US6720076B2 - In-mold primer coating for thermoplastic substrates - Google Patents
In-mold primer coating for thermoplastic substrates Download PDFInfo
- Publication number
- US6720076B2 US6720076B2 US10/160,576 US16057602A US6720076B2 US 6720076 B2 US6720076 B2 US 6720076B2 US 16057602 A US16057602 A US 16057602A US 6720076 B2 US6720076 B2 US 6720076B2
- Authority
- US
- United States
- Prior art keywords
- mold
- weight
- parts
- primer coating
- epoxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 90
- 239000002987 primer (paints) Substances 0.000 title claims abstract description 88
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 67
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 64
- 238000000576 coating method Methods 0.000 claims abstract description 79
- 239000011248 coating agent Substances 0.000 claims abstract description 65
- 239000000203 mixture Substances 0.000 claims abstract description 60
- 239000000178 monomer Substances 0.000 claims abstract description 54
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 claims abstract description 33
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 25
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 18
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims abstract description 14
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims abstract description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 8
- 125000004386 diacrylate group Chemical group 0.000 claims abstract description 7
- 239000004417 polycarbonate Substances 0.000 claims description 66
- 229920000515 polycarbonate Polymers 0.000 claims description 64
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 36
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 35
- -1 hydroxyl alkyl methacrylate Chemical compound 0.000 claims description 25
- 238000002347 injection Methods 0.000 claims description 22
- 239000007924 injection Substances 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 18
- 229940106691 bisphenol a Drugs 0.000 claims description 14
- 238000001746 injection moulding Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 229920001778 nylon Polymers 0.000 claims description 8
- 239000004677 Nylon Substances 0.000 claims description 7
- 229920003023 plastic Polymers 0.000 claims description 7
- 239000004033 plastic Substances 0.000 claims description 7
- 125000005395 methacrylic acid group Chemical group 0.000 claims description 6
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical group CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- AZIQALWHRUQPHV-UHFFFAOYSA-N prop-2-eneperoxoic acid Chemical compound OOC(=O)C=C AZIQALWHRUQPHV-UHFFFAOYSA-N 0.000 claims description 2
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 2
- OELQSSWXRGADDE-UHFFFAOYSA-N 2-methylprop-2-eneperoxoic acid Chemical compound CC(=C)C(=O)OO OELQSSWXRGADDE-UHFFFAOYSA-N 0.000 claims 1
- 230000000379 polymerizing effect Effects 0.000 claims 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 description 25
- 239000004593 Epoxy Substances 0.000 description 20
- 239000000654 additive Substances 0.000 description 16
- 239000000945 filler Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 229920000139 polyethylene terephthalate Polymers 0.000 description 11
- 239000005020 polyethylene terephthalate Substances 0.000 description 11
- 239000003999 initiator Substances 0.000 description 10
- 239000000543 intermediate Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000049 pigment Substances 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 9
- 238000013329 compounding Methods 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 229920005992 thermoplastic resin Polymers 0.000 description 7
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 6
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 239000003086 colorant Substances 0.000 description 6
- 229920001707 polybutylene terephthalate Polymers 0.000 description 6
- 238000009757 thermoplastic moulding Methods 0.000 description 6
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 238000005275 alloying Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 229920005669 high impact polystyrene Polymers 0.000 description 5
- 239000004797 high-impact polystyrene Substances 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 4
- 229930185605 Bisphenol Natural products 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 4
- 239000007863 gel particle Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 3
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000006082 mold release agent Substances 0.000 description 3
- 239000012778 molding material Substances 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 2
- LAQYHRQFABOIFD-UHFFFAOYSA-N 2-methoxyhydroquinone Chemical compound COC1=CC(O)=CC=C1O LAQYHRQFABOIFD-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 150000002118 epoxides Chemical group 0.000 description 2
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000003944 halohydrins Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 238000012643 polycondensation polymerization Methods 0.000 description 2
- 239000012260 resinous material Substances 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- WRXCBRHBHGNNQA-UHFFFAOYSA-N (2,4-dichlorobenzoyl) 2,4-dichlorobenzenecarboperoxoate Chemical compound ClC1=CC(Cl)=CC=C1C(=O)OOC(=O)C1=CC=C(Cl)C=C1Cl WRXCBRHBHGNNQA-UHFFFAOYSA-N 0.000 description 1
- DEWLEGDTCGBNGU-UHFFFAOYSA-N 1,3-dichloropropan-2-ol Chemical compound ClCC(O)CCl DEWLEGDTCGBNGU-UHFFFAOYSA-N 0.000 description 1
- UICXTANXZJJIBC-UHFFFAOYSA-N 1-(1-hydroperoxycyclohexyl)peroxycyclohexan-1-ol Chemical compound C1CCCCC1(O)OOC1(OO)CCCCC1 UICXTANXZJJIBC-UHFFFAOYSA-N 0.000 description 1
- XHAFIUUYXQFJEW-UHFFFAOYSA-N 1-chloroethenylbenzene Chemical compound ClC(=C)C1=CC=CC=C1 XHAFIUUYXQFJEW-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- QLZINFDMOXMCCJ-UHFFFAOYSA-N 7-(7-hydroxyheptylperoxy)heptan-1-ol Chemical compound OCCCCCCCOOCCCCCCCO QLZINFDMOXMCCJ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000007977 PBT buffer Substances 0.000 description 1
- 229920006778 PC/PBT Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229920000443 Xenoy Polymers 0.000 description 1
- JTCFNJXQEFODHE-UHFFFAOYSA-N [Ca].[Ti] Chemical compound [Ca].[Ti] JTCFNJXQEFODHE-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003738 black carbon Substances 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical group CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- XJOBOFWTZOKMOH-UHFFFAOYSA-N decanoyl decaneperoxoate Chemical compound CCCCCCCCCC(=O)OOC(=O)CCCCCCCCC XJOBOFWTZOKMOH-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical group C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical class CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- 125000005670 ethenylalkyl group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000005002 finish coating Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000004413 injection moulding compound Substances 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 235000011160 magnesium carbonates Nutrition 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- ZQMHJBXHRFJKOT-UHFFFAOYSA-N methyl 2-[(1-methoxy-2-methyl-1-oxopropan-2-yl)diazenyl]-2-methylpropanoate Chemical compound COC(=O)C(C)(C)N=NC(C)(C)C(=O)OC ZQMHJBXHRFJKOT-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 125000005474 octanoate group Chemical group 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 229920000874 polytetramethylene terephthalate Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical group C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- KOPQZJAYZFAPBC-UHFFFAOYSA-N propanoyl propaneperoxoate Chemical compound CCC(=O)OOC(=O)CC KOPQZJAYZFAPBC-UHFFFAOYSA-N 0.000 description 1
- OGOBWYZAVILZEC-UHFFFAOYSA-N propyl 2-hydroxyprop-2-enoate Chemical compound CCCOC(=O)C(O)=C OGOBWYZAVILZEC-UHFFFAOYSA-N 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical class OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229920000638 styrene acrylonitrile Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/061—Polyesters; Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/10—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/064—Polymers containing more than one epoxy group per molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/062—Copolymers with monomers not covered by C09D133/06
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/16—Making multilayered or multicoloured articles
- B29C45/1679—Making multilayered or multicoloured articles applying surface layers onto injection-moulded substrates inside the mould cavity, e.g. in-mould coating [IMC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/24—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
- B29C67/246—Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31667—Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product
Definitions
- the invention pertains to in-mold coatings for thermoplastic substrates and more particularly to reactive epoxy-acrylates copolymerizable with other ethylenically unsaturated components to provide a thermosetting in-mold primer coating for thermoplastic substrates including polycarbonates and polycarbonate alloy substrates.
- Thermoplastic substrates ordinarily are based on converting thermoplastic resins, powders, granules, pellets and similar forms of thermoplastic resinous material under heat and pressure to form useful molded articles.
- Injection molding processes for molding thermoplastic resinous materials typically comprise heating the molding compound to form a viscous flowable melt, injecting the heated melt under high pressure into a relatively cool closed mold cavity, cooling the melt to form a solid shape molded substrate conforming to the interior configuration of the mold cavity, and then ejecting the molded part from the mold cavity.
- Thermoplastic compression molding ordinarily comprises thermoplastic resin compounded with fillers, colorants, lubricant and other processing additives to form granular or palletized thermoplastic particles known as molding powder.
- the compounded molding resin flows under pressure into a heated mold to conform to the shape of the mold cavity.
- the mold is closed and the heat and pressure is maintained for sufficient dwell time to fully form the intended plastic article.
- the mold and formed plastic article are cooled to harden the molded plastic article, whereupon the mold can be opened and the molded article removed.
- the molded part can be a finished article having many design details such as bosses, flanges, ribs, bushings, holes or other openings, various functional structures, decorative designs, and flat surfaces. Most molded substrates need to be painted and need to obtain good adhesion to the applied surface coating.
- thermoplastic substrates especially polycarbonates and polycarbonate alloy plastics. Paint adhesion to molded thermoplastic substrates is frequently difficult to obtain with an applied finished top surface coating and invariably requires an intermediate primer coating to achieve the necessary adhesion with the particular thermoplastic substrate.
- the primer coating must provide adhesion to the substrate as well as interface adhesion with the finished surface coatings.
- an in-mold primer coating is often used in injection molding of thermoplastics to enable subsequent adhesion of a wide variety of surface top coatings regardless of the substrate thermoplastic resin composition. It is particularly difficult to obtain adhesion with surface coatings on thermoplastic polycarbonates and polycarbonate plastic alloys.
- In-mold coatings typically are sprayed into the mold cavity to coat the interior mold surfaces during the molding process to provide a primer surface coating integrally fused or adhered to the thermoplastic substrate being molded.
- In-mold coatings have been found to be particularly advantageous for molded parts or articles to provide a functional surface coating similar to post-mold process such as paint, as well as avoid surface imperfections in the molded part such as surface porosity, sink marks, surface waviness, and similar surface defects and imperfections which frequently require additional labor and costs to rework and post finish such moldings.
- in-mold primer coatings must provide adhesion to the substrate along with interface adhesion with most any type of finish surface coating.
- In-mold coatings can be injected into a slightly opened mold, or under pressure into a closed mold, where the in-mold coating is applied to the mold cavity surfaces and/or applied over a molded or partially molded substrate, and then cured under heat and pressure in the mold cavity to form an integral thermoset cured surface coating on the molded substrate.
- An in-mold coating can be injected into the mold after the mold pressure is released or while the mold is opened infinitesimally to permit injection of the in-mold coating into the mold cavity.
- 5,902,534 discloses a method of injecting molding resin into a mold, followed by injecting an in-mold coating into the mold cavity between the molded substrate and the mold cavity surfaces, then compressing and curing the in-mold coating while in contact with the mold cavity surface, and then cooling the molded substrate to provide interface adherence of the cured in-mold coating to the molded substrate surface.
- U.S. Pat. No. 4,668,460 suggests a method of in-mold coating a molded substrate contained within a closed mold by first molding the substrate under pressure and then injecting an in-mold coating into the closed mold at a pressure higher than the molding pressure.
- In-mold coatings are primarily directed to producing smooth surfaces free of surface defects and imperfections, while in-mold primer coatings additionally provide good adhesion to the specific thermoplastic substrate and an adherent surface for the subsequently applied surface topcoat.
- an in-mold primer coating comprising an epoxy-acrylate copolymer adapted to addition copolymerize with other ethylenically unsaturated components, including particularly minor amounts of a copolymerizable acrylic acid selected from acylic, methacrylic or ethacrylic acids, provides an excellent in-mold primer coating for difficult adhesion substrates, such as thermoplastic polycarbonates and polycarbonate based alloy molding compounds.
- the in-mold primer coating of this invention further provides excellent interface adhesion with most surface finishes and/or decorative top coatings.
- the cured in-mold primer coating produces smooth primer surfaces free of surface defects and imperfections, which enables direct finish coat painting without intervening costly refinishing or reworking of the molded part.
- the invention pertains to thermosetting in-mold primer coatings for injection and compression molded thermoplastic substrates, especially polycarbonates and polycarbonate plastic alloys, to provide molded thermoplastic parts or articles with a cured in-mold primer coating integrally fused with the surface of the thermoplastic molded substrate.
- the in-mold primer coating of this invention comprises on a weight percentage basis from about 25% to about 65% or about 74% or about 75% of a low molecular weight epoxy acrylate oligomer having terminal acrylate or methacrylate groups and a number average molecular weight from about 360 to about 2,500, from about 15% to about 40% of an hydroxyl alkyl acrylate or methacrylate, from about 10% to about 35% vinyl substituted aromatic hydrocarbon monomers and from about 1% to about 10% of an acrylic acid.
- the in-mold primer coating comprises 100 weight parts of the epoxy-acrylate oligomer, from about 30 to about 70 weight parts of an hydroxyl alkyl acrylate or methacrylate, from about 30 to about 80 weight parts of a vinyl aromatic monomer, and from about 2 to about 20 weight parts of an acrylic acid monomer, where the basis is 100 weight parts of the epoxy-acrylate oligomer.
- the in-mold primer coating is injected into the mold cavity after the thermoplastic substrate molding composition is at least partially set to form a molded substrate.
- the injected in-mold primer coating is cured under heat and pressure to become an integrally fused primer surface coating adhered to the molded thermoplastic substrate surface.
- the in-mold primer coating composition of this invention is based on a thermosetting copolymerizable composition comprising an epoxy acrylate oligomer, an hydroxy alkyl acrylate, a vinyl aromatic monomer, and an acrylic acid, to provide a curable in-mold primer coating for use on injection and compression molded thermoplastic substrates.
- the epoxy acrylate comprises an epoxy derived intermediate reacted with an acrylic acid such as acrylic acid, methacrylic acid, or ethacrylic acid to produce an acrylate terminated epoxy acrylate having at least two terminal acrylate groups.
- the epoxy intermediate can be an aromatic epoxy derived from bisphenol-A or a phenolic novalak epoxy, or an epoxy derived from alkylene oxide resins or other diglycidyl functional resin.
- Bisphenol epoxy intermediates are preferred predominantly comprising the coreaction product of polynuclear dihydroxy phenols or bisphenols with halohydrins to produce epoxy resin intermediates containing at least one, predominantly two, and preferably two terminal epoxy functional groups per epoxy molecule.
- the most common bisphenols are bisphenol-A, bisphenol-F, bisphenol-S and 4,4′-dihydroxy bisphenol-A.
- Useful halohydrins include epichlorohydrin, dichlorhydrin, and 1,2-dichlorohydrin-3-hydropropane, with the preferred being epichlorohydrin.
- a preferred epoxy resin intermediate for example, comprises the reaction of excess equivalents of epichlorohydrin with lesser equivalents of a bisphenol-A to produce an epoxide group terminated linear chain comprising repeating units of diglycidyl ether of bisphenol-A.
- the epoxy terminated intermediate preferably a diepoxide, is further reacted with excess equivalents of an acrylic acid to provide an acrylate terminated epoxy having acrylate double bonds essentially terminating each terminal end of the epoxy intermediate.
- the preferred epoxy acrylate is an epoxy diacrylate.
- Acrylic acids comprise acrylic acid (preferred) or a low alkyl, e.g., 1 to about 3 carbon atoms, substituted acrylic acid such as methacrylic acid or ethacrylic acid.
- Useful molecular weights of epoxy acrylates are number average molecular weights from about 360 to about 2,500, and preferably from about 1,000 to about 2,000, as measured by GPC.
- Epoxy acrylates are mixed with copolymerizable hydroxy alkyl acrylates in accordance with this invention.
- Useful hydroxy alkyl acrylates comprise alkyl acrylates and methacrylates where the alkyl group contains from 1 to about 10, and preferably from 1 to about 5, carbon atoms.
- Useful alkyl groups include for instance methyl, ethyl, propyl, butyl, and higher alkyl groups where propyl is the preferred alkyl chain and hydroxyl propyl acrylate is the preferred hydroxy acrylate.
- Hydroxy alkyl acrylates and/or methacrylates comprise from about 30 to about 70 parts by weight, and preferably from about 40 to about 60 parts by weight per 100 parts by weight of the epoxy-acrylic oligomer.
- One or more hydroxy alkyl acrylates can be utilized in the in-mold coating.
- thermosetting in-mold primer coating composition of this invention comprises a vinyl substituted aromatic hydrocarbon monomer including for example styrene, lower alky, e.g., 1 to about 5 carbon atoms, substituted styrenes such as alpha methyl and ethyl styrenes, vinyl toluene, halo substituted styrenes such as alpha-chloro styrene, and similar mono-vinyl aromatic monomers.
- a vinyl substituted aromatic hydrocarbon monomer including for example styrene, lower alky, e.g., 1 to about 5 carbon atoms, substituted styrenes such as alpha methyl and ethyl styrenes, vinyl toluene, halo substituted styrenes such as alpha-chloro styrene, and similar mono-vinyl aromatic monomers.
- the copolymerizable in-mold primer coating composition of this invention contains from about 30 to about 80 parts by weight, and preferably from about 40 to 70 parts by weight vinyl aromatic monomer per 100 parts by weight of the epoxy-acrylic oligomer.
- an acrylic acid monomer selected from acrylic acid, methacrylic acid, ethacrylic acid, or mixtures thereof, is included in the copolymerizable in-mold primer coating mixture.
- an acylic acid component has been found to be particularly effective in providing adhesion to particularly difficult adherent thermoplastic substrates such as thermoplastic polycarbonate and polycarbonate based thermoplastic alloys.
- the preferred acrylic acid is methacrylic acid.
- the copolymerizable in-mold primer coating composition comprises from about 2 to about 20 parts by weight, and preferably from about 5 to about 15 parts by weight per 100 parts by weight of the epoxy-acrylic oligomer.
- the in-mold primer coating of this invention can contain minor amounts of copolymerizable other mono-ethylenically unsaturated alkyl or alicyclic monomer having a carbon to carbon double bond unsaturation including vinyl monomers, allylic monomers, acrylamide monomers, and similar mono-ethylenically unsaturated alkyl or alicylic monomers.
- Useful vinyl monomers include vinyl esters such as vinyl acetate, vinyl propionate, vinyl propionate, vinyl butyrates, vinyl isopropyl acetates and similar vinyl alkyl esters, and vinyl alicyclic monomers such as cyclohexane.
- Useful acrylamide monomers include, for instance, methyl, ethyl, propyl, butyl, 2-ethyl hexyl, cylocohexyl, decyl, isodecyl, benzyl and similar lower alkyl acrylamide or methacrylamide monomers.
- N-alkoxymethyl derivatives can also be used such as, for example, N-methylol, N-ethanol acrylamides or methacrylamides.
- the in-mold coating can contain from 0 to about 20 weight parts of other mono-ethylenically unsaturated alkyl or acylic copolymerizable monomer based on 100 weight parts of copolymerizable epoxy acrylate oligomer in the in-mold primer coating composition.
- the in-mold primer coating composition can contain, if desired, a minor amount of an additional low molecular weight diacrylate such as acrylic or methacrylic diester of a diol.
- the in-mold primer coating can contain, if any, from about 0.1 or about 1 to about 10 weight parts of such other low molecular weight diacrylate, if desired.
- the in-mold primer coating of this invention comprises 100 weight parts of epoxy-acrylate oligomer, from about 30 to about 70 weight parts and preferably from about 40 to about 60 weight parts, of an hydroxyl functional acrylate or methacrylate, from about 30 to about 80 weight parts, and preferably from about 40 to about 70 weight parts, of a vinyl aromatic monomer, from about 2 to about 20, and preferably from about 5 to 15 weight parts, of an acrylic acid selected from acrylic, methacrylic, and/or ethacrylic acid, with the balance if any being minor amounts of 1 to about 20 weight parts of other mono-ethylenically unsaturated monomer(s) and/or low molecular weight other diacrylate, where weight parts are based on 100 weight parts of the epoxy-acrylic oligomer.
- the in-mold primer coating of this invention comprising epoxy acrylate, hydroxyl alkyl acrylate, vinyl aromatic monomer, and an acrylic acid component is copolymerized and thermoset under heat in the presence of a free radical initiator such as peroxide.
- Useful peroxides include t-butyl peroxide, t-butyl perbenzoate, t-butyl peroctate, dibenzoyl peroxide, methyl ethyl ketone peroxide, diacetyl peroxide, t-butyl hydroperoxide, ditertiary butyl peroxide, benzoyl peroxide, t-butyl peroxypivalate, 2,4-dichlorobenzoyl peroxide, decanoylperoxide, propionyl peroxide, hydroxyheptyl peroxide, cyclohexanone peroxide, dicumyl peroxide, cume hydroperoxide, and similar free radical peroxide initiators.
- Azo free radical initiators can be useful including for instance azo bis-isobutyronitrile, dimethyl azobis-isobutyrate, and similar azo free radical initiators.
- a preferred initiator is t-butyl perbenzoate.
- Free radical peroxide or azo initiators are added to the copolymerizable in-mold primer coating at a level above about 0.5%, desirably from about 1 to about 5%, and preferably from about 1% to about 2%, by weight based on the weight of the copolymerizable thermosetting components of the in-mold primer coating composition comprising epoxy acrylate oligomer, hydroxy alkyl acrylate, aromatic monomer, acrylic acid monomer and other polymerizable components if any.
- an accelerator can be added, if desired to accelerate curing, including cobalt driers such as cobalt napthenate or octoate, or other metal napthenates such as zinc, lead, and manganese napthenates, or mixtures of such accelerators.
- cobalt driers such as cobalt napthenate or octoate, or other metal napthenates such as zinc, lead, and manganese napthenates, or mixtures of such accelerators.
- cobalt driers such as cobalt napthenate or octoate, or other metal napthenates such as zinc, lead, and manganese napthenates, or mixtures of such accelerators.
- cobalt driers such as cobalt napthenate or octoate, or other metal napthenates such as zinc, lead, and manganese napthenates, or mixtures of such accelerators.
- ordinarily minimal amounts of accelerator are used, if desired, at levels from about
- the in-mold copolymerizable thermosetting primer coating composition can be compounded with other additives, known to the art and to the literature, such as opacifying pigments, tinting pigments or colorants, and inert fillers.
- opacifying pigments include titanium dioxide, zinc oxide, titanium calcium, while tinting pigments include a variety of oxides, chromium, cadmium, and other tinters.
- Carbon black ordinarily will be used predominantly in the in-mold primer coating of this invention to provide a black or gray primer coating appearance.
- Useful fillers include clays, silicas, talc, mica, wood flower, barium sulfate, calcium and magnesium silicates, aluminum hydroxide, barium sulfate, and magnesium and calcium carbonates, where preferred fillers are talc and barium sulfate.
- Opacifying pigments, tinting pigments or colorants, and inert fillers can be used at a level from about 0 to about 80 weight parts per 100 weight parts of copolymerizable in-mold coating composition.
- additives to the in-mold primer coating can include lubricants and mold release agents such as zinc or calcium stearate, phosphoric acid esters, and zinc salts of fatty acids. Mold release agents can also be used to control the cure rate, where zinc fatty acids tend to moderately accelerate the cure time, while calcium fatty acids tend to moderately retard the cure time.
- a low profile additive, such as polyvinyl acetate, can be added if desired to avoid molding shrinkage of the in-mold primer coating.
- thermosetting in-mold primer coating composition of this invention can be prepared by mixing together the epoxy acrylate, hydroxy alkyl acrylate, vinyl aromatic monomer, and acrylic acid component to form a uniform fluid resinous blend.
- the free radical initiator can be added to the resinous mixture, or added with one on the resinous components such as the aromatic monomer, along with accelerator if any, and inhibiter if any.
- Other compounding ingredients of pigments, colorants and fillers and other additives can be added as desired and mixed to form a uniformly dispersed in-mold primer coating composition.
- thermosetting in-mold primer coating compositions of this invention are particularly suitable for obtaining good adhesion over a thermoplastic polycarbonate based substrate, such as polycarbonate and polycarbonate plastic alloys.
- Thermoplastic polycarbonates are primarily aromatic polyesters derived from reaction of carbonic acid derivatives with primarily an aromatic diol.
- polycarbonates can be formed by phosgene reaction with a diol such as bisphenol-A, or by a melt transesterification between bisphenol-A and a carbonate ester such as diphenyl carbonate.
- Poly(bisphenol-A carbonate) is a condensation polymer ordinarily synthesized from bisphenol-A and phosgene in the presence of monophenol chain terminator to control molecular weight.
- the most common polycarbonate is bisphenol-A based produced by interfacial reaction of bisphenol-A with carbonyl chloride where molecular weight can be controlled by a phenolic chain stopper.
- Useful number average molecular weights of aromatic thermoplastic polycarbonates ordinarily are from about 10,000 to about 50,000, where from about 22,000 to about 35,000 molecular weights are preferred.
- Polycarbonate polymeric blends or alloys with other thermoplastic polymers are likewise useful thermoplastic substrates on which the thermosetting in-mold primer coating of this invention achieves good substrate adhesion.
- Useful polycarbonate alloy blends include aromatic polycarbonate mixed with poly(butylenes terephthalate) known as PC/PBT, and aromatic polycarbonate blended with poly(ethylene terephthalate) known as PC/PET, as well as other polymeric alloy blends with aromatic polycarbonate.
- Such polycarbonate alloys ordinarily comprise a mixture of polycarbonate containing from about 40 to about 95 weight percent aromatic polycarbonate with the balance being the alloying secondary thermoplastic polymer or polymers.
- Additives to polycarbonates and alloy blends thereof can include tinting pigments, colorants, heat stabilizers, impact modifiers, lubricants, mold release agents, UV stabilizers, plasticizers, fibers, reinforcing materials, fillers, and other additives ordinarily added to injection molding thermoplastic substrate compounding resins as desired.
- thermosetting in-mold primer coating of this invention is particularly useful as an in-mold coating for molding of polycarbonate alloys comprising major amounts of polycarbonate mixed with minor amounts of Nylon, ABS, PET, PBT, and/or HIPS.
- the Polycarbonate and alloying co-polymer can be heated to make the two polymeric material miscible or partially miscible depending on the alloying polymer.
- the polymers may or may not interact, such as by ester interchange, during the heat alloying process.
- the polycarbonate ordinarily is the dominant matrix polymer but need not be.
- polycarbonate alloys comprise by weight from about 40 to about 95% polycarbonate, preferably from about 50 to about 80% polycarbonate, with the balance being blend or alloying polymer or polymers.
- Nylons are polyamides having repeating amide groups ordinarily produced by condensation polymerization of a dibasic acid with a diamine or addition polymerization of a ring monomer compound having both carboxylic acid and amine groups on the same monomer.
- adipic acid or similar 6 to 12 carbon dibasic acid, or longer aliphatic chain can be condensation polymerized with hexamethylene diamine adipamide, while e-caprolactam can be homopolymeized to form polycaproamide.
- Nylon can be alloyed with polycarbonate and compounded with fillers and additives in much the same manner as polycarbonates.
- ABS is a polymeric material comprising copolymerization of acylonitrile, butadiene, and styrene in various ratios to form a terpolymer comprising butadiene rubber grafted with styrene-acrylonitrile and provide a thermoplastic exhibiting various physical and strength properties, as desired.
- Acylonitrile contributes stability, chemical resistance, and aging resistance, while butadiene provides low temperature property retention, toughness, and impact strength, and styrene provides rigidity.
- ABS comprises from about 5 to about 30% by weight butadiene rubber with the balance being styrene-acrylonitrile copolymer.
- a fourth monomer can be copolymerized if desired to provide special properties, such as alpha-methyl styrene for high heat deflection.
- ABS can be alloyed with polycarbonate to form a polycarbonate alloy which can be compounded with pigments, filler and other additives in much the same manner as polycarbonates to form a thermoplastic molding composition for injection molding of thermoplastic substrates.
- the thermosetting in-mold primer coating of this invention can be applied to the molded ABS modified polycarbonate substrate by in-mold injection of the primer coating in accordance with this invention.
- PET Polyethylene terephthalate
- PET is a polycondensation polymerized polymer of ethylene glycol and terephthalic acid, or ethylene glycol transesterified with dimethyl terephthalate, to produce PET.
- ethylene glycol is esterified or transesterified using a continuous melt phase condensation polymerization process, or transesterification process, and can be followed by solid-state polymerization at higher temperatures to obtain higher molecular weight PET, if desired.
- PET can be alloyed with polycarbonate and compounded with other compounding ingredients to provide a thermoplastic injection molding compound useful as an injection molded substrate capable of achieving good surface adhesion with the in-mold primer coating in accordance with this invention.
- Polybutylene terephthalate is commonly known as PBT.
- Polybutylene terephthalate or polytetramethylene terephthalate is made by direct esterification of 1,4-butanediol with dimethyl terephthalate in much the same manner as PET.
- the PBT thermoplastic can be alloyed with polycarbonate and compounded with filler, pigments, and other additives similar to polycarbonate compounding.
- High impact styrene is commonly known as HIPS.
- High impact styrene is polystyrene reinforced with a rubber compound comprising a non-crystalline polystyrene thermoplastic toughened by incorporating a rubber additive without diminishing other properties.
- the rubber additive component comprises a large number of small gel particles with a modulus much lower than the matrix polystyrene.
- the rubber gel particles are added to avoid brittle fracture by absorbing impact energy through micro-craze formation at the gel particles, while preventing craze propagation cracks, to provide a thermoplastic substrate that does not bend or crack under stress due to high flexural modulus.
- the rubber gel particles ordinarily comprise polybutadiene and typically are about 1 to 2 millimicrons in size.
- HIPS thermoplastic resins can be alloyed with polycarbonate and compounded with other additives and compounding components in much the same manner as polycarbonates to provide an injection molded substrate.
- the alloy of polycarbonate with HIPS provides an injection molded substrate having good adhesion with the in-mold primer coating of this invention.
- thermoplastic substrates in addition to polycarbonate and polycarbonate alloyed thermoplastic.
- Useful other thermoplastic substrates include PET, PBT and copolymers, nylon, ABS, HIPS, and thermoplastic polyurethanes.
- Injection molding involves heating the resinous compounding composition to a temperature above the melting point of the compounding resin and injecting the heated resin melt into an injection mold cavity for molding a substrate part or article.
- the substrate resinous molding compound ordinarily is injected into the cavity of an injection mold and molded under heat and pressure to at least partially set the thermoplastic molding resin and form a molded substrate.
- Substrate molding temperatures typically are from about 100 to about 300° F. and preferably from about 150 to about 250° F.
- the injection molding pressure preferably is partially released from the mold to permit injection of the in-mold appearance coating of this invention into the minimally opened mold under reduced low pressure.
- the substrate molding compound can be injection molded under high pressure followed by injecting the in-mold coating at a higher pressure into the mold maintained closed under pressure
- a metered amount of the in-mold coating containing initiator, additives, and other compounding ingredients as desired is injected into a nozzle located within the parting line of the mold cavity and preferably disposed opposite from the thermoplastic substrate injection sprues.
- Pressure can be applied as needed and ordinarily can be from about 2,000 to about 5,000 psi, and preferably from about 3,000 to about 4,000 psi, but ordinarily at a pressure considerably less than the pressure applied while molding the substrate resinous compound.
- the applied pressure can increase as the in-mold appearance coating is injected between the partially molded substrate and the mold cavity surfaces.
- the in-mold coating is heat cured to conduct copolymerize the epoxy acrylate oligomer, hydroxy alkyl acrylate, the vinyl aromatic monomer, and the acrylic acid monomer to form a fully cured in-mold primer surface coating advantageously molded integrally with and fusion adhered to the fully formed thermoplastic substrate.
- In-mold coating curing temperatures can be from about 150 to about 300° F. for time sufficient to fully cure the in-mold coating.
- the heat curing intervals typically are from about 30 to about 120 seconds and preferably from about 60 to about 90 seconds.
- the mold is then opened and the surface coated molded part or article can be removed from the mold cavity.
- the cured surface coating provides excellent adhesion to the polycarbonate based substrate as well as an excellent primer surface amenable to good adhesion with a wide variety of top surface finish coatings.
- the in-mold primer coating can be used in an in-mold coating process for an injection molding process and apparatus described in the drawings.
- FIG. 1 is a side view of a molding apparatus suitable for practicing the method of the present invention.
- FIG. 2 is a cross section through a vertical elevation of a mold cavity.
- FIG. 3 is a top view of a molded substrate prior to being coated with an in-mold coating.
- the substrate is shown having an area of increased thickness in order to promote and/or channel in-mold coating flow.
- Molding apparatus 10 includes a first mold half 20 which preferably remains in a stationary or fixed position relative to a second moveable mold half 30 .
- FIG. 1 shows the mold halves in an open position.
- the first mold half and second mold half are adapted to slidingly mate, or nest, thereby forming a mold cavity 40 therebetween as shown in at least FIG. 2 .
- the mold halves mate along surfaces 24 and 34 (FIG. 1) when the molding apparatus is in the closed position, forming a parting line 42 (FIG. 2) therebetween.
- the moveable mold half 30 reciprocates generally along a horizontal axis relative to the first or fixed mold half 20 by action of a clamping mechanism 70 with a clamp actuator 72 such as through a hydraulic, mechanical, or electrical actuator as known in the art.
- the clamping pressure exerted by the clamping mechanism 70 should have an operating pressure in excess of the pressures generated or exerted by the first composition injector and the second composition injector.
- the pressure exerted by the clamping mechanism ranges generally from about 2,000 to about 15,000, desirably from about 4,000 to about 12,000, and preferably from about 6,000 to about 10,000 pounds per square inch (psi) of mold surface.
- the mold halves 20 and 30 are shown in a closed position, abutted or mated along parting line 42 illustrated at face surfaces 24 and 34 shown in FIG. 1 .
- the mold cavity is illustrated in cross section. It is readily understood by those skilled in the art that the design of the cavity can vary greatly in size and shape according to the end product to be molded.
- the mold cavity generally has a first surface 44 on the first mold half, upon which a show surface of an article will be formed, and a corresponding back side or opposite second surface 46 on the second mold half.
- the mold cavity also contains separate orifices ( 47 , 62 ) to allow the first and second composition injectors to inject their respective compositions thereinto.
- the location of the injectors and injection orifices thereof can vary from apparatus to apparatus, and part to part, and can be based on factors such as efficiency, functionality, or desire of the mold designer.
- the first composition or substrate injector 50 is a typical injection molding apparatus which is well know to those of ordinary skill in the art and is capable of injecting a thermoplastic or thermosetting substrate composition, generally a resin or polymer, into the mold cavity.
- the first composition injector is shown in a “backed off” position, but it is readily understood that the same can be moved to a horizontal direction so that nozzle or resin outlet 58 mates with mold half 20 and can inject into mold cavity 40 .
- the first composition injector in FIG. 1 is a reciprocating-screw machine wherein a first composition can be placed in hopper 52 and rotating screw 56 moves the composition through the heated extruder barrel 54 , wherein the material is heated above its melting point.
- the screw acts as an injection ram and forces it through the nozzle 58 into the mold cavity 40 .
- the nozzle generally has a non-return valve at the nozzle or screw tip to prevent the backflow of material into the screw.
- the first composition injector can be any apparatus capable of injecting a thermoplastic composition into the mold cavity.
- Suitable injection molding machines are well known in the art and are commercially available from Cincinnati Milacron, Battenfeld, Engel, Husky, Boy and others.
- the mold halves ( 20 , 30 ) are closed and a mold cavity 40 is formed, as shown in FIG. 2 .
- a clamping pressure is applied to the mold to counteract the injection pressure of the substrate composition molding material as well as the in-mold coating.
- the substrate composition in a melted or softened state is injected into the mold cavity from the substrate injection apparatus.
- the substrate composition in the mold cavity begins to “skin over” or become solidified, at least to an extent the substrate can withstand an injection pressure and/or flow pressure from the in-mold coating.
- cooling takes place, which is believed to cause at least a slight shrinkage in the molded substrate in the mold cavity.
- the shrinkage or spacing within the mold cavity may or may not be visually noticeable to the naked eye.
- the in-mold coating apparatus 60 comprises an in-mold coating injector having a shut off pin which supplies a metered amount of a coating material.
- a supply pump is generally utilized to supply the in-mold coating material into a metering cylinder from a storage vessel or the like.
- the in-mold coating is injected from the metering cylinder into the mold cavity through passageway 62 with a pressurizing device utilizing as hydraulic, mechanical, or other pressure.
- the in-mold coating apparatus When the in-mold coating apparatus is activated during injection mode, the coating material flows through passageway 62 and into the mold cavity between inner wall 44 of mold half 20 and a surface of the molded substrate. Once a predetermined amount of in-mold coating has been injected into the mold cavity, the in-mold coating apparatus 60 is deactivated thus causing the flow of coating to cease. The in-mold coating subsequently cures in the mold cavity and adheres to the substrate surface to which the same was applied. The curing can be caused by the residual heat of the substrate or mold halves, and/or by reaction between the components of the in-mold coating.
- the in-mold coating is injected into the mold cavity at a pressure ranging generally from about 500 to about 5000 psi, desirably from about 1500 to about 4500 psi, and preferably from about 2000 to about 4000 psi.
- the in-mold primer coating of this invention is similarly useful for compression molding of thermoplastic substrates.
- Thermoplastic molding materials for compression molding can be compounded in a manner similar to injection molding thermoplastic molding materials, typically supplied in the form of coarse granules often referred to as molding powder, which ordinarily comprises thermoplastic resin, a filler or fillers, along with minor amounts of additives such as dye, colorant, and lubricants.
- Thermoplastic molding powders can be placed in a mold cavity and, on the application of heat and pressure, the thermoplastic resin melts and the compounding material flows to conform to the shape of the mold cavity and forma into a molded part.
- the mold and molded part are then cooled to solidify and harden the molded part.
- In-mold primer coatings can be injected into the compression mold to form an in-mold cured thermoset surface coating on the molded part in a manner similar to injection molding in-mold coating, whereupon the surface coated molded part can be removed from the mold
- Experimental panels were molded from GE Xenoy® GTX902 Polycarbonate/Nylon alloy using a Toshiba 950T injection molding machine and a 5′′ ⁇ 20′′ ⁇ 0.10′′ flat panel tool equipped with an in-mold coating injector.
- the coated portion of the part was 5′′ ⁇ 20′′.
- Tool temperature was 200° F.
- Clamp tonnage was set at 500T.
- the in-mold coating was injected at 45 seconds after mold fill commenced with the thermoplastic resin (35 seconds after hold pressure began) on the molded part.
- the total cycle time comprised of part molding. In-mold coating injection and cure was 300 seconds.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
Abstract
Description
Ingredient | Parts | Wt. % | Function | ||
HPMA | 55.00 | 16.74 | Monomer | ||
Zinc Stearate | 5.00 | 1.70 | Mold Release | ||
BPA Epoxy | 100.00 | 34.08 | Crosslinking | ||
Acrylate | Oligomer | ||||
Styrene | 49.20 | 16.77 | Monomer | ||
Polyvinyl | 7.80 | 2.66 | “Low Profile | ||
Acetate | Additive” | ||||
12% Cobalt | 0.30 | 0.10 | Accelerator | ||
Napthenate | |||||
DisperseAyd 8 | 1.00 | 0.34 | Dispersant | ||
Black | for Carbon | ||||
XC72R Carbon | 6.00 | 2.04 | Conductive | ||
Black | Carbon Black | ||||
Benzoquinone | 0.05 | 0.02 | Inhibitor | ||
Talc | 60.00 | 20.45 | Filler | ||
Methacrylic | 9.10 | 3.10 | Monomer | ||
Acid | |||||
T-Butyl Peroxy | 4.40 | 1.50 | Initiator | ||
Benzoate | |||||
TOTAL | 293.45 | 100.00 | |||
NOTES: | |||||
HPMA is Hydroxypropyl Methacrylate | |||||
BPA Epoxy Acrylate has a number average molecular weight of 1,500. |
TABLE 1 |
Primer Coating - Examples on GTX902 PC/Nylon Alloy |
TAPE ADHESION | CROSS-HATCH | BRITTLENESS | CHIP RESISTANCE, | |
GM9071P | FORD B110601 | GM9506P | 0° F. GM8508P | |
% RETENTION | GRADE | GRADE | GRADE |
COAT- | POST- | POST- | POST- | POST- | POST- | POST- | POST- | POST- | |||||
EX. | ING | INITIAL | WATER | HEAT | INITIAL | WATER | HEAT | INITIAL | WATER | HEAT | INITIAL | WATER | HEAT |
A | Control | 0 | 0 | 0 | 10 | 10 | 10 | Fail | Fail | Fail | 1 | 1 | 1 |
B | Exam- | 99 | 100 | 100 | 1 | 1 | 1 | Pass | Pass | Pass | 9 | 9 | 9 |
ple | |||||||||||||
Control = In-mold coating of Example 1 without methacrylic acid. | |||||||||||||
Post-Water = Ford ESB-MZP124-A1; 10 Day Soak at 32° C. | |||||||||||||
Post Heat = GM 4385M; 7 Days at 70° C. | |||||||||||||
For Tape Adhesion, Pass = 95 to 100% retention on part | |||||||||||||
For Cross-Hatch, Pass = Grade 2, 1 or 0 | |||||||||||||
For Chip Resistance, Pass = |
Claims (33)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/160,576 US6720076B2 (en) | 2002-05-31 | 2002-05-31 | In-mold primer coating for thermoplastic substrates |
CNA038122588A CN1656181A (en) | 2002-05-31 | 2003-05-30 | In-mold primer coating for thermoplastic substrates |
EP20030756256 EP1532214A2 (en) | 2002-05-31 | 2003-05-30 | In-mold primer coating for thermoplastic substrates |
BR0311382A BR0311382A (en) | 2002-05-31 | 2003-05-30 | In-mold base coating for in-mold coating a molded, laminated, and thermoplastic substrate in-mold coating process |
AU2003232426A AU2003232426A1 (en) | 2002-05-31 | 2003-05-30 | In-mold primer coating for thermoplastic substrates |
PCT/US2003/016924 WO2003102087A2 (en) | 2002-05-31 | 2003-05-30 | In-mold primer coating for thermoplastic substrates |
MXPA04011811A MXPA04011811A (en) | 2002-05-31 | 2003-05-30 | In-mold primer coating for thermoplastic substrates. |
JP2004510333A JP2005528504A (en) | 2002-05-31 | 2003-05-30 | In-mold primer coating for thermoplastic substrates |
CA 2487510 CA2487510A1 (en) | 2002-05-31 | 2003-05-30 | In-mold primer coating for thermoplastic substrates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/160,576 US6720076B2 (en) | 2002-05-31 | 2002-05-31 | In-mold primer coating for thermoplastic substrates |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030224172A1 US20030224172A1 (en) | 2003-12-04 |
US6720076B2 true US6720076B2 (en) | 2004-04-13 |
Family
ID=29583199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/160,576 Expired - Lifetime US6720076B2 (en) | 2002-05-31 | 2002-05-31 | In-mold primer coating for thermoplastic substrates |
Country Status (9)
Country | Link |
---|---|
US (1) | US6720076B2 (en) |
EP (1) | EP1532214A2 (en) |
JP (1) | JP2005528504A (en) |
CN (1) | CN1656181A (en) |
AU (1) | AU2003232426A1 (en) |
BR (1) | BR0311382A (en) |
CA (1) | CA2487510A1 (en) |
MX (1) | MXPA04011811A (en) |
WO (1) | WO2003102087A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070021520A1 (en) * | 2005-07-22 | 2007-01-25 | Molecular Imprints, Inc. | Composition for adhering materials together |
US20070017631A1 (en) * | 2005-07-22 | 2007-01-25 | Molecular Imprints, Inc. | Method for adhering materials together |
US20070212494A1 (en) * | 2005-07-22 | 2007-09-13 | Molecular Imprints, Inc. | Method for Imprint Lithography Utilizing an Adhesion Primer Layer |
US20080265459A1 (en) * | 2007-04-27 | 2008-10-30 | Gasworth Steven M | Abrasion resistant plastic glazing with in-mold coating |
US20080286537A1 (en) * | 2007-05-09 | 2008-11-20 | Christophe Lefaux | Pre-dry treatment of ink in decorative plastic glazing |
US20090155583A1 (en) * | 2005-07-22 | 2009-06-18 | Molecular Imprints, Inc. | Ultra-thin Polymeric Adhesion Layer |
US20100112236A1 (en) * | 2008-10-30 | 2010-05-06 | Molecular Imprints, Inc. | Facilitating Adhesion Between Substrate and Patterned Layer |
US20110165412A1 (en) * | 2009-11-24 | 2011-07-07 | Molecular Imprints, Inc. | Adhesion layers in nanoimprint lithograhy |
US9139242B2 (en) | 2007-05-01 | 2015-09-22 | Exatec Llc | Encapsulated plastic panel and method of making the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050151299A1 (en) * | 2004-01-13 | 2005-07-14 | Rogerson L. K. | Method for bonding thermoplastic materials to other materials using a silane mist |
KR102306373B1 (en) * | 2013-05-30 | 2021-10-01 | 헨켈 아이피 앤드 홀딩 게엠베하 | Primer compositions for injection molding |
CN116261508B (en) * | 2020-12-23 | 2024-07-30 | 关西涂料株式会社 | Coating composition |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4414173A (en) | 1981-11-02 | 1983-11-08 | The General Tire & Rubber Company | In-mold coating |
US4508785A (en) | 1981-11-02 | 1985-04-02 | The General Tire & Rubber Company | In-mold coating |
US4515710A (en) | 1983-07-18 | 1985-05-07 | Gencorp Inc. | In-mold coating composition |
US4534888A (en) | 1982-10-25 | 1985-08-13 | The General Tire & Rubber Company | In-mold coating |
US4668460A (en) | 1985-04-02 | 1987-05-26 | The Sherwin-Williams Company | Method of molding and coating a substrate in a mold. |
US5084353A (en) | 1989-05-12 | 1992-01-28 | Gencorp Inc. | Thermosetting in-mold coating compositions |
US5132052A (en) | 1991-03-20 | 1992-07-21 | Gencorp Inc. | Fast cure in-mold coating |
US5614581A (en) | 1993-04-26 | 1997-03-25 | Gencorp Inc. | Conductive gray in-mold coating |
US5902534A (en) | 1994-09-21 | 1999-05-11 | Mitsubishi Engineering-Plastics Corp. | Method of injection-molding thermoplastic resins |
-
2002
- 2002-05-31 US US10/160,576 patent/US6720076B2/en not_active Expired - Lifetime
-
2003
- 2003-05-30 EP EP20030756256 patent/EP1532214A2/en not_active Withdrawn
- 2003-05-30 MX MXPA04011811A patent/MXPA04011811A/en not_active Application Discontinuation
- 2003-05-30 JP JP2004510333A patent/JP2005528504A/en active Pending
- 2003-05-30 CA CA 2487510 patent/CA2487510A1/en not_active Abandoned
- 2003-05-30 WO PCT/US2003/016924 patent/WO2003102087A2/en not_active Application Discontinuation
- 2003-05-30 AU AU2003232426A patent/AU2003232426A1/en not_active Abandoned
- 2003-05-30 CN CNA038122588A patent/CN1656181A/en active Pending
- 2003-05-30 BR BR0311382A patent/BR0311382A/en not_active Application Discontinuation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4414173A (en) | 1981-11-02 | 1983-11-08 | The General Tire & Rubber Company | In-mold coating |
US4508785A (en) | 1981-11-02 | 1985-04-02 | The General Tire & Rubber Company | In-mold coating |
US4534888A (en) | 1982-10-25 | 1985-08-13 | The General Tire & Rubber Company | In-mold coating |
US4515710A (en) | 1983-07-18 | 1985-05-07 | Gencorp Inc. | In-mold coating composition |
US4668460A (en) | 1985-04-02 | 1987-05-26 | The Sherwin-Williams Company | Method of molding and coating a substrate in a mold. |
US5084353A (en) | 1989-05-12 | 1992-01-28 | Gencorp Inc. | Thermosetting in-mold coating compositions |
US5359002A (en) | 1989-05-12 | 1994-10-25 | Gencorp Inc. | Epoxy polyacrylate with OH or amide-containing monomer |
US5391399A (en) | 1989-05-12 | 1995-02-21 | Gencorp Inc. | In-mold coating with epoxy acrylate and OH or Amide-containing monomer |
US5132052A (en) | 1991-03-20 | 1992-07-21 | Gencorp Inc. | Fast cure in-mold coating |
US5614581A (en) | 1993-04-26 | 1997-03-25 | Gencorp Inc. | Conductive gray in-mold coating |
US5902534A (en) | 1994-09-21 | 1999-05-11 | Mitsubishi Engineering-Plastics Corp. | Method of injection-molding thermoplastic resins |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8808808B2 (en) | 2005-07-22 | 2014-08-19 | Molecular Imprints, Inc. | Method for imprint lithography utilizing an adhesion primer layer |
US20070017631A1 (en) * | 2005-07-22 | 2007-01-25 | Molecular Imprints, Inc. | Method for adhering materials together |
US20070212494A1 (en) * | 2005-07-22 | 2007-09-13 | Molecular Imprints, Inc. | Method for Imprint Lithography Utilizing an Adhesion Primer Layer |
US20140034229A1 (en) * | 2005-07-22 | 2014-02-06 | Molecular Imprints, Inc. | Method for Adhering Materials Together |
US20070021520A1 (en) * | 2005-07-22 | 2007-01-25 | Molecular Imprints, Inc. | Composition for adhering materials together |
US20090155583A1 (en) * | 2005-07-22 | 2009-06-18 | Molecular Imprints, Inc. | Ultra-thin Polymeric Adhesion Layer |
US8557351B2 (en) * | 2005-07-22 | 2013-10-15 | Molecular Imprints, Inc. | Method for adhering materials together |
US7759407B2 (en) | 2005-07-22 | 2010-07-20 | Molecular Imprints, Inc. | Composition for adhering materials together |
US8846195B2 (en) | 2005-07-22 | 2014-09-30 | Canon Nanotechnologies, Inc. | Ultra-thin polymeric adhesion layer |
US8236383B2 (en) | 2007-04-27 | 2012-08-07 | Exatec Llc | Abrasion resistant plastic glazing with in-mold coating |
US20080265459A1 (en) * | 2007-04-27 | 2008-10-30 | Gasworth Steven M | Abrasion resistant plastic glazing with in-mold coating |
US9139242B2 (en) | 2007-05-01 | 2015-09-22 | Exatec Llc | Encapsulated plastic panel and method of making the same |
US10052850B2 (en) | 2007-05-01 | 2018-08-21 | Exatec, Llc | Encapsulated plastic panel and method of making the same |
US20080286537A1 (en) * | 2007-05-09 | 2008-11-20 | Christophe Lefaux | Pre-dry treatment of ink in decorative plastic glazing |
US8361546B2 (en) | 2008-10-30 | 2013-01-29 | Molecular Imprints, Inc. | Facilitating adhesion between substrate and patterned layer |
US20100112236A1 (en) * | 2008-10-30 | 2010-05-06 | Molecular Imprints, Inc. | Facilitating Adhesion Between Substrate and Patterned Layer |
US20110165412A1 (en) * | 2009-11-24 | 2011-07-07 | Molecular Imprints, Inc. | Adhesion layers in nanoimprint lithograhy |
Also Published As
Publication number | Publication date |
---|---|
BR0311382A (en) | 2005-03-15 |
JP2005528504A (en) | 2005-09-22 |
MXPA04011811A (en) | 2005-03-31 |
WO2003102087A3 (en) | 2004-01-29 |
EP1532214A2 (en) | 2005-05-25 |
AU2003232426A8 (en) | 2003-12-19 |
CN1656181A (en) | 2005-08-17 |
WO2003102087A2 (en) | 2003-12-11 |
AU2003232426A1 (en) | 2003-12-19 |
CA2487510A1 (en) | 2003-12-11 |
US20030224172A1 (en) | 2003-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4914559B2 (en) | Optimization of in-mold coating injection molded thermoplastic substrates | |
CA1219693A (en) | In-mold coating composition | |
US6720076B2 (en) | In-mold primer coating for thermoplastic substrates | |
US5359002A (en) | Epoxy polyacrylate with OH or amide-containing monomer | |
US4414173A (en) | In-mold coating | |
US6890469B2 (en) | Selectively controlling in-mold coating flow | |
US6863981B2 (en) | In-mold appearance coatings for nylon and nylon based thermoplastic substrates | |
CA2496490C (en) | In-mold coating molded article and process for preparing the same | |
US7105231B2 (en) | In-mold coating barrier for a substrate injection orifice | |
US7045213B2 (en) | In-mold coating injection inlet flow control | |
JP4420841B2 (en) | In-mold coating composition and method for producing in-mold coated molded article | |
JP4431514B2 (en) | IN-MOLD COATING COMPOSITION AND METHOD FOR PRODUCING IN-MOLD COATING MOLDED ARTICLE | |
JP4456024B2 (en) | In-mold coating molding composition and in-mold coating molding method | |
KR20050019098A (en) | In-mold primer coating for thermoplastic substrates | |
JP2003137943A (en) | Method for producing in-mold coating composition and in-mold coating molded article | |
JP6468508B2 (en) | In-mold coating composition, in-mold coated molded body, and coated article | |
JPH0570712A (en) | In-mold coating composition | |
JP3786516B2 (en) | Manufacturing method of resin molded products | |
JP2883991B2 (en) | Manufacturing method of molded product | |
WO2005019289A1 (en) | Conductive coating | |
WO2004014990A1 (en) | Method for coating molded thermoplastic articles | |
WO2004085549A2 (en) | Optical quality coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OMNOVA SOLUTIONS, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCBAIN, DOUGLAS S.;REEL/FRAME:012975/0671 Effective date: 20020531 |
|
AS | Assignment |
Owner name: BANK ONE, NA, AS AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:OMNOVA SOLUTIONS, INC.;REEL/FRAME:014137/0401 Effective date: 20030528 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A.,ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:OMNOVA SOLUTIONS INC.;REEL/FRAME:019353/0566 Effective date: 20070522 Owner name: JPMORGAN CHASE BANK, N.A., ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:OMNOVA SOLUTIONS INC.;REEL/FRAME:019353/0566 Effective date: 20070522 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERA Free format text: GRANT OF SECURITY INTEREST IN CERTAIN PATENTS AND TRADEMARKS;ASSIGNOR:OMNOVA SOLUTIONS INC.;REEL/FRAME:019597/0227 Effective date: 20070522 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS AGENT, OHIO Free format text: SECURITY INTEREST;ASSIGNOR:OMNOVA SOLUTIONS INC.;REEL/FRAME:039555/0403 Effective date: 20160826 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS SUCCESSOR AGE Free format text: NOTICE OF SUCCESSION OF AGENCY OF REEL/FRAME 019597/0227;ASSIGNOR:DEUTSCHE BANK TRUST COMPANY AMERICAS;REEL/FRAME:039851/0696 Effective date: 20160826 |
|
AS | Assignment |
Owner name: OMNOVA SOLUTIONS INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:052286/0911 Effective date: 20200401 Owner name: OMNOVA SOLUTIONS INC., OHIO Free format text: RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY COLLATERAL;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:052286/0971 Effective date: 20200401 |