US6631719B2 - Lightweight patient oxygen delivery system - Google Patents
Lightweight patient oxygen delivery system Download PDFInfo
- Publication number
- US6631719B2 US6631719B2 US09/849,863 US84986301A US6631719B2 US 6631719 B2 US6631719 B2 US 6631719B2 US 84986301 A US84986301 A US 84986301A US 6631719 B2 US6631719 B2 US 6631719B2
- Authority
- US
- United States
- Prior art keywords
- patient
- oxygen
- diffuser
- boom
- headband
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
- A61M16/0683—Holding devices therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/08—Bellows; Connecting tubes ; Water traps; Patient circuits
- A61M16/0816—Joints or connectors
- A61M16/0841—Joints or connectors for sampling
- A61M16/085—Gas sampling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2206/00—Characteristics of a physical parameter; associated device therefor
- A61M2206/10—Flow characteristics
- A61M2206/14—Static flow deviators in tubes disturbing laminar flow in tubes, e.g. archimedes screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2209/00—Ancillary equipment
- A61M2209/08—Supports for equipment
- A61M2209/082—Mounting brackets, arm supports for equipment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
- A61M2230/43—Composition of exhalation
- A61M2230/432—Composition of exhalation partial CO2 pressure (P-CO2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
- A61M2230/43—Composition of exhalation
- A61M2230/435—Composition of exhalation partial O2 pressure (P-O2)
Definitions
- the present invention relates to a novel system for delivery of oxygen to a patient, and more particularly relates to a device which can be used to replace conventional oxygen masks and nose cannula oxygen delivery systems.
- Mask oxygen therapy has been around for a very long time and has seen virtually no changes. Problems encountered with this style of therapy are well known but unavoidable using the mask as it is supplied today. A number of vendors supply oxygen masks as a commodity item, with the result that there has been little or no improvement in the technology because of the low profit margins accompanying the sale of such masks.
- Conventional oxygen masks comprise tent like structures which are strapped over the nose and mouth of a patient, often using an elastic band or bands behind the patient's ears or head. Oxygen is fed from a supply through a tube into the bottom portion of the mask at the front of the patient.
- the mask cannot be used during facial surgery due to intrusion into the sterile field.
- the mask cannot be worn if the patient has facial injuries such as burns.
- the face mask does not effectively fit all sizes and shapes of face. Often the soft plastic masks are delivered in a deformed fashion.
- the face mask usually necessitates clipping the oxygen delivery tube in front of the patient at the bottom of the mask. This is awkward and inconvenient as it may interfere with a patient's movement.
- the face mask creates irregular infusion of oxygen by the patient, with exhaled air from the patient being mixed with oxygen in the mask.
- nasal cannulas include:
- the patient may not be a nose breather.
- Knoch et al U.S. Pat. No. 5,575,282 issued Nov. 19, 1996 which describes and illustrates a distribution system for oxygen to a patient's nose and mouth.
- This system includes a helix for mixing and spirally delivering oxygen towards the patient.
- a lightweight oxygen delivery system for a patient comprising a curved resilient headband to extend between ends from side to side over a patient's head and to be comfortably seatably engaged thereon.
- An elongated rigid sleeve is provided, a first end of which is pivotably mounted to an outward facing surface of the headband near an end thereof, to rotate with respect to the headband and thereby permit use of the system on either side of a patient's head.
- An elongated tubular boom is secured within a second end of the sleeve to extend from that end of the sleeve when in operation to terminate at a free end thereof located at a space in front of, and proximal to, the patient's nose and mouth.
- An oxygen diffuser is positioned at the free end of the tubular boom.
- the diffuser comprises a body having sides circumscribing a base. The sides form walls defining an interior surface of generally concave configuration, when in operation to direct flow of oxygen generally towards the patient's mouth and nose through the diffuser from an outlet positioned in the base and communicating with the tubular boom.
- oxygen is delivered from the boom to the space in the vicinity of the patient's nose and mouth.
- the sleeve is constructed so as to hold securely an oxygen delivery tube from an oxygen source in fluid communication with the corresponding end of the tubular boom when in operation so as to deliver oxygen from the source to the tubular boom for discharge through the diffuser.
- the elongated tubular boom is secured within the sleeve so as to be telescopically longitudinally adjustable with respect to the sleeve, to facilitate proper location of the diffuser during operation.
- the system of the present invention avoids many of the problems inherent with conventional medical oxygen delivery systems such as face masks and nasal cannulae. It has no facial contact and allows both nose and mouth breathing preferences with more efficient oxygen delivery.
- FIG. 1 is a perspective view of an oxygen delivery device according to the present invention mounted on the head of a patient.
- FIG. 2 is a section view of the diffuser of the device of FIG. 1 .
- FIG. 3 is a side view of the diffuser of the device of FIG. 1 in position in front of the face of a wearer.
- FIG. 4 is a schematic side view of the device of FIG. 1 on a wearer's head, illustrating the adjustability of the headband.
- FIG. 5 is a perspective view of the device of FIG. 1 showing the sleeve, boom and oxygen inlet tube.
- FIG. 6 is a partial view of the boom of the device when worn on a patient, illustrating its positioning flexibility.
- FIG. 7 is a graph illustrating oxygen concentrations delivered to patient's in percentages, based on flow rate settings, of the device of FIG. 1 when situated at a distance of 2 cm from a wearer's face, when compared to oxygen concentrations delivered by a conventional oxygen mask
- FIGS. 8A and 8B are schematic views, from the side, showing the concentration of oxygen in the air around the diffuser body during operation of the system, respectively when the patient is not inhaling, and when the patient inhales.
- FIG. 1 there is shown a lightweight delivery system 2 , in accordance with the invention, mounted on the head 4 of a patient.
- the system comprises a curved resilient headband 6 which is of a sufficient size to fit most heads without exerting too much pressure.
- the headband has widen ends 8 which gently grip the patient's head, spreading the pressure over these widen ends, so as to hold the headband set in position when on a patient's head.
- the inner surfaces of ends 8 are provided with inwardly extending ridges 10 (FIG. 5) which facilitate the gripping action.
- apertures 12 in the wider upper portion 14 by capturing some of the patient's hair (where the patient has hair) within, further assist in maintaining the head set in a particular position against unintended dislodgement on a patient's head.
- the headband is for example made of stiff nylon which gives good tensile strength and resiliency.
- FIG. 4 illustrates various positions and the range of positions, for headband 6 to be operatively positioned on a patient's head.
- a sleeve 16 To one of the widened ends 8 of headband 6 is pivotably secured at pivot connection 17 a sleeve 16 .
- This pivoting occurs about axis A as illustrated (FIG. 5) extending laterally through the upper end of sleeve 16 and associated headband 6 .
- This pivoting motion permits the headband to have the range of motion illustrated in FIG. 4, relative to the sleeve, and further enables the sleeve to be pivoted 180° to convert the system from a left hand one, as illustrated in FIG. 1, to a right hand one, as illustrated in FIG. 5 .
- This pivot is illustrated as being a screw. Alternatively, other conventional pivot means may be used.
- headband 8 may be provided with detachable securing means for sleeve 16 , 50 that sleeve 16 , boom 18 and diffuser 24 may be replaced on a particular headband 8 .
- Longitudinally slidably secured in sleeve 16 is a tubular boom 18 which extends downwardly and forwardly to end, as illustrated, at a space in the vicinity of the patient's nose and mouth.
- Boom 18 is preferably a plastic tube in which is embedded a positioning wire 20 (shown in breakaway in FIG. 5) which enables the tube to be bent into an appropriate shape to position the lower end 22 of boom 18 appropriately for delivery of oxygen to the patient, and to be held in that position, as illustrated in FIG. 6 .
- an oxygen diffuser 24 through which oxygen, fed to boom 18 , is passed into the space in front of the patient's nose and mouth. It is preferred that the distance between the patient's face and the diffuser be about 2 cm (or less), as can be seen in FIG. 3 .
- Diffuser 24 is constructed so as to allow for administration of the oxygen flow to the patient without the patient feeling a direct flow of air onto his or her face.
- an oxygen delivery tube 26 extends and is connected to the upper end of boom 18 within sleeve 16 for fluid communication with boom 18 . Oxygen delivery tube 26 is preferably frictionally engaged within clip portions 28 of sleeve 16 .
- boom 18 and oxygen delivery tube 26 are permitted, with respect to sleeve 16 , as illustrated in FIG. 5, thereby assisting in the proper locating of diffuser 24 with respect to the patient's face, irrespective of the size or shape of the patient's head.
- the limits of this longitudinal movement can be determined by appropriate positioning of stops 30 on sleeve 16 which for example bear against ends of outwardly extending portion 32 of the inner end of boom 18 .
- the avoidance of a direct flow of air from boom 18 onto the patient's face, through diffuser 24 can be understood from the section view of the diffuser in FIG. 2 .
- Its body 36 has an interior surface of generally concave configuration, circumscribes the oxygen outlet end of boom 18 and directs the flow of oxygen generally towards the patient's mouth and nose when the diffuser 24 is properly positioned and operational.
- a mushroom-shaped baffle 40 is seated over oxygen outlet 42 of boom 18 so as to assist in the diffusion of oxygen and avoid a direct flow of oxygen towards the patient's face.
- Baffle 40 impedes oxygen flow from the rear of the body 36 inducing a transmission of that flow from jet to turbulent flow.
- the shapes of the baffle 40 and body 36 directly influence the mixing characteristics between pure oxygen stream and the ambient air (containing approximately 21% oxygen by volume), and thus determine the oxygen content of the plume of oxygen-enriched air delivered from the diffuser to the surface of the patient's face.
- body 36 of diffuser 24 has a contoured inner surface, forming a somewhat triangular cup shape which follows the shape of the nose/mouth nexus of a patient, thereby forming a shaped plume of oxygen-enriched air in front of the patient's face.
- the enclosed volume of that cup may be modified to accommodate a larger plume and increase the total oxygen delivered during respiratory inspiration.
- the wall of body 36 near outer rim 42 of body 36 becomes more “vertical” (with opposite sides being parallel) than outwardly extending, as are the lower portions of the body.
- This shaping of the rim edges of the body permits a concentrating of oxygen and a shaping of the plume, providing a more precise direction of the plume of oxygen-enriched air towards the patient's nose/mouth.
- the body 36 of diffuser 24 swivels about end 44 of boom 18 to enable proper orienting of the diffuser when the boom is either in left hand or right hand mode.
- body 36 and baffle 40 may be modified to suit the requirements of a particular application or user need.
- the present system for delivery of oxygen to a patient, over prior art devices, including the lack of facial contact of the present system, the elimination of the possibility of the patient aspirating should the patient be ill during oxygen therapy, the fact that it allows both nose and mouth breathing preferences and the deflection of oxygen flow away from the face of the user during absence of inhalation, for increased patient comfort.
- the system according to the present invention enables a patient to eat or speak in an unobstructed manner.
- the system according to the present invention permits the headband 6 to be adjusted to be clear of any particular area on a patient's head and adjust for a wide range of patient sizes.
- a plume 46 of oxygen enriched air leaves the diffuser. In operation, this plume will be in the vicinity of the patient's nose and mouth area.
- the areas of highest increased oxygen concentration X in plume 46 remain in and near diffuser body 36 with the areas Y of moderately increased oxygen concentration and areas Z of lowest increased oxygen concentration extending outwardly from diffuser body 36 as illustrated.
- the areas X and Y of highest and moderate increased oxygen concentrations are drawn towards the patient's mouth and nose area, making these increased oxygen concentrations available to be inhaled by the patient.
- the actual oxygen concentration for a 2 cm distance of the diffuser 24 of applicant's device from a patient's face ranges between 46% at a flow rate setting of 2 (approximately liters per minute) to 66% at a flow rate setting of 12 (approximately liters per minute), as compared to an oxygen concentration delivery of between 22% and 30% for flow rate settings of from 2 to 10 in a conventional oxygen mask.
- higher concentrations of oxygen can be delivered to a patient, using the system of the present invention, at lower oxygen flow rates, and with conventional face masks, providing a significant saving in oxygen.
- oxygen tubing comes off at the side instead of directly at the bottom of the mask as seen in traditional mask devices, making it easier for nursing staff to handle,
- the device does not outgas as often happens with full face masks
- one size adjusts for a wide range of patient sizes
- the oxygen delivery system of the present invention is envisaged as having particular application where a patient has his/her faculties and is not in a state where the headband might be unintentionally dislodged, or the diffuser and associated boom might be unintentionally displaced from normal, operative position.
- the device according to the present invention is not only likely to be considered to be stylish by older children, it also could support decorations to represent popular cartoon characters, or the like, to appeal to younger children.
Landscapes
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
Abstract
A lightweight oxygen delivery system for a patient comprising a curved resilient headband to extend from side to side over a patient's head and to be comfortably seatably engaged thereon. A clip is secured towards one end of the headband. An elongated tubular boom is secured at one end to the clip to extend and hold its position, when in operation from said one end at the clip to another end located at a space in front of, and proximal to the patient's nose and mouth. An oxygen diffuser port is located at the other end of the boom, to deliver oxygen from the boom to the space in the vicinity of the patient's nose and mouth. The clip is constructed so as to hold securely an oxygen delivery tube from an oxygen source in fluid communication with said one end of the boom so as to deliver oxygen from the source to the boom for discharge through the diffuser, the tubular boom is secured within the sleeve for telescopic, longitudinal adjustment of the boom with respect to the sleeve to facilitate positioning of the oxygen diffuser with respect to the patient's nose and mouth.
Description
The present application is a continuation-in-part of Applicant's application Ser. No. 09/572,637 filed May 17, 2000, now U.S. Pat. No. 6,450,166.
The present invention relates to a novel system for delivery of oxygen to a patient, and more particularly relates to a device which can be used to replace conventional oxygen masks and nose cannula oxygen delivery systems.
Mask oxygen therapy has been around for a very long time and has seen virtually no changes. Problems encountered with this style of therapy are well known but unavoidable using the mask as it is supplied today. A number of vendors supply oxygen masks as a commodity item, with the result that there has been little or no improvement in the technology because of the low profit margins accompanying the sale of such masks.
Conventional oxygen masks comprise tent like structures which are strapped over the nose and mouth of a patient, often using an elastic band or bands behind the patient's ears or head. Oxygen is fed from a supply through a tube into the bottom portion of the mask at the front of the patient.
Common problems with the mask include:
1. Some patients find it claustrophobic.
2. Many patients cannot tolerate the smell of plastic resin.
3. Patients must take the mask off to speak or eat thereby discontinuing therapy.
4. Some patients are allergic to the elastic (latex allergy).
5. Some patients feel ill when they wear an oxygen mask, (the psychological effect is truly remarkable on the patient and the patient's family alike).
6. Patients often aspirate if they vomit while wearing the mask.
7. The mask cannot be used during facial surgery due to intrusion into the sterile field.
8. The mask cannot be worn if the patient has facial injuries such as burns.
9. Skin irritation is often found from the plastic.
10. The face mask does not effectively fit all sizes and shapes of face. Often the soft plastic masks are delivered in a deformed fashion.
11. The face mask usually necessitates clipping the oxygen delivery tube in front of the patient at the bottom of the mask. This is awkward and inconvenient as it may interfere with a patient's movement.
12. The face mask creates irregular infusion of oxygen by the patient, with exhaled air from the patient being mixed with oxygen in the mask.
Another current approach to oxygen delivery to a patient employs an oxygen delivery tube with tubular open ended nasal prongs or cannulae, at the delivery end of the tube, for insertion into a patient's nasal passages. Disadvantages of nasal cannulas include:
1. The patient may not be a nose breather.
2. Sinus irritation of the patient.
3. Patients find the front oxygen cord, necessary with nasal cannulas, difficult to handle as it hangs down directly in front of them and applies downward pressure on their ears, where the cord is again suspended, as in the case of masks.
Of background interest is U.S. Pat. No. 4,593,688 of Payton issued Jun. 10, 1986, which describes and illustrates a tubular system for, example, delivering nebulized oxygen enriched fog or the like to the face and mouth of a croup patient, the tube being suspended, at its delivery end, from a series of straps secured about a patient's head. A portion of the tube is mounted on a pivoting, unshaped frame member so that the tubing is held in front of and below the patient's face, for delivery of the nebulized oxygen enriched fog. The gas delivery to the nose and mouth area of the patient is through orifices in the tube, near the patient's nose and mouth when the tube is in position. This system is intended for children, and would be uncomfortable and restrictive to one's movements, if placed in position on a patient for a long period of time.
Also of background interest is U.S. Pat. No. 6,065,473 issued May 23, 2000 of McCombs et al. This reference describes and illustrates an oxygen delivery system for non-medical uses, for instance in oxygen bars or for oxygen enhancing during exercises such as aerobics or weight lifting. The system comprises a re-usable headset and a conduit to direct oxygen from a source to a headset and to a region proximate to the user's nose and mouth. The conduit is supported by a delivery arm which is preset to a predetermined distance from a user's head for proper supply of oxygen to the user's nose and mouth area.
Also relevant is Knoch et al U.S. Pat. No. 5,575,282 issued Nov. 19, 1996, which describes and illustrates a distribution system for oxygen to a patient's nose and mouth. This system includes a helix for mixing and spirally delivering oxygen towards the patient.
It is an object of the present invention to provide a lightweight system for delivery of oxygen to a patient, which avoids many of these problems of conventional masks and nasal cannulae, and which is suited for medical use.
In accordance with the present invention there is provided a lightweight oxygen delivery system for a patient, comprising a curved resilient headband to extend between ends from side to side over a patient's head and to be comfortably seatably engaged thereon. An elongated rigid sleeve is provided, a first end of which is pivotably mounted to an outward facing surface of the headband near an end thereof, to rotate with respect to the headband and thereby permit use of the system on either side of a patient's head. An elongated tubular boom is secured within a second end of the sleeve to extend from that end of the sleeve when in operation to terminate at a free end thereof located at a space in front of, and proximal to, the patient's nose and mouth. An oxygen diffuser is positioned at the free end of the tubular boom. The diffuser comprises a body having sides circumscribing a base. The sides form walls defining an interior surface of generally concave configuration, when in operation to direct flow of oxygen generally towards the patient's mouth and nose through the diffuser from an outlet positioned in the base and communicating with the tubular boom. In operation, oxygen is delivered from the boom to the space in the vicinity of the patient's nose and mouth. The sleeve is constructed so as to hold securely an oxygen delivery tube from an oxygen source in fluid communication with the corresponding end of the tubular boom when in operation so as to deliver oxygen from the source to the tubular boom for discharge through the diffuser.
In a preferred embodiment, the elongated tubular boom is secured within the sleeve so as to be telescopically longitudinally adjustable with respect to the sleeve, to facilitate proper location of the diffuser during operation.
The system of the present invention, as will be described in more detail subsequently, avoids many of the problems inherent with conventional medical oxygen delivery systems such as face masks and nasal cannulae. It has no facial contact and allows both nose and mouth breathing preferences with more efficient oxygen delivery.
These and other advantages of the invention will become apparent upon reading the following detailed description and upon referring to the drawings in which:
FIG. 1 is a perspective view of an oxygen delivery device according to the present invention mounted on the head of a patient.
FIG. 2 is a section view of the diffuser of the device of FIG. 1.
FIG. 3 is a side view of the diffuser of the device of FIG. 1 in position in front of the face of a wearer.
FIG. 4 is a schematic side view of the device of FIG. 1 on a wearer's head, illustrating the adjustability of the headband.
FIG. 5 is a perspective view of the device of FIG. 1 showing the sleeve, boom and oxygen inlet tube.
FIG. 6 is a partial view of the boom of the device when worn on a patient, illustrating its positioning flexibility.
FIG. 7 is a graph illustrating oxygen concentrations delivered to patient's in percentages, based on flow rate settings, of the device of FIG. 1 when situated at a distance of 2 cm from a wearer's face, when compared to oxygen concentrations delivered by a conventional oxygen mask
FIGS. 8A and 8B are schematic views, from the side, showing the concentration of oxygen in the air around the diffuser body during operation of the system, respectively when the patient is not inhaling, and when the patient inhales.
While the invention will be described in conjunction with illustrated embodiments, it will be understood that it is not intended to limit the invention to such embodiments. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
In the following description, similar features in the drawings have been given similar reference numerals.
Turning to FIG. 1, there is shown a lightweight delivery system 2, in accordance with the invention, mounted on the head 4 of a patient. The system comprises a curved resilient headband 6 which is of a sufficient size to fit most heads without exerting too much pressure. The headband has widen ends 8 which gently grip the patient's head, spreading the pressure over these widen ends, so as to hold the headband set in position when on a patient's head. The inner surfaces of ends 8 are provided with inwardly extending ridges 10 (FIG. 5) which facilitate the gripping action. As well, apertures 12 in the wider upper portion 14, by capturing some of the patient's hair (where the patient has hair) within, further assist in maintaining the head set in a particular position against unintended dislodgement on a patient's head. The headband is for example made of stiff nylon which gives good tensile strength and resiliency. FIG. 4 illustrates various positions and the range of positions, for headband 6 to be operatively positioned on a patient's head.
To one of the widened ends 8 of headband 6 is pivotably secured at pivot connection 17 a sleeve 16. This pivoting occurs about axis A as illustrated (FIG. 5) extending laterally through the upper end of sleeve 16 and associated headband 6. This pivoting motion permits the headband to have the range of motion illustrated in FIG. 4, relative to the sleeve, and further enables the sleeve to be pivoted 180° to convert the system from a left hand one, as illustrated in FIG. 1, to a right hand one, as illustrated in FIG. 5. This pivot is illustrated as being a screw. Alternatively, other conventional pivot means may be used. As well, although not illustrated, it is envisaged that headband 8 may be provided with detachable securing means for sleeve 16, 50 that sleeve 16, boom 18 and diffuser 24 may be replaced on a particular headband 8. Longitudinally slidably secured in sleeve 16 is a tubular boom 18 which extends downwardly and forwardly to end, as illustrated, at a space in the vicinity of the patient's nose and mouth. Boom 18 is preferably a plastic tube in which is embedded a positioning wire 20 (shown in breakaway in FIG. 5) which enables the tube to be bent into an appropriate shape to position the lower end 22 of boom 18 appropriately for delivery of oxygen to the patient, and to be held in that position, as illustrated in FIG. 6.
At this lower end 22 of boom 18 is secured an oxygen diffuser 24 through which oxygen, fed to boom 18, is passed into the space in front of the patient's nose and mouth. It is preferred that the distance between the patient's face and the diffuser be about 2 cm (or less), as can be seen in FIG. 3. Diffuser 24 is constructed so as to allow for administration of the oxygen flow to the patient without the patient feeling a direct flow of air onto his or her face. From an appropriate oxygen source (not illustrated), an oxygen delivery tube 26 extends and is connected to the upper end of boom 18 within sleeve 16 for fluid communication with boom 18. Oxygen delivery tube 26 is preferably frictionally engaged within clip portions 28 of sleeve 16. In operation however, relative longitudinal movement of boom 18 and oxygen delivery tube 26 are permitted, with respect to sleeve 16, as illustrated in FIG. 5, thereby assisting in the proper locating of diffuser 24 with respect to the patient's face, irrespective of the size or shape of the patient's head. The limits of this longitudinal movement can be determined by appropriate positioning of stops 30 on sleeve 16 which for example bear against ends of outwardly extending portion 32 of the inner end of boom 18.
The avoidance of a direct flow of air from boom 18 onto the patient's face, through diffuser 24, can be understood from the section view of the diffuser in FIG. 2. Its body 36 has an interior surface of generally concave configuration, circumscribes the oxygen outlet end of boom 18 and directs the flow of oxygen generally towards the patient's mouth and nose when the diffuser 24 is properly positioned and operational. A mushroom-shaped baffle 40 is seated over oxygen outlet 42 of boom 18 so as to assist in the diffusion of oxygen and avoid a direct flow of oxygen towards the patient's face. Baffle 40 impedes oxygen flow from the rear of the body 36 inducing a transmission of that flow from jet to turbulent flow. The shapes of the baffle 40 and body 36 directly influence the mixing characteristics between pure oxygen stream and the ambient air (containing approximately 21% oxygen by volume), and thus determine the oxygen content of the plume of oxygen-enriched air delivered from the diffuser to the surface of the patient's face.
As well, body 36 of diffuser 24 has a contoured inner surface, forming a somewhat triangular cup shape which follows the shape of the nose/mouth nexus of a patient, thereby forming a shaped plume of oxygen-enriched air in front of the patient's face. The enclosed volume of that cup may be modified to accommodate a larger plume and increase the total oxygen delivered during respiratory inspiration. As can be seen in FIG. 2, the wall of body 36 near outer rim 42 of body 36 becomes more “vertical” (with opposite sides being parallel) than outwardly extending, as are the lower portions of the body. This shaping of the rim edges of the body permits a concentrating of oxygen and a shaping of the plume, providing a more precise direction of the plume of oxygen-enriched air towards the patient's nose/mouth. The body 36 of diffuser 24 swivels about end 44 of boom 18 to enable proper orienting of the diffuser when the boom is either in left hand or right hand mode.
Of course the overall shaping of body 36 and baffle 40 may be modified to suit the requirements of a particular application or user need.
There are many obvious advantages of the present system, for delivery of oxygen to a patient, over prior art devices, including the lack of facial contact of the present system, the elimination of the possibility of the patient aspirating should the patient be ill during oxygen therapy, the fact that it allows both nose and mouth breathing preferences and the deflection of oxygen flow away from the face of the user during absence of inhalation, for increased patient comfort. As well, the system according to the present invention enables a patient to eat or speak in an unobstructed manner.
The system according to the present invention permits the headband 6 to be adjusted to be clear of any particular area on a patient's head and adjust for a wide range of patient sizes.
As can be seen in FIGS. 8A and 8B, a plume 46 of oxygen enriched air leaves the diffuser. In operation, this plume will be in the vicinity of the patient's nose and mouth area. When the patient is not inhaling (FIG. 8A), the areas of highest increased oxygen concentration X in plume 46 remain in and near diffuser body 36 with the areas Y of moderately increased oxygen concentration and areas Z of lowest increased oxygen concentration extending outwardly from diffuser body 36 as illustrated. When the patient inhales, as seen in FIG. 8B, the areas X and Y of highest and moderate increased oxygen concentrations are drawn towards the patient's mouth and nose area, making these increased oxygen concentrations available to be inhaled by the patient.
In clinical test results which are illustrated in the graph of FIG. 7, the actual oxygen concentration for a 2 cm distance of the diffuser 24 of applicant's device from a patient's face ranges between 46% at a flow rate setting of 2 (approximately liters per minute) to 66% at a flow rate setting of 12 (approximately liters per minute), as compared to an oxygen concentration delivery of between 22% and 30% for flow rate settings of from 2 to 10 in a conventional oxygen mask. Thus, higher concentrations of oxygen can be delivered to a patient, using the system of the present invention, at lower oxygen flow rates, and with conventional face masks, providing a significant saving in oxygen.
Advantages of the present system, for delivery of oxygen to a patient, over prior art devices, include the facts:
the possibility of the patient aspirating is eliminated should they be ill during oxygen therapy,
it is lightweight,
it does not give the patient the feeling of being sick, instead it has a high tech look that is positive for the patient,
it allows for the sampling and monitoring of expired carbon dioxide directly at the boom end,
oxygen tubing comes off at the side instead of directly at the bottom of the mask as seen in traditional mask devices, making it easier for nursing staff to handle,
the device does not outgas as often happens with full face masks,
there is no smell of plastic,
there is no need to remove oxygen therapy while patient is eating or speaking,
it is well tolerated by patients; it provides comfort not found with traditional devices,
it could be reused for a longer period of time than conventional masks and nose cannula systems,
it allows for the administration humidified air as well as non-humidified air,
one size adjusts for a wide range of patient sizes,
it is effective whether the patient is a mouth or nose breather,
it permits adjusting to be clear of any particular area on a patent's head.
The oxygen delivery system of the present invention is envisaged as having particular application where a patient has his/her faculties and is not in a state where the headband might be unintentionally dislodged, or the diffuser and associated boom might be unintentionally displaced from normal, operative position.
As for children, this population traditionally does not tolerate mask oxygen therapy. The device according to the present invention is not only likely to be considered to be stylish by older children, it also could support decorations to represent popular cartoon characters, or the like, to appeal to younger children.
Thus, it is apparent that there has been provided in accordance with the invention a lightweight oxygen delivery system that fully satisfies the objects, aims and advantages set forth above. While the invention has been described in conjunction with an illustrated embodiment thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. For example, a multi lumena boom 18, instead of one having a single tube, may be provided, each tube having a distinct function. Accordingly, it is intended to embrace all such alternatives, modifications and variations as fall within the spirit and broad scope of the invention.
Claims (17)
1. A lightweight oxygen delivery system for a patient comprising:
(a) a curved resilient headband to extend between ends from side to side over a patient's head and to be comfortably seatably engaged thereon;
(b) an elongated rigid sleeve, a first end of which is pivotably mounted to an outward-facing surface of the headband near one end thereof, to rotate with respect to the headband and thereby permit use of the system on either side of the patient's head;
(c) an elongated tubular boom secured within a second end of the sleeve to extend from that end of the sleeve when in operation to terminate at a free end located at a space in front of, and proximal to, a nose and mouth of the patient;
(d) an oxygen diffuser at said free end of the boom, through which diffuser oxygen may be delivered from the boom to the space in the vicinity of the patient's nose and mouth; the diffuser comprising a body having sides circumscribing a base, the sides forming walls defining an interior surface of generally concave configuration, wherein the interior surface is of somewhat triangular, cup shape to follow a shape of a nose/mouth nexus of the patient when in position on the patient, when in operation to direct flow of oxygen generally towards the patient's mouth and nose through the diffuser from an outlet positioned in the base and communicating with the tubular boom;
the sleeve, constructed so as to hold securely an oxygen delivery tube from an oxygen source in fluid communication with the corresponding end of the tubular boom so as to deliver oxygen from the oxygen source to the tubular boom for discharge through the diffuser.
2. A system according to claim 1 , wherein the tubular boom is secured within the sleeve for telescopic, longitudinal adjustment of the tubular boom with respect to the sleeve to facilitate positioning of the oxygen diffuser with respect to a nose and mouth of a patient.
3. A system according to claim 2 , wherein stop means are provided within the sleeve to limit the telescopic adjustment of the tubular boom with respect to the sleeve between two longitudinal extremities.
4. A system according to claim 2 , wherein a wire is embedded in the tubular boom to permit bending of the tubular boom to a particular shape and maintaining of that shape.
5. A system according to claim 2 , wherein the diffuser comprises a body having an interior surface of generally concave configuration, when in operation to direct flow of oxygen generally towards a patient's mouth and nose through a diffuser port.
6. A system according to claim 1 , wherein interior walls of the sleeve are formed so as to frictionally engage a portion of the oxygen delivery tube when in operation.
7. A system according to claim 1 , wherein the ends of the headband are widened.
8. A system according to claim 7 , wherein interior surfaces of the widened ends of the headband are provided with inwardly extending ribs to assist in frictionally engaging a patient's head when the headband is in position.
9. A headband according to claim 7 , wherein the headband is constructed so as to be of a size and shape to enable it to be fit both over or behind a patient's head when ends of the headband are in position on a patient's head.
10. A headband according to claim 7 , wherein intermediate portions of the headband are provided with apertures through which a patient's hair may extend, to further facilitate holding the headband in position on a patient's head and prevent the headband from becoming dislodged.
11. A system according to claim 7 , wherein the interior surface is of somewhat triangular, cup shape to follow a shape of a nose/mouth nexus of a patient when in position on a patient.
12. A system according to claim 1 , wherein the tubular boom is constructed so as to be bendable to a particular shape to facilitate positioning of the tubular boom with respect to a patient's nose and mouth.
13. A system according to claim 12 , wherein a wire is embedded in the tubular boom to permit bending of the tubular boom to a particular shape and maintaining of that shape.
14. A system according to claim 1 , wherein the diffuser further comprises a baffle seated over the diffuser outlet so as to assist in mixing of oxygen with ambient air and avoid a direct flow of oxygen towards a face of a patient.
15. A lightweight oxygen delivery system for a patient comprising:
(a) a curved resilient headband to extend between ends from side to side over a patient's head and to be comfortably seatably engaged thereon;
(b) an elongated rigid sleeve, a first end of which is pivotably mounted to an outward-facing surface of the headband near one end thereof, to rotate 360° with respect to the headband;
(c) an elongated tubular boom secured within a second end of the sleeve to extend from that end when in operation to terminate at a free end located at a space in front of, and proximal to a nose and mouth of a patient;
(d) an oxygen diffuser at said free end of the tubular boom, through which diffuser oxygen may be delivered from the boom to the space in the vicinity of the patient's nose and mouth; the diffuser comprising a body having sides circumscribing a base, the sides forming walls defining an interior surface of generally concave configuration, when in operation to direct flow of oxygen generally towards the patient's mouth and nose communicating with the tubular boom;
the sleeve, constructed so as to hold securely an oxygen delivery tube from an oxygen source in fluid communication with the corresponding end of the tubular boom when in operation so as to deliver oxygen from the oxygen source to the tubular boom for discharge through the diffuser, the tubular boom being secured within the sleeve for telescopic, longitudinal adjustment of the tubular boom with respect to the sleeve to facilitate positioning of the oxygen diffuser with respect to the patient's nose and mouth.
16. A system according to claim 15 , wherein the tubular boom is constructed so as to be bendable to a particular shape to facilitate positioning of the tubular boom with respect to nose and mouth of a patient.
17. A system according to claim 15 , wherein the diffuser further comprises: a baffle seated over the diffuser outlet so as to assist in mixing of oxygen with ambient air and avoid a direct flow of oxygen towards a face of a patient.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/849,863 US6631719B2 (en) | 2000-05-17 | 2001-05-04 | Lightweight patient oxygen delivery system |
NZ524698A NZ524698A (en) | 2000-05-17 | 2001-05-07 | Patient oxygen delivery system |
CA002409103A CA2409103C (en) | 2000-05-17 | 2001-05-07 | Patient oxygen delivery system |
AU5603301A AU5603301A (en) | 2000-05-17 | 2001-05-07 | Patient oxygen delivery system |
EP01929150A EP1289592A2 (en) | 2000-05-17 | 2001-05-07 | Patient oxygen delivery system |
PCT/CA2001/000622 WO2001087394A2 (en) | 2000-05-17 | 2001-05-07 | Patient oxygen delivery system |
MXPA02011267A MXPA02011267A (en) | 2000-05-17 | 2001-05-07 | Patient oxygen delivery system. |
JP2001583858A JP4694755B2 (en) | 2000-05-17 | 2001-05-07 | Patient oxygen supply system |
AU2001256033A AU2001256033B2 (en) | 2000-05-17 | 2001-05-07 | Patient oxygen delivery system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/572,637 US6450166B1 (en) | 2000-05-17 | 2000-05-17 | Patient oxygen delivery system |
US09/849,863 US6631719B2 (en) | 2000-05-17 | 2001-05-04 | Lightweight patient oxygen delivery system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/572,637 Continuation-In-Part US6450166B1 (en) | 2000-05-17 | 2000-05-17 | Patient oxygen delivery system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010042547A1 US20010042547A1 (en) | 2001-11-22 |
US6631719B2 true US6631719B2 (en) | 2003-10-14 |
Family
ID=24288710
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/572,637 Expired - Lifetime US6450166B1 (en) | 2000-05-17 | 2000-05-17 | Patient oxygen delivery system |
US09/849,863 Expired - Lifetime US6631719B2 (en) | 2000-05-17 | 2001-05-04 | Lightweight patient oxygen delivery system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/572,637 Expired - Lifetime US6450166B1 (en) | 2000-05-17 | 2000-05-17 | Patient oxygen delivery system |
Country Status (2)
Country | Link |
---|---|
US (2) | US6450166B1 (en) |
JP (1) | JP4694755B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060081243A1 (en) * | 2004-10-15 | 2006-04-20 | Southmedic Incorporated | Patient oxygen delivery mask |
US20060081248A1 (en) * | 2004-10-15 | 2006-04-20 | Southmedic Incorporated | Patient oxygen delivery mask |
US20080099014A1 (en) * | 2001-09-07 | 2008-05-01 | Resmed Limited | Elbow for mask assembly |
US20080223369A1 (en) * | 2003-09-18 | 2008-09-18 | Sydney Warren | Personal oxygen and air delivery system |
US20090000618A1 (en) * | 2004-09-20 | 2009-01-01 | Sydney Warren | Single sided housing for medical canula tubing combining wireless cellular phone and audio technology with oxygen delivery systems |
US20100037897A1 (en) * | 2008-08-14 | 2010-02-18 | RemGenic LLC | Nasal CPAP securement system |
US20110003664A1 (en) * | 2009-07-02 | 2011-01-06 | Richard Maertz J | Exercise and communications system and associated methods |
US20110146687A1 (en) * | 2007-08-29 | 2011-06-23 | Nobuyuki Fukushima | Oxygen supply device |
US20110186045A1 (en) * | 2010-01-29 | 2011-08-04 | Lenard Erickson | Breathing Apparatus |
CN102196839A (en) * | 2008-08-29 | 2011-09-21 | 株式会社福岛O-Two | Oxygen supply device |
US8707950B1 (en) | 2010-08-04 | 2014-04-29 | Darren Rubin | Universal medical gas delivery system |
US8925550B2 (en) | 2004-09-20 | 2015-01-06 | Sydney A Warren | Single sided modular oxygen cannula and gas/air delivery system |
US9849263B2 (en) | 2013-03-12 | 2017-12-26 | Touchfree O2 Llc | Method and device for supplying oxygen to a patient |
CN110812652A (en) * | 2019-11-18 | 2020-02-21 | 青岛市中心医院 | A kind of burn earmuff for oxygen tube protection |
US11628267B2 (en) | 2010-08-04 | 2023-04-18 | Medline Industries, Lp | Universal medical gas delivery system |
US11779724B2 (en) | 2019-06-11 | 2023-10-10 | Sunmed Group Holdings, Llc | Respiration sensor attachment device |
US11857710B2 (en) | 2018-07-31 | 2024-01-02 | Sunmed Group Holdings, Llc | Ventilation mask |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6450166B1 (en) * | 2000-05-17 | 2002-09-17 | Southmedic Incorporated | Patient oxygen delivery system |
US6675796B2 (en) * | 2001-10-12 | 2004-01-13 | Southmedic Incorporated | Lightweight oxygen delivery device for patients |
US6837238B2 (en) * | 2001-10-12 | 2005-01-04 | Southmedic Incorporated | Lightweight oxygen delivery device for patients |
US6691706B2 (en) * | 2002-01-02 | 2004-02-17 | Thomas Harrison Ives | Personal humidifier |
US7036502B2 (en) * | 2002-04-08 | 2006-05-02 | Joseph Manne | Air curtain device |
US7146976B2 (en) * | 2002-08-06 | 2006-12-12 | Mckown Joseph R | Nasal cannula retainer |
US7588033B2 (en) | 2003-06-18 | 2009-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for improving ventilation in a lung area |
US8381729B2 (en) | 2003-06-18 | 2013-02-26 | Breathe Technologies, Inc. | Methods and devices for minimally invasive respiratory support |
WO2005018524A2 (en) | 2003-08-18 | 2005-03-03 | Wondka Anthony D | Method and device for non-invasive ventilation with nasal interface |
US7357136B2 (en) * | 2003-08-18 | 2008-04-15 | Ric Investments, Llc | Patient interface assembly and system using same |
AU2004277844C1 (en) * | 2003-10-08 | 2011-01-20 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
US7063084B2 (en) * | 2004-01-14 | 2006-06-20 | Soutmedic Incorporated | Oxygen diffuser support |
CA2464043A1 (en) * | 2004-04-08 | 2005-10-08 | Anita Lorelli | Facial exercise device and method |
CA2476104A1 (en) * | 2004-07-30 | 2006-01-30 | Southmedic Incorporated | Oxygen delivery systems |
US8042540B2 (en) * | 2004-10-15 | 2011-10-25 | Southmedic Incorporated | Patient oxygen delivery mask |
USD533656S1 (en) | 2004-11-19 | 2006-12-12 | Taylor Patsy L | Headset oxygen delivery system |
US20060201504A1 (en) * | 2005-03-08 | 2006-09-14 | Singhal Aneesh B | High-flow oxygen delivery system and methods of use thereof |
CN101454041B (en) | 2005-09-20 | 2012-12-12 | 呼吸科技公司 | Systems, methods and apparatus for respiratory support of a patient |
US20070113852A1 (en) * | 2005-11-18 | 2007-05-24 | Christopher Martin | Snap-in deflector for respiratory mask |
JP4960624B2 (en) * | 2005-12-12 | 2012-06-27 | 帝人ファーマ株式会社 | Oxygen-enriched gas supply tool |
NZ570220A (en) * | 2006-03-01 | 2011-10-28 | Resmed Ltd | Reminder system on CPAP mask to provide a reminder after a predeterminded amount of time, relating to servicing |
US7631642B2 (en) | 2006-05-18 | 2009-12-15 | Breathe Technologies, Inc. | Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer |
US20080006275A1 (en) * | 2006-07-07 | 2008-01-10 | Steven Nickelson | Composite masks and methods for positive airway pressure therapies |
CN103252008B (en) | 2006-07-28 | 2017-04-26 | 瑞思迈有限公司 | Delivery of respiratory therapy |
EP2428240B1 (en) | 2006-07-28 | 2016-02-17 | ResMed Ltd. | Respiratory therapy device |
JP5911189B2 (en) | 2006-12-15 | 2016-04-27 | レスメド・リミテッドResMed Limited | Respiratory therapy |
JP4922813B2 (en) * | 2007-04-20 | 2012-04-25 | 帝人ファーマ株式会社 | Gas supply tool for inhalation |
WO2008144589A1 (en) | 2007-05-18 | 2008-11-27 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and providing ventilation therapy |
US20090032018A1 (en) * | 2007-08-03 | 2009-02-05 | Eaton Jason P | System Adapted to Provide a Flow of Gas to an Airway of a Patient |
AU2008304203B9 (en) | 2007-09-26 | 2014-02-27 | Breathe Technologies, Inc. | Methods and devices for treating sleep apnea |
US8567399B2 (en) | 2007-09-26 | 2013-10-29 | Breathe Technologies, Inc. | Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy |
WO2009101585A2 (en) * | 2008-02-11 | 2009-08-20 | Imd Tech Ltd. | System and method for delivering moisturizing liquid to lips of a subject |
US20090302002A1 (en) * | 2008-02-29 | 2009-12-10 | Applied Materials, Inc. | Method and apparatus for removing polymer from a substrate |
WO2009129506A1 (en) | 2008-04-18 | 2009-10-22 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8776793B2 (en) | 2008-04-18 | 2014-07-15 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US20090277874A1 (en) * | 2008-05-09 | 2009-11-12 | Applied Materials, Inc. | Method and apparatus for removing polymer from a substrate |
US20090283097A1 (en) * | 2008-05-19 | 2009-11-19 | Ethicon Endo-Surgery, Inc. | Medical cannula assembly for use with a patient |
WO2010006047A2 (en) * | 2008-07-10 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Medical system which controls delivery of a drug and which includes a backpack pouch |
WO2010022363A1 (en) | 2008-08-22 | 2010-02-25 | Breathe Technologies, Inc. | Methods and devices for providing mechanical ventilation with an open airway interface |
WO2010039989A1 (en) | 2008-10-01 | 2010-04-08 | Breathe Technologies, Inc. | Ventilator with biofeedback monitoring and control for improving patient activity and health |
US9132250B2 (en) | 2009-09-03 | 2015-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
EP3593847B1 (en) | 2009-04-02 | 2023-05-31 | Breathe Technologies, Inc. | Systems for non-invasive open ventilation with gas delivery nozzles within an outer tube |
US9962512B2 (en) | 2009-04-02 | 2018-05-08 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature |
US9480789B2 (en) | 2009-06-01 | 2016-11-01 | Ethicon Endo-Surgery, Inc. | Method and sedation delivery system including a pump assembly and a co-formulation of first and second drugs |
WO2011029074A1 (en) | 2009-09-03 | 2011-03-10 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
JP5576695B2 (en) | 2009-10-28 | 2014-08-20 | 日本光電工業株式会社 | Oxygen mask |
WO2011107865A1 (en) * | 2010-03-05 | 2011-09-09 | Trudell Medical International | Oral mouthpiece and method for the use thereof |
AU2011292111B2 (en) | 2010-08-16 | 2015-03-26 | Breathe Technologies, Inc. | Methods, systems and devices using LOX to provide ventilatory support |
US8939152B2 (en) | 2010-09-30 | 2015-01-27 | Breathe Technologies, Inc. | Methods, systems and devices for humidifying a respiratory tract |
JP2012200284A (en) * | 2011-03-23 | 2012-10-22 | Ngk Spark Plug Co Ltd | Oxygen concentrator |
TWM427916U (en) * | 2011-09-06 | 2012-05-01 | Bion Inc | Ear wearing heartbeat measurement apparatus with adjustable angle |
US8955510B2 (en) * | 2012-01-06 | 2015-02-17 | Jsl Medical Products, Inc. | Delivery system for therapeutically conditioned air |
WO2013103372A1 (en) * | 2012-01-06 | 2013-07-11 | Youngblood Thomas | Delivery system for therapeutically conditioned air |
US9180262B2 (en) | 2012-05-15 | 2015-11-10 | JettStream, Inc. | Delivery of nebulized medicines |
US9433736B2 (en) | 2013-07-03 | 2016-09-06 | JettStream, Inc. | Positionable elongated members with multi-axis joints |
USD747461S1 (en) * | 2014-03-28 | 2016-01-12 | Breathe Technologies, Inc. | Ear piece guide set |
CN104324458A (en) * | 2014-10-17 | 2015-02-04 | 王庆忠 | Emergency oxygen supply respirator |
CN109562240B (en) | 2016-07-22 | 2022-03-29 | 日本光电美国公司 | Mask, system and method for assisted breathing including a scattering chamber |
US10792449B2 (en) | 2017-10-03 | 2020-10-06 | Breathe Technologies, Inc. | Patient interface with integrated jet pump |
CA3030884A1 (en) | 2018-01-22 | 2019-07-22 | Southmedic Incorporated | Gas administration mask with dual port diffuser and with gas rebound diffuser |
US12022898B2 (en) | 2020-05-19 | 2024-07-02 | Groman Inc. | Flexible face mask for various dental and medical uses |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4593688A (en) | 1984-05-30 | 1986-06-10 | Payton Hugh W | Apparatus for the delivery of oxygen or the like |
USD344730S (en) * | 1992-07-08 | 1994-03-01 | Acs Communications, Inc. | Communications headset |
USD346802S (en) * | 1992-09-28 | 1994-05-10 | Hello Direct | Headset |
US5457751A (en) * | 1992-01-15 | 1995-10-10 | Such; Ronald W. | Ergonomic headset |
US5575282A (en) | 1991-02-22 | 1996-11-19 | Paul Ritzau Pari-Werk Gmbh | Oxygen distributor with both mouth and nose delivery ports |
US5697363A (en) * | 1996-04-12 | 1997-12-16 | Albert Einstein Healthcare Network | Inhalation and monitoring mask with headset |
USD410921S (en) * | 1998-06-11 | 1999-06-15 | Labtec, Inc. | Headset microphone |
US6065473A (en) | 1997-06-16 | 2000-05-23 | Airsep Corporation | Non-contact gas dispenser and apparatus for use therewith |
US6130953A (en) * | 1997-06-11 | 2000-10-10 | Knowles Electronics, Inc. | Headset |
US6178251B1 (en) * | 1998-07-02 | 2001-01-23 | Labtec Corporation | Collar microphone |
USD443870S1 (en) * | 1999-10-12 | 2001-06-19 | Telex Communications, Inc. | Headset |
US6247470B1 (en) * | 1999-07-07 | 2001-06-19 | Armen G. Ketchedjian | Oxygen delivery, oxygen detection, carbon dioxide monitoring (ODODAC) apparatus and method |
USD449883S1 (en) * | 2001-01-24 | 2001-10-30 | Southmedic Incorporated | Oxygen delivery system |
USD451598S1 (en) * | 2001-05-04 | 2001-12-04 | Southmedic Incorporated | Lightweight oxygen delivery system |
US6373942B1 (en) * | 2000-04-07 | 2002-04-16 | Paul M. Braund | Hands-free communication device |
USD457155S1 (en) * | 2001-03-19 | 2002-05-14 | Plantronics, Inc. | Communication headset |
US6450166B1 (en) * | 2000-05-17 | 2002-09-17 | Southmedic Incorporated | Patient oxygen delivery system |
US6496589B1 (en) * | 2001-06-20 | 2002-12-17 | Telex Communications, Inc. | Headset with overmold |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1974828A (en) | 1933-09-07 | 1934-09-25 | Markut Pawil | Smoke diffusing apparatus |
US3040741A (en) | 1958-12-15 | 1962-06-26 | Puritan Compressed Gas Corp | Quick donning harness for oxygen masks |
US3056402A (en) * | 1959-05-26 | 1962-10-02 | Airmed Ltd | Respiratory masks |
US3092105A (en) * | 1960-05-03 | 1963-06-04 | Airmed Ltd | Respiratory masks |
US3234940A (en) * | 1962-09-17 | 1966-02-15 | Sierra Eng Co | Retention for quick donning mask |
US3347229A (en) * | 1965-02-23 | 1967-10-17 | Sierra Eng Co | Latch operated microphone switch for breathing mask |
US3599635A (en) * | 1969-03-12 | 1971-08-17 | Sierra Eng Co | Hanging quick donning mask suspension |
US3683907A (en) | 1970-07-20 | 1972-08-15 | Mine Safety Appliances Co | Fresh air respirator |
US3850168A (en) | 1971-09-21 | 1974-11-26 | Puritan Bennett Corp | Oxygen mask apparatus |
US3838686A (en) * | 1971-10-14 | 1974-10-01 | G Szekely | Aerosol apparatus for inhalation therapy |
CA1128826A (en) | 1978-07-21 | 1982-08-03 | Montreal General Hospital Research Institute | Head-supported oxygen nozzle |
US4739757A (en) | 1986-11-13 | 1988-04-26 | Edwards Anna M | Oxygen tube retaining headband |
GB9021433D0 (en) * | 1990-10-02 | 1990-11-14 | Atomic Energy Authority Uk | Power inhaler |
DE4208880A1 (en) * | 1992-03-19 | 1993-09-23 | Boehringer Ingelheim Kg | SEPARATOR FOR POWDER INHALATORS |
DE4307754A1 (en) * | 1992-07-23 | 1994-04-07 | Johannes Dipl Ing Geisen | System and method for the controlled supply or removal of breathing air |
US5653228A (en) * | 1994-10-25 | 1997-08-05 | Byrd; Timothy N. | Medical tube holding device and associated securing strap |
JP4145961B2 (en) * | 1997-04-29 | 2008-09-03 | サルター ラブス | Nasal cannula device |
EP0941136A4 (en) | 1997-09-15 | 2001-09-12 | Airsep Corp | Non-contact gas dispenser and apparatus for use therewith |
-
2000
- 2000-05-17 US US09/572,637 patent/US6450166B1/en not_active Expired - Lifetime
-
2001
- 2001-05-04 US US09/849,863 patent/US6631719B2/en not_active Expired - Lifetime
- 2001-05-07 JP JP2001583858A patent/JP4694755B2/en not_active Expired - Fee Related
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4593688A (en) | 1984-05-30 | 1986-06-10 | Payton Hugh W | Apparatus for the delivery of oxygen or the like |
US5575282A (en) | 1991-02-22 | 1996-11-19 | Paul Ritzau Pari-Werk Gmbh | Oxygen distributor with both mouth and nose delivery ports |
US5457751A (en) * | 1992-01-15 | 1995-10-10 | Such; Ronald W. | Ergonomic headset |
USD344730S (en) * | 1992-07-08 | 1994-03-01 | Acs Communications, Inc. | Communications headset |
USD346802S (en) * | 1992-09-28 | 1994-05-10 | Hello Direct | Headset |
US5697363A (en) * | 1996-04-12 | 1997-12-16 | Albert Einstein Healthcare Network | Inhalation and monitoring mask with headset |
US6130953A (en) * | 1997-06-11 | 2000-10-10 | Knowles Electronics, Inc. | Headset |
US6065473A (en) | 1997-06-16 | 2000-05-23 | Airsep Corporation | Non-contact gas dispenser and apparatus for use therewith |
USD410921S (en) * | 1998-06-11 | 1999-06-15 | Labtec, Inc. | Headset microphone |
US6178251B1 (en) * | 1998-07-02 | 2001-01-23 | Labtec Corporation | Collar microphone |
US6247470B1 (en) * | 1999-07-07 | 2001-06-19 | Armen G. Ketchedjian | Oxygen delivery, oxygen detection, carbon dioxide monitoring (ODODAC) apparatus and method |
USD443870S1 (en) * | 1999-10-12 | 2001-06-19 | Telex Communications, Inc. | Headset |
US6373942B1 (en) * | 2000-04-07 | 2002-04-16 | Paul M. Braund | Hands-free communication device |
US6450166B1 (en) * | 2000-05-17 | 2002-09-17 | Southmedic Incorporated | Patient oxygen delivery system |
USD449883S1 (en) * | 2001-01-24 | 2001-10-30 | Southmedic Incorporated | Oxygen delivery system |
USD457155S1 (en) * | 2001-03-19 | 2002-05-14 | Plantronics, Inc. | Communication headset |
USD451598S1 (en) * | 2001-05-04 | 2001-12-04 | Southmedic Incorporated | Lightweight oxygen delivery system |
US6496589B1 (en) * | 2001-06-20 | 2002-12-17 | Telex Communications, Inc. | Headset with overmold |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8826908B2 (en) * | 2001-09-07 | 2014-09-09 | Resmed Limited | Elbow for mask assembly |
US20080099014A1 (en) * | 2001-09-07 | 2008-05-01 | Resmed Limited | Elbow for mask assembly |
US9821134B2 (en) | 2001-09-07 | 2017-11-21 | Resmed Limited | Elbow for mask assembly |
US20080223369A1 (en) * | 2003-09-18 | 2008-09-18 | Sydney Warren | Personal oxygen and air delivery system |
US20090000618A1 (en) * | 2004-09-20 | 2009-01-01 | Sydney Warren | Single sided housing for medical canula tubing combining wireless cellular phone and audio technology with oxygen delivery systems |
US8925550B2 (en) | 2004-09-20 | 2015-01-06 | Sydney A Warren | Single sided modular oxygen cannula and gas/air delivery system |
US20060081248A1 (en) * | 2004-10-15 | 2006-04-20 | Southmedic Incorporated | Patient oxygen delivery mask |
US20060081243A1 (en) * | 2004-10-15 | 2006-04-20 | Southmedic Incorporated | Patient oxygen delivery mask |
US20110146687A1 (en) * | 2007-08-29 | 2011-06-23 | Nobuyuki Fukushima | Oxygen supply device |
US8733354B2 (en) * | 2007-08-29 | 2014-05-27 | Fukushima O-Two Co., Ltd. | Oxygen supply device |
US20100037897A1 (en) * | 2008-08-14 | 2010-02-18 | RemGenic LLC | Nasal CPAP securement system |
CN102196839A (en) * | 2008-08-29 | 2011-09-21 | 株式会社福岛O-Two | Oxygen supply device |
US9782084B2 (en) | 2009-07-02 | 2017-10-10 | Richard J. Maertz | Exercise and communications system and associated methods |
US8821350B2 (en) * | 2009-07-02 | 2014-09-02 | Richard J. Maertz | Exercise and communications system and associated methods |
US20110003664A1 (en) * | 2009-07-02 | 2011-01-06 | Richard Maertz J | Exercise and communications system and associated methods |
US20110186045A1 (en) * | 2010-01-29 | 2011-08-04 | Lenard Erickson | Breathing Apparatus |
US8707950B1 (en) | 2010-08-04 | 2014-04-29 | Darren Rubin | Universal medical gas delivery system |
US11628267B2 (en) | 2010-08-04 | 2023-04-18 | Medline Industries, Lp | Universal medical gas delivery system |
US9849263B2 (en) | 2013-03-12 | 2017-12-26 | Touchfree O2 Llc | Method and device for supplying oxygen to a patient |
US11857710B2 (en) | 2018-07-31 | 2024-01-02 | Sunmed Group Holdings, Llc | Ventilation mask |
US11779724B2 (en) | 2019-06-11 | 2023-10-10 | Sunmed Group Holdings, Llc | Respiration sensor attachment device |
CN110812652A (en) * | 2019-11-18 | 2020-02-21 | 青岛市中心医院 | A kind of burn earmuff for oxygen tube protection |
Also Published As
Publication number | Publication date |
---|---|
JP4694755B2 (en) | 2011-06-08 |
US6450166B1 (en) | 2002-09-17 |
JP2003533296A (en) | 2003-11-11 |
US20010042547A1 (en) | 2001-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6631719B2 (en) | Lightweight patient oxygen delivery system | |
CA2421724C (en) | Oxygen diffuser for patient oxygen delivery system | |
AU2001256034A1 (en) | Oxygen diffuser for patient oxygen delivery system | |
US6675796B2 (en) | Lightweight oxygen delivery device for patients | |
US6837238B2 (en) | Lightweight oxygen delivery device for patients | |
CA2584161C (en) | Patient oxygen delivery mask | |
EP2701786B1 (en) | Nasal interface device | |
CN109803707B (en) | Collapsible catheter, patient interface and headgear connector | |
US20060081248A1 (en) | Patient oxygen delivery mask | |
AU2023100054A4 (en) | Patient interface | |
CA2409103C (en) | Patient oxygen delivery system | |
EP3134060B1 (en) | Apparatus for delivering a gas mixture to a child | |
AU2001256033A1 (en) | Patient oxygen delivery system | |
EP4329610A1 (en) | Patient interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SOUTHMEDIC INCORPORATED, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCDONALD, LEE;LAVIMODIERE, MAURICE;REEL/FRAME:011788/0025 Effective date: 20010426 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |