US6667768B1 - Photodiode-type pixel for global electronic shutter and reduced lag - Google Patents
Photodiode-type pixel for global electronic shutter and reduced lag Download PDFInfo
- Publication number
- US6667768B1 US6667768B1 US09/025,079 US2507998A US6667768B1 US 6667768 B1 US6667768 B1 US 6667768B1 US 2507998 A US2507998 A US 2507998A US 6667768 B1 US6667768 B1 US 6667768B1
- Authority
- US
- United States
- Prior art keywords
- photodiode
- reset
- level
- photodiodes
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010354 integration Effects 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims description 14
- 238000005070 sampling Methods 0.000 claims description 12
- 238000012546 transfer Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 9
- XXEYMOUSTWPDDB-OJMIUMIFSA-N (2r)-5-[(5s,7r,8s,9r)-8,9-dihydroxy-2,4-dioxo-7-(phosphonooxymethyl)-6-oxa-1,3-diazaspiro[4.4]nonan-3-yl]-2-[formyl(hydroxy)amino]pentanoic acid Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@]11C(=O)N(CCC[C@@H](N(O)C=O)C(O)=O)C(=O)N1 XXEYMOUSTWPDDB-OJMIUMIFSA-N 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000005574 cross-species transmission Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000006424 Flood reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/62—Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/62—Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
- H04N25/626—Reduction of noise due to residual charges remaining after image readout, e.g. to remove ghost images or afterimages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/67—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
- H04N25/671—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
- H04N25/672—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction between adjacent sensors or output registers for reading a single image
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/803—Pixels having integrated switching, control, storage or amplification elements
Definitions
- This disclosure relates to active image capturing using photodiodes. More particularly, the present disclosure describes to active pixel devices using photodiodes as their active elements.
- Active pixel devices include a light sensing element, and internal image processing structure.
- Many active pixel sensors such as that described in U.S. Pat. No. 5,471,515, the disclosure of which is incorporated by reference herein, have a buffer structure, e.g., a source follower, as part of each pixel.
- Active pixel sensors can use photodiodes or photogates, or other light sensitive elements.
- the light sensitive element is directly connected to the active pixel amplifier and/or buffer.
- a global shutter effect commands all the pixels to integrate for the same short absolute period of time. This effectively freezes the motion of objects.
- an external light blocking shutter has typically been used to stop the photodiode from accumulating photosignal.
- FIG. 1 shows one approach.
- a sampling switch 102 and capacitor 104 are used. Sampling switch 102 is placed between the photodiode 100 and the capacitor 104 .
- the capacitor charge node 106 is connected to the active pixel amplifier 110 .
- the photodiode voltage is sampled by a closing switch 102 and allowing the charge from the photodiode to charge sampling capacitor 104 .
- Switch 102 and capacitor 104 are covered by a metallic light shield to avoid pickup of undesirable light signal. This allows freezing the charge output at any given time.
- the charge from the photodiode 100 is shared onto the capacitor 104 in the voltage domain.
- the switch 102 When the switch 102 is closed, the charge flows from the photodiode 102 in order to equalize the voltage between photodiode output and capacitor 106 node.
- the maximum signal-induced voltage swing of the capacitor 104 may be limited by the voltage of the photodiode. Since charge is shared, the voltage swing is in fact, always lower.
- turning off the sampling switch may itself inject charge to the sampling capacitor. This, in turn, adds offset and noise.
- the present disclosure describes an approach to this drawback described above. This is done by enabling voltage gain between the photodiode 100 and its sensing node.
- the embodiment reduces lag in a photodiode-type active pixel for a global electronic shutter. More particularly, the invention operates in three modes to achieve improved image quality and photodiode performance.
- an image is captured by a photodiode array.
- Lag is reduced when the photodiodes are globally reset by a flood and spill of charge cycle.
- a readout phase follows the reset phase.
- image quality is improved by the elimination of fixed pattern noise through the comparison of the photosignal level and the reset level of the floating drain.
- lower conversion gain of a combined photodiode is achieved by restoring the sensor to normal operation through regulation of the reset photodiode and the transfer gate.
- FIG. 1 is a diagram of an embodiment of a photodiode type active pixel.
- FIG. 2A is a diagram of a photodiode-type active pixel in accordance with the invention.
- FIG. 2B is a detailed diagram of the photodiode-type active pixel in accordance with the invention.
- FIGS. 3A-3H are diagrams of a photosignal integration and readout phase operation in accordance with the invention.
- FIG. 3I is a diagram in flow chart form showing operation of a photodiode type active pixel according to one aspect of the invention.
- FIGS. 4A-4G are diagrams of a photosignal integration and readout phase operation for simultaneous integration and readout processes in accordance with the invention.
- FIG. 5 is a diagram of a photosignal integration and readout phase operation for a combined photodiode with lower conversion gain in accordance with the invention.
- FIGS. 2A and 2B An embodiment is shown in FIGS. 2A and 2B. This embodiment minimizes the problem of charge injection, and also reduces lag.
- FIG. 2A shows a schematic view of the preferred circuit.
- Photodiode 200 is connected to the source of FET 204 whose drain is connected to a bias voltage level VDR 206 .
- FET 204 is used to reset the photodiode.
- Signal RPD 214 controls reset of the photodiode.
- FET 210 also connects the photodiode output node 208 to a floating diffusion (“FD”) node 202 .
- FD has a capacitance of approximately 0.016 pf (or 10 ⁇ V/e ⁇ ).
- FET 210 is driven by a signal applied to transfer gate TX 212 .
- the FET is dc-biased in a 5 volt n-well implementation at about 1 volt.
- FD 202 is connected to the gate of source-follower FET 216 which acts as a buffer and amplifier.
- the output is gated by selector transistor 224 , and selectively driven to column bus 226 .
- the voltage on FD 202 is also reset under control of FET 218 .
- FET 218 is driven by reset floating diffusion control voltage RFD 220 .
- the reset transistor 218 resets the node to the level of voltage VDR 222 .
- FIG. 2B shows the same circuit in transistor well form. While FIG. 2A shows these devices as transistors, FIG. 2B shows them more accurately as gates and wells.
- This sensor operates in two phases—an image acquisition phase, and an image readout phase.
- This preferred mode of the sensor separates read out from integration in order to allow a simultaneously integrating electronic shutter and the dual sampling for fixed pattern noise reduction.
- This embodiment starts with a global reset of the photodiodes at 300 and in the state shown in FIG. 3 A. All photodiodes in the entire array are operated simultaneously. Voltage drain VDR 222 is initially set to 5 volts and RPD 214 is off. RFD 220 is turned on and VDR 206 is set to ground. This floods photodiode 200 and FD 202 with charge, as shown in FIG. 3 A.
- VDR 222 is returned to 5 volts as shown in FIG. 3 B. This causes the flooded PD 200 to spill out over transfer gate TX 212 to the level set by the bias on 212 . It also causes the charge on FD to spill over transistor 218 's RFD barrier to VDR 222 . This spill cycle also lasts approximately 1 ⁇ s.
- the flood and spill ensures that the initial conditions on PD 200 will be the same for all frames and that its initial state is erased. Since all initial conditions are the same, artifacts, and hence lag, is eliminated or reduced.
- PD 200 integrate the photosignal for the desired integration period, as step 302 in FIG. 3I, and as shown in FIG. 3 C.
- the initial flood and spill has left the PD charged to the level of the TX barrier.
- the photosignal trickles over TX 212 barrier and is collected by FD 202 as collected charge 350 .
- the change in voltage on node FD 202 is determined by its capacitance and is estimated above to be 10 ⁇ V/e ⁇ .
- the integration period is ended by setting RPD 214 to 5 volts, as shown in FIG. 3 E. This effectively closes the shutter by draining all additional photoelectrons from PD down to the level of the RPD, over the transistor 210 barrier to the drain level VDR 206 .
- the barrier RPD is kept lower than TX 212 to ensure that the photoelectrons are drained way and not into the FD, as shown in step 304 .
- the photosignal is held on FD 202 .
- FD 202 is covered by a light shield 250 and protected from unwanted light signal.
- the output of the floating diffusion drives the high impedance input of a source follower transistor 216 .
- the signal is hence stored as long as RPD 214 remains on. This continues until after the pixel is selected for readout.
- pixels are selected a row at a time by the select transistor 224 .
- the voltage on the output of the source follower transistor 216 is driven onto the column output bus CB 226 .
- the voltage is sampled onto capacitor 230 at 306 . This represents the photosignal level (VS).
- Photodiode 200 and output node FD 202 is then reset by another flood and spill sequence as above, and shown in 3 F and 3 G.
- the cycle is timed identically to the global reset described above.
- RFD 220 is set low and FD 202 is sampled. This represents the reset level (VR) of the floating drain FDR.
- That voltage is sampled on to capacitor 230 to form a difference between VS and VR which is proportional to the integrated light signal during the integration period.
- VS and VR which is proportional to the integrated light signal during the integration period.
- FIG. 3I is a flow diagram showing operation of an embodiment of the invention according to the above-described process.
- the illustrated process steps include “Flood and spill all photodiodes to set to a common initial value” 300 , “Integrate, TX and collect in FD” 302 , Lower RPD to lower than TX drain PD” 304 , “Sample level on capacitor” 306 and “Flood and spill — sample as reset level on to capacitor” 308 .
- FIGS. 4A-4E An alternative mode 2 is illustrated in FIGS. 4A-4E.
- charge is not continuously trickled over the TX 212 barrier.
- TX 212 is set low (to ground)as shown in FIG. 4 A. This causes the photodiode to integrate the incoming charge. Charge can then be transferred to FD 202 all at once, at a desired time. TX 212 is returned to its initial spill value. This transfers the excess charge obtained since the spill of FIG. 3 b from PD 200 is to FD 202 . FD 202 can then be read out as shown in FIG. 4 C.
- the reset level of FD is estimated by performing the flood and spill operation with TX 212 set low, as shown, respectively, in FIGS. 4D and 4E. This allows simultaneous integration and readout processes.
- FIGS. 4F and 4G show how the shutter can be closed by enabling RPD to allow incoming charge to spill over the barrier.
- RPD 214 can still be used to control the integration duty cycle, with transfer to FR 202 only during the inter-frame planking interval. However, since the threshold voltages of RPD 214 and RFD 220 may not be equal, some offset nonuniformity can be expected.
- RPD 214 is a little deeper than RFD 220 for the same applied gate voltage, PD 200 will have a “pocket” that will result in reduced signal for low light levels.
- FIG. 5 This is a diagram of a photosignal integration and readout phase for a combined photodiode with lower conversion gain in accordance with the invention.
- FIG. 5A shows integrating the incoming signal on the combined PD/FD.
- the signal is read by sampling the source follower 216 in FIG. 5 B.
- the PD/FD combination is then reset in FIG. 5C by turning on RFD and hence draining the PD/FD combination.
- that reset level is read for correction of the reset level.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
Claims (2)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/025,079 US6667768B1 (en) | 1998-02-17 | 1998-02-17 | Photodiode-type pixel for global electronic shutter and reduced lag |
US10/273,085 US7095440B2 (en) | 1998-02-17 | 2002-10-16 | Photodiode-type pixel for global electronic shutter and reduced lag |
US11/450,362 US7209173B2 (en) | 1998-02-17 | 2006-06-12 | Methods of operating photodiode-type pixel and imager device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/025,079 US6667768B1 (en) | 1998-02-17 | 1998-02-17 | Photodiode-type pixel for global electronic shutter and reduced lag |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/273,085 Continuation US7095440B2 (en) | 1998-02-17 | 2002-10-16 | Photodiode-type pixel for global electronic shutter and reduced lag |
Publications (1)
Publication Number | Publication Date |
---|---|
US6667768B1 true US6667768B1 (en) | 2003-12-23 |
Family
ID=21823936
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/025,079 Expired - Lifetime US6667768B1 (en) | 1998-02-17 | 1998-02-17 | Photodiode-type pixel for global electronic shutter and reduced lag |
US10/273,085 Expired - Lifetime US7095440B2 (en) | 1998-02-17 | 2002-10-16 | Photodiode-type pixel for global electronic shutter and reduced lag |
US11/450,362 Expired - Fee Related US7209173B2 (en) | 1998-02-17 | 2006-06-12 | Methods of operating photodiode-type pixel and imager device |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/273,085 Expired - Lifetime US7095440B2 (en) | 1998-02-17 | 2002-10-16 | Photodiode-type pixel for global electronic shutter and reduced lag |
US11/450,362 Expired - Fee Related US7209173B2 (en) | 1998-02-17 | 2006-06-12 | Methods of operating photodiode-type pixel and imager device |
Country Status (1)
Country | Link |
---|---|
US (3) | US6667768B1 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010013899A1 (en) * | 2000-02-14 | 2001-08-16 | Takashi Watanabe | Solid imaging device and method for driving the same |
US20010015831A1 (en) * | 2000-02-22 | 2001-08-23 | Stefan Lauxtermann | Method for operating a CMOS image sensor |
US20020018133A1 (en) * | 2000-07-12 | 2002-02-14 | Mendis Sunetra K. | Method and apparatus of controlling a pixel reset level for reducing an image lag in a CMOS sensor |
US20020036300A1 (en) * | 1999-01-06 | 2002-03-28 | California Institute Of Technology, A California Corporation | Image sensor with motion artifact supression and anti-blooming |
US20020054390A1 (en) * | 2000-08-25 | 2002-05-09 | Toru Koizumi | Image pickup apparatus |
US20020114025A1 (en) * | 2000-11-16 | 2002-08-22 | Stmicroelectronics Ltd | Solid state imaging device |
US20030103153A1 (en) * | 1998-02-17 | 2003-06-05 | Micron Technology, Inc., A Delaware Corporation | Photodiode-type pixel for global electronic shutter and reduced lag |
US20030151050A1 (en) * | 2000-11-28 | 2003-08-14 | Fox Eric C. | Method of using a pinned photodiode five transistor pixel |
US20040051801A1 (en) * | 2002-09-18 | 2004-03-18 | Tetsuya Iizuka | Solid-state image pickup device and device driving control method for solid-state image pickup |
US20040119853A1 (en) * | 2002-07-25 | 2004-06-24 | Masatoshi Kokubun | Image sensor providing improved image quality |
US20050057680A1 (en) * | 2003-09-16 | 2005-03-17 | Agan Martin J. | Method and apparatus for controlling integration time in imagers |
US20050269607A1 (en) * | 2004-06-05 | 2005-12-08 | Stmicroelectronics Limited | Image sensor for mobile use and associated methods |
US20050269488A1 (en) * | 2004-06-04 | 2005-12-08 | Via Technologies Inc. | Image sensor and operating method thereof |
US20060001061A1 (en) * | 2004-07-05 | 2006-01-05 | Konica Minolta Holdings, Inc. | Solid-state image-sensing device and camera provided therewith |
US20060044437A1 (en) * | 2004-08-25 | 2006-03-02 | Joey Shah | Method of operating a storage gate pixel |
US7129979B1 (en) * | 2000-04-28 | 2006-10-31 | Eastman Kodak Company | Image sensor pixel for global electronic shuttering |
US20060261246A1 (en) * | 2005-05-18 | 2006-11-23 | Alexander Krymski | Pixel circuit for image sensor |
US20070188640A1 (en) * | 2006-02-15 | 2007-08-16 | Eastman Kodak Company | Pixel analog-to-digital converter using a ramped transfer gate clock |
US20080129834A1 (en) * | 2006-11-28 | 2008-06-05 | Taner Dosluoglu | Simultaneous global shutter and correlated double sampling read out in multiple photosensor pixels |
US20090153716A1 (en) * | 2007-12-13 | 2009-06-18 | Motoari Ota | Solid state imaging device and imaging apparatus |
US20100079643A1 (en) * | 1999-04-23 | 2010-04-01 | Anders Andersson | Active Pixel Sensor With Reduced Fixed Pattern Noise |
US20110149104A1 (en) * | 2009-12-21 | 2011-06-23 | Sony Corporation | Solid-state imaging apparatus, driving method, and camera |
US8436401B2 (en) | 2004-08-04 | 2013-05-07 | Csem Centre Suisse D'electronique Et De Microtechnique Sa | Solid-state photosensor with electronic aperture control |
DE102014013099A1 (en) | 2014-09-03 | 2016-03-03 | Basler Aktiengesellschaft | Method and device for simplified acquisition of a depth image |
US10097776B2 (en) * | 2016-08-24 | 2018-10-09 | Boe Technology Group Co., Ltd. | Reading circuit and driving method thereof, and photoelectric detector |
US10560646B2 (en) | 2018-04-19 | 2020-02-11 | Teledyne Scientific & Imaging, Llc | Global-shutter vertically integrated pixel with high dynamic range |
US11496703B2 (en) | 2019-07-25 | 2022-11-08 | Trustees Of Dartmouth College | High conversion gain and high fill-factor image sensors with pump-gate and vertical charge storage well for global-shutter and high-speed applications |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW425563B (en) * | 1998-06-03 | 2001-03-11 | Nippon Electric Co | Solid state image pickup device and driving method therefore |
JP4200545B2 (en) * | 1998-06-08 | 2008-12-24 | ソニー株式会社 | Solid-state imaging device, driving method thereof, and camera system |
US6239456B1 (en) | 1998-08-19 | 2001-05-29 | Photobit Corporation | Lock in pinned photodiode photodetector |
US6965707B1 (en) * | 2000-09-29 | 2005-11-15 | Rockwell Science Center, Llc | Compact active pixel with low-noise snapshot image formation |
JP4022862B2 (en) | 2002-06-11 | 2007-12-19 | ソニー株式会社 | Solid-state imaging device and control method thereof |
JP2005260407A (en) * | 2004-03-10 | 2005-09-22 | Fuji Photo Film Co Ltd | Reading control device of image pickup element and photographing device |
US8072520B2 (en) * | 2004-08-30 | 2011-12-06 | Micron Technology, Inc. | Dual pinned diode pixel with shutter |
US7791663B2 (en) * | 2004-10-15 | 2010-09-07 | Omnivision Technologies, Inc. | Image sensor and pixel that has positive transfer gate voltage during integration period |
US20070035649A1 (en) * | 2005-08-10 | 2007-02-15 | Micron Technology, Inc. | Image pixel reset through dual conversion gain gate |
US20080079840A1 (en) * | 2006-10-03 | 2008-04-03 | Olympus Imaging Corp. | Focus detection device |
WO2008131313A2 (en) | 2007-04-18 | 2008-10-30 | Invisage Technologies, Inc. | Materials systems and methods for optoelectronic devices |
US20100044676A1 (en) | 2008-04-18 | 2010-02-25 | Invisage Technologies, Inc. | Photodetectors and Photovoltaics Based on Semiconductor Nanocrystals |
US8525287B2 (en) * | 2007-04-18 | 2013-09-03 | Invisage Technologies, Inc. | Materials, systems and methods for optoelectronic devices |
US8063350B2 (en) * | 2007-08-03 | 2011-11-22 | Cognex Corporation | Circuits and methods allowing for pixel array exposure pattern control |
US8570393B2 (en) * | 2007-11-30 | 2013-10-29 | Cognex Corporation | System and method for processing image data relative to a focus of attention within the overall image |
US9451142B2 (en) * | 2007-11-30 | 2016-09-20 | Cognex Corporation | Vision sensors, systems, and methods |
US8203195B2 (en) | 2008-04-18 | 2012-06-19 | Invisage Technologies, Inc. | Materials, fabrication equipment, and methods for stable, sensitive photodetectors and image sensors made therefrom |
US20090321799A1 (en) * | 2008-06-25 | 2009-12-31 | Velichko Sergey A | Method and apparatus for increasing conversion gain in imagers |
US20100252717A1 (en) * | 2008-09-29 | 2010-10-07 | Benoit Dupont | Active-pixel sensor |
US9189670B2 (en) * | 2009-02-11 | 2015-11-17 | Cognex Corporation | System and method for capturing and detecting symbology features and parameters |
FR2950503B1 (en) * | 2009-09-22 | 2011-11-25 | Soc Fr Detecteurs Infrarouges Sofradir | DETECTION CIRCUIT WITH DERIVATION OF A CURRENT PART OF A PHOTODETECTOR AND METHOD OF OPERATING |
WO2011156507A1 (en) | 2010-06-08 | 2011-12-15 | Edward Hartley Sargent | Stable, sensitive photodetectors and image sensors including circuits, processes, and materials for enhanced imaging performance |
US9160958B2 (en) * | 2013-12-18 | 2015-10-13 | Omnivision Technologies, Inc. | Method of reading out an image sensor with transfer gate boost |
KR102252647B1 (en) | 2014-07-11 | 2021-05-17 | 삼성전자주식회사 | Pixel of an image sensor and image sensor |
US9729806B2 (en) * | 2015-01-06 | 2017-08-08 | Semiconductor Components Industries, Llc | Imaging systems with phase detection pixels |
KR102410019B1 (en) | 2015-01-08 | 2022-06-16 | 삼성전자주식회사 | Image sensor |
CN109309799B (en) * | 2018-11-20 | 2020-11-03 | 京东方科技集团股份有限公司 | Pixel sensing circuit, driving method thereof, image sensor and electronic equipment |
CN110099231B (en) * | 2019-05-17 | 2021-12-28 | Oppo广东移动通信有限公司 | Active pixel image sensor, image processing method and storage medium |
Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4369378A (en) * | 1979-04-16 | 1983-01-18 | Rca Corporation | Quantizing circuits using a charge coupled device with a feedback channel |
US4644572A (en) * | 1985-11-12 | 1987-02-17 | Eastman Kodak Company | Fill and spill for charge input to a CCD |
US4684800A (en) * | 1986-03-14 | 1987-08-04 | Hughes Aircraft Company | Low-noise charge-injection method and apparatus for IR CCD scanning |
US4686648A (en) | 1985-12-03 | 1987-08-11 | Hughes Aircraft Company | Charge coupled device differencer |
US4744623A (en) | 1985-10-16 | 1988-05-17 | The Trustees Of Columbia University In The City Of New York | Integrated fiber optic coupler for VHSIC/VLSI interconnects |
US4776925A (en) | 1987-04-30 | 1988-10-11 | The Trustees Of Columbia University In The City Of New York | Method of forming dielectric thin films on silicon by low energy ion beam bombardment |
US4839735A (en) * | 1986-12-22 | 1989-06-13 | Hamamatsu Photonics K.K. | Solid state image sensor having variable charge accumulation time period |
US4920069A (en) | 1987-02-09 | 1990-04-24 | International Business Machines Corporation | Submicron dimension compound semiconductor fabrication using thermal etching |
US5054040A (en) * | 1990-06-07 | 1991-10-01 | California Institute Of Technology | Non-destructive charge domain multiplier and process thereof |
US5055900A (en) | 1989-10-11 | 1991-10-08 | The Trustees Of Columbia University In The City Of New York | Trench-defined charge-coupled device |
US5080214A (en) | 1990-06-29 | 1992-01-14 | Inertia Dynamics, Inc. | Electromagnetic clutch |
US5105277A (en) * | 1990-12-24 | 1992-04-14 | Xerox Corporation | Process for canceling cell-to-cell performance variations in a sensor array |
US5236871A (en) | 1992-04-29 | 1993-08-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for producing a hybridization of detector array and integrated circuit for readout |
US5343297A (en) * | 1992-09-17 | 1994-08-30 | General Electric Company | Charge amplifier with precise, integer gain |
US5386128A (en) | 1994-01-21 | 1995-01-31 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output |
US5471515A (en) | 1994-01-28 | 1995-11-28 | California Institute Of Technology | Active pixel sensor with intra-pixel charge transfer |
US5548773A (en) | 1993-03-30 | 1996-08-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Digital parallel processor array for optimum path planning |
US5665959A (en) | 1995-01-13 | 1997-09-09 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration | Solid-state image sensor with focal-plane digital photon-counting pixel array |
US5793322A (en) | 1995-11-07 | 1998-08-11 | California Institute Of Technology | Successive approximation analog-to-digital converter using balanced charge integrating amplifiers |
US5841126A (en) | 1994-01-28 | 1998-11-24 | California Institute Of Technology | CMOS active pixel sensor type imaging system on a chip |
US5872371A (en) * | 1997-02-27 | 1999-02-16 | Eastman Kodak Company | Active pixel sensor with punch-through reset and cross-talk suppression |
US5880691A (en) | 1995-11-07 | 1999-03-09 | California Institute Of Technology | Capacitively coupled successive approximation ultra low power analog-to-digital converter |
US5886659A (en) | 1996-08-21 | 1999-03-23 | California Institute Of Technology | On-focal-plane analog-to-digital conversion for current-mode imaging devices |
US5887049A (en) | 1996-11-12 | 1999-03-23 | California Institute Of Technology | Self-triggered X-ray sensor |
US5909026A (en) | 1996-11-12 | 1999-06-01 | California Institute Of Technology | Integrated sensor with frame memory and programmable resolution for light adaptive imaging |
US5920345A (en) * | 1997-06-02 | 1999-07-06 | Sarnoff Corporation | CMOS image sensor with improved fill factor |
US5949483A (en) | 1994-01-28 | 1999-09-07 | California Institute Of Technology | Active pixel sensor array with multiresolution readout |
US5952645A (en) | 1996-08-27 | 1999-09-14 | California Institute Of Technology | Light-sensing array with wedge-like reflective optical concentrators |
US5990506A (en) | 1996-03-20 | 1999-11-23 | California Institute Of Technology | Active pixel sensors with substantially planarized color filtering elements |
US5995163A (en) | 1996-09-30 | 1999-11-30 | Photobit Corporation | Median filter with embedded analog to digital converter |
US6005619A (en) | 1997-10-06 | 1999-12-21 | Photobit Corporation | Quantum efficiency improvements in active pixel sensors |
US6008486A (en) | 1997-12-31 | 1999-12-28 | Gentex Corporation | Wide dynamic range optical sensor |
US6021172A (en) | 1994-01-28 | 2000-02-01 | California Institute Of Technology | Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter |
US6137100A (en) * | 1998-06-08 | 2000-10-24 | Photobit Corporation | CMOS image sensor with different pixel sizes for different colors |
US6166768A (en) * | 1994-01-28 | 2000-12-26 | California Institute Of Technology | Active pixel sensor array with simple floating gate pixels |
US6201270B1 (en) * | 1997-04-07 | 2001-03-13 | Pao-Jung Chen | High speed CMOS photodetectors with wide range operating region and fixed pattern noise reduction |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5015277A (en) * | 1989-12-05 | 1991-05-14 | The Mead Corporation | Integrated media cartridge and filter |
US5493423A (en) * | 1994-10-28 | 1996-02-20 | Xerox Corporation | Resettable pixel amplifier for an image sensor array |
US5962844A (en) * | 1997-09-03 | 1999-10-05 | Foveon, Inc. | Active pixel image cell with embedded memory and pixel level signal processing capability |
US6667768B1 (en) * | 1998-02-17 | 2003-12-23 | Micron Technology, Inc. | Photodiode-type pixel for global electronic shutter and reduced lag |
US6307195B1 (en) * | 1999-10-26 | 2001-10-23 | Eastman Kodak Company | Variable collection of blooming charge to extend dynamic range |
US6847070B2 (en) * | 2000-08-09 | 2005-01-25 | Dalsa, Inc. | Five transistor CMOS pixel |
US6888122B2 (en) * | 2002-08-29 | 2005-05-03 | Micron Technology, Inc. | High dynamic range cascaded integration pixel cell and method of operation |
-
1998
- 1998-02-17 US US09/025,079 patent/US6667768B1/en not_active Expired - Lifetime
-
2002
- 2002-10-16 US US10/273,085 patent/US7095440B2/en not_active Expired - Lifetime
-
2006
- 2006-06-12 US US11/450,362 patent/US7209173B2/en not_active Expired - Fee Related
Patent Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4369378A (en) * | 1979-04-16 | 1983-01-18 | Rca Corporation | Quantizing circuits using a charge coupled device with a feedback channel |
US4744623A (en) | 1985-10-16 | 1988-05-17 | The Trustees Of Columbia University In The City Of New York | Integrated fiber optic coupler for VHSIC/VLSI interconnects |
US4644572A (en) * | 1985-11-12 | 1987-02-17 | Eastman Kodak Company | Fill and spill for charge input to a CCD |
US4686648A (en) | 1985-12-03 | 1987-08-11 | Hughes Aircraft Company | Charge coupled device differencer |
US4684800A (en) * | 1986-03-14 | 1987-08-04 | Hughes Aircraft Company | Low-noise charge-injection method and apparatus for IR CCD scanning |
US4839735A (en) * | 1986-12-22 | 1989-06-13 | Hamamatsu Photonics K.K. | Solid state image sensor having variable charge accumulation time period |
US4920069A (en) | 1987-02-09 | 1990-04-24 | International Business Machines Corporation | Submicron dimension compound semiconductor fabrication using thermal etching |
US4776925A (en) | 1987-04-30 | 1988-10-11 | The Trustees Of Columbia University In The City Of New York | Method of forming dielectric thin films on silicon by low energy ion beam bombardment |
US5055900A (en) | 1989-10-11 | 1991-10-08 | The Trustees Of Columbia University In The City Of New York | Trench-defined charge-coupled device |
US5054040A (en) * | 1990-06-07 | 1991-10-01 | California Institute Of Technology | Non-destructive charge domain multiplier and process thereof |
US5080214A (en) | 1990-06-29 | 1992-01-14 | Inertia Dynamics, Inc. | Electromagnetic clutch |
US5105277A (en) * | 1990-12-24 | 1992-04-14 | Xerox Corporation | Process for canceling cell-to-cell performance variations in a sensor array |
US5236871A (en) | 1992-04-29 | 1993-08-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for producing a hybridization of detector array and integrated circuit for readout |
US5343297A (en) * | 1992-09-17 | 1994-08-30 | General Electric Company | Charge amplifier with precise, integer gain |
US5548773A (en) | 1993-03-30 | 1996-08-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Digital parallel processor array for optimum path planning |
US5386128A (en) | 1994-01-21 | 1995-01-31 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output |
US5471515A (en) | 1994-01-28 | 1995-11-28 | California Institute Of Technology | Active pixel sensor with intra-pixel charge transfer |
US5949483A (en) | 1994-01-28 | 1999-09-07 | California Institute Of Technology | Active pixel sensor array with multiresolution readout |
US5841126A (en) | 1994-01-28 | 1998-11-24 | California Institute Of Technology | CMOS active pixel sensor type imaging system on a chip |
US6166768A (en) * | 1994-01-28 | 2000-12-26 | California Institute Of Technology | Active pixel sensor array with simple floating gate pixels |
US6021172A (en) | 1994-01-28 | 2000-02-01 | California Institute Of Technology | Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter |
US5665959A (en) | 1995-01-13 | 1997-09-09 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration | Solid-state image sensor with focal-plane digital photon-counting pixel array |
US5793322A (en) | 1995-11-07 | 1998-08-11 | California Institute Of Technology | Successive approximation analog-to-digital converter using balanced charge integrating amplifiers |
US5880691A (en) | 1995-11-07 | 1999-03-09 | California Institute Of Technology | Capacitively coupled successive approximation ultra low power analog-to-digital converter |
US5990506A (en) | 1996-03-20 | 1999-11-23 | California Institute Of Technology | Active pixel sensors with substantially planarized color filtering elements |
US5886659A (en) | 1996-08-21 | 1999-03-23 | California Institute Of Technology | On-focal-plane analog-to-digital conversion for current-mode imaging devices |
US5952645A (en) | 1996-08-27 | 1999-09-14 | California Institute Of Technology | Light-sensing array with wedge-like reflective optical concentrators |
US5995163A (en) | 1996-09-30 | 1999-11-30 | Photobit Corporation | Median filter with embedded analog to digital converter |
US5887049A (en) | 1996-11-12 | 1999-03-23 | California Institute Of Technology | Self-triggered X-ray sensor |
US5909026A (en) | 1996-11-12 | 1999-06-01 | California Institute Of Technology | Integrated sensor with frame memory and programmable resolution for light adaptive imaging |
US6057539A (en) | 1996-11-12 | 2000-05-02 | California Institute Of Technology | Integrated sensor with frame memory and programmable resolution for light adaptive imaging |
US5872371A (en) * | 1997-02-27 | 1999-02-16 | Eastman Kodak Company | Active pixel sensor with punch-through reset and cross-talk suppression |
US6201270B1 (en) * | 1997-04-07 | 2001-03-13 | Pao-Jung Chen | High speed CMOS photodetectors with wide range operating region and fixed pattern noise reduction |
US5920345A (en) * | 1997-06-02 | 1999-07-06 | Sarnoff Corporation | CMOS image sensor with improved fill factor |
US6005619A (en) | 1997-10-06 | 1999-12-21 | Photobit Corporation | Quantum efficiency improvements in active pixel sensors |
US6008486A (en) | 1997-12-31 | 1999-12-28 | Gentex Corporation | Wide dynamic range optical sensor |
US6137100A (en) * | 1998-06-08 | 2000-10-24 | Photobit Corporation | CMOS image sensor with different pixel sizes for different colors |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7095440B2 (en) * | 1998-02-17 | 2006-08-22 | Micron Technology, Inc. | Photodiode-type pixel for global electronic shutter and reduced lag |
US20060227233A1 (en) * | 1998-02-17 | 2006-10-12 | Fossum Eric R | Methods of operating photodiode-type pixel and imager device |
US20030103153A1 (en) * | 1998-02-17 | 2003-06-05 | Micron Technology, Inc., A Delaware Corporation | Photodiode-type pixel for global electronic shutter and reduced lag |
US7209173B2 (en) * | 1998-02-17 | 2007-04-24 | Micron Technology, Inc. | Methods of operating photodiode-type pixel and imager device |
US20020036300A1 (en) * | 1999-01-06 | 2002-03-28 | California Institute Of Technology, A California Corporation | Image sensor with motion artifact supression and anti-blooming |
US7002626B2 (en) * | 1999-01-06 | 2006-02-21 | California Institute Of Technology | Image sensor with motion artifact supression and anti-blooming |
US20100079643A1 (en) * | 1999-04-23 | 2010-04-01 | Anders Andersson | Active Pixel Sensor With Reduced Fixed Pattern Noise |
US7973843B2 (en) * | 1999-04-23 | 2011-07-05 | Aptina Imaging Corporation | Active pixel sensor with reduced fixed pattern noise |
US20010013899A1 (en) * | 2000-02-14 | 2001-08-16 | Takashi Watanabe | Solid imaging device and method for driving the same |
US7102677B2 (en) * | 2000-02-14 | 2006-09-05 | Sharp Kabushiki Kaisha | Reduced thermal release effect amplification-type solid imaging device and method of driving the same |
US20010015831A1 (en) * | 2000-02-22 | 2001-08-23 | Stefan Lauxtermann | Method for operating a CMOS image sensor |
US7009648B2 (en) * | 2000-02-22 | 2006-03-07 | Asulab S.A. | Method for operating a CMOS image sensor |
US7129979B1 (en) * | 2000-04-28 | 2006-10-31 | Eastman Kodak Company | Image sensor pixel for global electronic shuttering |
US6958776B2 (en) * | 2000-07-12 | 2005-10-25 | Vanguard International Semiconductor Corp. | Method and apparatus of controlling a pixel reset level for reducing an image lag in a CMOS sensor |
US20020018133A1 (en) * | 2000-07-12 | 2002-02-14 | Mendis Sunetra K. | Method and apparatus of controlling a pixel reset level for reducing an image lag in a CMOS sensor |
US7688371B2 (en) * | 2000-08-25 | 2010-03-30 | Canon Kabushiki Kaisha | Pixel drive circuit for an image pickup apparatus |
US20020054390A1 (en) * | 2000-08-25 | 2002-05-09 | Toru Koizumi | Image pickup apparatus |
US7375752B2 (en) * | 2000-11-16 | 2008-05-20 | Stmicroelectronics, Ltd. | Solid state imaging device with dedicated single pixel readout channels and associated methods |
US20020114025A1 (en) * | 2000-11-16 | 2002-08-22 | Stmicroelectronics Ltd | Solid state imaging device |
US20030151050A1 (en) * | 2000-11-28 | 2003-08-14 | Fox Eric C. | Method of using a pinned photodiode five transistor pixel |
US20040119853A1 (en) * | 2002-07-25 | 2004-06-24 | Masatoshi Kokubun | Image sensor providing improved image quality |
US7170556B2 (en) * | 2002-07-25 | 2007-01-30 | Fujitsu Limited | Image sensor providing improved image quality |
US20040051801A1 (en) * | 2002-09-18 | 2004-03-18 | Tetsuya Iizuka | Solid-state image pickup device and device driving control method for solid-state image pickup |
US7271835B2 (en) * | 2002-09-18 | 2007-09-18 | Sony Corporation | Solid-state image pickup device and device driving control method for solid-state image pickup |
US20050057680A1 (en) * | 2003-09-16 | 2005-03-17 | Agan Martin J. | Method and apparatus for controlling integration time in imagers |
US7196306B2 (en) * | 2004-06-04 | 2007-03-27 | Via Technologies Inc. | Image sensor pixel circuitry with transistors to improve dynamic range |
US20050269488A1 (en) * | 2004-06-04 | 2005-12-08 | Via Technologies Inc. | Image sensor and operating method thereof |
US20050269607A1 (en) * | 2004-06-05 | 2005-12-08 | Stmicroelectronics Limited | Image sensor for mobile use and associated methods |
US7830432B2 (en) * | 2004-06-05 | 2010-11-09 | Stmicroelectronics Limited | Image sensor for mobile use and associated methods |
US8643756B2 (en) | 2004-07-05 | 2014-02-04 | Knoica Minolta Holdings, Inc. | Solid-state image-sensing device having a plurality of controlled pixels, with each pixel having a transfer gate signal that is ternary-voltage signal switched among three levels, and method of operating same |
US8218042B2 (en) * | 2004-07-05 | 2012-07-10 | Konica Minolta Holdings, Inc. | Solid-state image-sensing device and camera provided therewith |
US20060001061A1 (en) * | 2004-07-05 | 2006-01-05 | Konica Minolta Holdings, Inc. | Solid-state image-sensing device and camera provided therewith |
US8436401B2 (en) | 2004-08-04 | 2013-05-07 | Csem Centre Suisse D'electronique Et De Microtechnique Sa | Solid-state photosensor with electronic aperture control |
US20060044437A1 (en) * | 2004-08-25 | 2006-03-02 | Joey Shah | Method of operating a storage gate pixel |
US7800675B2 (en) * | 2004-08-25 | 2010-09-21 | Aptina Imaging Corporation | Method of operating a storage gate pixel |
US20060261246A1 (en) * | 2005-05-18 | 2006-11-23 | Alexander Krymski | Pixel circuit for image sensor |
US7205522B2 (en) | 2005-05-18 | 2007-04-17 | Alexander Krymski D. B. A Alexima | Pixel circuit for image sensor |
US7652706B2 (en) * | 2006-02-15 | 2010-01-26 | Eastman Kodak Company | Pixel analog-to-digital converter using a ramped transfer gate clock |
CN101385329B (en) * | 2006-02-15 | 2011-11-30 | 全视技术有限公司 | Analog-to-digital converter using a ramped transfer gate clock |
US20070188640A1 (en) * | 2006-02-15 | 2007-08-16 | Eastman Kodak Company | Pixel analog-to-digital converter using a ramped transfer gate clock |
US20080129834A1 (en) * | 2006-11-28 | 2008-06-05 | Taner Dosluoglu | Simultaneous global shutter and correlated double sampling read out in multiple photosensor pixels |
US8184190B2 (en) | 2006-11-28 | 2012-05-22 | Youliza, Gehts B.V. Limited Liability Company | Simultaneous global shutter and correlated double sampling read out in multiple photosensor pixels |
US8582011B2 (en) | 2006-11-28 | 2013-11-12 | Youliza, Gehts B.V. Limited Liability Company | Simultaneous global shutter and correlated double sampling read out in multiple photosensor pixels |
US20090153716A1 (en) * | 2007-12-13 | 2009-06-18 | Motoari Ota | Solid state imaging device and imaging apparatus |
US8355067B2 (en) * | 2007-12-13 | 2013-01-15 | Fujifilm Corporation | Solid state imaging device and imaging apparatus |
US20110149104A1 (en) * | 2009-12-21 | 2011-06-23 | Sony Corporation | Solid-state imaging apparatus, driving method, and camera |
US8704927B2 (en) * | 2009-12-21 | 2014-04-22 | Sony Corporation | Solid-state imaging apparatus, driving method, and camera |
DE102014013099A1 (en) | 2014-09-03 | 2016-03-03 | Basler Aktiengesellschaft | Method and device for simplified acquisition of a depth image |
US10097776B2 (en) * | 2016-08-24 | 2018-10-09 | Boe Technology Group Co., Ltd. | Reading circuit and driving method thereof, and photoelectric detector |
US10560646B2 (en) | 2018-04-19 | 2020-02-11 | Teledyne Scientific & Imaging, Llc | Global-shutter vertically integrated pixel with high dynamic range |
US11496703B2 (en) | 2019-07-25 | 2022-11-08 | Trustees Of Dartmouth College | High conversion gain and high fill-factor image sensors with pump-gate and vertical charge storage well for global-shutter and high-speed applications |
Also Published As
Publication number | Publication date |
---|---|
US20060227233A1 (en) | 2006-10-12 |
US20030103153A1 (en) | 2003-06-05 |
US7209173B2 (en) | 2007-04-24 |
US7095440B2 (en) | 2006-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6667768B1 (en) | Photodiode-type pixel for global electronic shutter and reduced lag | |
US5898168A (en) | Image sensor pixel circuit | |
US10051214B2 (en) | High dynamic range and global shutter image sensor pixels having charge overflow signal detecting structures | |
US7271835B2 (en) | Solid-state image pickup device and device driving control method for solid-state image pickup | |
US6636261B1 (en) | Driven capacitor storage pixel sensor and array | |
US6441852B1 (en) | Extended dynamic range image sensor system | |
US7485836B2 (en) | Row driver for selectively supplying operating power to imager pixel | |
US7465602B2 (en) | Anti-blooming storage pixel | |
US6624850B1 (en) | Photogate active pixel sensor with high fill factor and correlated double sampling | |
US7952635B2 (en) | Low noise readout apparatus and method with snapshot shutter and correlated double sampling | |
US6566697B1 (en) | Pinned photodiode five transistor pixel | |
US20020036300A1 (en) | Image sensor with motion artifact supression and anti-blooming | |
US20050083421A1 (en) | Dynamic range enlargement in CMOS image sensors | |
WO2001065830A2 (en) | High-sensitivity storage pixel sensor having auto-exposure detection | |
US6847070B2 (en) | Five transistor CMOS pixel | |
US7973843B2 (en) | Active pixel sensor with reduced fixed pattern noise | |
US20050077549A1 (en) | Frame shutter pixel with an isolated storage node | |
US7045753B1 (en) | Five transistor CMOS pixel | |
US10798323B1 (en) | Control method for an active pixel image sensor | |
US20060028567A1 (en) | Solid-state imaging device and method for driving the same | |
US20100181465A1 (en) | Snapshot mode active pixel sensor | |
US6590238B1 (en) | Image sensor having a capacitance control gate for improved gain control and eliminating undesired capacitance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PHOTOBIT CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOSSUM, ERIC R.;REEL/FRAME:009381/0063 Effective date: 19980728 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHOTOBIT CORPORATION;REEL/FRAME:012745/0385 Effective date: 20011121 Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHOTOBIT CORPORATION;REEL/FRAME:014007/0590 Effective date: 20011121 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: APTINA IMAGING CORPORATION, CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023245/0186 Effective date: 20080926 Owner name: APTINA IMAGING CORPORATION,CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023245/0186 Effective date: 20080926 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |