JP5250308B2 (en) | Wireless receiving circuit and switch device using the same | |
JP2011004287A (en) | Wireless receiving circuit and switch apparatus using the same | |
Yuan et al. | A Temperature-Compensated BLE Beacon and 802.15. 4-to-BLE Translator on a Crystal-Free Mote | |
JP2014220730A (en) | Oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HONEYWELL INTERNATIONAL, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADDY, KENNETH L.;REEL/FRAME:014711/0051 Effective date: 20031107 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:ADEMCO INC.;REEL/FRAME:047337/0577 Effective date: 20181025 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY INTEREST;ASSIGNOR:ADEMCO INC.;REEL/FRAME:047337/0577 Effective date: 20181025 |
|
AS | Assignment |
Owner name: ADEMCO INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HONEYWELL INTERNATIONAL INC.;REEL/FRAME:047909/0425 Effective date: 20181029 |
|
AS | Assignment |
Owner name: ADEMCO INC., MINNESOTA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PREVIOUS RECORDING BY NULLIFICATION. THE INCORRECTLY RECORDED PATENT NUMBERS 8545483, 8612538 AND 6402691 PREVIOUSLY RECORDED AT REEL: 047909 FRAME: 0425. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:HONEYWELL INTERNATIONAL INC.;REEL/FRAME:050431/0053 Effective date: 20190215 |