US6682163B2 - Method and device for detecting and correcting chromatic aberrations in multicolor printing - Google Patents
Method and device for detecting and correcting chromatic aberrations in multicolor printing Download PDFInfo
- Publication number
- US6682163B2 US6682163B2 US10/178,984 US17898402A US6682163B2 US 6682163 B2 US6682163 B2 US 6682163B2 US 17898402 A US17898402 A US 17898402A US 6682163 B2 US6682163 B2 US 6682163B2
- Authority
- US
- United States
- Prior art keywords
- crosstrack
- aberrations
- registration
- sensor
- registration mark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00007—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to particular apparatus or devices
- H04N1/00015—Reproducing apparatus
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/01—Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
- G03G15/0142—Structure of complete machines
- G03G15/0178—Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00007—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to particular apparatus or devices
- H04N1/00023—Colour systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00026—Methods therefor
- H04N1/00031—Testing, i.e. determining the result of a trial
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00026—Methods therefor
- H04N1/00045—Methods therefor using a reference pattern designed for the purpose, e.g. a test chart
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00026—Methods therefor
- H04N1/00063—Methods therefor using at least a part of the apparatus itself, e.g. self-testing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00026—Methods therefor
- H04N1/00068—Calculating or estimating
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00071—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for characterised by the action taken
- H04N1/00082—Adjusting or controlling
- H04N1/00087—Setting or calibrating
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
- H04N1/047—Detection, control or error compensation of scanning velocity or position
- H04N1/053—Detection, control or error compensation of scanning velocity or position in main scanning direction, e.g. synchronisation of line start or picture elements in a line
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/46—Colour picture communication systems
- H04N1/50—Picture reproducers
- H04N1/506—Reproducing the colour component signals picture-sequentially, e.g. with reproducing heads spaced apart from one another in the subscanning direction
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/01—Apparatus for electrophotographic processes for producing multicoloured copies
- G03G2215/0103—Plural electrographic recording members
- G03G2215/0119—Linear arrangement adjacent plural transfer points
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/01—Apparatus for electrophotographic processes for producing multicoloured copies
- G03G2215/0151—Apparatus for electrophotographic processes for producing multicoloured copies characterised by the technical problem
- G03G2215/0158—Colour registration
- G03G2215/0161—Generation of registration marks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/04—Scanning arrangements
- H04N2201/047—Detection, control or error compensation of scanning velocity or position
- H04N2201/04701—Detection of scanning velocity or position
- H04N2201/0471—Detection of scanning velocity or position using dedicated detectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/04—Scanning arrangements
- H04N2201/047—Detection, control or error compensation of scanning velocity or position
- H04N2201/04701—Detection of scanning velocity or position
- H04N2201/04715—Detection of scanning velocity or position by detecting marks or the like, e.g. slits
- H04N2201/04722—Detection of scanning velocity or position by detecting marks or the like, e.g. slits on a photoconductive drum or belt
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/04—Scanning arrangements
- H04N2201/047—Detection, control or error compensation of scanning velocity or position
- H04N2201/04701—Detection of scanning velocity or position
- H04N2201/04729—Detection of scanning velocity or position in the main-scan direction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/04—Scanning arrangements
- H04N2201/047—Detection, control or error compensation of scanning velocity or position
- H04N2201/04701—Detection of scanning velocity or position
- H04N2201/04732—Detecting at infrequent intervals, e.g. once or twice per line for main-scan control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/04—Scanning arrangements
- H04N2201/047—Detection, control or error compensation of scanning velocity or position
- H04N2201/04701—Detection of scanning velocity or position
- H04N2201/04749—Detecting position relative to a gradient, e.g. using triangular-shaped masks, marks or gratings
Definitions
- This invention relates to a method and a device for detecting crosstrack registration errors in a multicolor printing apparatus and applying correction based on error values.
- multicolor printing is distinguished in particular by a superposition of individual color separations on an assembly, which are perceived by the human eye on the ultimate stock in various shades, concentrations and brightnesses. It is important that the individual color separations, normally yellow, cyan, magenta and key or black are precisely arranged on top of each other, because otherwise, the ultimate printing may show visible color defects on the stock, i.e., the stacked superposition of the individual color separations affects the printing quality in various ways. Such defects may be manifested in displaced color lines on the printed object.
- Various methods are thus provided to precisely arrange (in the order of micrometers) the color separations on top of each other. For this purpose, color registration marks are used as reference or comparison indices, which can be used to set chromatic aberrations in a vertical (intrack) or horizontal (crosstrack) direction.
- U.S. Pat. No. 5,384,592 contains an image-forming device to transfer a plurality of images, a first image-forming station to form a first registration mark on the image-transferring device and a second image-forming station to form a second registration mark on the image-transferring device.
- the image-forming device contains an imaging sensor to determine the position of the geometric focal point of the first and second registration mark with respect to an individual spatially fixed reference point, a segment to determine an erroneous alignment of the second image-forming station on the basis of the position of the second registration mark in relationship to the first registration mark, and a segment to correct the erroneous alignment of the second image-forming station.
- the erroneous alignment is determined in this case by two sensors and an arrangement of each of the two registration marks per color separation.
- a detection system includes a marking device to apply a chevron of a first printer on a carrier, a second chevron of a second printer and a third chevron from the first as well as the second printer.
- the third beam has a first component from the first printer and a second element from the second printer.
- the detection system further contains a detection device for calculating a time matrix with three time slots, whereby each time slot corresponds to a relevant passage of time of the first, second and third chevron through the detection device.
- the detection system further contains a detection device for determining the alignment error on the basis of a function of three time slots.
- a control system includes a marking device to apply a chevron of the first printer on a carrier, a second chevron of a second printer and a third chevron from the first as well as from the second printer.
- the control system further contains a detection device for determining a time matrix with three time slots, whereby each time slot corresponds to a relevant passage of time of the first, second and third chevron through the detection device, a detection device for determining the alignment error on the basis of a function of the time slots and a control device to minimize the alignment error.
- the detection device consists of at least two sensors.
- Registration mark sensor values are advantageously detected by counting cycles with high frequency.
- a counting cycle to determine a sensor value begins with a light/dark transition of a registration mark and ends with a light/dark transition of the same registration mark lying on the opposite side, i.e., at the edges of a registration mark.
- a new counting cycle is started, which begins at the edge of the following registration mark at which a light/dark transmission is present and ends on the opposite edge of the registration mark, i.e., the following light/dark transmission.
- the crosstrack aberrations can be corrected with an advantageous embodiment, whereby first the differential values are determined from the sensor values, by which the differential values of the crosstrack aberrations and the corresponding correction values are calculated and the crosstrack aberrations are ultimately corrected on the basis of the correction values.
- the correction values calculated to correct the crosstrack aberrations may be transferred to a control device.
- the control device is changed by the alignment of a marking device for the application of colored images on a printing drum in such a way that the crosstrack aberrations are essentially corrected in the micrometer range.
- the result is that the color separations on the individual printing drums with successive printing phases are essentially precisely arranged on top of each other and, as a result, color errors in the final printing are prevented.
- the control device for correcting the crosstrack aberrations may be contained in a preferred embodiment in the sensor device. Thus, savings can be made in components and transferal processes. Crosstrack aberrations are calculated in the sensor device and corresponding correction values are transferred to the control device, which controls the alignments of a conveyor belt and/or a marking device of the multicolor printing apparatus.
- FIG. 1 which is a schematic drawing of a device according to one embodiment of the invention for detecting and correcting chromatic aberrations with a conveyor belt, which is driven by a control device, and with applied registration mark areas with registration marks, which are scanned by a sensor device;
- FIG. 2 which is a schematic drawing of four registration marks for four color separations to detect crosstrack aberrations according to an embodiment of the invention
- FIG. 3 which is a schematic drawing of four registration marks for four color separations to detect crosstrack aberrations according to another embodiment of the invention.
- FIG. 4 which is a schematic drawing, on an enlarged scale, of an individual registration mark for a color separation to detect crosstrack aberrations.
- FIG. 1 shows a schematic drawing of a section of a conveyor belt 40 of a printing apparatus (not shown) for multicolor printing.
- the conveyor belt 40 is usually a continuous belt, but which is illustrated in a planar fashion here, and which is shown as being transparent.
- the conveyor belt 40 can fulfill transport functions as well as replacing other printing block patterns as the carrier of latent images.
- a printing drum 80 represents the printing block module for a certain color separation, whose other printing modules, of which there are normally three additional modules with four-color printing, are not shown in FIG. 1 .
- registration mark areas 50 are arranged on the conveyor belt 40 with registration marks ( 10 , 11 , 12 , and 13 in FIG. 2, 20 , 21 , 22 , and 23 in FIG. 3, and 30 in FIG. 4 ).
- the registration mark areas 50 are represented in FIG. 1 as rectangles, which are scanned with signals by a sensor device 70 arranged above the conveyor belt 40 .
- the conveyor belt 40 is operated by a highly sensitive control device 60 , which reach sensitivities in the micrometer range with the propulsion of the conveyor belt 40 .
- the control device 60 in FIG. 1 is rotated in the direction of the curved arrow.
- the control device 60 is connected with a marking device 85 as well as with the sensor device 70 and drives the conveyor belt 40 with highly consistent speed.
- the control device 60 is used as a central clock pulse generator for the printing device.
- the surface of the printing drum 80 receives an image of a color separation formed by electrostatic forces on toner so as to remain on the surface of the printing drum 80 , usually magenta, cyan, yellow or key, which developed color separation image is transferred extremely precisely to a stock.
- the printing drum 80 can be driven by friction or it may have its own drive. This embodiment describes a printing drum 80 with its own drive, controlled by the control device 60 .
- the sensor device 70 sends signals (represented in FIG. 1 by dotted lines) to the registration mark areas 50 and receives reflected signals back from these registration mark areas.
- the configuration of the registration mark areas 50 is described below with references to FIGS. 2 through 4.
- the sensor device 70 is configured so that the light/dark transition of the registration marks to the conveyor belt 40 in the registration mark areas 50 facing their carrier can be determined, and to determine clock pulse intervals in which the signals between the light/dark transitions are located.
- the control device 60 with the help of the extremely precise clock pulse generation of the control device 70 , calculates the corresponding distance or interval covered by the light/darkness transition.
- a computer device associated with the sensor device 70 compares the actual distance or interval covered for certain highly precise speeds (y 1 , . . . , n in the FIGS. 2 through 4) with target values Y SOLL(target) of the distances or intervals for certain extremely precise speeds of the conveyor belt 40 . If the distances or intervals (y 1 , . . . , n in the FIGS. 2 through 4) determined in the sensor device 70 match the target values Y SOLL(target) of the distances or intervals, it is thus guaranteed that the registration marks will definitely pass extremely precisely through the sensor device 70 horizontally (crosstrack) to the movement direction of the conveyor belt 40 . A correction must not be made.
- the sensor device 70 calculates from these correction values, converting them into a corresponding number of clock pulses and transmits this number of clock pulses to the control device 60 .
- each registration mark 10 , 11 , 12 , 13 , 20 , 21 , 22 , 23 and 30 is individually carried out.
- the correction of crosstrack aberrations i.e., aberrations of the registration marks 10 , 11 , 12 , 13 , 20 , 21 , 22 , 23 and 30 horizontal to the transport direction of the conveyor belt 49 with stock and the horizontal direction that leads to the color separations to the stock is described.
- an intrack aberration i.e., an aberration of the registration marks 10 , 11 , 12 , 13 , 20 , 21 , 22 , 23 and 30 in the direction of the conveyor belt 40 and in the direction of the arrows designated with v, which does not occur in the embodiment described, but which is corrected in the known way, where necessary.
- crosstrack aberrations are determined with the standard number of clock pulses, which are converted into distances in accordance with the existing description, which can be used for the alignment of the marking device 85 . These distances are transmitted to the control device 60 , the signals are sent to the marking device 85 and cause the marking device 85 to be moved accordingly in the axial direction to the printing drum 80 . This process corrects the crosstrack aberrations, and the colored in image of the color separation on the printing drum 80 is consequently displaced to the right or left accordingly. As a result, the respective color separation is applied essentially to the stock without crosstrack aberrations.
- the exemplary embodiment according to FIG. 1 detects and corrects crosstrack aberrations of the registration marks 10 , 11 , 12 , 13 , 20 , 21 , 22 , 23 and 30 assigned to the other colors, whose assigned printing drum in FIG. 1 is not shown.
- the control device 60 and the sensor device 70 are combined with the respective marking devices 85 in this instance, of which only one is shown in FIG. 1 .
- FIGS. 2, 3 and 4 embodiments of registration marks 10 , 11 , 12 , 13 , 20 , 21 , 22 , 23 and 30 are described that are suitable for detecting crosstrack aberrations.
- FIG. 2 illustrates four registration marks 10 , 11 , 12 , and 13 as well as a measurement mark 14 in connection with the present invention.
- the measurement mark 14 is used as a calibration mark for the calibration of the sensor device 70 , but has no meaning for the invention.
- the registration marks 10 , 11 , 12 and 13 according to FIG. 2 are applied to a conveyor belt 40 of a multicolor printing device (not shown).
- the registration marks 10 , 11 , 12 , 13 , 20 , 21 , 22 , 23 and 30 may be applied to the stock.
- each registration mark 10 , 11 , 12 and 13 is assigned a color of the color separation, which are usually magenta, cyan, yellow and key or black with four-color printing.
- the registration marks 10 , 11 , 12 and 13 are located in the registration mark areas 50 according to FIG. 1 .
- the geometric shape selected for the registration marks 10 , 11 , 12 and 13 is a triangle in this case, and other geometric objects with at least one slanted side may be used.
- the illustrated registration marks 10 , 11 , 12 , and 13 are overscored by a sensor device 70 , which is arranged above the conveyor belt 40 .
- the measurement y 1 which is measured from the edge 16 of the registration mark 11 to an edge 17 of the registration mark 11 , is shown to explain the mode of action.
- This distance or interval value y 1 is determined with the sensor device 70 , by which the light/dark transitions to the edges of the registration marks 10 , 11 , 12 , and 13 are determined.
- the sensor device 70 detects the edge 16 (Note: it is assumed that the registration mark 10 was already known previously) and, as a result, begins clock pulse-counting processes, which are provided by a central clock pulse generator in the control device 60 .
- the fixed sensor device 70 detects the edge 17 of the registration mark 11 as the next one.
- a first counting cycle is concluded with the detection of the edge 17 , so that a number of clock pulses are assigned to the distance or interval value y 1 from edge 16 to edge 17 , which may be converted from the knowledge of the pulse frequency simply into one distance or interval y 1 .
- the value of the distance or interval value y 1 is formed in a simple way from the number of clock pulses between the edge 16 and the edge 17 in the computer device found within the sensor device 70 . Now the sensor device 70 contains the number of clock pulses, which are counted according to the distance or the interval value y 1 .
- the sensor of the sensor device 70 reaches the edge 18 and the edge 19 of the registration mark 12 , whereby the described process corresponding to the edges 16 and 17 is carried out again.
- the values determined and calculated corresponding to the registration mark 12 overwrite those of the registration mark 11 in a memory of the sensor device 70 .
- the values stored in the sensor device 70 are transferred to the control device 60 .
- the value y 1 is compared in the control device 60 with a target value for precisely arranged registration marks 10 , 11 , 12 and 13 , i.e., without being compared to crosstrack aberrations.
- the target value and value y 1 match within the given tolerances. This means that the position of the registration mark 11 must not be changed; the target value and the actual value of the registration mark 11 match in such a way that basically no chromatic aberrations of the color separations assigned to registration mark 11 on the stock transported by the conveyor belt 40 ultimately occur.
- the target and actual value of the position of the registration mark 11 do not match. This ultimately leads to displacements or aberrations of these assigned color separations in relationship to the other color separations and, consequently, to color errors in printing, such as recognizable horizontal stripes.
- a correct value is calculated from the target value and the actual value and converted into a number of clock pulses.
- Value y 1 is required for the detection and correction of crosstrack aberrations of the registration mark 11 .
- value y 1 shows a certain fixed value, which is only dependent upon the lateral lengths of the registration mark 11 as well as upon the impact site of the sensor signals of the sensor device 70 , usually without crosstrack aberrations from the median line a of the edge 16 .
- the interval value y 1 is changed linearly with the crosstrack aberration ⁇ x 1 , as shown in FIG. 2 by the dotted registration mark 11 ′ and its dotted median line a′.
- the crosstrack aberration ⁇ x 1 can be definitely determined with the help of a single registration mark 10 , 11 , 12 , 13 , 20 , 21 , 22 , 23 , or 30 , and, as described above, successfully corrected.
- the distance of the edges of registration marks 10 , 11 , 12 , 13 , 20 , 21 , 22 , 23 , and 30 and the target value of the distance as well as the measurements of the respective registration marks 10 , 11 , 12 , 13 , 20 , 21 , 22 , 23 , and 30 are required.
- the method is clearly independent of intrack aberrations, i.e., aberrations in direction of the movement of the conveyor belt 40 .
- the distance of registration mark 14 to the registration marks 10 , 11 , 12 , and 13 are often measured and the crosstrack aberration is determined from the measurement results; however, this known method assumes a previous correction of the intrack aberration, contrary to the invention.
- FIG. 3 shows another advantageous embodiment of the invention with the registration marks 20 , 21 , 22 and 23 .
- the principle of the detection and correction of color separations in this case is similar to that in FIG. 2 .
- exemplary difference values y 2 and y 3 of two registration marks 20 and 21 are calculated, which are assigned to two different color separations.
- the process is similar to that according to FIG. 2 .
- the difference is that, in FIG. 3, double the resolution is targeted in comparison to FIG.
- the targeted resolution with detection or measurement is heavily dependent on the selected inner angles of the registration marks 20 , 21 , 22 , and 23 ; the steeper the angle is, the higher is the resolution.
- the crosstrack aberration is calculated first by the values y 2 and y 3 and from the knowledge of the lateral lengths of the triangle as registration marks 20 , 21 , 22 , and 23 , i.e., from the values y 2 or y 3 and with the lateral lengths of the triangle as registration marks 20 , 21 , 22 , and 23 , the position along the edges of the triangle as registration marks 20 , 21 , 22 , and 23 and ultimately the crosstrack aberration can be determined in the control device 60 with a computer device found within the sensor device 70 by implemented algorithms.
- a single registration mark 10 , 11 , 12 , 13 , 20 , 21 , 22 , 23 and 30 per color separation, crosstrack aberrations or crosstrack displacements with multicolor printing can be detected or corrected with a single sensor device 70 .
- FIG. 4 shows an individual registration mark 30 similar to the registration marks 20 , 21 , 22 , and 23 according to FIG. 3 for further clarification of the detection of crosstrack aberrations.
- an additional dotted line (C-D) has been drawn in the schematic drawing of the interval ratios with the application of a sensor signal, which represents an ideal line at the registration mark 30 without crosstrack aberrations.
- the registration mark 30 is undesirably displaced in the horizontal direction so that, as a result, the sensor signal of the fixed sensor device 70 does not overscore the dotted line, but rather the line (A-B) lying to the right, first the point A and than the point B on the opposite side of the triangular registration mark 30 .
- the length ⁇ x 2 that corresponds to the crosstrack aberration can be determined by the mathematical geometric formulae. The correcting process as described above can then be readily carried out.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inking, Control Or Cleaning Of Printing Machines (AREA)
Abstract
Description
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10131957A DE10131957A1 (en) | 2001-07-02 | 2001-07-02 | Method and device for detecting and correcting color deviations in multi-color printing |
DE10131957.6 | 2001-07-02 | ||
DE10131957 | 2001-07-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030002891A1 US20030002891A1 (en) | 2003-01-02 |
US6682163B2 true US6682163B2 (en) | 2004-01-27 |
Family
ID=7690290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/178,984 Expired - Fee Related US6682163B2 (en) | 2001-07-02 | 2002-06-25 | Method and device for detecting and correcting chromatic aberrations in multicolor printing |
Country Status (3)
Country | Link |
---|---|
US (1) | US6682163B2 (en) |
JP (1) | JP2003025550A (en) |
DE (1) | DE10131957A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040061733A1 (en) * | 2002-09-26 | 2004-04-01 | Marius Buibas | Media allignment method and system |
US20050160935A1 (en) * | 2003-09-18 | 2005-07-28 | William Armstrong | Method for analysis of label positioning and printed image to identify and correct printing anomalies |
US20050249380A1 (en) * | 2004-05-03 | 2005-11-10 | Heidelberger Druckmaschinen Aktiengesellschaft | Register sensor |
US20070151651A1 (en) * | 2005-03-01 | 2007-07-05 | Intermec Ip Corp. | Media gap detection by reflective florescence |
US20070222805A1 (en) * | 2006-02-03 | 2007-09-27 | Moscato Anthony V | Use of a sense mark to control a printing system |
US20080115679A1 (en) * | 2004-05-06 | 2008-05-22 | Eastman Kodak Company | Method for Aligning Color Separations of a Printing Image on a Printing Material |
US20080259111A1 (en) * | 2007-04-20 | 2008-10-23 | Intermec Ip Corp. | Method and apparatus for registering and maintaining registration of a medium in a content applicator |
US20090016785A1 (en) * | 2007-06-29 | 2009-01-15 | Haan Henderikus A | Use of a sense mark to control a printing system |
US20110019876A1 (en) * | 2009-07-21 | 2011-01-27 | Galoppo Travis J | Systems And Methods For Detecting Alignment Errors |
US20130058686A1 (en) * | 2011-09-06 | 2013-03-07 | Canon Kabushiki Kaisha | Image forming apparatus |
US8866861B2 (en) * | 2012-10-19 | 2014-10-21 | Zink Imaging, Inc. | Systems and methods for automatic print alignment |
US8931874B1 (en) | 2013-07-15 | 2015-01-13 | Eastman Kodak Company | Media-tracking system using marking heat source |
US8960842B2 (en) | 2013-07-15 | 2015-02-24 | Eastman Kodak Company | Media-tracking system using thermal fluoresence quenching |
US9056736B2 (en) | 2013-07-15 | 2015-06-16 | Eastman Kodak Company | Media-tracking system using thermally-formed holes |
US9429419B2 (en) | 2013-07-15 | 2016-08-30 | Eastman Kodak Company | Media-tracking system using deformed reference marks |
US9462162B2 (en) | 2012-05-29 | 2016-10-04 | Océ Printing Systems GmbH & Co. KG | Method for controlling color separations registration |
US10370214B2 (en) | 2017-05-31 | 2019-08-06 | Cryovac, Llc | Position control system and method |
US11528386B1 (en) * | 2021-08-30 | 2022-12-13 | Xerox Corporation | Printing color separation and fiducials on substrates in an inkjet printer to register and print remaning color separations |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7039348B2 (en) * | 2002-12-17 | 2006-05-02 | Xerox Corporation | Method for maintaining image on image and image on paper registration |
JP4789400B2 (en) * | 2003-02-24 | 2011-10-12 | 株式会社村田製作所 | Method for manufacturing ceramic electronic component and gravure printing method |
US7184700B2 (en) * | 2003-08-18 | 2007-02-27 | Heidelberger Druckmaschinen Ag | Method of determining color register and/or register errors in a printing machine |
US7542162B2 (en) * | 2003-12-01 | 2009-06-02 | Kabushiki Kaisha Toshiba | Image forming apparatus and image forming method |
DE102004015101B4 (en) * | 2004-03-27 | 2012-04-26 | Eastman Kodak Co. | Method and sensor device for controlling an endless, seam-containing transport medium for a printing press |
DE102006022753A1 (en) * | 2006-05-12 | 2007-11-15 | Eastman Kodak Co. | Procedures to ensure proper page register adjustment and appropriate press |
DE102009048951A1 (en) * | 2009-10-10 | 2011-04-14 | Robert Bosch Gmbh | Method for modeling a page register control loop for a processing machine |
WO2016014062A1 (en) * | 2014-07-24 | 2016-01-28 | Hewlett-Packard Development Company, L.P. | Front-to-back registration of printed content |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01112266A (en) | 1987-10-27 | 1989-04-28 | Ricoh Co Ltd | Image forming device |
JPH04149479A (en) | 1990-10-12 | 1992-05-22 | Canon Inc | Image forming device |
US5287162A (en) | 1992-06-16 | 1994-02-15 | Xerox Corporation | Method and apparatus for correction of color registration errors |
US5384592A (en) | 1992-11-16 | 1995-01-24 | Xerox Corporation | Method and apparatus for tandem color registration control |
JPH11231586A (en) | 1998-02-17 | 1999-08-27 | Minolta Co Ltd | Image forming device |
JPH11237778A (en) | 1998-02-23 | 1999-08-31 | Konica Corp | Color image forming device |
US6317147B1 (en) * | 2000-06-13 | 2001-11-13 | Toshiba Tec Kabushiki Kaisha | Image forming method using registration marks having varying angles |
-
2001
- 2001-07-02 DE DE10131957A patent/DE10131957A1/en not_active Withdrawn
-
2002
- 2002-06-25 US US10/178,984 patent/US6682163B2/en not_active Expired - Fee Related
- 2002-07-02 JP JP2002193645A patent/JP2003025550A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01112266A (en) | 1987-10-27 | 1989-04-28 | Ricoh Co Ltd | Image forming device |
JPH04149479A (en) | 1990-10-12 | 1992-05-22 | Canon Inc | Image forming device |
US5287162A (en) | 1992-06-16 | 1994-02-15 | Xerox Corporation | Method and apparatus for correction of color registration errors |
US5384592A (en) | 1992-11-16 | 1995-01-24 | Xerox Corporation | Method and apparatus for tandem color registration control |
JPH11231586A (en) | 1998-02-17 | 1999-08-27 | Minolta Co Ltd | Image forming device |
JPH11237778A (en) | 1998-02-23 | 1999-08-31 | Konica Corp | Color image forming device |
US6317147B1 (en) * | 2000-06-13 | 2001-11-13 | Toshiba Tec Kabushiki Kaisha | Image forming method using registration marks having varying angles |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6827419B2 (en) * | 2002-09-26 | 2004-12-07 | Hewlett-Packard Development Company, L.P. | Media allignment method and system |
US20040061733A1 (en) * | 2002-09-26 | 2004-04-01 | Marius Buibas | Media allignment method and system |
US20050160935A1 (en) * | 2003-09-18 | 2005-07-28 | William Armstrong | Method for analysis of label positioning and printed image to identify and correct printing anomalies |
US20050249380A1 (en) * | 2004-05-03 | 2005-11-10 | Heidelberger Druckmaschinen Aktiengesellschaft | Register sensor |
US8161876B2 (en) | 2004-05-03 | 2012-04-24 | Heidelberger Druckmaschinen Ag | Register mark to be detected by a register sensor |
US7637210B2 (en) | 2004-05-03 | 2009-12-29 | Heidelberger Druckmaschinen Ag | Register sensor |
US20100007690A1 (en) * | 2004-05-03 | 2010-01-14 | Heidelberger Druckmaschinen Ag | Register mark to be detected by a register sensor |
US20080115679A1 (en) * | 2004-05-06 | 2008-05-22 | Eastman Kodak Company | Method for Aligning Color Separations of a Printing Image on a Printing Material |
US8245638B2 (en) | 2004-05-06 | 2012-08-21 | Eastman Kodak Company | Method for aligning color separations of a printing image on a printing material |
US20070151651A1 (en) * | 2005-03-01 | 2007-07-05 | Intermec Ip Corp. | Media gap detection by reflective florescence |
US7967407B2 (en) | 2006-02-03 | 2011-06-28 | R.R. Donnelley | Use of a sense mark to control a printing system |
US20070222805A1 (en) * | 2006-02-03 | 2007-09-27 | Moscato Anthony V | Use of a sense mark to control a printing system |
WO2008131113A1 (en) * | 2007-04-20 | 2008-10-30 | Intermec Ip Corp. | Method and apparatus for registering and maintaining registration of a medium in a content applicator |
US20110181650A1 (en) * | 2007-04-20 | 2011-07-28 | Intermec Ip Corp. | Method and apparatus for registering and maintaining registration of a medium in a content applicator |
US20080259111A1 (en) * | 2007-04-20 | 2008-10-23 | Intermec Ip Corp. | Method and apparatus for registering and maintaining registration of a medium in a content applicator |
US8556370B2 (en) | 2007-04-20 | 2013-10-15 | Intermec Ip Corp. | Method and apparatus for registering and maintaining registration of a medium in a content applicator |
US20090016785A1 (en) * | 2007-06-29 | 2009-01-15 | Haan Henderikus A | Use of a sense mark to control a printing system |
US8753026B2 (en) | 2007-06-29 | 2014-06-17 | R.R. Donnelley & Sons Company | Use of a sense mark to control a printing system |
US10279605B2 (en) | 2007-06-29 | 2019-05-07 | R.R. Donnelley & Sons Company | Printing system |
US9098903B2 (en) | 2009-07-21 | 2015-08-04 | R.R. Donnelley & Sons Company | Systems and methods for detecting alignment errors |
US20110019876A1 (en) * | 2009-07-21 | 2011-01-27 | Galoppo Travis J | Systems And Methods For Detecting Alignment Errors |
US20130058686A1 (en) * | 2011-09-06 | 2013-03-07 | Canon Kabushiki Kaisha | Image forming apparatus |
US8874014B2 (en) * | 2011-09-06 | 2014-10-28 | Canon Kabushiki Kaisha | Image forming apparatus |
US9462162B2 (en) | 2012-05-29 | 2016-10-04 | Océ Printing Systems GmbH & Co. KG | Method for controlling color separations registration |
US8866861B2 (en) * | 2012-10-19 | 2014-10-21 | Zink Imaging, Inc. | Systems and methods for automatic print alignment |
US8931874B1 (en) | 2013-07-15 | 2015-01-13 | Eastman Kodak Company | Media-tracking system using marking heat source |
US8960842B2 (en) | 2013-07-15 | 2015-02-24 | Eastman Kodak Company | Media-tracking system using thermal fluoresence quenching |
US9056736B2 (en) | 2013-07-15 | 2015-06-16 | Eastman Kodak Company | Media-tracking system using thermally-formed holes |
US9211751B2 (en) | 2013-07-15 | 2015-12-15 | Eastman Kodak Company | Media-tracking system using marking laser |
US9429419B2 (en) | 2013-07-15 | 2016-08-30 | Eastman Kodak Company | Media-tracking system using deformed reference marks |
US10370214B2 (en) | 2017-05-31 | 2019-08-06 | Cryovac, Llc | Position control system and method |
US11528386B1 (en) * | 2021-08-30 | 2022-12-13 | Xerox Corporation | Printing color separation and fiducials on substrates in an inkjet printer to register and print remaning color separations |
Also Published As
Publication number | Publication date |
---|---|
JP2003025550A (en) | 2003-01-29 |
US20030002891A1 (en) | 2003-01-02 |
DE10131957A1 (en) | 2003-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6682163B2 (en) | Method and device for detecting and correcting chromatic aberrations in multicolor printing | |
JP3294671B2 (en) | Positioning system for color image output terminal | |
US6909516B1 (en) | Two dimensional surface motion sensing system using registration marks and linear array sensor | |
EP0598566A1 (en) | Method and apparatus for color registration control | |
EP0998128B1 (en) | Printer and method of correcting color registration error thereof | |
EP0943969B1 (en) | Apparatus and method for obtaining color plane alignment in a single pass color printer | |
US4731542A (en) | System and method for activating an operating element with respect to a moving substrate | |
US5339150A (en) | Mark detection circuit for an electrographic printing machine | |
JPH10198110A (en) | Color image forming method | |
US5365074A (en) | Apparatus for determining registration of imaging members | |
CN100454153C (en) | Image forming apparatus and method for adjusting image forming apparatus | |
JPH11212329A (en) | Image forming device | |
US6346958B2 (en) | Method for detecting quantity of laser scanning positional deviation on photosensitive body, correcting method thereof and laser color image forming apparatus | |
KR101639808B1 (en) | Image forming apparatus and auto color registration method thereof | |
KR20080067291A (en) | Color image sorting device and its alignment method | |
JP4730006B2 (en) | Color image forming apparatus | |
JPH0423265B2 (en) | ||
US6920292B2 (en) | Method and control device for prevention of image plane registration errors | |
JPH05181343A (en) | Color image forming device | |
US8245638B2 (en) | Method for aligning color separations of a printing image on a printing material | |
JP2003066677A (en) | Color image forming device, image correction control method and storage medium | |
US6194109B1 (en) | Methods of detecting and correcting color plane mis-registration on an intermediate transfer belt | |
JP2000075593A (en) | Multi-color image forming device | |
US20030151775A1 (en) | Method and system for tracking a photoconductor belt loop in an image forming apparatus | |
US7382385B2 (en) | Skewing compensation method and apparatus in a laser based image-forming system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEXPRESS SOLUTIONS LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:METZLER, PATRICK;PETERSEN, RALPH;REEL/FRAME:013920/0918 Effective date: 20020702 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEXPRESS SOLUTIONS, INC. (FORMERLY NEXPRESS SOLUTIONS LLC);REEL/FRAME:015928/0176 Effective date: 20040909 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: CITICORP NORTH AMERICA, INC., AS AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:028201/0420 Effective date: 20120215 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT, MINNESOTA Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:030122/0235 Effective date: 20130322 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT, Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:030122/0235 Effective date: 20130322 |
|
AS | Assignment |
Owner name: BANK OF AMERICA N.A., AS AGENT, MASSACHUSETTS Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (ABL);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031162/0117 Effective date: 20130903 Owner name: BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT, NEW YORK Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031159/0001 Effective date: 20130903 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE, DELAWARE Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031158/0001 Effective date: 20130903 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE, DELA Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031158/0001 Effective date: 20130903 Owner name: PAKON, INC., NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNORS:CITICORP NORTH AMERICA, INC., AS SENIOR DIP AGENT;WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT;REEL/FRAME:031157/0451 Effective date: 20130903 Owner name: BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT, NEW YO Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031159/0001 Effective date: 20130903 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNORS:CITICORP NORTH AMERICA, INC., AS SENIOR DIP AGENT;WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT;REEL/FRAME:031157/0451 Effective date: 20130903 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20160127 |
|
AS | Assignment |
Owner name: KODAK AVIATION LEASING LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: KODAK (NEAR EAST), INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: KODAK IMAGING NETWORK, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: CREO MANUFACTURING AMERICA LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: FPC, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: QUALEX, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: KODAK PHILIPPINES, LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: PAKON, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: LASER PACIFIC MEDIA CORPORATION, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: KODAK PORTUGUESA LIMITED, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: KODAK AMERICAS, LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: NPEC, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 Owner name: KODAK REALTY, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:050239/0001 Effective date: 20190617 |
|
AS | Assignment |
Owner name: KODAK IMAGING NETWORK, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: KODAK (NEAR EAST), INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: CREO MANUFACTURING AMERICA LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: LASER PACIFIC MEDIA CORPORATION, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: NPEC, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: PAKON, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: PFC, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: KODAK PHILIPPINES, LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: KODAK AVIATION LEASING LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: KODAK REALTY, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: KODAK AMERICAS, LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: KODAK PORTUGUESA LIMITED, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 Owner name: QUALEX, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049901/0001 Effective date: 20190617 |
|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK PHILIPPINES LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: FPC INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK REALTY INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: QUALEX INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: LASER PACIFIC MEDIA CORPORATION, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK AMERICAS LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: NPEC INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK (NEAR EAST) INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 |