US6159140A - Radiation shielded catheter for delivering a radioactive source and method of use - Google Patents
Radiation shielded catheter for delivering a radioactive source and method of use Download PDFInfo
- Publication number
- US6159140A US6159140A US09/024,669 US2466998A US6159140A US 6159140 A US6159140 A US 6159140A US 2466998 A US2466998 A US 2466998A US 6159140 A US6159140 A US 6159140A
- Authority
- US
- United States
- Prior art keywords
- catheter
- shaft
- target area
- radioactive
- treatment section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1001—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
- A61N5/1002—Intraluminal radiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1001—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
- A61N5/1002—Intraluminal radiation therapy
- A61N2005/1004—Intraluminal radiation therapy having expandable radiation sources
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1001—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
- A61N2005/1019—Sources therefor
- A61N2005/1021—Radioactive fluid
Definitions
- This invention relates to intravascular catheters suitable for delivering a radiation source to a body lumen for example of the kind used in the prevention of restenosis after arterial intervention.
- a guiding catheter is percutaneously introduced into the cardiovascular system of a patient through the brachial or femoral arteries and advanced through the vasculature until the distal end is in the ostium.
- a dilatation catheter having a balloon on the distal end is introduced through the catheter. The catheter is first advanced into the patient's coronary vasculature until the dilatation balloon is properly positioned across the lesion.
- a flexible, expandable, preformed balloon is inflated to a predetermined size at relatively high pressures to radially compress the atherosclerotic plaque of the lesion against the inside of the artery wall and thereby dilate the lumen of the artery.
- the balloon is then deflated to a small profile, so that the dilatation catheter can be withdrawn from the patient's vasculature and blood flow resumed through the dilated artery. While this procedure is typical, it is not the only method used in angioplasty.
- a physician can implant an intravascular prosthesis, typically called a stent, for maintaining vascular patency.
- a stent is a device used to hold tissue in place or to provide a support for a vessel to hold it open so that blood flows freely.
- the restenosis rate is significantly less than the overall restenosis rate for non-stented arteries receiving a PTCA procedure.
- stents A variety of devices are known in the art for use as stents, including expandable tubular members, in a variety of patterns, that are able to be crimped onto a balloon catheter, and expanded after being positioned intraluminally on the balloon catheter, and that retain their expanded form.
- the stent is loaded and crimped onto the balloon portion of the catheter, and advanced to a location inside the artery at the lesion.
- the stent is then expanded to a larger diameter, by the balloon portion of the catheter, to implant the stent in the artery at the lesion.
- Typical stents and stent delivery systems are more fully disclosed in U.S. Pat. No. 5,514,154 (Lau et al.), U.S. Pat. No. 5,507,768 (Lau et al.), and U.S. Pat. No. 5,569,295 (Lam et al.), which are incorporated herein by reference.
- Stents are commonly designed for long-term implantation within the body lumen. Some stents are designed for non-permanent implantation within the body lumen.
- several stent devices and methods can be found in commonly assigned and common owned U.S. Pat. No. 5,002,560 (Machold et al.), U.S. Pat. No. 5,180,368 (Garrison), and U.S. Pat. No. 5,263,963 (Garrison et al.), which are incorporated in herein by reference.
- Procedures for the prevention of restenosis after arterial intervention also have employed delivery of a radiation source through the arterial system to the area of the body lumen where the development of restenosis might occur.
- the radiation source may be delivered by an implanted stent containing a radioactive isotope in the metal which has a short half-life, or a wire having a radioactive source at the distal end that is temporarily placed in the arterial lumen.
- Radioactive wire placed in the artery lumen or inside a catheter were subject to a problem of maintaining a uniform dosage. Since this radioactive wire device is small relative to the artery lumen, the potential exists for it to rest in an off-center position. In this situation, locally high radiation burns were possible on one side of the arterial wall while the other side received a suboptimum dose.
- radioisotopes considered for use in radiation delivery devices required ion implantation into the device or transmutation of the metal in the device, which would require extra handling and shielding of the device along with the increased cost and complexity of processes like transmutation.
- This invention is directed to a radiation delivery catheter which shields the patient and staff from unintended radiation exposure during treatment for prevention of restenosis.
- the present invention attempts to solve the above and other problems associated with radiation delivery catheters.
- the radiation delivery catheter includes a shaft comprised of radiation shielding material, for shielding the patient and staff from unintended radiation exposure. It further includes a treatment section, including an expandable reservoir balloon comprised of non-radiation-shielding material that is radiation transparent for enabling radiation to permeate therethrough into a target area in a substantially uniform pattern.
- the radiation delivery system separates the catheter and radioactive source during storage, eliminating the need to compromise between shelf life and in vivo efficacy of radioactive portions of the devices.
- a small vial of radioactive liquid contains all of the radioactive source material required, substantially the size of a contrast agent bottle, making storage, handling and shielding more efficient to implement.
- a balloon reservoir for delivering the radioactive dosage provides a more uniform dosage pattern to the artery wall.
- this invention modified for use with a radioactive-tipped wire.
- the balloon would be filled with saline or other liquid transparent to radiation, and the radiation source wire would be advanced through a central lumen and placed across the treatment window.
- FIG. 1 is an elevational view, partly in section, depicting a perfusion catheter embodying features of the invention.
- FIG. 2 is an elevational view, partly in section, depicting an over-the-wire catheter embodying features of the invention.
- FIG. 3 is an elevational view, partly in section, depicting a rapid exchange catheter embodying features of the present invention.
- FIG. 4 is an elevational view, partly in section, depicting a steerable catheter embodying features of the present invention.
- the present invention provides a catheter which is adapted to deliver a radiation source to a target area in a body lumen, such as a coronary artery, for a period of time.
- the catheter includes material which shields the patient and staff from unintended radiation exposure.
- the catheter further includes a treatment section expandable by very low fluid pressures, and comprised of non-radiation-shielding material, adapted to enable predetermined concentrations of radioactivity in the radiation source to permeate therethrough in a substantially uniform pattern, to provide a substantially uniform radiation dosage pattern to the target area.
- an intravascular catheter 10 is adapted to deliver a radioactive source to a target area 15 in a body lumen.
- the radioactive source herein is in the form of a radioactive fluid, adapted to flow through the catheter and into the target area.
- target area refers to that part of the body lumen that has received a PTCA, percutaneous transluminal angioplasty (PTA), atherectomy, or similar procedure to reduce or remove a stenosis, which intervention often leads to the development of restenosis caused, in part, by intimal hyperplasia or the proliferation of smooth muscle cells.
- the radioactive fluid emits alpha, beta, or gamma radiation particles, has a viscosity which enables it to flow through a small opening, and has a viscosity sufficient to transmit pressure in an open conduit.
- Catheter 10 includes an elongated shaft 20, lumen 22 extending through shaft 20, and distal tip 24.
- Shaft 20 has a shielded section 26 for shielding the body lumen from the radioactive fluid.
- Shaft 20 may alternatively be comprised of a composite construction, which may constitute a plastic inner tube and a metal outer layer.
- shield section 26 includes substantially all of elongated shaft 20 with the exception of treatment section 28, which is substantially radiation transparent.
- Catheter 10 further includes treatment section 28 associated with shaft 20, adapted to treat target area 15 in the body lumen with the radioactive fluid.
- Shaft 20 is preferably formed from a base resin material as is known in the art, and shielded section 26 preferably comprises an additive adapted to substantially increase the radiation attenuation capacity of the base resin material.
- Shaft 20 may be formed in whole or in part from polymers such as polyethylene (PE) or polyethylene terepthalate (PET), or similar polymers, sold by DuPont Company), polyvinyl chloride, nylon, SURYLN®, with shielded section 26 modified to provide radiation shielding.
- Shaft 20 may for example comprise a polymer, and the additive in shielded section 26 may comprise a material selected from the group which includes boron.
- shielded section 26 may be formed at least in part from a material selected from the group of naturally occurring isotopes which include calcium 40 , lead 206 , and sodium 23 , or particles of these isotopes blended into the polymer forming shielded section 26.
- Treatment section 28 has a reservoir 30, in fluid communication with shaft lumen 22, and is disposed proximate shaft distal tip 24.
- Reservoir 30 is adapted to be expandable and to enable preselected concentrations of radioactivity in the radioactive fluid to permeate therethrough into target area 15 of the body lumen, in a substantially uniform pattern, to provide a substantially uniform radioactive dosage pattern to the target area.
- the term "expandable” as used herein refers to a preformed, non-distensible reservoir 30 which, when it expands, will have a predetermined shape.
- Reservoir 30 is comprised of a material that is radiation transparent, and is preferably an expandable balloon similar to those used in PTCA or PTA procedures.
- Reservoir 30 may for example comprise a polymer that is substantially radiation transparent such as PE or PET.
- Catheter 10 also includes an adapter 32, in fluid communication with shaft lumen 22 and spaced from reservoir 30, and a device 34 for pressurizing the radioactive fluid, connectable to adapter 32.
- Pressurizing device 34 is operable at substantially low operating pressure to pressurize the radioactive fluid, such that the radioactive fluid exerts substantially low pressure on reservoir 30 and on the target area.
- Pressurizing device 34 is preferably shielded from radioactivity, and may further be adapted with an instantaneous radioactive fluid leak detector. Leak detection with pressurizing device 34 may be performed prior to treatment.
- pressurizing device 34 will have an operating limit in the range of the lower 0.1% of the distribution of its mean failure modality. Thus, very low fluid pressures are capable of inflating reservoir 30.
- Catheter 10 may comprise a perfusion catheter as shown in FIG. 1, a non-perfusion over-the-wire catheter as shown in FIG. 2, a rapid exchange catheter as shown in FIG. 3, or a steerable catheter as shown in FIG. 4. Further details regarding perfusion catheters may be found in U.S. Pat. No. 5,516,336, regarding over-the-wire catheters in U.S. Pat. No. 5,480,383, regarding rapid exchange catheters in U.S. Pat. No. 5,458,613, and regarding steerable catheters in U.S. Pat. No. 5,449,343, which are incorporated herein by reference.
- reservoir 30 is disposed proximate distal tip 24.
- Both the over-the-wire catheter (FIG. 2) and the rapid exchange catheter (FIG. 3) can be adapted to include perfusion capabilities if inflation of reservoir 28 is for a time period necessitating blood flow past the reservoir.
- the catheter radiation delivery system may be manufactured, packaged, and sterilized in a manner similar to that which is standard for dilatation products.
- the target area 15 for irradiation may have had a previous PTCA, PTA, atherectomy, received a stent or otherwise treated with a vascular procedure.
- catheter 10 For delivery of a radioactive fluid to target area 15, catheter 10 is advanced to the desired location within the patient's vascular system, such as where the prior vascular procedure has been performed.
- Reservoir 30 is positioned within target area 15 prior to inflation.
- Pressurizing device 34 connected to catheter adapter 32 is then operable to generate flow of the radioactive fluid 40 through catheter lumen 22 and into catheter treatment section 28, expanding reservoir 30 into contact with target area 15, and enabling predetermined concentrations of radioactivity in radioactive fluid 40 to penetrate target area 15.
- Reservoir 30 is left in place in the expanded condition for sufficient time, preferably from about one minute up to about sixty minutes, to allow a sufficient radiation dose to destroy the cells likely to cause development of restenosis. As described, longer inflation times for reservoir 30 necessitates the use of a catheter design having perfusion capabilities.
- radioactive fluid 40 may be withdrawn from reservoir 30 into radiation shielded pressurizing device 34. Catheter 10 is then withdrawn from the location within the patient's vasculature.
- radioactive fluid is not injected in catheter 10 until reservoir 30 is positioned within target area 15, and is removed from catheter 10 prior to removal of catheter 10 from the target area, this substantially reduces exposure of the patient and laboratory staff to the radiation source while catheter 10 is in transit to and from the target area.
- shielded elongated catheter shaft 20 In use at target area 15, shielded elongated catheter shaft 20 substantially increases the margin of safety and reduces unintended exposure in the use of the radioactive fluid.
- the catheter assembly will deliver a low dosage of radiation to the body lumen, such as a coronary artery, and is configured to provide the dosage over time. It is preferred that a low dosage of radiation, on the order of 0.1 up to 3.0 curies be the typical radiation level provided to treat, for example, a coronary artery. Preferably, 1.0 to 2.0 curies will provide the proper radiation level.
- the radiation dose delivered to a coronary artery should be in the range from about 500 to 3,000 rads in preferably not less than two minutes.
- the radiation dose can be delivered in less than two minutes, however, it is preferred that a longer time frame be used so that a lower dose can be administered.
- the dose amounts and radiation exposure times are exemplary and not intended to be limiting. Those skilled in the art will understand that the curie level of the radiation source, the dose level, and exposure time are interrelated and variable, and the optimum parameters will be determined by the particular application. Thus, those skilled in the art will understand that the invention as described herein can be used in any artery or vein and the radiation dose level will necessarily vary for each application.
- the preferred radiation sources include iridium 192 , cobalt 60 , vanadium 48 , gold 198 , and phosphours 32 . Further, it is contemplated that the radiation sources emit either alpha, beta, or gamma particles to destroy target cells. The use of alpha-, beta-, and gamma-emitting radiation is well known for treating and killing cancerous cells.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
Claims (53)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/024,669 US6159140A (en) | 1998-02-17 | 1998-02-17 | Radiation shielded catheter for delivering a radioactive source and method of use |
PCT/US1999/003343 WO1999040974A1 (en) | 1998-02-17 | 1999-02-17 | Radiation shielded catheter for delivering a radioactive source and method of use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/024,669 US6159140A (en) | 1998-02-17 | 1998-02-17 | Radiation shielded catheter for delivering a radioactive source and method of use |
Publications (1)
Publication Number | Publication Date |
---|---|
US6159140A true US6159140A (en) | 2000-12-12 |
Family
ID=21821780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/024,669 Expired - Lifetime US6159140A (en) | 1998-02-17 | 1998-02-17 | Radiation shielded catheter for delivering a radioactive source and method of use |
Country Status (2)
Country | Link |
---|---|
US (1) | US6159140A (en) |
WO (1) | WO1999040974A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6368266B1 (en) * | 1999-11-12 | 2002-04-09 | Vascular Architects, Inc. | Medical irradiation assembly and method |
US6579221B1 (en) | 2001-05-31 | 2003-06-17 | Advanced Cardiovascular Systems, Inc. | Proximal catheter shaft design and catheters incorporating the proximal shaft design |
US6582352B2 (en) | 1994-06-10 | 2003-06-24 | Schneider (Europe) A.G. | Medical appliance for treatment by ionizing radiation |
US6599230B2 (en) | 1996-02-29 | 2003-07-29 | Scimed Life Systems, Inc. | Intravascular radiation delivery system |
US6616629B1 (en) | 1994-06-24 | 2003-09-09 | Schneider (Europe) A.G. | Medical appliance with centering balloon |
US6658088B2 (en) * | 2000-11-09 | 2003-12-02 | Radi Medical Technologies Ab | Miniature X-ray source and method |
US6679860B2 (en) | 2001-06-19 | 2004-01-20 | Medtronic Ave, Inc. | Intraluminal therapy catheter with inflatable helical member and methods of use |
US6746392B2 (en) | 2001-06-20 | 2004-06-08 | Medtronic Ave, Inc. | Brachytherapy catheter with twisted lumens and methods of use |
US7276019B2 (en) | 2001-02-22 | 2007-10-02 | Retinalabs, Inc. | Ophthalmic treatment apparatus |
US7563222B2 (en) | 2004-02-12 | 2009-07-21 | Neovista, Inc. | Methods and apparatus for intraocular brachytherapy |
US7744520B2 (en) | 2004-02-12 | 2010-06-29 | Neovista, Inc. | Method and apparatus for intraocular brachytherapy |
US7803103B2 (en) | 2005-02-11 | 2010-09-28 | Neovista Inc. | Methods and apparatus for intraocular brachytherapy |
US20120253100A1 (en) * | 2009-12-23 | 2012-10-04 | Chisholm Robert F | Braced brachytherapy needle |
US8353812B2 (en) | 2008-06-04 | 2013-01-15 | Neovista, Inc. | Handheld radiation delivery system |
Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4661094A (en) * | 1985-05-03 | 1987-04-28 | Advanced Cardiovascular Systems | Perfusion catheter and method |
US4697575A (en) * | 1984-11-21 | 1987-10-06 | Henry Ford Hospital | Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member |
US4706652A (en) * | 1985-12-30 | 1987-11-17 | Henry Ford Hospital | Temporary radiation therapy |
US4744366A (en) * | 1986-09-10 | 1988-05-17 | Jang G David | Concentric independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems and method of use |
US4748982A (en) * | 1987-01-06 | 1988-06-07 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
US4762130A (en) * | 1987-01-15 | 1988-08-09 | Thomas J. Fogarty | Catheter with corkscrew-like balloon |
US4763671A (en) * | 1983-12-27 | 1988-08-16 | Stanford University | Method of treating tumors using selective application of heat and radiation |
US4771778A (en) * | 1987-01-06 | 1988-09-20 | Advanced Cardiovascular Systems, Inc. | Steerable low profile balloon dilatation catheter |
US4771777A (en) * | 1987-01-06 | 1988-09-20 | Advanced Cardiovascular Systems, Inc. | Perfusion type balloon dilatation catheter, apparatus and method |
US4775371A (en) * | 1986-09-02 | 1988-10-04 | Advanced Cardiovascular Systems, Inc. | Stiffened dilatation catheter and method of manufacture |
US4790315A (en) * | 1986-09-02 | 1988-12-13 | Advanced Cardiovascular Systems, Inc. | Perfusion dilatation catheter and method of manufacture |
US4861520A (en) * | 1988-10-28 | 1989-08-29 | Eric van't Hooft | Capsule for radioactive source |
US4936823A (en) * | 1988-05-04 | 1990-06-26 | Triangle Research And Development Corp. | Transendoscopic implant capsule |
US4940064A (en) * | 1986-11-14 | 1990-07-10 | Desai Jawahar M | Catheter for mapping and ablation and method therefor |
US4969863A (en) * | 1988-10-28 | 1990-11-13 | Eric van't Hooft | Adaptor for remote after-loading apparatus for radiotherapy |
US4976720A (en) * | 1987-01-06 | 1990-12-11 | Advanced Cardiovascular Systems, Inc. | Vascular catheters |
US4983167A (en) * | 1988-11-23 | 1991-01-08 | Harvinder Sahota | Balloon catheters |
US4994560A (en) * | 1987-06-24 | 1991-02-19 | The Dow Chemical Company | Functionalized polyamine chelants and radioactive rhodium complexes thereof for conjugation to antibodies |
US4998917A (en) * | 1988-05-26 | 1991-03-12 | Advanced Cardiovascular Systems, Inc. | High torque steerable dilatation catheter |
US5002560A (en) * | 1989-09-08 | 1991-03-26 | Advanced Cardiovascular Systems, Inc. | Expandable cage catheter with a rotatable guide |
US5015230A (en) * | 1989-01-30 | 1991-05-14 | Vas-Cath Incorporated | Angioplasty catheter with spiral balloon |
US5032113A (en) * | 1989-04-13 | 1991-07-16 | Scimed Life Systems, Inc. | Innerless catheter |
US5034001A (en) * | 1989-09-08 | 1991-07-23 | Advanced Cardiovascular Systems, Inc. | Method of repairing a damaged blood vessel with an expandable cage catheter |
US5040543A (en) * | 1990-07-25 | 1991-08-20 | C. R. Bard, Inc. | Movable core guidewire |
US5046503A (en) * | 1989-04-26 | 1991-09-10 | Advanced Cardiovascular Systems, Inc. | Angioplasty autoperfusion catheter flow measurement method and apparatus |
US5059166A (en) * | 1989-12-11 | 1991-10-22 | Medical Innovative Technologies R & D Limited Partnership | Intra-arterial stent with the capability to inhibit intimal hyperplasia |
US5061273A (en) * | 1989-06-01 | 1991-10-29 | Yock Paul G | Angioplasty apparatus facilitating rapid exchanges |
US5084002A (en) * | 1988-08-04 | 1992-01-28 | Omnitron International, Inc. | Ultra-thin high dose iridium source for remote afterloader |
US5100429A (en) * | 1989-04-28 | 1992-03-31 | C. R. Bard, Inc. | Endovascular stent and delivery system |
US5133956A (en) * | 1991-05-30 | 1992-07-28 | The Dow Chemical Company | Radiolabeled metal-binding protein for the treatment of arthritis |
US5137513A (en) * | 1990-07-02 | 1992-08-11 | Advanced Cardiovoascular Systems, Inc. | Perfusion dilatation catheter |
WO1992017236A1 (en) * | 1991-04-05 | 1992-10-15 | Boston Scientific Corporation | Adjustably stiffenable convertible catheter assembly |
US5176661A (en) * | 1988-09-06 | 1993-01-05 | Advanced Cardiovascular Systems, Inc. | Composite vascular catheter |
US5176617A (en) * | 1989-12-11 | 1993-01-05 | Medical Innovative Technologies R & D Limited Partnership | Use of a stent with the capability to inhibit malignant growth in a vessel such as a biliary duct |
US5180368A (en) * | 1989-09-08 | 1993-01-19 | Advanced Cardiovascular Systems, Inc. | Rapidly exchangeable and expandable cage catheter for repairing damaged blood vessels |
WO1993004735A1 (en) * | 1991-09-05 | 1993-03-18 | Cedars-Sinai Medical Center | Method and apparatus for restenosis treatment |
US5195971A (en) * | 1992-02-10 | 1993-03-23 | Advanced Cardiovascular Systems, Inc. | Perfusion type dilatation catheter |
US5199939A (en) * | 1990-02-23 | 1993-04-06 | Dake Michael D | Radioactive catheter |
US5213561A (en) * | 1990-09-06 | 1993-05-25 | Weinstein Joseph S | Method and devices for preventing restenosis after angioplasty |
US5226889A (en) * | 1990-07-30 | 1993-07-13 | Imad Sheiban | Double balloon catheter for stent implantation |
US5242396A (en) * | 1991-12-19 | 1993-09-07 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter with reinforcing mandrel |
US5258419A (en) * | 1989-06-26 | 1993-11-02 | Minnesota Mining And Manufacturing Company | Methods of preparing radiation resistant heat sealable polymer blends |
US5263963A (en) * | 1989-09-08 | 1993-11-23 | Advanced Cardiovascular Systems, Inc. | Expandable cage catheter for repairing a damaged blood vessel |
US5267960A (en) * | 1990-03-19 | 1993-12-07 | Omnitron International Inc. | Tissue engaging catheter for a radioactive source wire |
US5273738A (en) * | 1990-03-03 | 1993-12-28 | Fred Hutchinson Cancer Research Center | Radiation delivery to lymphoid and marrow tissues |
US5279562A (en) * | 1991-07-24 | 1994-01-18 | Advanced Cardiovascular Systems, Inc. | Low profile perfusion-type dilatation catheter |
US5282781A (en) * | 1990-10-25 | 1994-02-01 | Omnitron International Inc. | Source wire for localized radiation treatment of tumors |
US5295960A (en) * | 1992-04-01 | 1994-03-22 | Applied Medical Resources Corporation | Catheter with interior balloon |
US5295959A (en) * | 1992-03-13 | 1994-03-22 | Medtronic, Inc. | Autoperfusion dilatation catheter having a bonded channel |
US5295995A (en) * | 1992-08-27 | 1994-03-22 | Kleiman Jay H | Perfusion dilatation catheter |
US5300281A (en) * | 1991-02-15 | 1994-04-05 | The Dow Chemical Company | Radiolabeled compositions containing a calcific matrix and their use for treatment of arthritis |
US5302168A (en) * | 1991-09-05 | 1994-04-12 | Hess Robert L | Method and apparatus for restenosis treatment |
US5306246A (en) * | 1990-11-09 | 1994-04-26 | Boston Scientific Corporation | Balloon for medical catheter |
US5308356A (en) * | 1993-02-25 | 1994-05-03 | Blackshear Jr Perry L | Passive perfusion angioplasty catheter |
US5320824A (en) * | 1989-10-12 | 1994-06-14 | Mallinckrodt Medical, Inc. | Radionuclide labelled particles useful for radiation synovectomy |
US5334154A (en) * | 1992-08-04 | 1994-08-02 | Advanced Cardiovascular Systems, Inc. | Perfusion type dilatation catheter having perfusion ports with depressed proximal edges |
US5350361A (en) * | 1993-11-10 | 1994-09-27 | Medtronic, Inc. | Tri-fold balloon for dilatation catheter and related method |
US5352199A (en) * | 1993-05-28 | 1994-10-04 | Numed, Inc. | Balloon catheter |
US5354257A (en) * | 1991-01-29 | 1994-10-11 | Med Institute, Inc. | Minimally invasive medical device for providing a radiation treatment |
WO1994025106A1 (en) * | 1993-05-04 | 1994-11-10 | Omnitron International Incorporated | Radioactive source wire, apparatus and treatment methods |
EP0633041A1 (en) * | 1993-07-01 | 1995-01-11 | Schneider (Europe) Ag | Medical appliances for the treatment of blood vessels by means of ionizing radiation |
US5395333A (en) * | 1993-09-01 | 1995-03-07 | Scimed Life Systems, Inc. | Multi-lobed support balloon catheter with perfusion |
US5405622A (en) * | 1993-12-22 | 1995-04-11 | Vernice; Joseph | Gamma radiation resistant lubricating gel |
US5409495A (en) * | 1993-08-24 | 1995-04-25 | Advanced Cardiovascular Systems, Inc. | Apparatus for uniformly implanting a stent |
US5415664A (en) * | 1994-03-30 | 1995-05-16 | Corvita Corporation | Method and apparatus for introducing a stent or a stent-graft |
WO1995019807A1 (en) * | 1994-01-21 | 1995-07-27 | The Trustees Of Columbia University In The City Of New York | Apparatus and method to reduce restenosis after arterial intervention |
US5441516A (en) * | 1994-03-03 | 1995-08-15 | Scimed Lifesystems Inc. | Temporary stent |
US5447497A (en) * | 1992-08-06 | 1995-09-05 | Scimed Life Systems, Inc | Balloon catheter having nonlinear compliance curve and method of using |
US5456667A (en) * | 1993-05-20 | 1995-10-10 | Advanced Cardiovascular Systems, Inc. | Temporary stenting catheter with one-piece expandable segment |
WO1995026681A1 (en) * | 1994-03-31 | 1995-10-12 | Liprie Samuel F | Device for treating constriction in a bodily conduit |
US5458572A (en) * | 1994-07-01 | 1995-10-17 | Boston Scientific Corp. | Catheter with balloon folding into predetermined configurations and method of manufacture |
EP0688580A1 (en) * | 1994-06-24 | 1995-12-27 | Schneider (Europe) Ag | Medical appliance for the treatment of a portion of body vessel by ionising radiation |
US5484384A (en) * | 1991-01-29 | 1996-01-16 | Med Institute, Inc. | Minimally invasive medical device for providing a radiation treatment |
WO1996006654A1 (en) * | 1994-08-30 | 1996-03-07 | Teirstein Paul S | Irradiation catheter and method of use |
US5498227A (en) * | 1993-09-15 | 1996-03-12 | Mawad; Michel E. | Retrievable, shielded radiotherapy implant |
US5503614A (en) * | 1994-06-08 | 1996-04-02 | Liprie; Samuel F. | Flexible source wire for radiation treatment of diseases |
US5507301A (en) * | 1993-11-19 | 1996-04-16 | Advanced Cardiovascular Systems, Inc. | Catheter and guidewire system with flexible distal portions |
US5507769A (en) * | 1994-10-18 | 1996-04-16 | Stentco, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
US5516336A (en) * | 1990-02-07 | 1996-05-14 | Advanced Cardiovascular Systems, Inc. | Readily exchangeable perfusion dilatation catheter |
US5542925A (en) * | 1993-11-05 | 1996-08-06 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter with oblong perfusion ports |
US5573509A (en) * | 1994-11-22 | 1996-11-12 | Advanced Cardiovascular Systems, Inc. | Catheter with an expandable perfusion slit |
US5573508A (en) * | 1994-11-22 | 1996-11-12 | Advanced Cardiovascular Systems, Inc. | Catheter with an expandable perfusion lumen |
US5643171A (en) * | 1993-05-04 | 1997-07-01 | Neocardia, Llc | Method and apparatus for uniform radiation treatment of vascular lumens |
US5653691A (en) * | 1996-04-25 | 1997-08-05 | Rupp; Garry Eugene | Thickened inner lumen for uniform stent expansion and method of making |
EP0801961A2 (en) * | 1996-04-15 | 1997-10-22 | Angiorad L.L.C. | Method and apparatus for treating stenosis or other constriction in a bodily conduit |
US5688486A (en) * | 1992-02-11 | 1997-11-18 | Nycomed Salutar, Inc. | Use of fullerenes in diagnostic and/or therapeutic agents |
EP0829271A2 (en) * | 1996-09-13 | 1998-03-18 | Angiorad L.L.C. | Dilatation/centering catheter |
US5730698A (en) * | 1995-05-09 | 1998-03-24 | Fischell; Robert E. | Balloon expandable temporary radioisotope stent system |
EP0865803A2 (en) * | 1997-03-21 | 1998-09-23 | Schneider (Usa) Inc. | Self-expanding medical device |
US5840067A (en) * | 1997-02-28 | 1998-11-24 | Berguer; Ramon | Centerflow catheter |
EP0879614A1 (en) * | 1997-05-20 | 1998-11-25 | Advanced Cardiovascular Systems, Inc. | Catheter and guide wire assembly for delivery of a radiation source |
US5851171A (en) * | 1997-11-04 | 1998-12-22 | Advanced Cardiovascular Systems, Inc. | Catheter assembly for centering a radiation source within a body lumen |
US5910101A (en) * | 1996-08-29 | 1999-06-08 | Advanced Cardiovascular Systems, Inc. | Device for loading and centering a vascular radiation therapy source |
US5938582A (en) * | 1997-09-26 | 1999-08-17 | Medtronic, Inc. | Radiation delivery centering catheter |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2060067A1 (en) | 1991-01-28 | 1992-07-29 | Lilip Lau | Stent delivery system |
CA2380683C (en) | 1991-10-28 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
JP2703510B2 (en) | 1993-12-28 | 1998-01-26 | アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド | Expandable stent and method of manufacturing the same |
US5616114A (en) * | 1994-12-08 | 1997-04-01 | Neocardia, Llc. | Intravascular radiotherapy employing a liquid-suspended source |
US5916143A (en) * | 1996-04-30 | 1999-06-29 | Apple; Marc G. | Brachytherapy catheter system |
-
1998
- 1998-02-17 US US09/024,669 patent/US6159140A/en not_active Expired - Lifetime
-
1999
- 1999-02-17 WO PCT/US1999/003343 patent/WO1999040974A1/en active Application Filing
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4763671A (en) * | 1983-12-27 | 1988-08-16 | Stanford University | Method of treating tumors using selective application of heat and radiation |
US4697575A (en) * | 1984-11-21 | 1987-10-06 | Henry Ford Hospital | Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member |
US4815449A (en) * | 1984-11-21 | 1989-03-28 | Horowitz Bruce S | Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member |
US4661094A (en) * | 1985-05-03 | 1987-04-28 | Advanced Cardiovascular Systems | Perfusion catheter and method |
US4706652A (en) * | 1985-12-30 | 1987-11-17 | Henry Ford Hospital | Temporary radiation therapy |
US4775371A (en) * | 1986-09-02 | 1988-10-04 | Advanced Cardiovascular Systems, Inc. | Stiffened dilatation catheter and method of manufacture |
US4790315A (en) * | 1986-09-02 | 1988-12-13 | Advanced Cardiovascular Systems, Inc. | Perfusion dilatation catheter and method of manufacture |
US4744366A (en) * | 1986-09-10 | 1988-05-17 | Jang G David | Concentric independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems and method of use |
US4940064A (en) * | 1986-11-14 | 1990-07-10 | Desai Jawahar M | Catheter for mapping and ablation and method therefor |
US4771778A (en) * | 1987-01-06 | 1988-09-20 | Advanced Cardiovascular Systems, Inc. | Steerable low profile balloon dilatation catheter |
US4771777A (en) * | 1987-01-06 | 1988-09-20 | Advanced Cardiovascular Systems, Inc. | Perfusion type balloon dilatation catheter, apparatus and method |
US4748982A (en) * | 1987-01-06 | 1988-06-07 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
US4976720A (en) * | 1987-01-06 | 1990-12-11 | Advanced Cardiovascular Systems, Inc. | Vascular catheters |
US4762130A (en) * | 1987-01-15 | 1988-08-09 | Thomas J. Fogarty | Catheter with corkscrew-like balloon |
US4994560A (en) * | 1987-06-24 | 1991-02-19 | The Dow Chemical Company | Functionalized polyamine chelants and radioactive rhodium complexes thereof for conjugation to antibodies |
US4936823A (en) * | 1988-05-04 | 1990-06-26 | Triangle Research And Development Corp. | Transendoscopic implant capsule |
US4998917A (en) * | 1988-05-26 | 1991-03-12 | Advanced Cardiovascular Systems, Inc. | High torque steerable dilatation catheter |
US5084002A (en) * | 1988-08-04 | 1992-01-28 | Omnitron International, Inc. | Ultra-thin high dose iridium source for remote afterloader |
US5176661A (en) * | 1988-09-06 | 1993-01-05 | Advanced Cardiovascular Systems, Inc. | Composite vascular catheter |
US4969863A (en) * | 1988-10-28 | 1990-11-13 | Eric van't Hooft | Adaptor for remote after-loading apparatus for radiotherapy |
US4861520A (en) * | 1988-10-28 | 1989-08-29 | Eric van't Hooft | Capsule for radioactive source |
US4983167A (en) * | 1988-11-23 | 1991-01-08 | Harvinder Sahota | Balloon catheters |
US5015230A (en) * | 1989-01-30 | 1991-05-14 | Vas-Cath Incorporated | Angioplasty catheter with spiral balloon |
US5032113A (en) * | 1989-04-13 | 1991-07-16 | Scimed Life Systems, Inc. | Innerless catheter |
US5046503A (en) * | 1989-04-26 | 1991-09-10 | Advanced Cardiovascular Systems, Inc. | Angioplasty autoperfusion catheter flow measurement method and apparatus |
US5100429A (en) * | 1989-04-28 | 1992-03-31 | C. R. Bard, Inc. | Endovascular stent and delivery system |
US5061273A (en) * | 1989-06-01 | 1991-10-29 | Yock Paul G | Angioplasty apparatus facilitating rapid exchanges |
US5258419A (en) * | 1989-06-26 | 1993-11-02 | Minnesota Mining And Manufacturing Company | Methods of preparing radiation resistant heat sealable polymer blends |
US5034001A (en) * | 1989-09-08 | 1991-07-23 | Advanced Cardiovascular Systems, Inc. | Method of repairing a damaged blood vessel with an expandable cage catheter |
US5002560A (en) * | 1989-09-08 | 1991-03-26 | Advanced Cardiovascular Systems, Inc. | Expandable cage catheter with a rotatable guide |
US5263963A (en) * | 1989-09-08 | 1993-11-23 | Advanced Cardiovascular Systems, Inc. | Expandable cage catheter for repairing a damaged blood vessel |
US5180368A (en) * | 1989-09-08 | 1993-01-19 | Advanced Cardiovascular Systems, Inc. | Rapidly exchangeable and expandable cage catheter for repairing damaged blood vessels |
US5320824A (en) * | 1989-10-12 | 1994-06-14 | Mallinckrodt Medical, Inc. | Radionuclide labelled particles useful for radiation synovectomy |
US5176617A (en) * | 1989-12-11 | 1993-01-05 | Medical Innovative Technologies R & D Limited Partnership | Use of a stent with the capability to inhibit malignant growth in a vessel such as a biliary duct |
US5059166A (en) * | 1989-12-11 | 1991-10-22 | Medical Innovative Technologies R & D Limited Partnership | Intra-arterial stent with the capability to inhibit intimal hyperplasia |
US5516336A (en) * | 1990-02-07 | 1996-05-14 | Advanced Cardiovascular Systems, Inc. | Readily exchangeable perfusion dilatation catheter |
US5199939A (en) * | 1990-02-23 | 1993-04-06 | Dake Michael D | Radioactive catheter |
US5199939B1 (en) * | 1990-02-23 | 1998-08-18 | Michael D Dake | Radioactive catheter |
US5273738A (en) * | 1990-03-03 | 1993-12-28 | Fred Hutchinson Cancer Research Center | Radiation delivery to lymphoid and marrow tissues |
US5267960A (en) * | 1990-03-19 | 1993-12-07 | Omnitron International Inc. | Tissue engaging catheter for a radioactive source wire |
US5137513A (en) * | 1990-07-02 | 1992-08-11 | Advanced Cardiovoascular Systems, Inc. | Perfusion dilatation catheter |
US5040543A (en) * | 1990-07-25 | 1991-08-20 | C. R. Bard, Inc. | Movable core guidewire |
US5226889A (en) * | 1990-07-30 | 1993-07-13 | Imad Sheiban | Double balloon catheter for stent implantation |
US5213561A (en) * | 1990-09-06 | 1993-05-25 | Weinstein Joseph S | Method and devices for preventing restenosis after angioplasty |
US5282781A (en) * | 1990-10-25 | 1994-02-01 | Omnitron International Inc. | Source wire for localized radiation treatment of tumors |
US5306246A (en) * | 1990-11-09 | 1994-04-26 | Boston Scientific Corporation | Balloon for medical catheter |
US5354257A (en) * | 1991-01-29 | 1994-10-11 | Med Institute, Inc. | Minimally invasive medical device for providing a radiation treatment |
US5484384A (en) * | 1991-01-29 | 1996-01-16 | Med Institute, Inc. | Minimally invasive medical device for providing a radiation treatment |
US5300281A (en) * | 1991-02-15 | 1994-04-05 | The Dow Chemical Company | Radiolabeled compositions containing a calcific matrix and their use for treatment of arthritis |
WO1992017236A1 (en) * | 1991-04-05 | 1992-10-15 | Boston Scientific Corporation | Adjustably stiffenable convertible catheter assembly |
US5133956A (en) * | 1991-05-30 | 1992-07-28 | The Dow Chemical Company | Radiolabeled metal-binding protein for the treatment of arthritis |
US5279562A (en) * | 1991-07-24 | 1994-01-18 | Advanced Cardiovascular Systems, Inc. | Low profile perfusion-type dilatation catheter |
US5302168A (en) * | 1991-09-05 | 1994-04-12 | Hess Robert L | Method and apparatus for restenosis treatment |
WO1993004735A1 (en) * | 1991-09-05 | 1993-03-18 | Cedars-Sinai Medical Center | Method and apparatus for restenosis treatment |
US5411466A (en) * | 1991-09-05 | 1995-05-02 | Robert L. Hess | Apparatus for restenosis treatment |
US5242396A (en) * | 1991-12-19 | 1993-09-07 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter with reinforcing mandrel |
US5195971A (en) * | 1992-02-10 | 1993-03-23 | Advanced Cardiovascular Systems, Inc. | Perfusion type dilatation catheter |
US5688486A (en) * | 1992-02-11 | 1997-11-18 | Nycomed Salutar, Inc. | Use of fullerenes in diagnostic and/or therapeutic agents |
US5295959A (en) * | 1992-03-13 | 1994-03-22 | Medtronic, Inc. | Autoperfusion dilatation catheter having a bonded channel |
US5295960A (en) * | 1992-04-01 | 1994-03-22 | Applied Medical Resources Corporation | Catheter with interior balloon |
US5334154A (en) * | 1992-08-04 | 1994-08-02 | Advanced Cardiovascular Systems, Inc. | Perfusion type dilatation catheter having perfusion ports with depressed proximal edges |
US5447497A (en) * | 1992-08-06 | 1995-09-05 | Scimed Life Systems, Inc | Balloon catheter having nonlinear compliance curve and method of using |
US5295995A (en) * | 1992-08-27 | 1994-03-22 | Kleiman Jay H | Perfusion dilatation catheter |
US5308356A (en) * | 1993-02-25 | 1994-05-03 | Blackshear Jr Perry L | Passive perfusion angioplasty catheter |
WO1994025106A1 (en) * | 1993-05-04 | 1994-11-10 | Omnitron International Incorporated | Radioactive source wire, apparatus and treatment methods |
US5643171A (en) * | 1993-05-04 | 1997-07-01 | Neocardia, Llc | Method and apparatus for uniform radiation treatment of vascular lumens |
US5456667A (en) * | 1993-05-20 | 1995-10-10 | Advanced Cardiovascular Systems, Inc. | Temporary stenting catheter with one-piece expandable segment |
US5352199A (en) * | 1993-05-28 | 1994-10-04 | Numed, Inc. | Balloon catheter |
EP0633041A1 (en) * | 1993-07-01 | 1995-01-11 | Schneider (Europe) Ag | Medical appliances for the treatment of blood vessels by means of ionizing radiation |
US5540659A (en) * | 1993-07-15 | 1996-07-30 | Teirstein; Paul S. | Irradiation catheter and method of use |
US5409495A (en) * | 1993-08-24 | 1995-04-25 | Advanced Cardiovascular Systems, Inc. | Apparatus for uniformly implanting a stent |
US5395333A (en) * | 1993-09-01 | 1995-03-07 | Scimed Life Systems, Inc. | Multi-lobed support balloon catheter with perfusion |
US5498227A (en) * | 1993-09-15 | 1996-03-12 | Mawad; Michel E. | Retrievable, shielded radiotherapy implant |
US5542925A (en) * | 1993-11-05 | 1996-08-06 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter with oblong perfusion ports |
US5350361A (en) * | 1993-11-10 | 1994-09-27 | Medtronic, Inc. | Tri-fold balloon for dilatation catheter and related method |
US5507301A (en) * | 1993-11-19 | 1996-04-16 | Advanced Cardiovascular Systems, Inc. | Catheter and guidewire system with flexible distal portions |
US5405622A (en) * | 1993-12-22 | 1995-04-11 | Vernice; Joseph | Gamma radiation resistant lubricating gel |
WO1995019807A1 (en) * | 1994-01-21 | 1995-07-27 | The Trustees Of Columbia University In The City Of New York | Apparatus and method to reduce restenosis after arterial intervention |
US5503613A (en) * | 1994-01-21 | 1996-04-02 | The Trustees Of Columbia University In The City Of New York | Apparatus and method to reduce restenosis after arterial intervention |
US5441516A (en) * | 1994-03-03 | 1995-08-15 | Scimed Lifesystems Inc. | Temporary stent |
US5415664A (en) * | 1994-03-30 | 1995-05-16 | Corvita Corporation | Method and apparatus for introducing a stent or a stent-graft |
WO1995026681A1 (en) * | 1994-03-31 | 1995-10-12 | Liprie Samuel F | Device for treating constriction in a bodily conduit |
US5503614A (en) * | 1994-06-08 | 1996-04-02 | Liprie; Samuel F. | Flexible source wire for radiation treatment of diseases |
EP0688580A1 (en) * | 1994-06-24 | 1995-12-27 | Schneider (Europe) Ag | Medical appliance for the treatment of a portion of body vessel by ionising radiation |
US5458572A (en) * | 1994-07-01 | 1995-10-17 | Boston Scientific Corp. | Catheter with balloon folding into predetermined configurations and method of manufacture |
WO1996006654A1 (en) * | 1994-08-30 | 1996-03-07 | Teirstein Paul S | Irradiation catheter and method of use |
US5507769A (en) * | 1994-10-18 | 1996-04-16 | Stentco, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
US5573509A (en) * | 1994-11-22 | 1996-11-12 | Advanced Cardiovascular Systems, Inc. | Catheter with an expandable perfusion slit |
US5573508A (en) * | 1994-11-22 | 1996-11-12 | Advanced Cardiovascular Systems, Inc. | Catheter with an expandable perfusion lumen |
US5730698A (en) * | 1995-05-09 | 1998-03-24 | Fischell; Robert E. | Balloon expandable temporary radioisotope stent system |
EP0801961A2 (en) * | 1996-04-15 | 1997-10-22 | Angiorad L.L.C. | Method and apparatus for treating stenosis or other constriction in a bodily conduit |
US5653691A (en) * | 1996-04-25 | 1997-08-05 | Rupp; Garry Eugene | Thickened inner lumen for uniform stent expansion and method of making |
US5910101A (en) * | 1996-08-29 | 1999-06-08 | Advanced Cardiovascular Systems, Inc. | Device for loading and centering a vascular radiation therapy source |
EP0829271A2 (en) * | 1996-09-13 | 1998-03-18 | Angiorad L.L.C. | Dilatation/centering catheter |
US5840067A (en) * | 1997-02-28 | 1998-11-24 | Berguer; Ramon | Centerflow catheter |
EP0865803A2 (en) * | 1997-03-21 | 1998-09-23 | Schneider (Usa) Inc. | Self-expanding medical device |
EP0879614A1 (en) * | 1997-05-20 | 1998-11-25 | Advanced Cardiovascular Systems, Inc. | Catheter and guide wire assembly for delivery of a radiation source |
US5938582A (en) * | 1997-09-26 | 1999-08-17 | Medtronic, Inc. | Radiation delivery centering catheter |
US5851171A (en) * | 1997-11-04 | 1998-12-22 | Advanced Cardiovascular Systems, Inc. | Catheter assembly for centering a radiation source within a body lumen |
Non-Patent Citations (84)
Title |
---|
Byhardt, et al., The Heart and Blood Vessels, Radiation Oncology: Rationale, Technique, Results, Chapter Thirteen, pp. 277 284 (Undated). * |
Byhardt, et al., The Heart and Blood Vessels, Radiation Oncology: Rationale, Technique, Results, Chapter Thirteen, pp. 277-284 (Undated). |
Calfee, Richard V., Ph.D., High Dose Rate Afterloader System for Endovascular Use Neocardia, Discoveries in Radiation for Restenosis, Abstract 39 (Jan. 1996). * |
Calfee, Richard V., Ph.D., High Dose Rate Afterloader System for Endovascular Use--Neocardia, Discoveries in Radiation for Restenosis, Abstract 39 (Jan. 1996). |
Condado, et al., Late Follow Up After Percutaneous Transluminal Coronary Angioplasty ( PTCA ) and Intracoronary Radiation Therapy ( ICRT ), Discoveries in Radiation for Restenosis, Abstract 34 (Jan. 1996). * |
Condado, et al., Late Follow-Up After Percutaneous Transluminal Coronary Angioplasty (PTCA) and Intracoronary Radiation Therapy (ICRT), Discoveries in Radiation for Restenosis, Abstract 34 (Jan. 1996). |
Dawson, John T., Theoretic Considerations Regarding Low Dose Radiation Therapy for Prevention of Restenosis After Angioplasty, Texas Heart Institute Journal, vol. 18, No. 1, 1991. * |
Dawson, John T., Theoretic Considerations Regarding Low-Dose Radiation Therapy for Prevention of Restenosis After Angioplasty, Texas Heart Institute Journal, vol. 18, No. 1, 1991. |
Fischell, M.D., et al., Low Dose, Particle Emission from Stent Wire Results in Complete, Localized Inhibition of Smooth Muscle Cell Proliferation, Circulation Research, vol. 90, No. 6, Dec. 1994. * |
Fischell, M.D., et al., Low-Dose, β-Particle Emission from `Stent` Wire Results in Complete, Localized Inhibition of Smooth Muscle Cell Proliferation, Circulation Research, vol. 90, No. 6, Dec. 1994. |
Fischell, Robert E., et al., The Radiosotope Stent: Conception and Implementation, Discoveries in Radiation for Restenosis, Abstract 37 (Jan. 1996). * |
Fischell, Tim A., M.D., A Beta Particle Emitting Radioisotope Stent for the Prevention of Restenosis, Discoveries in Radiation for Restenosis, Abstract 23 (Jan. 1996). * |
Fischell, Tim A., M.D., A Beta-Particle Emitting Radioisotope Stent for the Prevention of Restenosis, Discoveries in Radiation for Restenosis, Abstract 23 (Jan. 1996). |
Friedman, et al., Antiatherogenic Effect of Iridium 192 Upon the Coloesterol Fed Rabbit, Journal of Clinical Investigation, 1964. * |
Friedman, et al., Antiatherogenic Effect of Iridium192 Upon the Coloesterol-Fed Rabbit, Journal of Clinical Investigation, 1964. |
Friedman, et al., Effect of Iridium 192 Radiation on Thromboatherosclerotic Plaque in the Rabbit Aorta, Arch Path, vol. 80, Sep. 1965. * |
Friedman, et al., Effect of Iridium192 Radiation on Thromboatherosclerotic Plaque in the Rabbit Aorta, Arch Path, vol. 80, Sep. 1965. |
Haude, M.D., Quantitiative Analysis of Elastic Recoil After Balloon Angioplasty and After Intracoronary Implantation of Balloon Expandable Palmaz Schatz Stents, Journal of the American College of Cardiology, vol. 21, No. 1, Jan. 1993. * |
Haude, M.D., Quantitiative Analysis of Elastic Recoil After Balloon Angioplasty and After Intracoronary Implantation of Balloon-Expandable Palmaz-Schatz Stents, Journal of the American College of Cardiology, vol. 21, No. 1, Jan. 1993. |
Hehrlein, C., et al., Radioactive Stents, Discoveries in Radiation for Restenosis, Abstract 22 (Jan. 1996). * |
Hehrlein, et al., Low Dose RadioactiveEndovascular Stents Prevent Smooth Muscle Cell Proliferation Neointimal Hyperplasia In Rabbits, collected in Discoveries in Radiation for Restenosis Selected Literature (Jan. 1996). * |
Hehrlein, et al., Low-Dose RadioactiveEndovascular Stents Prevent Smooth Muscle Cell Proliferation Neointimal Hyperplasia In Rabbits, collected in Discoveries in Radiation for Restenosis--Selected Literature (Jan. 1996). |
Hoopes, et al., Intraoperative Irradiation of the Canine Abdominal Aorta and Vena Cava, Int l Journal Radiation Oncology, Biology, Physics, vol. 13, No. 5, May 1987. * |
Hoopes, et al., Intraoperative Irradiation of the Canine Abdominal Aorta and Vena Cava, Int'l Journal Radiation Oncology, Biology, Physics, vol. 13, No. 5, May 1987. |
Hunink, M.D., et al., Risks and Benefits of Femoropopliteal Percutaneous Balloon Angioplasty, Journal of Vascular Surgery, vol. 17, No. 1, Jan. 1993. * |
Johnson, M.D., et al., Review of Radiation Safety in the Cardiac Catherization Laboratory, Catheterization and Cardiovascular Diagnosis, 1992. * |
Kakuta, M.D., et al., Differences in Compensatory Vessel Enlargement, No Intimal Formation, Account for Restenosis After Angioplasty in the Hypercholesterolemic Rabbit Model, Circulation Research, vol. 89, No. 6, Jun. 1994. * |
Katzen, Barry T., M.D., Mechanical Approaches to Restenosis in the Peripheral Circulation, Miami Vascular Institute at Baptist Hospital (Undated). * |
King III, M.D., et al., Clinical Restenosis Trials Using Beta Energy Radiation, Discoveries in Radiation for Restenosis, Abstract 32 (Jan. 1996). * |
Kuntz, M.D., et al., Generalized Model of Restenosis After Conventional Balloon Angioplasty, Stenting and Directional Atherectomy, Journal of the American College of Cardiology, vol. 21, No. 1, Jan. 1993. * |
Li, et al., A Novel Brachyehtapy Source for Treatment of Coronary Artery Restenosis, Discoveries in Radiation for Restenosis, Abstract 24 (Jan. 1996). * |
Liermann, et al., Prophylactic Endovascular Radiotherapy to Prevent Intimal Hyperplasia After Stent Implantation in Femoropopliteal Arteries, CardioVascular and Interventional Radiology (1994). * |
Lindsay, et al., Aortic Arterisclerosis in the Dog After Localized Aortic X Irradiation, Circulation Research, vol. X, Jan. 1962. * |
Lindsay, et al., Aortic Arterisclerosis in the Dog After Localized Aortic X-Irradiation, Circulation Research, vol. X, Jan. 1962. |
Lumsden, M.D., et al., Restenosis in Peripheral Vascular Disease, Discoveries in Radiation for Restenosis, Abstract 28 (Jan. 1996). * |
March, M.D., et al. 8 Methoxypsoralen and Longwave Ultraviolet Irradiation Are a Novel Antiproliferative Combination for Vascular Smooth Muscle, Krannert Institute of Cardiology, Sep. 1992. * |
March, M.D., et al. 8-Methoxypsoralen and Longwave Ultraviolet Irradiation Are a Novel Antiproliferative Combination for Vascular Smooth Muscle, Krannert Institute of Cardiology, Sep. 1992. |
Martin, Louis G., M.D., Radiation for Peripheral Applications: Technical Aspects, Discoveries in Radiation for Restenosis, Abstract 27 (Jan. 1996). * |
PCT Serach report PCT/US 99/03327 Mailed Jun. 18, 1999. * |
PCT Serach report PCT/US 99/03328 mailed Jun. 18, 1999. * |
PCT Serach report PCT/US 99/03329 mail ed Jun. 18, 1999. * |
PCT Serach report PCT/US 99/03343 mailed Jun. 17, 1999. * |
PCT Serach report PCT/US 99/03360 mailed Jun. 17, 1999. * |
Popowski, M.D., et al., Radioactive Wire in a Self Centering Catheter System, Discoveries in Radiation for Restenosis, Abstract 38 (Jan. 1996). * |
Popowski, M.D., et al., Radioactive Wire in a Self-Centering Catheter System, Discoveries in Radiation for Restenosis, Abstract 38 (Jan. 1996). |
Schopohl, et al., Endovascular Irradiation for Avoidance or Recurrent Stenosis After Stent Implantation in Peripheral Arteries 5 Years Follow Up, Discoveries in Radiation for Restenosis, Abstract 29 (Jan. 1996). * |
Schopohl, et al., Endovascular Irradiation for Avoidance or Recurrent Stenosis After Stent Implantation in Peripheral Arteries--5 Years Follow-Up, Discoveries in Radiation for Restenosis, Abstract 29 (Jan. 1996). |
Schwartz, et al., Differential Neointimal Response to Coronary Artery Injury in Pigs and Dogs, Implications for Restenosis Models, Arteriosclerosis and Thrombosis, vol. 14, No. 3, Mar. 1994. * |
Schwartz, et al., Effect of External Beam Irradiation on Neointimal Hyperplasia After Experimental Coronary Artery Injury, Discoveries in Radiation for Restenosis Selected Literature (Jan. 1996). * |
Schwartz, et al., Effect of External Beam Irradiation on Neointimal Hyperplasia After Experimental Coronary Artery Injury, Discoveries in Radiation for Restenosis--Selected Literature (Jan. 1996). |
Schwartz, M.D. et al., Effect of External Beam Irradiation on Neointimal Hyperplasia After Experimental Coronary Artery Injury, Journal of the American College of Cardiology, vol. 19, No. 5, Apr. 1992. * |
Smith, Dr. Edward F., III, Issues on Handling Radioactive Devices to Prevent Restenosis, Discoveries in Radiation for Restenosis, Abstract 40 (Jan. 1996). * |
Soares, et al., Measurement of Radial Dose Distributions Around Small Beta Particle Emitters Using High Resolution Radiochromic Foil Dosimetry, Nuclear Technology Publishing, vol. 47, pp. 367 372 (Undated). * |
Soares, et al., Measurement of Radial Dose Distributions Around Small Beta Particle Emitters Using High Resolution Radiochromic Foil Dosimetry, Nuclear Technology Publishing, vol. 47, pp. 367-372 (Undated). |
Teirstein, et al., Catheter Based Radiation Therapy to Inhibit Restenosis Following Coronary Stenting Discoveries in Radiation for Restenosis, Abstract 31 (Jan. 1996). * |
Teirstein, et al., Catheter-Based Radiation Therapy to Inhibit Restenosis Following Coronary Stenting Discoveries in Radiation for Restenosis, Abstract 31 (Jan. 1996). |
Unterberg, et al., Reduced Acute Thrombus Formation Results in Decreased Neointimal Proliferation After Coronary Angioplasty, Discoveries in Radiation for Restenosis Selected Literature (Jan. 1996). * |
Unterberg, et al., Reduced Acute Thrombus Formation Results in Decreased Neointimal Proliferation After Coronary Angioplasty, Discoveries in Radiation for Restenosis--Selected Literature (Jan. 1996). |
Urban, M.D., et al., Endovascular Irradiation with 90 Y Wire, Discoveries in Radiation for Restenosis, Abstract 33 (Jan. 1996). * |
Urban, M.D., et al., Endovascular Irradiation with 90Y Wire, Discoveries in Radiation for Restenosis, Abstract 33 (Jan. 1996). |
van t Hooft, et al., HDR Afterloader for Vascular Use, Discoveries in Radiation for Restenosis, Abstract 36 (Jan. 1996). * |
van't Hooft, et al., HDR Afterloader for Vascular Use, Discoveries in Radiation for Restenosis, Abstract 36 (Jan. 1996). |
Verin, M.D., et al., Intra Arterial Beta Irradiation Prevents Neointimal Hyperplasia in a Hypercholesterolemic Rabbit Restenosis Model, Circulation Research, vol. 92, No. 8, Oct. 15, 1995. * |
Verin, M.D., et al., Intra-Arterial Beta Irradiation Prevents Neointimal Hyperplasia in a Hypercholesterolemic Rabbit Restenosis Model, Circulation Research, vol. 92, No. 8, Oct. 15, 1995. |
Wagner, et al., Potential Biological Effects Following High X Ray Dose Interventional Procedures, Journal of Vascular and Interventional Radiology, Jan. Feb. 1994, pp. 71 84. * |
Wagner, et al., Potential Biological Effects Following High X-Ray Dose Interventional Procedures, Journal of Vascular and Interventional Radiology, Jan.-Feb. 1994, pp. 71-84. |
Waksman, M.D., et al., Catheter Based Radiation in Stented Arteries, Discoveries in Radiation for Restenosis, Abstract 25 (Jan. 1996). * |
Waksman, M.D., et al., Catheter-Based Radiation in Stented Arteries, Discoveries in Radiation for Restenosis, Abstract 25 (Jan. 1996). |
Waksman, M.D., et al., Endovascular Low Dose Irradiation Inhibits Neointima Formation After Coronary Artery Balloon Injury in Swine: A Possible Role for Radiation Therapy in Restenosis Prevention, Circulation Research, vol. 91, No. 5, Mar. 1, 1995. * |
Waksman, M.D., et al., Endovascular Low-Dose Irradiation Inhibits Neointima Formation After Coronary Artery Balloon Injury in Swine: A Possible Role for Radiation Therapy in Restenosis Prevention, Circulation Research, vol. 91, No. 5, Mar. 1, 1995. |
Waksman, M.D., et al., Intracoronary Low Dose Irradiation Inhibits Neointima Formation After Coronary Artery Balloon Injury in the Swine Restenosis Model, Circulation Research, vol. 92, No. 10, Nov. 15, 1995. * |
Waksman, M.D., et al., Intracoronary Low-Dose β-Irradiation Inhibits Neointima Formation After Coronary Artery Balloon Injury in the Swine Restenosis Model, Circulation Research, vol. 92, No. 10, Nov. 15, 1995. |
Waksman, M.D., et al., Radiation in the Peripheral System at Emory, Discoveries in Radiation for Restenosis, Abstract 30 (Jan. 1996). * |
Waksmann, M.D., et al., Intracoronary Radiation Before Stent Implantation Inhibits Neointima Formation in Stented Porcine Coronary Arteries, Circulation Research, vol. 92, No. 6, Sep. 15, 1995. * |
Weidermann, et al., Effects of High Dose Intracoronary Irradiation on Vasomotor Function and Smooth Muscle Histopathology, Intracoronary Irradiation and Vasomotion, Jan. 1994. * |
Weidermann, et al., Effects of High-Dose Intracoronary Irradiation on Vasomotor Function and Smooth Muscle Histopathology, Intracoronary Irradiation and Vasomotion, Jan. 1994. |
Weintraub, M.D., et al., Can Restenosis After Coronary Angioplasty be Predicted From Clinical Variables , Journal of the American College of Cardiology, vol. 21, No. 1, Jan. 1993. * |
Weintraub, M.D., et al., Can Restenosis After Coronary Angioplasty be Predicted From Clinical Variables?, Journal of the American College of Cardiology, vol. 21, No. 1, Jan. 1993. |
Weldon, Thomas D., Catheter Based Beta Radiation System, Discoveries in Radiation for Restenosis, Abstract 35 (Jan. 1996). * |
Weshler, et al., Inhibition by Irradiation of Smooth Muscle Cell Proliferation in the De Endothelialized Rat Aorta, 21st Meeting European Society for Radiation Biology, Frontiers of Radiation Biology, 1988. * |
Weshler, et al., Inhibition by Irradiation of Smooth Muscle Cell Proliferation in the De-Endothelialized Rat Aorta, 21st Meeting--European Society for Radiation Biology, Frontiers of Radiation Biology, 1988. |
Wiedermann, M.D., et al., Intracoronary Irradiation Markedly Reduces Restenosis After Balloon Angioplasty in a Porcine Model, Journal of the American College of Cardiology, vol. 23, No. 6, May 1994. * |
Wiedermann, M.D., Intracoronary Irradiation Markedly Reduces Neointimal Proliferation After Balloon Angioplasty in Swine: Persistent Benefit at 6 Month Follow Up, Journal of the American College of Cardiology, vol. 25, No. 6, May 1995. * |
Wiedermann, M.D., Intracoronary Irradiation Markedly Reduces Neointimal Proliferation After Balloon Angioplasty in Swine: Persistent Benefit at 6-Month Follow-Up, Journal of the American College of Cardiology, vol. 25, No. 6, May 1995. |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6582352B2 (en) | 1994-06-10 | 2003-06-24 | Schneider (Europe) A.G. | Medical appliance for treatment by ionizing radiation |
US6616629B1 (en) | 1994-06-24 | 2003-09-09 | Schneider (Europe) A.G. | Medical appliance with centering balloon |
US6599230B2 (en) | 1996-02-29 | 2003-07-29 | Scimed Life Systems, Inc. | Intravascular radiation delivery system |
US6368266B1 (en) * | 1999-11-12 | 2002-04-09 | Vascular Architects, Inc. | Medical irradiation assembly and method |
US6658088B2 (en) * | 2000-11-09 | 2003-12-02 | Radi Medical Technologies Ab | Miniature X-ray source and method |
US7276019B2 (en) | 2001-02-22 | 2007-10-02 | Retinalabs, Inc. | Ophthalmic treatment apparatus |
US8100818B2 (en) | 2001-02-22 | 2012-01-24 | TDH Partners, Inc. | Beta radiotherapy emitting surgical device and methods of use thereof |
US6579221B1 (en) | 2001-05-31 | 2003-06-17 | Advanced Cardiovascular Systems, Inc. | Proximal catheter shaft design and catheters incorporating the proximal shaft design |
US6679860B2 (en) | 2001-06-19 | 2004-01-20 | Medtronic Ave, Inc. | Intraluminal therapy catheter with inflatable helical member and methods of use |
US6746392B2 (en) | 2001-06-20 | 2004-06-08 | Medtronic Ave, Inc. | Brachytherapy catheter with twisted lumens and methods of use |
US7744520B2 (en) | 2004-02-12 | 2010-06-29 | Neovista, Inc. | Method and apparatus for intraocular brachytherapy |
US7803102B2 (en) | 2004-02-12 | 2010-09-28 | Neovista, Inc. | Methods and apparatus for intraocular brachytherapy |
US7951060B2 (en) | 2004-02-12 | 2011-05-31 | Neovista, Inc. | Methods and apparatus for intraocular brachytherapy |
US7563222B2 (en) | 2004-02-12 | 2009-07-21 | Neovista, Inc. | Methods and apparatus for intraocular brachytherapy |
US8365721B2 (en) | 2004-02-12 | 2013-02-05 | Neovista Inc. | Methods and apparatus for intraocular brachytherapy |
US7803103B2 (en) | 2005-02-11 | 2010-09-28 | Neovista Inc. | Methods and apparatus for intraocular brachytherapy |
US8292795B2 (en) | 2005-02-11 | 2012-10-23 | Neovista, Inc. | Methods and apparatus for intraocular brachytherapy |
US8353812B2 (en) | 2008-06-04 | 2013-01-15 | Neovista, Inc. | Handheld radiation delivery system |
US20120253100A1 (en) * | 2009-12-23 | 2012-10-04 | Chisholm Robert F | Braced brachytherapy needle |
US9775638B2 (en) * | 2009-12-23 | 2017-10-03 | Medi-Physics, Inc. | Braced brachytherapy needle |
Also Published As
Publication number | Publication date |
---|---|
WO1999040974A1 (en) | 1999-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5782740A (en) | Radiation dose delivery catheter with reinforcing mandrel | |
US5616114A (en) | Intravascular radiotherapy employing a liquid-suspended source | |
US6390967B1 (en) | Radiation for inhibiting hyperplasia after intravascular intervention | |
US5851171A (en) | Catheter assembly for centering a radiation source within a body lumen | |
US7018371B2 (en) | Combination ionizing radiation and radiosensitizer delivery devices and methods for inhibiting hyperplasia | |
CA2242996C (en) | Prepared catheter | |
US6099499A (en) | Device for in vivo radiation delivery and method for delivery | |
CA2227336C (en) | Catheter having an expandable radioactive source | |
US6093142A (en) | Device for in vivo radiation delivery and method for delivery | |
AU686317B2 (en) | Apparatus and method to reduce restenosis after arterial intervention | |
KR100258404B1 (en) | Vascular system treating apparatus | |
US6149575A (en) | Radiation delivery catheter | |
US6159140A (en) | Radiation shielded catheter for delivering a radioactive source and method of use | |
US20020010383A1 (en) | Apparatus and method to treat a disease process in a luminal structure | |
US20020193735A1 (en) | Intraluminal therapy catheter with inflatable helical member and methods of use | |
US6224535B1 (en) | Radiation centering catheters | |
US6547812B1 (en) | Radiation therapy using a radioactive implantable device and a radiosensitizer agent | |
EP1056518A1 (en) | Radiation delivery catheter with blood perfusion capability | |
EP0826393A1 (en) | Combined angioplasty and intravascular radiotherapy method and apparatus | |
WO1998046309A1 (en) | Double serial balloon catheter and method of prevention of restenosis | |
WO1999040962A1 (en) | Radiation centering catheter with blood perfusion capability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED CARDIOVASCULAR SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOEFFLER, JOSEPH P.;PETERSON, ERIC D.;BECKER, JON A.;REEL/FRAME:009260/0307;SIGNING DATES FROM 19980521 TO 19980602 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |