US6716239B2 - ePTFE graft with axial elongation properties - Google Patents
ePTFE graft with axial elongation properties Download PDFInfo
- Publication number
- US6716239B2 US6716239B2 US09/898,415 US89841501A US6716239B2 US 6716239 B2 US6716239 B2 US 6716239B2 US 89841501 A US89841501 A US 89841501A US 6716239 B2 US6716239 B2 US 6716239B2
- Authority
- US
- United States
- Prior art keywords
- tubular structure
- fibril
- eptfe
- radius
- stent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/22—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/072—Encapsulated stents, e.g. wire or whole stent embedded in lining
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/075—Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/12—Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
- B29K2027/18—PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
Definitions
- the present invention is generally directed to an ePTFE article having enhanced physical recovery properties. More particularly, the present invention relates to an ePTFE tube with enhanced axial elongation and recovery properties.
- Expanded polytetrafluoroethylene grafts as well as ePTFE stent/grafts, or covered stents, may be implanted in a radially compressed state generally using a catheter into a blood vessel, or virtually any body chamber in the body.
- the graft or expandable covered stent is typically positioned and released from a delivery catheter at a damaged area as desired.
- a stent is often contained within an ePTFE graft, the stent providing outward pressure and support for the body lumen walls.
- the addition of the cover on the stent acts to reduce cell growth and occlusions in the interior of the lumen.
- a stent covering which expands and contracts in concert with an underlying stent.
- Some stents in particular undergo extreme axial elongation when radially compressed to a reduced diameter. When the diameter expands however, to its expanded state, the stent longitudinally shortens.
- Such a stent is accordingly loaded in a radially compressed and axially elongated state, and implanted by radially enlarging the stent to its implantation diameter.
- Expanded polytetrafluoroethylene is not an elastomeric material. It is therefore not in ePTFE's nature to return to an original state after it has been stretched. It is therefore difficult to use an ePTFE covering with such stents of exaggerated axial and radial variations as mentioned above because ePTFE is not able to stretch and recover in concert with the stent, for example PTFE is not readily plastically deformable. Methods of treating ePTFE have been developed, however, in order to enhance ePTFE's physical expansion and recovery characteristics.
- U.S. Pat. No. 4,877,661 to House et al. discloses an ePTFE which is formed by extruding, compressing, heating, cooling and then stretching it back to its original length.
- the microstructure of the porous ePTFE material consists of nodes interconnected by fibrils; substantially all the fibrils having a bent or wavy appearance.
- the bent structure allegedly provides the ePTFE with properties of “rapid recovery”; i.e. when the ePTFE tube is pulled, the fibrils then have a tendency to return to the bent state.
- U.S. Pat. No. 5,788,626 to Thompson discloses an expandable stent/graft with an ePTFE cover, the ePTFE cover having a bi-axially oriented node-fibril structure with folded fibrils.
- U.S. Pat. No. 4,830,862 to Yamamoto et al. discloses a heat shrinkable tetrafluoroethylene polymer tube which is radially expanded, and serves to make a tube which will heat shrink around another article to form a composite article with a tetrafluoroethylene cover heat-shrunk thereto.
- the present invention provides an ePTFE tubular structure having a first node and fibril orientation characterized by longitudinal expansion of said tubular structure and a second node and fibril orientation wherein the fibrils of the second orientation have been hingeably rotated about the nodes of the ePTFE.
- the second node and fibril orientation is formed after physical alteration of the first orientation occurs without a substantial change in length of the fibrils and provides the ePTFE tubular structure with enhanced longitudinal elongation and radial expansion properties.
- the method of making the ePTFE tubular structure is also disclosed.
- the method consists of first forming a tube of polytetrafluoroethylene, then longitudinally stretching the polytetrafluoroethylene tube to form an expanded polytetrafluoroethylene (ePTFE) tube.
- the ePTFE tube is comprised of fibrils oriented in a longitudinal direction of the tube and nodes of a first length oriented in a circumferential direction of the tube.
- the ePTFE tube is then placed circumferentially exterior to a longitudinal foreshortening and radial expansion device.
- the ePTFE tube is then radially expanded with radial pressure from the foreshortening expansion mechanism to skew the fibrils and lengthen the nodes to a second length, the second node length being greater than the first node length, and the fibrils of the ePTFE become oriented non-longitudinally.
- the reoriented structure provides an ePTFE tubular structure with increased longitudinal elongation and radial expansion and recovery properties.
- FIG. 1 is a photomicrograph showing a longitudinally expanded ePTFE structure which constitutes the prior art.
- FIG. 2 is a photomicrograph of an ePTFE tubular structure of the present invention showing hingeably rotated fibrils.
- FIG. 3 is a schematic drawing showing the ePTFE tubular structure of the present invention in a longitudinally extended configuration.
- FIG. 5 is a schematic drawing showing a radially expanded stent which may be used in the present invention.
- FIG. 6 is a schematic of the stent of FIG. 5 shown in a longitudinally lengthened and radially compressed state of the present invention.
- the ePTFE material of the present invention is used to construct a physically modified ePTFE tubular structure having enhanced axial elongation and radial expansion properties.
- the ePTFE tubular structure is especially advantageous to be used in conjunction with a stent with exaggerated axial elongation and radial expansion properties.
- the ePTFE tubular structure of the present invention is preferably used as a cover in a covered stent, or other endoprosthesis suitable for intraluminal or endoscopic delivery.
- the ePTFE tubular structure of the present invention has enhanced longitudinal elongation and radial expansion, as well as physical recovery properties.
- the ePTFE tubular structure is able to be elongated or expanded and then returned to its original state.
- the ePTFE tubular structure is able to return to its original state without a substantial elastic force existing within the ePTFE material.
- the term elastic as used herein refers to a material which exhibits a tendency to rebound or assume its original shape, and the force associated with the material's inherent tendency to assume its original shape or dimension; i.e. when stretching an elastic material, the material wants to return to its original shape, and therefore exerts a force directing its return to that original shape.
- the ePTFE tubular structure of the present invention be treated and altered in such a way that there is significantly less plastic deformation than traditionally re-expanded processes.
- the ePTFE is treated in such a manner that the significantly less plastic deformation of the ePTFE leads to this unexpected product which possess enhanced longitudinally elongation and radial expansion properties, as well as the ability to physically recover from the elongated and expanded state.
- FIG. 1 of the drawings a photomicrograph of a traditionally longitudinally expanded ePTFE tubular structure is shown.
- the tube has been stretched in the longitudinal direction shown by directional arrow 2 , leaving the nodes circumferentially oriented in circumferential direction shown by the directional arrow 4 .
- Such a longitudinally expanded ePTFE structure is well known in the art.
- the fibrils 6 are shown as being uniformly oriented in the longitudinal direction shown by directional arrow 2 .
- Nodes 8 are shown and are uniformly oriented in circumferential direction 4 .
- FIG. 2 of the drawings a photomicrograph of the ePTFE tubular structure of the present invention is shown. Nodes 10 are shown in the photomicrograph with a set of fibrils with first ends 12 and second ends 14 attached thereto. The fibrils with first ends 12 and second ends 14 are shown in a hingeably rotated position.
- FIG. 1 of the drawings previous fibril structures 6 were shown to be substantially longitudinally oriented parallel to longitudinal axis 2 .
- FIG. 2 shows the fibrils as reoriented, or hingeably rotated so that they are not substantially longitudinally oriented in the direction shown by directional arrow 2 .
- the fibrils have first ends 12 which in FIG. 2 are fixed to node 10 .
- Second ends 14 of the fibrils are hingeably rotated after the method of the present invention has been performed on the ePTFE tubular structure.
- Nodes 10 have been lengthened to a second length greater than the first length of the pretreated nodes. While the nodes have been somewhat lengthened to a second length, the ePTFE tubular structures of the present invention do not require lengthening of the nodes.
- the hingeable rotation, or skewing of the fibrils provides the enhanced stretch and recovery properties of the present invention.
- FIG. 4 of the drawings is a schematic showing the same tubular structure in a longitudinally compressed and radially expanded state.
- the ePTFE tubular structure 18 in FIG. 4 is radially expanded and longitudinally shortened.
- the second longitudinal length of the ePTFE tubular structure may be up to 800% or more of the first length of the tubular structure.
- FIGS. 5 and 6 also show the dimensional disparity between the relaxed state as shown in FIG. 5 and the radially compressed state as shown in FIG. 6 .
- FIGS. 5 and 6 show a stent which may be used in the present invention.
- the ePTFE tubular structure of the present invention may be placed exteriorly, interiorly or both exteriorly and interiorly to the stent shown in FIGS. 5 and 6.
- the composite stent-graft 20 is shown in cross-section.
- the composite stent-graft includes a textile layer 22 , the ePTFE tubular structure of the present invention 24 , and a stent 26 .
- the stent 26 is shown circumferentially interior to the ePTFE tubular structure and the outer textile layer in FIG. 7 . It is, however, contemplated that numerous combinations may be employed in the present invention.
- the textile layer may be placed on the opposed side of the stent (as compared to the ePTFE tubular structure's position with regard to the stent) or on the same side (interior or exterior of the stent) as shown in FIG. 7 .
- the ePTFE tubular structure of the present invention may be used with a variety of different stents.
- the stents may be capable of radially contracting or expanding, as well, and in this sense can best be described as radially or circumferentially distensable or deformable.
- Self expanding stents include those that have a spring-like action which causes the stent to radially expand, or stents which expand due to the memory properties of the stent material for a particular configuration at a certain temperature.
- Nitinol is one material which has the ability to perform well while both in spring-like mode, as well as in a memory mode based on temperature.
- Other materials are of course contemplated, such as stainless steel, platinum, gold, titanium, and other biocompatible materials, as well as polymeric stents.
- the ePTFE tubular structure of the present invention may be affixed to a stent by a number of different means.
- the stent may be affixed to a first and second (inner and outer) tubular structure preferably by applying circumferential or radial pressure to the first and second tubular structure after they are loaded onto a mandrel, and heating the resulting assembly to form a mechanical bond between the tubular structures.
- the stent and tubular structure may have a second longitudinal length in the non-relaxed state which is at least about 1.5 times longer than the first longitudinal length of the relaxed state.
- the second longitudinal length of the ePTFE tubular structure is at least about 2.0 times longer than the first longitudinal length of the relaxed state.
- the second longitudinal length may be at least about 2.5 times longer that the first longitudinal length of the relaxed state.
- the tubular structure of the present invention may have a first radius characteristic of its relaxed state which is at least about 1.5 times larger than the second radius of the radially compressed state.
- the tubular structure of the present invention may have a first radius in its relaxed state which is at least about 2.0 times larger than the second radius.
- the tubular structure may have a first radius in its relaxed state which is at least about 2.5 times larger than the second radius.
- the tubular structure of the present invention possesses an ability to physically recover to an original state, i.e., longitudinal length and radius without elastic recovery. There is therefore no substantial elastic force exerted within said tubular structure to force it back to its relaxed state when the tubular structure is not in its relaxed state. There may be limited creeping back to the tube's pre-radially expanded shape over a substantial period of time, but this creep is a negligible amount.
- the tubular structure may be formed as an extruded tube or maybe a sheet which is wrapped to form a tubular structure.
- the ePTFE tubular structure of the present invention is made by the following steps.
- the method consists of first forming a tube of polytetrafluoroethylene, preferably by extrusion of a tube which provides longitudinally oriented fibrils in the tube.
- the polytetrafluoroethylene tube is then stretched to form an ePTFE tube with longitudinally oriented fibrils.
- a longitudinally stretched ePTFE tube is known in the art and is comprised of fibrils oriented in a longitudinal direction and nodes oriented in a circumferential direction of the tube.
- the ePTFE tube is then placed circumferentially exterior to a longitudinally foreshortening radially expanding mechanism.
- the ePTFE tube may be heated to a temperature between 86° and 650° F., and the heating acts in combination with the radial pressure exerted from the foreshortening radial expansion device stent to radially expand the tubular structure.
- the ePTFE tube may be radially expanded and longitudinally foreshortened without the use of heat. It may be desirous, however, to radially expand the tube with the use of heat. Heat is applied in order to facilitate the radial expansion.
- the temperature and time applied will vary with different types of ePTFE tubes. Generally, the thicker the wall of the tubular structure, the more heat is desirous.
- the heat applied is generally in the range of 86° F. and 650° F., preferably in the range of 200° F. to 500° F., and most preferably about 200°-350° F.
- the method of making the ePTFE tubular structure of the present invention entails several stages during the process.
- the advancement of the physical treatment depends on temperature, time, and pressure in treating the ePTFE tube.
- the heat and outwardly exerted radial pressure dilate the tubular structure.
- the initial dilation of the tube coincides with a straightening of the longitudinally oriented fibrils, and then a hingeable rotation of the fibrils.
- This is accompanied by a circumferential shifting of the nodes along a circumferential axis; e.g. rather than a change in shape of the nodes, or lengthening of the nodes, they shift in position allowing the hingeable rotation of the fibrils.
- the average inter-nodal distance is shortened during this stage.
- the first initial phase may be accomplished with minimal heat and in a short time frame.
- the actual time and heat depend on the wall thickness of the tube.
- a second phase occurs.
- the nodes actually begin to lengthen circumferentially.
- the nodes lengthen with additional time, pressure and temperature.
- the nodes are lengthened to a second length at first in a manner that they may substantially recover to their first length.
- the fibrils of the ePTFE tubes become more skewed as the nodes lengthen.
- the reoriented fibrils provides the ePTFE tubular structure with increased longitudinal elongation and radial expansion as well as physical recovery properties. The average internal distance continues to decrease throughout the tube as you continue this radial expansive force.
- the nodes With still additional treatment with heat, time and pressure, the nodes are eventually inelastically stretched, and the fibril lengths are substantially lengthened. With still further treatment, the nodes will further stretch and deform. The nodes eventually will rupture and form circumferentially oriented fibrils. In cases where such further treatment is performed, some decrease in the enhanced elongation and recovery properties may occur, but still be useful for specific applications.
- the longitudinally foreshortening and radially expanding mechanism may be a number of different devices.
- a wire braid may be used.
- a braided stent may be used.
- the radially exerted outward force from the foreshortening expansion mechanism is a relatively slight force which causes the fibrils to become hingeably rotated about the nodes.
- the radial pressure does not substantially deform the ePTFE tubular structure, and is applied in conjunction with heat.
- the tubular structure is heated to a temperature of between about 86° F. and about 650° F.
- the method is performed at a temperature of about 200°-350° F.
- the radially outwardly exerted force also causes a longitudinal shrinking in the ePTFE tubular structure.
- the ePTFE tubular structure When heat is used, the ePTFE tubular structure is allowed to cool subsequent to the heat treatment in the radially expanded and longitudinally shortened state with the removal of the heat source. The newly formed ePTFE tubular structure is therefore in a relaxed state while radially expanded and longitudinally shortened.
- the tube may be longitudinally lengthened and radially compressed however i.e., into its loading diameter when implanting the tubular structure.
- the tubular structure may be used as an endovascular graft, and preferably is used in conjunction with a stent as a covered stent or stent/graft.
- a pre-treatment is performed on the expanded polytetrafluoroethylene tube to produce a tube with even greater elongation and recovery properties.
- Polytetrafluoroethylene material which has been longitudinally expanded, or ePTFE may be “shrunk back” after the expansion process. This process entails suspension of the ePTFE material in an oven with heat. The oven is heated to a temperature generally of between about 100° F. and about 700° F. Preferably, the oven is heated to a temperature of between about 400° F. and about 500° F., and most preferably to a temperature of about 400° F.
- the ePTFE material shrinks back during the heating process.
- the shrinking correspondingly reduces porosity of the ePTFE material, and increases the density of the ePTFE, which also decreases the length of the tube.
- the shrink-back procedure may shrink back the ePTFE material a significant amount.
- the amount the ePTFE tube may be shrunk back depends on the amount of its longitudinal expansion. The more the tube has been expanded the more it may be shrunk back.
- the ePTFE tube may be shrunk back up to about 125% length of the green tube; i.e., 25% greater than the original green tube length. This is generally considered the lower limit of the length to which the tube may be shrunk back; i.e.
- the shrink-back procedure relaxes the fibrils of the ePTFE structure.
- the fibrils which were previously held taught are now relaxed and the fibril length shrinks.
- the nodes of the ePTFE structure are correspondingly substantially thickened by the shrink-back procedure.
- the ePTFE structure With the relaxed fibrils and the thickened nodes, the ePTFE structure is now more flexible and compliant than the original structure. This allows further treatment on the ePTFE to produce a structure with more structural integrity and increased tensile strength because of the more stable node and fibril structure. It allows any further treatment to more uniformly stretch or impact on the ePTFE than previously practiced in the art.
- the shrink-back treatment may also be referred to as fibril relaxation.
- the shrink-back pre-treatment also increases the axial elongation and radial expansion propensity of the ePTFE tubular structure, i.e., the more it is shrunk back, the greater the effect.
- the textile graft would be comprised of a resilient knit pattern.
- the resilient pattern is a warp knitted pattern having a yarn diagonally shifted over one or more yarns in the course direction to form a loop between engaging yarns.
- the engaging yarns alternately form open loops where engaging yarns do not cross over themselves and closed loops where engaging yarns cross over themselves.
- Such a resilient knit pattern is described as Atlas and modified Atlas knit patterns.
- the resilient pattern is a warp knitted pattern having sets of yarns diagonally shifted over two or more yarns before forming a loop between engaging yarns.
- Such a resilient pattern is a warp knit pattern with at least a two needle underlap.
- Such patterns depart a high degree of flexibility and stretchability to the textile graft.
- Such knit patterns can be seen in the commonly assigned applications titled “Low Profile, High Stretch, Low Dilation Knit Prosthetic Device” and “Low Profile, High Stretch Knit Prosthetic Device”, filed on the same date as the presently filed application.
- the applications have Attorney Docket Nos. 498-257 and 498-258, respectively and are herein incorporated by reference.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical & Material Sciences (AREA)
- Pulmonology (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
- Graft Or Block Polymers (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
Claims (24)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/898,415 US6716239B2 (en) | 2001-07-03 | 2001-07-03 | ePTFE graft with axial elongation properties |
EP02782481A EP1408880B1 (en) | 2001-07-03 | 2002-05-16 | Eptfe graft with axial elongation properties |
DE60203512T DE60203512T2 (en) | 2001-07-03 | 2002-05-16 | EPTFE GRAFT WITH AXIAL STRETCHING PROPERTIES |
PCT/US2002/015941 WO2003003946A1 (en) | 2001-07-03 | 2002-05-16 | Eptfe graft with axial elongation properties |
JP2003509962A JP4216711B2 (en) | 2001-07-03 | 2002-05-16 | EPTFE graft with axial extensibility |
CA002451149A CA2451149C (en) | 2001-07-03 | 2002-05-16 | Eptfe graft with axial elongation properties |
AT02782481T ATE291887T1 (en) | 2001-07-03 | 2002-05-16 | EPTFE GRAFT WITH AXIAL STRETCH PROPERTIES |
US10/776,576 US7871550B2 (en) | 2001-07-03 | 2004-02-11 | ePTFE graft with axial elongation properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/898,415 US6716239B2 (en) | 2001-07-03 | 2001-07-03 | ePTFE graft with axial elongation properties |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/776,576 Division US7871550B2 (en) | 2001-07-03 | 2004-02-11 | ePTFE graft with axial elongation properties |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030009210A1 US20030009210A1 (en) | 2003-01-09 |
US6716239B2 true US6716239B2 (en) | 2004-04-06 |
Family
ID=25409408
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/898,415 Expired - Lifetime US6716239B2 (en) | 2001-07-03 | 2001-07-03 | ePTFE graft with axial elongation properties |
US10/776,576 Expired - Fee Related US7871550B2 (en) | 2001-07-03 | 2004-02-11 | ePTFE graft with axial elongation properties |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/776,576 Expired - Fee Related US7871550B2 (en) | 2001-07-03 | 2004-02-11 | ePTFE graft with axial elongation properties |
Country Status (7)
Country | Link |
---|---|
US (2) | US6716239B2 (en) |
EP (1) | EP1408880B1 (en) |
JP (1) | JP4216711B2 (en) |
AT (1) | ATE291887T1 (en) |
CA (1) | CA2451149C (en) |
DE (1) | DE60203512T2 (en) |
WO (1) | WO2003003946A1 (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040162604A1 (en) * | 2001-07-03 | 2004-08-19 | Boston Scientific Corp./ Scimed Life Systems, Inc. | ePTFE graft with axial elongation properties |
US20050240261A1 (en) * | 2004-04-23 | 2005-10-27 | Scimed Life Systems, Inc. | Composite medical textile material and implantable devices made therefrom |
US20050288768A1 (en) * | 2004-06-28 | 2005-12-29 | Krzysztof Sowinski | Two-stage stent-graft and method of delivering same |
US20060118236A1 (en) * | 2004-11-29 | 2006-06-08 | House Wayne D | Implantable devices with reduced needle puncture site leakage |
US20060142852A1 (en) * | 2004-12-29 | 2006-06-29 | Boston Scientific Scimed, Inc. | Low profile, durable, reinforced ePTFE composite graft |
US20060233991A1 (en) * | 2005-04-13 | 2006-10-19 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US20060233990A1 (en) * | 2005-04-13 | 2006-10-19 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US20060264138A1 (en) * | 2001-06-11 | 2006-11-23 | Scimed Life Systems, Inc. | Composite ePTFE/textile prosthesis |
US20070208421A1 (en) * | 2006-03-01 | 2007-09-06 | Boston Scientific Scimed, Inc. | Stent-graft having flexible geometries and methods of producing the same |
US20070208409A1 (en) * | 2006-03-01 | 2007-09-06 | Boston Scientific Scimed, Inc. | Flexible stent-graft devices and methods of producing the same |
US20080027534A1 (en) * | 2004-08-31 | 2008-01-31 | Edwin Tarun J | Self-Sealing Ptfe Graft with Kink Resistance |
US20080167708A1 (en) * | 2006-11-17 | 2008-07-10 | Doug Molland | Stent having reduced passage of emboli and stent delivery system |
US20080234796A1 (en) * | 2005-05-09 | 2008-09-25 | Angiomed Gmbh & Co. Medizintechnik Kg | Implant Delivery Device |
US20080319540A1 (en) * | 2007-06-13 | 2008-12-25 | Boston Scientific Scimed, Inc. | Anti-migration features and geometry for a shape memory polymer stent |
US20090048658A1 (en) * | 2007-08-15 | 2009-02-19 | Boston Scientific Scimed, Inc. | Skewed nodal-fibril ePTFE structure |
US20090163994A1 (en) * | 2007-12-21 | 2009-06-25 | Boston Scientific Scimed, Inc. | Flexible Stent-Graft Device Having Patterned Polymeric Coverings |
US20090252926A1 (en) * | 2008-04-03 | 2009-10-08 | Boston Scientific Scimed, Inc. | Thin-walled calendered ptfe |
US20090319034A1 (en) * | 2008-06-19 | 2009-12-24 | Boston Scientific Scimed, Inc | METHOD OF DENSIFYING ePTFE TUBE |
US20100179642A1 (en) * | 2005-06-17 | 2010-07-15 | C.R. Bard, Inc. | Vascular Graft With Kink Resistance After Clamping |
US8066755B2 (en) | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
US8083789B2 (en) | 2007-11-16 | 2011-12-27 | Trivascular, Inc. | Securement assembly and method for expandable endovascular device |
US8226701B2 (en) | 2007-09-26 | 2012-07-24 | Trivascular, Inc. | Stent and delivery system for deployment thereof |
US8328861B2 (en) | 2007-11-16 | 2012-12-11 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US8636794B2 (en) | 2005-11-09 | 2014-01-28 | C. R. Bard, Inc. | Grafts and stent grafts having a radiopaque marker |
US8663309B2 (en) | 2007-09-26 | 2014-03-04 | Trivascular, Inc. | Asymmetric stent apparatus and method |
US8696738B2 (en) | 2010-05-20 | 2014-04-15 | Maquet Cardiovascular Llc | Composite prosthesis with external polymeric support structure and methods of manufacturing the same |
US8992595B2 (en) | 2012-04-04 | 2015-03-31 | Trivascular, Inc. | Durable stent graft with tapered struts and stable delivery methods and devices |
US9198749B2 (en) | 2006-10-12 | 2015-12-01 | C. R. Bard, Inc. | Vascular grafts with multiple channels and methods for making |
US9498363B2 (en) | 2012-04-06 | 2016-11-22 | Trivascular, Inc. | Delivery catheter for endovascular device |
US9585746B2 (en) | 2011-07-29 | 2017-03-07 | Carnegie Mellon University | Artificial valved conduits for cardiac reconstructive procedures and methods for their production |
US9814560B2 (en) | 2013-12-05 | 2017-11-14 | W. L. Gore & Associates, Inc. | Tapered implantable device and methods for making such devices |
US10159557B2 (en) | 2007-10-04 | 2018-12-25 | Trivascular, Inc. | Modular vascular graft for low profile percutaneous delivery |
US10183098B2 (en) | 2016-03-20 | 2019-01-22 | Junkosha Inc. | Polytetrafluoroethylene tube |
US10266972B2 (en) | 2010-10-21 | 2019-04-23 | Albany Engineered Composites, Inc. | Woven preforms, fiber reinforced composites, and methods of making thereof |
US10357385B2 (en) | 2015-06-05 | 2019-07-23 | W. L. Gore & Associates, Inc. | Low bleed implantable prosthesis with a taper |
US10588746B2 (en) | 2013-03-08 | 2020-03-17 | Carnegie Mellon University | Expandable implantable conduit |
US10610357B2 (en) | 2016-10-10 | 2020-04-07 | Peca Labs, Inc. | Transcatheter stent and valve assembly |
US20200237497A1 (en) * | 2017-10-09 | 2020-07-30 | W. L. Gore & Associates, Inc. | Matched stent cover |
US11000370B2 (en) | 2016-03-02 | 2021-05-11 | Peca Labs, Inc. | Expandable implantable conduit |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6264684B1 (en) | 1995-03-10 | 2001-07-24 | Impra, Inc., A Subsidiary Of C.R. Bard, Inc. | Helically supported graft |
US6579314B1 (en) * | 1995-03-10 | 2003-06-17 | C.R. Bard, Inc. | Covered stent with encapsulated ends |
US6451047B2 (en) | 1995-03-10 | 2002-09-17 | Impra, Inc. | Encapsulated intraluminal stent-graft and methods of making same |
NL1007583C2 (en) | 1997-11-19 | 1999-05-20 | Bokalan B V | Stable provided with a climate control system, washing means and a method for controlling the climate in such a shed. |
US6395019B2 (en) | 1998-02-09 | 2002-05-28 | Trivascular, Inc. | Endovascular graft |
US6398803B1 (en) | 1999-02-02 | 2002-06-04 | Impra, Inc., A Subsidiary Of C.R. Bard, Inc. | Partial encapsulation of stents |
US20030050648A1 (en) | 2001-09-11 | 2003-03-13 | Spiration, Inc. | Removable lung reduction devices, systems, and methods |
US6592594B2 (en) | 2001-10-25 | 2003-07-15 | Spiration, Inc. | Bronchial obstruction device deployment system and method |
US7090693B1 (en) | 2001-12-20 | 2006-08-15 | Boston Scientific Santa Rosa Corp. | Endovascular graft joint and method for manufacture |
US7147661B2 (en) | 2001-12-20 | 2006-12-12 | Boston Scientific Santa Rosa Corp. | Radially expandable stent |
US6776604B1 (en) | 2001-12-20 | 2004-08-17 | Trivascular, Inc. | Method and apparatus for shape forming endovascular graft material |
US7125464B2 (en) | 2001-12-20 | 2006-10-24 | Boston Scientific Santa Rosa Corp. | Method for manufacturing an endovascular graft section |
CA2468951A1 (en) | 2001-12-20 | 2003-07-03 | Trivascular, Inc. | Advanced endovascular graft |
US20030181922A1 (en) | 2002-03-20 | 2003-09-25 | Spiration, Inc. | Removable anchored lung volume reduction devices and methods |
US20050131520A1 (en) * | 2003-04-28 | 2005-06-16 | Zilla Peter P. | Compliant blood vessel graft |
US7998188B2 (en) | 2003-04-28 | 2011-08-16 | Kips Bay Medical, Inc. | Compliant blood vessel graft |
US7533671B2 (en) | 2003-08-08 | 2009-05-19 | Spiration, Inc. | Bronchoscopic repair of air leaks in a lung |
US7803178B2 (en) | 2004-01-30 | 2010-09-28 | Trivascular, Inc. | Inflatable porous implants and methods for drug delivery |
US7727271B2 (en) * | 2004-06-24 | 2010-06-01 | Boston Scientific Scimed, Inc. | Implantable prosthesis having reinforced attachment sites |
US7364587B2 (en) * | 2004-09-10 | 2008-04-29 | Scimed Life Systems, Inc. | High stretch, low dilation knit prosthetic device and method for making the same |
US7524445B2 (en) * | 2004-12-31 | 2009-04-28 | Boston Scientific Scimed, Inc. | Method for making ePTFE and structure containing such ePTFE, such as a vascular graft |
US7655035B2 (en) * | 2005-10-05 | 2010-02-02 | Boston Scientific Scimed, Inc. | Variable lamination of vascular graft |
US7691151B2 (en) | 2006-03-31 | 2010-04-06 | Spiration, Inc. | Articulable Anchor |
US8926688B2 (en) * | 2008-01-11 | 2015-01-06 | W. L. Gore & Assoc. Inc. | Stent having adjacent elements connected by flexible webs |
US20100249947A1 (en) * | 2009-03-27 | 2010-09-30 | Evera Medical, Inc. | Porous implant with effective extensibility and methods of forming an implant |
US8196279B2 (en) | 2008-02-27 | 2012-06-12 | C. R. Bard, Inc. | Stent-graft covering process |
US20100305686A1 (en) * | 2008-05-15 | 2010-12-02 | Cragg Andrew H | Low-profile modular abdominal aortic aneurysm graft |
JP5775527B2 (en) | 2009-12-01 | 2015-09-09 | アルツラ メディカル インコーポレイテッド | Modular endograft device and related systems and methods |
WO2012040240A1 (en) | 2010-09-20 | 2012-03-29 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
US8974622B2 (en) | 2010-12-28 | 2015-03-10 | Boston Scientific Scimed, Inc. | Composite ePTFE-silicone covering for stent |
US9839540B2 (en) | 2011-01-14 | 2017-12-12 | W. L. Gore & Associates, Inc. | Stent |
US10166128B2 (en) | 2011-01-14 | 2019-01-01 | W. L. Gore & Associates. Inc. | Lattice |
CN104039875B (en) * | 2012-01-16 | 2017-05-31 | W.L.戈尔及同仁股份有限公司 | Including the expanded ptfe film with bending fibril and the product with noncontinuity fluoropolymer layer on the film |
US9283072B2 (en) | 2012-07-25 | 2016-03-15 | W. L. Gore & Associates, Inc. | Everting transcatheter valve and methods |
US10376360B2 (en) | 2012-07-27 | 2019-08-13 | W. L. Gore & Associates, Inc. | Multi-frame prosthetic valve apparatus and methods |
CN105050549B (en) | 2012-08-10 | 2017-07-21 | 阿尔图拉医疗公司 | Stent delivery system and associated method |
US9931193B2 (en) | 2012-11-13 | 2018-04-03 | W. L. Gore & Associates, Inc. | Elastic stent graft |
US10966820B2 (en) | 2012-12-19 | 2021-04-06 | W. L. Gore & Associates, Inc. | Geometric control of bending character in prosthetic heart valve leaflets |
US9968443B2 (en) | 2012-12-19 | 2018-05-15 | W. L. Gore & Associates, Inc. | Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet |
US9101469B2 (en) | 2012-12-19 | 2015-08-11 | W. L. Gore & Associates, Inc. | Prosthetic heart valve with leaflet shelving |
US9144492B2 (en) | 2012-12-19 | 2015-09-29 | W. L. Gore & Associates, Inc. | Truncated leaflet for prosthetic heart valves, preformed valve |
US10321986B2 (en) | 2012-12-19 | 2019-06-18 | W. L. Gore & Associates, Inc. | Multi-frame prosthetic heart valve |
CN103120864B (en) * | 2013-03-06 | 2015-04-08 | 苏州环球色谱有限责任公司 | Preparation method of graphene-modified capillary-column chromatography |
WO2014144809A1 (en) | 2013-03-15 | 2014-09-18 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
US20150079865A1 (en) * | 2013-09-17 | 2015-03-19 | W.L. Gore & Associates, Inc. | Conformable Microporous Fiber and Woven Fabrics Containing Same |
CN103611511B (en) * | 2013-12-02 | 2015-08-19 | 武汉大学 | A kind of preparation method of grapheme open-tube electric chromatographic column |
US10842918B2 (en) | 2013-12-05 | 2020-11-24 | W.L. Gore & Associates, Inc. | Length extensible implantable device and methods for making such devices |
US9827094B2 (en) | 2014-09-15 | 2017-11-28 | W. L. Gore & Associates, Inc. | Prosthetic heart valve with retention elements |
JP7248430B2 (en) | 2016-04-21 | 2023-03-29 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド | Adjustable diameter endoprosthesis and related systems and methods |
WO2019055577A1 (en) | 2017-09-12 | 2019-03-21 | W. L. Gore & Associates, Inc. | Leaflet frame attachment for prosthetic valves |
EP3687452A1 (en) | 2017-09-27 | 2020-08-05 | W. L. Gore & Associates, Inc. | Prosthetic valves with mechanically coupled leaflets |
WO2019067219A1 (en) | 2017-09-27 | 2019-04-04 | W. L. Gore & Associates, Inc. | Prosthetic valve with expandable frame and associated systems and methods |
CN111447890B (en) | 2017-10-13 | 2023-01-31 | W.L.戈尔及同仁股份有限公司 | Telescopic prosthetic valve and delivery system |
CA3187189A1 (en) | 2017-10-31 | 2019-05-09 | W.L. Gore & Associates, Inc. | Prosthetic heart valve |
CA3205219A1 (en) | 2017-10-31 | 2019-05-09 | Edwards Lifesciences Corporation | Medical valve and leaflet promoting tissue ingrowth |
US11497601B2 (en) | 2019-03-01 | 2022-11-15 | W. L. Gore & Associates, Inc. | Telescoping prosthetic valve with retention element |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4082893A (en) | 1975-12-24 | 1978-04-04 | Sumitomo Electric Industries, Ltd. | Porous polytetrafluoroethylene tubings and process of producing them |
US4104394A (en) | 1975-12-15 | 1978-08-01 | Sumitomo Electric Industries, Ltd. | Method for diametrically expanding thermally contractive ptfe resin tube |
US4332035A (en) | 1978-11-30 | 1982-06-01 | Sumitomo Electric Industries, Ltd. | Porous structure of polytetrafluoroethylene and process for production thereof |
US4347204A (en) | 1978-12-19 | 1982-08-31 | Olympus Optical Co., Ltd. | Flexible tube and method of manufacturing same |
US4553545A (en) | 1981-09-16 | 1985-11-19 | Medinvent S.A. | Device for application in blood vessels or other difficultly accessible locations and its use |
US4655771A (en) | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4713070A (en) | 1978-11-30 | 1987-12-15 | Sumitom Electric Industries, Ltd. | Porous structure of polytetrafluoroethylene and process for production thereof |
US4743480A (en) | 1986-11-13 | 1988-05-10 | W. L. Gore & Associates, Inc. | Apparatus and method for extruding and expanding polytetrafluoroethylene tubing and the products produced thereby |
US4830484A (en) | 1984-12-17 | 1989-05-16 | Canon Kabushiki Kaisha | Image projection apparatus |
US4876051A (en) | 1986-11-13 | 1989-10-24 | W. L. Gore & Associates, Inc. | Apparatus and method for extruding and expanding polytetrafluoroethylene tubing and the products produced thereby |
US4877661A (en) | 1987-10-19 | 1989-10-31 | W. L. Gore & Associates, Inc. | Rapidly recoverable PTFE and process therefore |
US5061275A (en) * | 1986-04-21 | 1991-10-29 | Medinvent S.A. | Self-expanding prosthesis |
US5437900A (en) | 1991-06-14 | 1995-08-01 | W. L. Gore & Associates, Inc. | Surface modified porous expanded polytetrafluoroethylene and process for making |
US5466509A (en) | 1993-01-15 | 1995-11-14 | Impra, Inc. | Textured, porous, expanded PTFE |
US5474824A (en) | 1992-03-13 | 1995-12-12 | Atrium Medical Corporation | Process for expanding polytetrafluoroethylene and products produced thereby |
US5527353A (en) | 1993-12-02 | 1996-06-18 | Meadox Medicals, Inc. | Implantable tubular prosthesis |
US5718973A (en) | 1993-08-18 | 1998-02-17 | W. L. Gore & Associates, Inc. | Tubular intraluminal graft |
US5788626A (en) | 1995-11-21 | 1998-08-04 | Schneider (Usa) Inc | Method of making a stent-graft covered with expanded polytetrafluoroethylene |
US5957962A (en) | 1994-11-21 | 1999-09-28 | Wallsten Medical S.A. | Balloon catheter for hyperthermia treatment |
US6039755A (en) | 1997-02-05 | 2000-03-21 | Impra, Inc., A Division Of C.R. Bard, Inc. | Radially expandable tubular polytetrafluoroethylene grafts and method of making same |
US6402779B1 (en) | 1999-07-26 | 2002-06-11 | Endomed, Inc. | Balloon-assisted intraluminal stent graft |
US6436135B1 (en) * | 1974-10-24 | 2002-08-20 | David Goldfarb | Prosthetic vascular graft |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4554545A (en) | 1980-10-30 | 1985-11-19 | Mcdonnell Douglas Corporation | Conformal head-up display |
JPS62279920A (en) | 1986-05-28 | 1987-12-04 | Daikin Ind Ltd | Porous heat-shrinkable tetrafluoroethylene polymer pipe and its manufacture |
JPS63226361A (en) | 1986-11-26 | 1988-09-21 | バクスター・インターナショナル・インコーポレイテッド | Porous and flexible radially expanded fluoropolymers and production thereof |
US4830480A (en) | 1988-03-29 | 1989-05-16 | Ennco Optical, Inc. | Tint display device |
US5178973A (en) | 1991-02-20 | 1993-01-12 | Globe-Union, Inc. | Battery having improved explosion attenuation material |
DE69518337T2 (en) | 1995-03-10 | 2001-02-01 | Impra Inc., Tempe | ENDOLUMINAL ENCLOSED STENT AND MANUFACTURING METHOD |
US5607478A (en) | 1996-03-14 | 1997-03-04 | Meadox Medicals Inc. | Yarn wrapped PTFE tubular prosthesis |
US6224627B1 (en) | 1998-06-15 | 2001-05-01 | Gore Enterprise Holdings, Inc. | Remotely removable covering and support |
US6716239B2 (en) * | 2001-07-03 | 2004-04-06 | Scimed Life Systems, Inc. | ePTFE graft with axial elongation properties |
-
2001
- 2001-07-03 US US09/898,415 patent/US6716239B2/en not_active Expired - Lifetime
-
2002
- 2002-05-16 AT AT02782481T patent/ATE291887T1/en not_active IP Right Cessation
- 2002-05-16 DE DE60203512T patent/DE60203512T2/en not_active Expired - Lifetime
- 2002-05-16 WO PCT/US2002/015941 patent/WO2003003946A1/en active IP Right Grant
- 2002-05-16 EP EP02782481A patent/EP1408880B1/en not_active Expired - Lifetime
- 2002-05-16 JP JP2003509962A patent/JP4216711B2/en not_active Expired - Fee Related
- 2002-05-16 CA CA002451149A patent/CA2451149C/en not_active Expired - Fee Related
-
2004
- 2004-02-11 US US10/776,576 patent/US7871550B2/en not_active Expired - Fee Related
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6436135B1 (en) * | 1974-10-24 | 2002-08-20 | David Goldfarb | Prosthetic vascular graft |
US4104394A (en) | 1975-12-15 | 1978-08-01 | Sumitomo Electric Industries, Ltd. | Method for diametrically expanding thermally contractive ptfe resin tube |
US4082893A (en) | 1975-12-24 | 1978-04-04 | Sumitomo Electric Industries, Ltd. | Porous polytetrafluoroethylene tubings and process of producing them |
US4713070A (en) | 1978-11-30 | 1987-12-15 | Sumitom Electric Industries, Ltd. | Porous structure of polytetrafluoroethylene and process for production thereof |
US4332035A (en) | 1978-11-30 | 1982-06-01 | Sumitomo Electric Industries, Ltd. | Porous structure of polytetrafluoroethylene and process for production thereof |
US4347204A (en) | 1978-12-19 | 1982-08-31 | Olympus Optical Co., Ltd. | Flexible tube and method of manufacturing same |
US4553545A (en) | 1981-09-16 | 1985-11-19 | Medinvent S.A. | Device for application in blood vessels or other difficultly accessible locations and its use |
US4655771A (en) | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4655771B1 (en) | 1982-04-30 | 1996-09-10 | Medinvent Ams Sa | Prosthesis comprising an expansible or contractile tubular body |
US4830484A (en) | 1984-12-17 | 1989-05-16 | Canon Kabushiki Kaisha | Image projection apparatus |
US5061275A (en) * | 1986-04-21 | 1991-10-29 | Medinvent S.A. | Self-expanding prosthesis |
US4743480A (en) | 1986-11-13 | 1988-05-10 | W. L. Gore & Associates, Inc. | Apparatus and method for extruding and expanding polytetrafluoroethylene tubing and the products produced thereby |
US4876051A (en) | 1986-11-13 | 1989-10-24 | W. L. Gore & Associates, Inc. | Apparatus and method for extruding and expanding polytetrafluoroethylene tubing and the products produced thereby |
US4877661A (en) | 1987-10-19 | 1989-10-31 | W. L. Gore & Associates, Inc. | Rapidly recoverable PTFE and process therefore |
US5437900A (en) | 1991-06-14 | 1995-08-01 | W. L. Gore & Associates, Inc. | Surface modified porous expanded polytetrafluoroethylene and process for making |
US5474824A (en) | 1992-03-13 | 1995-12-12 | Atrium Medical Corporation | Process for expanding polytetrafluoroethylene and products produced thereby |
US5466509A (en) | 1993-01-15 | 1995-11-14 | Impra, Inc. | Textured, porous, expanded PTFE |
US5718973A (en) | 1993-08-18 | 1998-02-17 | W. L. Gore & Associates, Inc. | Tubular intraluminal graft |
US5527353A (en) | 1993-12-02 | 1996-06-18 | Meadox Medicals, Inc. | Implantable tubular prosthesis |
US5957962A (en) | 1994-11-21 | 1999-09-28 | Wallsten Medical S.A. | Balloon catheter for hyperthermia treatment |
US5788626A (en) | 1995-11-21 | 1998-08-04 | Schneider (Usa) Inc | Method of making a stent-graft covered with expanded polytetrafluoroethylene |
US6039755A (en) | 1997-02-05 | 2000-03-21 | Impra, Inc., A Division Of C.R. Bard, Inc. | Radially expandable tubular polytetrafluoroethylene grafts and method of making same |
US6402779B1 (en) | 1999-07-26 | 2002-06-11 | Endomed, Inc. | Balloon-assisted intraluminal stent graft |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060264138A1 (en) * | 2001-06-11 | 2006-11-23 | Scimed Life Systems, Inc. | Composite ePTFE/textile prosthesis |
US20040162604A1 (en) * | 2001-07-03 | 2004-08-19 | Boston Scientific Corp./ Scimed Life Systems, Inc. | ePTFE graft with axial elongation properties |
US7871550B2 (en) * | 2001-07-03 | 2011-01-18 | Boston Scientific Scimed, Inc. | ePTFE graft with axial elongation properties |
US20050240261A1 (en) * | 2004-04-23 | 2005-10-27 | Scimed Life Systems, Inc. | Composite medical textile material and implantable devices made therefrom |
US7682381B2 (en) | 2004-04-23 | 2010-03-23 | Boston Scientific Scimed, Inc. | Composite medical textile material and implantable devices made therefrom |
US20100137969A1 (en) * | 2004-04-23 | 2010-06-03 | Boston Scientific Scimed, Inc. | Composite Medical Textile Material and Implantable Devices Made Therefrom |
US8343207B2 (en) | 2004-04-23 | 2013-01-01 | Ronald Rakos | Composite medical textile material and implantable devices made therefrom |
US7955373B2 (en) | 2004-06-28 | 2011-06-07 | Boston Scientific Scimed, Inc. | Two-stage stent-graft and method of delivering same |
US20050288768A1 (en) * | 2004-06-28 | 2005-12-29 | Krzysztof Sowinski | Two-stage stent-graft and method of delivering same |
US8313524B2 (en) | 2004-08-31 | 2012-11-20 | C. R. Bard, Inc. | Self-sealing PTFE graft with kink resistance |
US20080027534A1 (en) * | 2004-08-31 | 2008-01-31 | Edwin Tarun J | Self-Sealing Ptfe Graft with Kink Resistance |
US10582997B2 (en) | 2004-08-31 | 2020-03-10 | C. R. Bard, Inc. | Self-sealing PTFE graft with kink resistance |
US9572654B2 (en) | 2004-08-31 | 2017-02-21 | C.R. Bard, Inc. | Self-sealing PTFE graft with kink resistance |
US8029563B2 (en) | 2004-11-29 | 2011-10-04 | Gore Enterprise Holdings, Inc. | Implantable devices with reduced needle puncture site leakage |
US20060118236A1 (en) * | 2004-11-29 | 2006-06-08 | House Wayne D | Implantable devices with reduced needle puncture site leakage |
US8906087B2 (en) | 2004-11-29 | 2014-12-09 | W. L. Gore & Associates, Inc. | Method of making implantable devices with reduced needle puncture site leakage |
US20060142852A1 (en) * | 2004-12-29 | 2006-06-29 | Boston Scientific Scimed, Inc. | Low profile, durable, reinforced ePTFE composite graft |
US8728372B2 (en) | 2005-04-13 | 2014-05-20 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US8840824B2 (en) | 2005-04-13 | 2014-09-23 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US9446553B2 (en) | 2005-04-13 | 2016-09-20 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US9549829B2 (en) | 2005-04-13 | 2017-01-24 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US10864070B2 (en) | 2005-04-13 | 2020-12-15 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US11510774B2 (en) | 2005-04-13 | 2022-11-29 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US20060233990A1 (en) * | 2005-04-13 | 2006-10-19 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US20060233991A1 (en) * | 2005-04-13 | 2006-10-19 | Trivascular, Inc. | PTFE layers and methods of manufacturing |
US20080234796A1 (en) * | 2005-05-09 | 2008-09-25 | Angiomed Gmbh & Co. Medizintechnik Kg | Implant Delivery Device |
US8652193B2 (en) | 2005-05-09 | 2014-02-18 | Angiomed Gmbh & Co. Medizintechnik Kg | Implant delivery device |
US8652284B2 (en) | 2005-06-17 | 2014-02-18 | C. R. Bard, Inc. | Vascular graft with kink resistance after clamping |
US20100179642A1 (en) * | 2005-06-17 | 2010-07-15 | C.R. Bard, Inc. | Vascular Graft With Kink Resistance After Clamping |
US8066758B2 (en) | 2005-06-17 | 2011-11-29 | C. R. Bard, Inc. | Vascular graft with kink resistance after clamping |
US8636794B2 (en) | 2005-11-09 | 2014-01-28 | C. R. Bard, Inc. | Grafts and stent grafts having a radiopaque marker |
US9155491B2 (en) | 2005-11-09 | 2015-10-13 | C.R. Bard, Inc. | Grafts and stent grafts having a radiopaque marker |
US20070208421A1 (en) * | 2006-03-01 | 2007-09-06 | Boston Scientific Scimed, Inc. | Stent-graft having flexible geometries and methods of producing the same |
US8025693B2 (en) | 2006-03-01 | 2011-09-27 | Boston Scientific Scimed, Inc. | Stent-graft having flexible geometries and methods of producing the same |
US20070208409A1 (en) * | 2006-03-01 | 2007-09-06 | Boston Scientific Scimed, Inc. | Flexible stent-graft devices and methods of producing the same |
US9198749B2 (en) | 2006-10-12 | 2015-12-01 | C. R. Bard, Inc. | Vascular grafts with multiple channels and methods for making |
US10188534B2 (en) * | 2006-11-17 | 2019-01-29 | Covidien Lp | Stent having reduced passage of emboli and stent delivery system |
US20080167708A1 (en) * | 2006-11-17 | 2008-07-10 | Doug Molland | Stent having reduced passage of emboli and stent delivery system |
US10117759B2 (en) | 2007-06-13 | 2018-11-06 | Boston Scientific Scimed, Inc. | Anti-migration features and geometry for a shape memory polymer stent |
US8435283B2 (en) | 2007-06-13 | 2013-05-07 | Boston Scientific Scimed, Inc. | Anti-migration features and geometry for a shape memory polymer stent |
US20080319540A1 (en) * | 2007-06-13 | 2008-12-25 | Boston Scientific Scimed, Inc. | Anti-migration features and geometry for a shape memory polymer stent |
US20090048658A1 (en) * | 2007-08-15 | 2009-02-19 | Boston Scientific Scimed, Inc. | Skewed nodal-fibril ePTFE structure |
US7785363B2 (en) * | 2007-08-15 | 2010-08-31 | Boston Scientific Scimed, Inc. | Skewed nodal-fibril ePTFE structure |
US8066755B2 (en) | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
US8226701B2 (en) | 2007-09-26 | 2012-07-24 | Trivascular, Inc. | Stent and delivery system for deployment thereof |
US8663309B2 (en) | 2007-09-26 | 2014-03-04 | Trivascular, Inc. | Asymmetric stent apparatus and method |
US12016766B2 (en) | 2007-10-04 | 2024-06-25 | Trivascular, Inc. | Modular vascular graft for low profile percutaneous delivery |
US10159557B2 (en) | 2007-10-04 | 2018-12-25 | Trivascular, Inc. | Modular vascular graft for low profile percutaneous delivery |
US10682222B2 (en) | 2007-10-04 | 2020-06-16 | Trivascular, Inc. | Modular vascular graft for low profile percutaneous delivery |
US8083789B2 (en) | 2007-11-16 | 2011-12-27 | Trivascular, Inc. | Securement assembly and method for expandable endovascular device |
US8328861B2 (en) | 2007-11-16 | 2012-12-11 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US8062346B2 (en) | 2007-12-21 | 2011-11-22 | Boston Scientific Scimed, Inc. | Flexible stent-graft device having patterned polymeric coverings |
US20090163994A1 (en) * | 2007-12-21 | 2009-06-25 | Boston Scientific Scimed, Inc. | Flexible Stent-Graft Device Having Patterned Polymeric Coverings |
WO2009086015A2 (en) | 2007-12-21 | 2009-07-09 | Boston Scientific Scimed, Inc. | Flexible stent-graft device having patterned polymeric coverings |
US20090252926A1 (en) * | 2008-04-03 | 2009-10-08 | Boston Scientific Scimed, Inc. | Thin-walled calendered ptfe |
US20090319034A1 (en) * | 2008-06-19 | 2009-12-24 | Boston Scientific Scimed, Inc | METHOD OF DENSIFYING ePTFE TUBE |
US8696738B2 (en) | 2010-05-20 | 2014-04-15 | Maquet Cardiovascular Llc | Composite prosthesis with external polymeric support structure and methods of manufacturing the same |
US9956069B2 (en) | 2010-05-20 | 2018-05-01 | Maquet Cardiovascular Llc | Composite prosthesis with external polymeric support structure and methods of manufacturing the same |
US9375326B2 (en) | 2010-05-20 | 2016-06-28 | Maquet Cardiovascular Llc | Composite prosthesis with external polymeric support structure and methods of manufacturing the same |
US10266972B2 (en) | 2010-10-21 | 2019-04-23 | Albany Engineered Composites, Inc. | Woven preforms, fiber reinforced composites, and methods of making thereof |
US9585746B2 (en) | 2011-07-29 | 2017-03-07 | Carnegie Mellon University | Artificial valved conduits for cardiac reconstructive procedures and methods for their production |
US10624737B2 (en) | 2011-07-29 | 2020-04-21 | Carnegie Mellon University | Artificial valved conduits for cardiac reconstructive procedures and methods for their production |
US11672651B2 (en) | 2011-07-29 | 2023-06-13 | Carnegie Mellon University | Artificial valved conduits for cardiac reconstructive procedures and methods for their production |
US8992595B2 (en) | 2012-04-04 | 2015-03-31 | Trivascular, Inc. | Durable stent graft with tapered struts and stable delivery methods and devices |
US9498363B2 (en) | 2012-04-06 | 2016-11-22 | Trivascular, Inc. | Delivery catheter for endovascular device |
US10588746B2 (en) | 2013-03-08 | 2020-03-17 | Carnegie Mellon University | Expandable implantable conduit |
US9814560B2 (en) | 2013-12-05 | 2017-11-14 | W. L. Gore & Associates, Inc. | Tapered implantable device and methods for making such devices |
US11259910B2 (en) | 2013-12-05 | 2022-03-01 | W. L. Gore & Associates, Inc. | Tapered implantable device and methods for making such devices |
US10357385B2 (en) | 2015-06-05 | 2019-07-23 | W. L. Gore & Associates, Inc. | Low bleed implantable prosthesis with a taper |
US11622871B2 (en) | 2015-06-05 | 2023-04-11 | W. L. Gore & Associates, Inc. | Low bleed implantable prosthesis with a taper |
US11000370B2 (en) | 2016-03-02 | 2021-05-11 | Peca Labs, Inc. | Expandable implantable conduit |
US12083248B2 (en) | 2016-03-20 | 2024-09-10 | Junkosha Inc. | Polytetrafluoroethylene tube |
US10183098B2 (en) | 2016-03-20 | 2019-01-22 | Junkosha Inc. | Polytetrafluoroethylene tube |
US20190143003A1 (en) * | 2016-03-20 | 2019-05-16 | Junkosha Inc. | Polytetrafluoroethylene tube |
US11179503B2 (en) | 2016-03-20 | 2021-11-23 | Junkosha Inc. | Polytetrafluoroethylene tube |
US10485899B2 (en) * | 2016-03-20 | 2019-11-26 | Junkosha Inc. | Polytetrafluoroethylene tube |
US10610357B2 (en) | 2016-10-10 | 2020-04-07 | Peca Labs, Inc. | Transcatheter stent and valve assembly |
US10631979B2 (en) | 2016-10-10 | 2020-04-28 | Peca Labs, Inc. | Transcatheter stent and valve assembly |
US20200237497A1 (en) * | 2017-10-09 | 2020-07-30 | W. L. Gore & Associates, Inc. | Matched stent cover |
Also Published As
Publication number | Publication date |
---|---|
CA2451149A1 (en) | 2003-01-16 |
CA2451149C (en) | 2009-11-24 |
EP1408880A1 (en) | 2004-04-21 |
US20030009210A1 (en) | 2003-01-09 |
DE60203512D1 (en) | 2005-05-04 |
EP1408880B1 (en) | 2005-03-30 |
US7871550B2 (en) | 2011-01-18 |
US20040162604A1 (en) | 2004-08-19 |
DE60203512T2 (en) | 2006-04-27 |
ATE291887T1 (en) | 2005-04-15 |
WO2003003946A1 (en) | 2003-01-16 |
JP4216711B2 (en) | 2009-01-28 |
JP2004536641A (en) | 2004-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6716239B2 (en) | ePTFE graft with axial elongation properties | |
EP1041941B2 (en) | Supported graft | |
JP4854805B2 (en) | Manufacturing method of ePTFE and structure including ePTFE such as vascular graft | |
EP0934034B1 (en) | Improved covered stent | |
WO2014149083A1 (en) | Polymer scaffolds having enhanced axial fatigue properties | |
US7806922B2 (en) | Sintered ring supported vascular graft | |
JP2008526317A5 (en) | ||
US20080058916A1 (en) | Method of fabricating polymeric self-expandable stent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC CORP./SCIMED LIFE SYSTEMS, INC., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOWINSKI, KRZYSZTOF;HENDERSON, JAMIE;WOLEK, HOWARD;REEL/FRAME:011968/0604;SIGNING DATES FROM 20010618 TO 20010620 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON, SCIENTIFIC CORP./SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:015394/0088 Effective date: 20041103 |
|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868 Effective date: 20050101 Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868 Effective date: 20050101 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: ACACIA RESEARCH GROUP LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC SCIMED, INC.;REEL/FRAME:030694/0461 Effective date: 20121220 |
|
AS | Assignment |
Owner name: LIFESHIELD SCIENCES LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACACIA RESEARCH GROUP LLC;REEL/FRAME:030740/0225 Effective date: 20130515 |
|
FPAY | Fee payment |
Year of fee payment: 12 |