US6711107B2 - System for constant angular velocity disk recording and method for laser power control thereof - Google Patents
System for constant angular velocity disk recording and method for laser power control thereof Download PDFInfo
- Publication number
- US6711107B2 US6711107B2 US09/919,849 US91984901A US6711107B2 US 6711107 B2 US6711107 B2 US 6711107B2 US 91984901 A US91984901 A US 91984901A US 6711107 B2 US6711107 B2 US 6711107B2
- Authority
- US
- United States
- Prior art keywords
- clv
- laser
- disk
- value
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000013213 extrapolation Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 238000009877 rendering Methods 0.000 claims 4
- 101100167641 Arabidopsis thaliana CLV1 gene Proteins 0.000 description 6
- 101100167642 Arabidopsis thaliana CLV2 gene Proteins 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/125—Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
- G11B7/126—Circuits, methods or arrangements for laser control or stabilisation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0045—Recording
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/002—Recording, reproducing or erasing systems characterised by the shape or form of the carrier
- G11B7/0037—Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
Definitions
- the invention generally relates to optical drives and laser power control methods, and more particularly to a system and a method for Constant Angular Velocity control format.
- control format for recording can be categorized into CAV (Constant Angular Velocity) and CLV (Constant linear Velocity) control formats.
- CAV control format a disk rotates at a constant speed regardless of what area of the disk is being accessed. Rotational speed of a spindle in the optical recording drive is constant. Data are recorded into tracks of an optical disk. Tracks are formed in a spiral line extending from the inner to the outer of an optical disk.
- the purpose of CLV is to ensure a constant data rate regardless of where on the disk the data is being accessed.
- the rotation speed of the disk changes based on how close to the center of the disk the data is. For tracks near the center, the disk rotates faster, and for data on the outside, the disk rotates slower.
- CLV control format for disk recording. Data is recorded at a uniform density with CLV control format onto a disk. As the high rotational speed of the spindle develops, CLV control format cannot cope with the demands come with high rotational speed. A recent development utilizing a CAV control format recording, whereas disk data recording performance approximates to the resulted uniform density from CLV control format recording. For example, for an optical drive under 16 times CLV control format, the rotational speed of inner tracks is 800 rpm. In contrast, for an optical drive using 16 times CAV control format recording, performance of the outer tracks recording can be as high as the performance gained from an optical drive using 40 times CLV control format recording.
- the invention discloses a system and method for laser power control.
- the system and method is used for CAV (Constant Angular Velocity) control format recording, whereas the existing disk data is recorded under CLV (Constant linear Velocity) control format recording.
- the system according to the invention comprises: a spindle, a spindle control, a PUH (pick-up head), a laser driver, an automatic power control, a write pulse generator, a clock synthesizer, an ATIP (Absolute Time In Pre-grooves) decoder, a CLV value detector, a laser power control, and a dynamic write strategy table.
- the spindle takes control of rotating of an optical disk with CAV control format via the spindle control.
- the PUH is used for reading/recording data from/onto an optical disk.
- the laser driver is used for generating and outputting a laser driver signal to the PUH.
- the PUH receives a laser driver signal, it generates a feed signal and a wobble signal, the wobble signal reflected by the optical disk and then read by the PUH.
- the feed signal is received by the automatic power control; thereafter the automatic power control generates a first control signal used for causing the laser driver to adjust the laser driver signal.
- the ATIP decoder After the ATIP decoder receives the wobble signal, the ATIP decoder generates and outputs ATIP decoded data to the CLV value detector.
- the CLV value detector receives ATIP decoded data and generates a CLV decoded data to the laser power control.
- the laser power control receives the CLV decoded data and generates a second control signal, which is used for causing the automatic power control to adjust the first control signal.
- the write pulse generator With the clock signal provided by the clock synthesizer, the write pulse generator generates a write pulse signal to control the laser driver signal of laser driver.
- the dynamic write strategy table also receives CLV decoded data and then generates a third control signal for causing the write pulse generator to adjust the write pulse signal.
- the dynamic write strategy table comprises: a CLV value detector, a decoder and a recorded medium.
- the CLV value detector is used for receiving the CLV decoded data, determining a CLV value of the CLV decoded data is within a fixed range and generating a CLV value signal.
- the CLV value signal comprises an index value representing the fixed value range.
- the decoder receives the CLV value signal and as a result generates a corresponding address signal.
- the recorded medium is used for recording a plurality of write strategy patterns. Each write strategy pattern corresponds to an address signal and thereafter generating a corresponding third control signal.
- the CLV value detector comprises a matrix used for determining the fix value range corresponding to the CLV value.
- the CLV value detector can be either software or hardware.
- the recorded medium can be performed by a SRAM (Static Random Access Memory).
- the ATIP decoded data comprises predetermined absolute time in pre-grooves and biphase clock, wherein the biphase clock is used to cause clock synthesizer to generate a clock signal.
- the CLV decoded data comprises a CLV value resulted from disk real-time rotating.
- the CLV value equals to the count of the biphase clock detected by the CLV value detector at the fixed time interval.
- the second control signal comprises a laser recording power value corresponding to the CLV value.
- the laser power value can be set as a fixed value. The fixed value can be gained from an optimized value in experiments.
- the disk inner track area comprises a PCA (Power Calibration Area), where a laser power calibration such as an OPC (Optimal power Calibration) occurring.
- a laser power calibration such as an OPC (Optimal power Calibration) occurring.
- OPC Optimal power Calibration
- the present invention provides an alternative, an external laser PCA, which is on the second half of the lead out area on the outer track area. Wherein the external laser PCA is divided into 100 units. Each unit is divided into 15 blocks, which are used for providing laser power control for performing an OPC.
- a linear equation for optimized laser recording power is generated from interpolation, which is used for calculating an optimized laser recording power with desired CLV value.
- An OPC in the PCA is performed and renders an optimized laser recording power of the inner track area of the disk.
- the CLV value detector detects a CLV value of the inner track area.
- an OPC in the PCA is performed and renders an optimized laser recording power of the outer track area of the disk.
- the CLV value detector detects another CLV value of the inner track area. Accordingly, using interpolation with the two sets of CLV values and corresponding optimized laser recording power from the OPC in the PCA in the inner and outer track, a linear equation for optimized laser recording power is generated.
- a linear equation for optimized laser recording power is generated by extrapolation.
- set the spindle under a first fixed multiple CLV control format An OPC in the PCA is performed and renders an optimized laser recording power of the inner track area of the disk.
- the CLV value detector detects a CLV value of the inner track area.
- set the spindle under a second fixed multiple CLV control format an OPC in the PCA is performed and renders an optimized laser recording power of the inner track area of the disk.
- the CLV value detector detects a CLV value of the inner track area. Accordingly, using extrapolation with the two sets of CLV values and corresponding optimized laser recording power from the OPC in the PCA in the inner track under the first and the second multiple CLV control format, a linear equation for optimized laser recording power is generated.
- FIG. 1 is a block diagram of a system of the present invention
- FIG. 2 is a block diagram of the dynamic write strategy table in the system of the present invention.
- FIG. 3 is a perspective view of the disk data in the system of the present invention.
- FIG. 4 is a perspective view of the lead out area of the disk data in the system of the present invention.
- FIG. 5 is a perspective view of the interpolation curve of the system of the present invention.
- FIG. 6 is a perspective view of the extrapolation curve of the system of the present invention.
- FIG. 7 is a flowchart of the first laser power control method of the system of the present invention.
- FIG. 8 is a flowchart of the second laser power control method of the system of the present invention.
- FIG. 1 is block diagram of the system showing an embodiment according to the present invention.
- the system in the FIG. 1 comprises a spindle 109 , a spindle control 110 , a PUH (pick-up head) 105 , a laser driver 106 , an automatic power control 103 , a write pulse generator 107 , a clock synthesizer 104 , an ATIP (Absolute Time In Pre-grooves) decoder 102 , a CLV (Constant Linear Velocity) value detector 100 , a laser power control 101 , and a dynamic write strategy table 108 .
- ATIP Absolute Time In Pre-grooves
- CLV Constant Linear Velocity
- the control signal 120 of the spindle control 110 is used for rotating the disk 111 under CAV (Constant Angular Velocity) control format.
- the PUH 105 is used for reading/recording data from/to disk 111 the disk 111 .
- the laser driver 106 is used for generating a laser driver signal 121 and then outputting to the PUH 105 , laser head is initiated, it generates a feed signal 122 .
- the laser beam travels through an object lens to the disk surface and reflects.
- XXX Reflected laser beam samples the wobble signal 123 on the disk tracks. Thereby wobble signal 123 is received.
- the automatic power control 103 Thereafter the feed signal 122 received by the automatic power control 103 , the automatic power control 103 generates a first control signal 132 used for causing laser driver 106 to adjust the laser driver signal 121 .
- the wobble signal 123 is received by the ATIP decoder 102 and generates an ATIP decoded data 131 outputting to the CLV value detector 100 .
- CLV value detector 100 receives the ATIP decoded data 131 and generates a CLV decoded data 128 outputting to the laser power control 101 .
- the laser power control 101 is caused by received CLV decoded data 128 to generate a second control signal 130 , which is then used to cause automatic power control 103 to adjust the first control signal 132 .
- the write pulse generator 107 is caused by the clock signal 130 provided by the clock synthesizer 104 to generate a write pulse signal 124 to cause the laser driver 106 to generate laser driver signal 121 .
- the dynamic write strategy table 108 also receives the CLV decoded data 128 and generates a third control signal 125 to cause write pulse generator 107 to adjust the write pulse signal 124 .
- the ATIP decoded data 131 comprises the ATIP and biphase clock.
- the biphase clock provides a pulse 127 to the clock synthesizer 104 to generate clock signal 130 .
- the CLV decoded data 128 comprises a CLV value, which equals to the count of the biphase clock detected by the CLV value detector 100 at the fixed time interval.
- the second control signal 130 comprises a laser recording power value corresponding to the CLV value.
- the laser power value can be set as a fixed value. The fixed value can be gained from an optimized value in experiments.
- the dynamic write strategy table 108 comprises: a CLV value detector 200 , a decoder 201 and a recorded medium 202 .
- the CLV value detector 200 is used for receiving the CLV decoded data 128 , determining a CLV value of the CLV decoded data is within a fixed CLV range 203 and generating a CLV value signal 211 .
- the CLV value signal 211 comprises an index value representing the fixed CLV value range 203 .
- the decoder 201 is used for receiving the CLV value signal 211 and as a result generates a corresponding address signal 212 .
- the recorded medium 202 is used for recording a plurality of write strategy patterns 204 . Each write strategy pattern 204 corresponds to an address signal 212 . Each third control signal 125 corresponds to a address signal 212 . Thereafter receiving address signal 212 , a corresponding third control signal 125 is generated.
- the CLV value detector 200 comprises a matrix used for determining the fix CLV value range 203 , corresponding to the CLV value, in the CLV decoded data 128 . Wherein the CLV value detector 200 can be either software or hardware. In addition, the recorded medium 200 can be performed by a SRAM (Static Random Access Memory).
- FIG. 3 is a perspective view of the specification of the disk 111 in the system of the present invention.
- the disk 111 comprises a PCA (Power Calibration Area) 300 , a PMA (Program Mainly Area), a lead in area, a data area 304 and a lead out area 301 ranging from inner tracks to outer tracks.
- the PCA 300 is used for providing an area performing an OPC (Optimal power Calibration).
- the PMA is used for providing an area performing data trial recording.
- the lead in area is used for labeling the start of the data area.
- the data area 304 is where the data is recorded on the disk 111 .
- the lead out area is used for labeling the end of the data area.
- the outer half of the lead out area 301 on the disk 111 is assigned as an external laser PCA 400 , wherein the external laser PCA 400 is divided into 100 units. Each external laser PCA unit is further divided into 15 blocks providing as the area for the laser power control 101 to perform an OPC.
- a linear equation 500 for optimized laser recording power is generated from interpolation, which is used for calculating an optimized laser recording power with desired CLV value.
- a corresponding optimum laser power Px 502 can be attained.
- an OPC is performed in the PCA 300 in the inner tracks in the disk 111 .
- an optimum laser recording power P 1 503 is attained.
- the CLV value detector 100 detects the corresponding CLV value, CLV 1 504 .
- an optimum laser recording power P 2 506 is attained.
- the CLV value detector 100 detects a corresponding CLV value, CLV 2 505 .
- a linear equation 600 for optimized laser recording power can be generated by extrapolation as shown in FIG. 6 .
- a corresponding optimum laser power Px 602 can be attained.
- set the spindle 101 under a first fixed multiple CLV control format An OPC in the PCA 300 is performed and renders an optimized laser recording power P 1 603 of the inner track area of the disk.
- the CLV value detector 100 detects a corresponding CLV value CLV 1 604 of the inner track area.
- the present invention discloses a laser power method control method, which is used for recording data on a disk under CAV control format wherein the disk data is recorded under CLV control format.
- the disk inner tracks comprises a PCA 300
- the disk outer tracks comprises a lead out area 301 .
- FIG. 7 illustrates the first control method 70 comprising step 700 , a disk is rotated under a fixed CAV control format.
- step 701 an OPC is performed in the PCA 300 to render a first optimum laser power P 1 503 of the disk inner tracks of the disk 111 and a corresponding first CLV value CLV 1 504 is detected.
- step 702 an OPC is performed in the second half 400 of the lead out area 301 on the outer track area to render a second optimum laser power P 2 506 of the disk inner tracks of the disk 111 , and a corresponding second CLV value CLV 2 505 is detected.
- step 703 the first optimum laser power P 1 503 , the first CLV value CLV 1 504 , the second optimum laser power P 2 506 and the second CLV value CLV 2 505 are used to generate a linear equation 500 .
- step 704 disk is rotated under a fixed CAV control format, a desired CLV value CLVx is substituted in the linear equation 500 and a corresponding optimum laser power value Px 502 is attained.
- step 705 the optimum laser power value Px 502 is utilized for adjusting the recording laser power using on the disk 111 .
- the second half 400 of the lead out area 301 on the outer track area is assigned as an external laser PCA.
- the external laser PCA is further divided into 100 external laser PCA units, each external laser PCA unit is divided into 15 blocks provided as an area for an OPC to be performed by a laser power control.
- a linear equation 600 can be generated merely by performing an OPC in the PCA 300 on the inner tracks of the disk 111 .
- the second control method 80 comprises: step 800 , a disk 111 is rotated under a first fixed multiple CLV control format.
- step 801 an OPC is performed in the PCA 300 to render a first optimum laser power P 1 603 of the disk inner tracks and a corresponding first CLV value, CLV 1 604 , is detected.
- the disk 111 is rotated under a second fixed multiple CLV control format.
- step 803 an OPC is performed in the PCA 300 to render a second optimum laser power, P 2 605 , of the disk inner tracks, and a corresponding second CLV value, CLV 2 606 , is detected.
- step 804 the first optimum laser power P 1 603 , the first CLV value CLV 1 604 , the second optimum laser power P 2 605 and the second CLV value CLV 2 606 are applied and thereby a linear equation 600 is created.
- step 805 the disk 111 is rotated under a fixed CAV control format.
- step 806 the linear equation 600 is utilized to attain a optimum laser power Px 602 based on a corresponding desired CLV value CLVx 601 and the optimum laser power Px 602 is used for adjusting the recording laser power using on the disk 111 .
- the linear equation 500 and the linear equation 600 is generated via interpolation and extrapolation respectively.
- the method 170 generates the linear equation 500 via corresponding optimum laser powers and corresponding CLV values attained form performing an OPC in the inner tracks and outer tracks in the disk 111 under a fixed CAV control format.
- the method 280 generates the linear equation 600 via corresponding optimum laser powers and corresponding CLV values attained form performing an OPC merely in the inner tracks of the disk.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/318,386 USRE43237E1 (en) | 2001-02-09 | 2005-12-27 | System for constant angular velocity disk recording and method for laser power control thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW090102986A TW548633B (en) | 2001-02-09 | 2001-02-09 | Constant angular velocity data write system and the laser power control method thereof |
TW90102986A | 2001-02-09 | ||
TW090102986 | 2001-02-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/318,386 Reissue USRE43237E1 (en) | 2001-02-09 | 2005-12-27 | System for constant angular velocity disk recording and method for laser power control thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020114234A1 US20020114234A1 (en) | 2002-08-22 |
US6711107B2 true US6711107B2 (en) | 2004-03-23 |
Family
ID=21677310
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/919,849 Ceased US6711107B2 (en) | 2001-02-09 | 2001-08-02 | System for constant angular velocity disk recording and method for laser power control thereof |
US11/318,386 Expired - Lifetime USRE43237E1 (en) | 2001-02-09 | 2005-12-27 | System for constant angular velocity disk recording and method for laser power control thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/318,386 Expired - Lifetime USRE43237E1 (en) | 2001-02-09 | 2005-12-27 | System for constant angular velocity disk recording and method for laser power control thereof |
Country Status (2)
Country | Link |
---|---|
US (2) | US6711107B2 (en) |
TW (1) | TW548633B (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020100861A1 (en) * | 2001-01-26 | 2002-08-01 | Atsushi Ogawa | Optical disc recorder |
US20020105867A1 (en) * | 2000-11-21 | 2002-08-08 | Takuya Tamaru | Optical disk recorder for writing data with variable density |
US20020110065A1 (en) * | 2001-02-15 | 2002-08-15 | Wang Wai William | Optical power calibration method according to a data writing location onto an optical storage carrier |
US20020150012A1 (en) * | 2001-04-17 | 2002-10-17 | Hsiao Kuen-Yuan | Method of optimal power calibration |
US20030095482A1 (en) * | 2001-11-20 | 2003-05-22 | Chien-Li Hung | Method for adjusting the writing speed of a CD drive |
US20040001412A1 (en) * | 2002-06-27 | 2004-01-01 | Hsiang-Ji Hsieh | Method for controlling an optical drive to record data |
US20050007853A1 (en) * | 2003-07-07 | 2005-01-13 | Suh Sang Woon | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US20050007920A1 (en) * | 2003-07-07 | 2005-01-13 | Kim Jin Yong | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US20050078578A1 (en) * | 2001-11-29 | 2005-04-14 | Sony Corporation | Optical recording medium and recording device for this optical recording medium and recording method |
US20050099915A1 (en) * | 2001-03-28 | 2005-05-12 | Mamoru Shoji | Optical disc apparatus and recording power determining method thereof |
US20050265205A1 (en) * | 2004-05-27 | 2005-12-01 | Mediatek Inc | Method for real-time adjustment of servo gain in an optical recording system according to reflected recording light beam |
US20060045222A1 (en) * | 2004-08-26 | 2006-03-02 | Samsung Electronics Co., Ltd. | Optical driver including a multiphase clock generator having a delay locked loop (DLL), optimized for gigahertz frequencies |
US20060109763A1 (en) * | 2001-02-15 | 2006-05-25 | Meng-Shin Yen | Optical power calibration at the outer edge of an optical storage carrier |
US20060215512A1 (en) * | 2003-08-14 | 2006-09-28 | Kim Jin Y | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US20060233059A1 (en) * | 2003-08-14 | 2006-10-19 | Suh Sang W | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US20070165502A1 (en) * | 2003-07-09 | 2007-07-19 | Kim Jin Y | Method of recording data on a multi-layer recording medium, recording medium, and apparatus thereof |
US20070247987A1 (en) * | 2003-07-07 | 2007-10-25 | Kim Jin Y | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US20080151713A1 (en) * | 2003-08-14 | 2008-06-26 | Jin Yong Kim | Recording and/or reproducing methods and appratuses |
US20080304380A1 (en) * | 2001-04-27 | 2008-12-11 | Matsushita Electric Industrial Co., Ltd. | Recordable Optical Disc, Optical Disc Recording Apparatus, Optical Disc Reproduction Apparatus, and Method for Recording Data onto Recordable Optical Disc |
US20090122674A1 (en) * | 2007-11-08 | 2009-05-14 | Hitachi, Ltd. | Optical Disc Recording and Reproduction Device and An Optical Disc Recording and Reproduction Method |
US20100027392A1 (en) * | 2008-08-04 | 2010-02-04 | Gwo-Huei Wu | Apparatus and method for calibrating optical storage device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI343568B (en) * | 2003-07-03 | 2011-06-11 | Panasonic Corp | Recording method, recording apparatus, and recording medium |
TWI300220B (en) | 2003-11-10 | 2008-08-21 | Tian Holdings Llc | Data writing method of optical disk |
KR100564615B1 (en) * | 2004-02-26 | 2006-03-28 | 삼성전자주식회사 | Optical disc recording method and apparatus |
WO2005088613A1 (en) * | 2004-03-12 | 2005-09-22 | Pioneer Corporation | Information recording device and method, and computer program |
JP2005267801A (en) * | 2004-03-19 | 2005-09-29 | Sony Corp | Disk drive apparatus |
US8279733B2 (en) * | 2005-08-31 | 2012-10-02 | Mediatek Inc. | Dynamic write strategy modification method and apparatus |
CN100397490C (en) * | 2005-09-27 | 2008-06-25 | 建兴电子科技股份有限公司 | Optical disc writing strategy updating method |
US20080219115A1 (en) * | 2005-10-31 | 2008-09-11 | Koninklijke Philips Electronics, N.V. | Optical Drive Having a Laser Driver Device with an Adjustable Power Level |
KR100771729B1 (en) * | 2006-06-19 | 2007-10-30 | 엘지전자 주식회사 | Data recording method in optical disc recorder |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6504806B1 (en) * | 1999-03-30 | 2003-01-07 | Yamaha Corporation | Optical disk recording apparatus |
US6577571B2 (en) * | 2000-04-20 | 2003-06-10 | Teac Corporation | Optical disk recording apparatus and method of recording data on optical disk |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5182741A (en) | 1989-08-25 | 1993-01-26 | Sharp Kabushiki Kaisha | Optical disk recording/reproducing device utilizing a constant angular velocity method with a constant linear velocity formatted optical disk |
JP3039099B2 (en) * | 1992-02-14 | 2000-05-08 | ソニー株式会社 | Optical disk recording apparatus and method |
JPH0773471A (en) * | 1993-09-03 | 1995-03-17 | Pioneer Electron Corp | Information recorder for draw type optical disk |
DE69604209T2 (en) * | 1995-01-31 | 2000-03-23 | Canon K.K., Tokio/Tokyo | Test method for a pit length modulation-based recording method and optical information recording / reproducing apparatus using this test method |
US6052347A (en) * | 1996-02-23 | 2000-04-18 | Ricoh Company, Ltd. | Method and apparatus for detecting optimum recording power for an optical disk |
DE69725810T2 (en) | 1996-08-30 | 2004-08-12 | Sharp K.K. | Disc-shaped recording medium and apparatus for recording and reproducing a disc |
JP2000187842A (en) * | 1998-12-21 | 2000-07-04 | Taiyo Yuden Co Ltd | Method and device for optical information recording |
US6459666B1 (en) * | 1999-09-06 | 2002-10-01 | Ricoh Company, Ltd. | Information recording apparatus and method |
-
2001
- 2001-02-09 TW TW090102986A patent/TW548633B/en not_active IP Right Cessation
- 2001-08-02 US US09/919,849 patent/US6711107B2/en not_active Ceased
-
2005
- 2005-12-27 US US11/318,386 patent/USRE43237E1/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6504806B1 (en) * | 1999-03-30 | 2003-01-07 | Yamaha Corporation | Optical disk recording apparatus |
US6577571B2 (en) * | 2000-04-20 | 2003-06-10 | Teac Corporation | Optical disk recording apparatus and method of recording data on optical disk |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6894967B2 (en) * | 2000-11-21 | 2005-05-17 | Yamaha Corporation | Optical disk recorder for writing data with variable density |
US20020105867A1 (en) * | 2000-11-21 | 2002-08-08 | Takuya Tamaru | Optical disk recorder for writing data with variable density |
US20020100861A1 (en) * | 2001-01-26 | 2002-08-01 | Atsushi Ogawa | Optical disc recorder |
US7088665B2 (en) * | 2001-01-26 | 2006-08-08 | Yamaha Corporation | Optical disc recorder with recording modality switching for high quality recording |
US20020110065A1 (en) * | 2001-02-15 | 2002-08-15 | Wang Wai William | Optical power calibration method according to a data writing location onto an optical storage carrier |
US7266063B2 (en) * | 2001-02-15 | 2007-09-04 | Benq Corporation | Optical power calibration method according to a data writing location onto an optical storage carrier |
US7310294B2 (en) | 2001-02-15 | 2007-12-18 | Benq Corporation | Optical power calibration at the outer edge of an optical storage carrier |
US20060109763A1 (en) * | 2001-02-15 | 2006-05-25 | Meng-Shin Yen | Optical power calibration at the outer edge of an optical storage carrier |
US7151728B2 (en) | 2001-03-28 | 2006-12-19 | Matsushita Electric Industrial Co., Ltd. | Optical disc apparatus and recording power determining method thereof |
US7944786B2 (en) | 2001-03-28 | 2011-05-17 | Panasonic Corporation | Optical disc apparatus and recording power determining method thereof |
US20050099914A1 (en) * | 2001-03-28 | 2005-05-12 | Mamoru Shoji | Optical disc apparatus and recording power determining method thereof |
US20070030778A1 (en) * | 2001-03-28 | 2007-02-08 | Mamoru Shoji | Optical disc apparatus and recording power determining method thereof |
US20070019522A1 (en) * | 2001-03-28 | 2007-01-25 | Mamoru Shoji | Optical disc apparatus and recording power determining method thereof |
US20050232107A1 (en) * | 2001-03-28 | 2005-10-20 | Mamoru Shoji | Optical disc apparatus and recording power determining method thereof |
US20050099915A1 (en) * | 2001-03-28 | 2005-05-12 | Mamoru Shoji | Optical disc apparatus and recording power determining method thereof |
US7154828B2 (en) * | 2001-03-28 | 2006-12-26 | Matsushita Electric Industrial Co., Ltd. | Optical disc apparatus and recording power determining method thereof |
US20090028018A1 (en) * | 2001-03-28 | 2009-01-29 | Mamoru Shoji | Optical disc apparatus and recording power determining method thereof |
US7388819B2 (en) | 2001-03-28 | 2008-06-17 | Matsushita Electric Industrial Co., Ltd. | Optical disc apparatus and recording power determining method thereof |
US7095692B2 (en) * | 2001-03-28 | 2006-08-22 | Matsushita Electric Industrial Co., Ltd. | Optical disc apparatus and recording power determining method thereof |
US20100172227A1 (en) * | 2001-03-28 | 2010-07-08 | Mamoru Shoji | Optical disc apparatus and recording power determining method thereof |
US7349308B2 (en) | 2001-03-28 | 2008-03-25 | Matsushita Electric Industrial Co., Ltd. | Optical disc apparatus and recording power determining method thereof |
US7710842B2 (en) | 2001-03-28 | 2010-05-04 | Panasonic Corporation | Optical disc apparatus and recording power determining method thereof |
USRE41529E1 (en) * | 2001-04-17 | 2010-08-17 | Yuan-Kuen Hsiao | Method of optimal power calibration |
US6937548B2 (en) * | 2001-04-17 | 2005-08-30 | Vla Technologies, Inc. | Method of optimal power calibration |
US20020150012A1 (en) * | 2001-04-17 | 2002-10-17 | Hsiao Kuen-Yuan | Method of optimal power calibration |
US7916591B2 (en) * | 2001-04-27 | 2011-03-29 | Panasonic Corporation | Recordable optical disc, optical disc recording apparatus, optical disc reproduction apparatus, and method for recording data onto recordable optical disc |
US20080304380A1 (en) * | 2001-04-27 | 2008-12-11 | Matsushita Electric Industrial Co., Ltd. | Recordable Optical Disc, Optical Disc Recording Apparatus, Optical Disc Reproduction Apparatus, and Method for Recording Data onto Recordable Optical Disc |
US20030095482A1 (en) * | 2001-11-20 | 2003-05-22 | Chien-Li Hung | Method for adjusting the writing speed of a CD drive |
US7876655B2 (en) * | 2001-11-29 | 2011-01-25 | Sony Corporation | Optical recording medium and recording device for this optical recording medium and recording method |
US20050078578A1 (en) * | 2001-11-29 | 2005-04-14 | Sony Corporation | Optical recording medium and recording device for this optical recording medium and recording method |
US20040001412A1 (en) * | 2002-06-27 | 2004-01-01 | Hsiang-Ji Hsieh | Method for controlling an optical drive to record data |
US7116616B2 (en) * | 2002-06-27 | 2006-10-03 | Media Tek Inc. | Method for controlling an optical drive to record data |
US20070247986A1 (en) * | 2003-07-07 | 2007-10-25 | Kim Jin Y | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US7719934B2 (en) | 2003-07-07 | 2010-05-18 | Lg Electronics Inc. | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US7872955B2 (en) | 2003-07-07 | 2011-01-18 | Lg Electronics Inc. | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US20070247987A1 (en) * | 2003-07-07 | 2007-10-25 | Kim Jin Y | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US7817514B2 (en) | 2003-07-07 | 2010-10-19 | Lg Electronics, Inc. | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US7639584B2 (en) | 2003-07-07 | 2009-12-29 | Lg Electronics Inc. | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US20050007920A1 (en) * | 2003-07-07 | 2005-01-13 | Kim Jin Yong | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US20050007853A1 (en) * | 2003-07-07 | 2005-01-13 | Suh Sang Woon | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US20060221790A1 (en) * | 2003-07-07 | 2006-10-05 | Suh Sang W | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US20060221791A1 (en) * | 2003-07-07 | 2006-10-05 | Suh Sang W | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US8310907B2 (en) | 2003-07-07 | 2012-11-13 | Lg Electronics Inc. | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US7680012B2 (en) | 2003-07-07 | 2010-03-16 | Lg Electronics Inc. | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US7599273B2 (en) | 2003-07-07 | 2009-10-06 | Lg Electronics Inc. | Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof |
US7596064B2 (en) | 2003-07-09 | 2009-09-29 | Lg Electronics Inc. | Method of recording data on a multi-layer recording medium, recording medium, and apparatus thereof |
US20070165502A1 (en) * | 2003-07-09 | 2007-07-19 | Kim Jin Y | Method of recording data on a multi-layer recording medium, recording medium, and apparatus thereof |
US7630280B2 (en) | 2003-08-14 | 2009-12-08 | Lg Electronics Inc. | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US7652960B2 (en) | 2003-08-14 | 2010-01-26 | Lg Electronics, Inc. | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US7684292B2 (en) | 2003-08-14 | 2010-03-23 | Lg Electronics, Inc. | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US7697384B2 (en) | 2003-08-14 | 2010-04-13 | Lg Electronics, Inc. | Recording and/or reproducing methods and appratuses |
US7701819B2 (en) | 2003-08-14 | 2010-04-20 | Lg Electronics, Inc. | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US7701817B2 (en) | 2003-08-14 | 2010-04-20 | Lg Electronics, Inc. | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US20080043590A1 (en) * | 2003-08-14 | 2008-02-21 | Suh Sang W | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US20060233059A1 (en) * | 2003-08-14 | 2006-10-19 | Suh Sang W | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US20060215512A1 (en) * | 2003-08-14 | 2006-09-28 | Kim Jin Y | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US20080151713A1 (en) * | 2003-08-14 | 2008-06-26 | Jin Yong Kim | Recording and/or reproducing methods and appratuses |
US20080112283A1 (en) * | 2003-08-14 | 2008-05-15 | Sang Woon Suh | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US20080043588A1 (en) * | 2003-08-14 | 2008-02-21 | Suh Sang W | Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof |
US20050265205A1 (en) * | 2004-05-27 | 2005-12-01 | Mediatek Inc | Method for real-time adjustment of servo gain in an optical recording system according to reflected recording light beam |
US7486757B2 (en) * | 2004-08-26 | 2009-02-03 | Samsung Electronics Co., Ltd. | Optical driver including a multiphase clock generator having a delay locked loop (DLL), optimized for gigahertz frequencies |
US20060045222A1 (en) * | 2004-08-26 | 2006-03-02 | Samsung Electronics Co., Ltd. | Optical driver including a multiphase clock generator having a delay locked loop (DLL), optimized for gigahertz frequencies |
US8023374B2 (en) * | 2007-11-08 | 2011-09-20 | Hitachi, Ltd. | Optical disc recording and reproduction device and an optical disc recording and reproduction method |
US20090122674A1 (en) * | 2007-11-08 | 2009-05-14 | Hitachi, Ltd. | Optical Disc Recording and Reproduction Device and An Optical Disc Recording and Reproduction Method |
US20100027392A1 (en) * | 2008-08-04 | 2010-02-04 | Gwo-Huei Wu | Apparatus and method for calibrating optical storage device |
Also Published As
Publication number | Publication date |
---|---|
TW548633B (en) | 2003-08-21 |
US20020114234A1 (en) | 2002-08-22 |
USRE43237E1 (en) | 2012-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6711107B2 (en) | System for constant angular velocity disk recording and method for laser power control thereof | |
US6052347A (en) | Method and apparatus for detecting optimum recording power for an optical disk | |
US7088667B2 (en) | Optical disc, optical disc recording/reproducing apparatus, and optical disc recording/reproducing method | |
US6418102B1 (en) | Method and apparatus for performing optimum laser power calibration on optical disks | |
US20020003760A1 (en) | Optical disc recording method, optical disc recording device, and optical disc | |
US6473380B1 (en) | Information recording and reproducing apparatus for formatting a rewritable recording medium by an easy formatting method | |
JP3989665B2 (en) | Optical information recording medium | |
CN1700312B (en) | Method and apparatus for determining write power of a recording medium | |
US7301867B2 (en) | Method and apparatus for changing a recording speed of a disk device | |
KR20020052811A (en) | Method for recording the data on a optical disc using optimal writing power | |
JP2000311361A (en) | Pickup controller for optical disk device | |
JP2002358642A (en) | Optical disk drive and recording software for the same | |
JPH09251709A (en) | Optical disk device | |
JPH09198660A (en) | Optical disk device | |
JPH11306662A (en) | Information recording device | |
KR100412052B1 (en) | Method for controlling revolution per minute of optical disk and recording apparatus of optical disk | |
JP3717921B2 (en) | Recording device | |
JP2001052373A (en) | Optical disk, drive apparatus, and method for recording and reproducing | |
JP2004185656A (en) | Information destruction method, program and recording medium, and information recording device | |
KR100444629B1 (en) | Method for determinating the optimal writing power of an optical disc | |
JP4874472B2 (en) | Optical disk drive and driving method switching method thereof | |
JP2003132537A (en) | Laser beam control method, test recording method, and optical recording device | |
JP2001176186A (en) | Data recording and reproducing device | |
JP2003272178A (en) | Optical disk recording medium and drive device | |
JP2003123256A (en) | Optical disk drive and information processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ACER LABORATORIES INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAO, CHI-MOU;WANG, DAW-I;SHIH, TSUNG YUEH;REEL/FRAME:012051/0513 Effective date: 20010719 |
|
AS | Assignment |
Owner name: ALI CORPORATION, TAIWAN Free format text: CHANGE OF NAME;ASSIGNOR:ACER LABORATORIES INCORPORATION;REEL/FRAME:014523/0512 Effective date: 20020507 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: MEDIATEK INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALI CORPORATION;REEL/FRAME:016522/0263 Effective date: 20050907 |
|
RF | Reissue application filed |
Effective date: 20051227 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |