US6144559A - Process for assembling an interposer to probe dense pad arrays - Google Patents
Process for assembling an interposer to probe dense pad arrays Download PDFInfo
- Publication number
- US6144559A US6144559A US09/288,343 US28834399A US6144559A US 6144559 A US6144559 A US 6144559A US 28834399 A US28834399 A US 28834399A US 6144559 A US6144559 A US 6144559A
- Authority
- US
- United States
- Prior art keywords
- interposer
- resistors
- pins
- pad array
- solder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/0246—Termination of transmission lines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/04—Housings; Supporting members; Arrangements of terminals
- G01R1/0408—Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
- G01R1/0416—Connectors, terminals
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3447—Lead-in-hole components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/023—Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10022—Non-printed resistor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10227—Other objects, e.g. metallic pieces
- H05K2201/10333—Individual female type metallic connector elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10431—Details of mounted components
- H05K2201/10507—Involving several components
- H05K2201/10515—Stacked components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10636—Leadless chip, e.g. chip capacitor or resistor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10734—Ball grid array [BGA]; Bump grid array
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/04—Soldering or other types of metallurgic bonding
- H05K2203/0415—Small preforms other than balls, e.g. discs, cylinders or pillars
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention is generally related to process for manufacturing test equipment and, more particularly, is related to a process for assembling an interposer.
- Integrated circuits such as processors and other similar devices are operating at much greater speeds to perform an ever increasing number of operations each second. Many of these integrated circuits are placed on printed circuit boards or other similar structures and are in electrical communication with many different electrical components and other integrated circuits resident on the same printed circuit board. In order to facilitate communication between the integrated circuits and the several other electronic components, the integrated circuit contacts electrical conductors on a printed circuit board through pads that are often arranged in a dense grid or array on the printed circuit board.
- a typical printed circuit board includes several groups of signal conductors that run between various components on the board.
- a probe conductor When a probe conductor is joined to one of the pads, a very small capacitance between the probe conductor and the signal conductors on the order of picofarads presents an undesirable load impedance on the pads. In particular, at low frequencies, this impedance is acceptably high. However, at very high signal frequencies on the order of hundreds of megahertz, the impedance presented by such a capacitance will drop, resulting in extraneous loading on the conductors between the integrated circuits.
- the present invention provides for a process to manufacture an interposer which includes an interposer socket assembly to use in probing dense pad arrays that minimizes the associated extraneous pin loading and cross-talk discussed above.
- the process of the present invention comprises the steps of: mounting a number of resistors onto a number of predetermined positions in a pad array on an interposer board; inserting a number of interposer pins of a pin socket into the pads of the pad array on the interposer board, wherein the ends of the interposer pins protrude through the interposer board; placing a solder preform around the ends of the interposer pins; and, heating the solder preforms in a solder re-flow oven to solder the interposer pins to the respective pads of the pad array.
- the present invention may also be viewed as a process for assembling a ball grid array assembly on a printed circuit board, comprising the steps of: mounting a number of resistors onto a number of predetermined positions in a pad array on the printed circuit board; placing a ball grid array assembly onto the pad array; and, heating a number of solder balls on the ball grid array assembly in a solder re-flow oven to solder the ball grid array assembly to the pad array.
- the present invention provides distinct advantages in that, for example, a number of resistors may be easily positioned among interposer pins which protrude from a dense pad array by putting the resistors in place before the interposer pins are put into place.
- the resistors can be employed to address the problems of extraneous pin loading and cross-talk without interfering with or otherwise damaging the interposer pins themselves.
- the present process prevents solder from being deposited on contact regions of the interposer pins as well.
- Other advantages of the invention include the fact that the processes are simple in design, user friendly, efficient, and easily implemented for mass commercial production.
- FIG. 1 is a perspective view of a printed circuit board having a socket to receive a processor
- FIG. 2 is an exploded perspective view of the printed circuit board of FIG. 1 with an interposer socket assembly and an integrated circuit;
- FIG. 3 is an exploded side view of the printed circuit board, socket, and interposer socket assembly of FIGS. 1 and 2 and a processor to be plugged in to the interposer socket assembly;
- FIG. 4 is a drawing providing an illustration of a pad array employed in the interposer socket assembly of FIG. 2;
- FIG. 5A is an exploded side view of the assembly of a pin socket used in the interposer socket assembly of FIG. 3;
- FIG. 5B is an exploded side view of the mounting of resistors to a pad array on an interposer board of the interposer socket assembly of FIG. 3;
- FIG. 5C is an exploded side view of the insertion of the interposer pins of the pin socket through the interposer board of the interposer socket assembly of FIG. 3;
- FIG. 5D is an exploded side view of the placement of the solder preforms onto the protruding interposer pins of FIG. 3;
- FIG. 5E is an exploded side view of the attachment of the resistor shield over the resistors in the interposer socket assembly of FIG. 3;
- FIG. 5F is a side view of the assembled interposer socket assembly of FIG. 3;
- FIG. 6 is a side view of a ball grid array assembly mounted to a printed circuit board with resistors mounted therein;
- FIG. 7A is an exploded side view of the mounting of the resistors to a pad array on the ball grid array assembly of FIG. 6;
- FIG. 7B is an exploded side view of the mounting of the ball grid array assembly to the printed circuit board.
- FIG. 1 shown is a printed circuit board 101 as used in many personal computers on which is mounted a few representative capacitors 103 and a memory bank 106. Also, the printed circuit board 101 includes a socket 109 into which a processor may be inserted.
- the socket 109 includes a grid of holes which are arranged to receive a processor (not shown). The holes are placed relatively close together. When a processor fitted into the socket 109, it is quite difficult to access the innermost pins of the processor for diagnostic purposes.
- One such means to provide the needed access to the processor pins is to use an interposer which is placed between the processor and the socket 109.
- FIG. 2 shown is an exploded perspective view of an interposer 123 that is plugged into the socket 109 on the printed circuit board 101 when in use.
- a processor 125 in turn is plugged into the interposer 123 as shown.
- the interposer 123 includes an interposer socket assembly 126 which is adapted to mate with the socket 109.
- the socket assembly 126 includes a number of interposer pins that protrude from the bottom in a pin grid array (not shown) which mimics the pins of a processor that normally is plugged into the socket 109.
- Each of the interposer pins is coupled to a probe tip which includes probe tip resistors (not shown).
- the interposer 123 also includes electrical connectors 129 which allow diagnostic equipment to be electrically coupled to the individual pins in the interposer socket assembly 126.
- the individual probe tips extend from their respective interposer pins to a contact point in one of the electrical connectors 129.
- the diagnostic equipment may include, for example, and oscilloscope or logic analyzer.
- the interposer socket assembly 126 includes a pin socket 156 which includes a number of interposer pins 159. Note that not all of the interposer pins 159 are shown in order to keep the drawing from looking too complex and difficult to read.
- the interposer pins 159 are pressed into holes 163 in the pin socket 156.
- the interposer pins 159 include a female electrical contact 166 in which the processor pins 169 are inserted.
- the interposer socket assembly 126 also includes an interposer board 173 which includes a pad array 176 with a number of resistors 179.
- the pad array 176 is similar to the pad arrays described in copending U.S. Patent Application entitled “System and Method for Probing Dense Pad Arrays" (Attorney Docket No. 10981416-1) filed on even date herewith and accorded U.S. Ser. No. 09/088,370, and which is incorporated herein by reference in its entirety.
- the pad array 176 may also be similar to the pad arrays described in copending U.S. Patent Application entitled “Split Resistor Probe and Method" (Attorney Docket No.
- interposer pins 159 are soldered to the pads of the pad array 176 using a number of solder preforms 183.
- a resistor shield 186 is attached to the interposer board 173 to protect the resistors 179 as will be discussed.
- the pad array probing system 200 includes a dense pad array 176 which comprises a grid of pads 203 which are conductive holes that extend through a printed circuit board 204 or other similar flat surface member.
- the pads 203 are generally suited to receive the pins of a socket, an integrated circuit or other electronic device.
- the dense pad array 176 may also be a ball grid array, a pin grid array, an array of vias on a printed circuit board, a number of closely aligned conductors on a printed circuit board, or multi-chip module.
- the dense pad array 176 further includes a number of first probe tip resistors 179a which have a first end 209 and a second end 213.
- the first end 209 of each probe tip resistor 179a is electrically coupled to a respective pad 203, forming a predetermined coupling length 216 between the first ends 209 of the first probe tip resistors 179a and the pads 203, respectively.
- the predetermined coupling length 216 is as short as possible such that the first probe tip resistors 179a are directly adjacent to the pads 203, which is generally as short as manufacturing processes will allow. Note that the uppermost pads 203 are coupled to an external probe tip resistor 179b as shown.
- the dense pad array 176 further includes a number of transmission lines 223a, 223b, 223c, and 223d.
- the transmission lines 223a-d are routed from the second ends 213 of the first probe tip resistors 179a out of the dense pad array 176 to a number of second probe tip resistors 179c.
- the second probe tip resistors 179c include a first end 229 and a second end 233.
- the transmission lines 223a-d are coupled to the first end 229 of the second probe tip resistor 179c.
- the second ends 233 of the second probe tip resistors 179c are electrically coupled to a connector 129 which in turn is electrically coupled to a logic analyzer 239 or oscilloscope (not shown) via a cable 243.
- the transmission lines 223a-d are generally shown exiting the dense pad array 176 in a uniform manner, it is possible that the transmission lines 223a-d follow any particular pathway in any convenient direction out of the dense pad array 176 based on various considerations. For example, it may be preferable to minimize the length of the transmission lines 223a-d to limit interference at high frequencies, or manufacturing limitations may dictate the actual routes employed out of the dense pad array 176. Also, the placement of the pads 203 may limit the possible exit routes for a particular pad 203 out of the dense pad array 176.
- transmission lines 223a-d are shown only on the top side of the printed circuit board 204, it is possible that the transmission lines 223a-d be placed on either side of the printed circuit board 204 or a combination thereof using vias which route the transmission lines 223a-d through the printed circuit board 204.
- the functionality of the dense pad array 176 is as follows.
- An integrated circuit such as a processor may have several pins which are generally lodged into each pad 203 in the pad array 176.
- the pads 203 are also electrically coupled to other integrated circuits and various components on the printed circuit board 101. Signals propagate between the integrated circuit attached to the pad arrays 176 and other components on the printed circuit board 204 during the operation of the overall circuit on the printed circuit board 101.
- the first probe tip resistors 179a, transmission lines 223a-d, and second probe tip resistors 179c are employed to access the signals propagated on the pads 203 of the dense pad arrays 176 in order to test the operation of the integrated circuit attached to the dense pad arrays 176.
- the first and second probe tip resistors 179a and 179c are called "probe tip" resistors because they are located at the tip of what is considered a probe applied to each of the pads 203.
- a signal propagated on the pads 203 is also transmitted through the first probe tip resistors 179a, along the transmission lines 223a-d, and through the second probe tip resistors 179c to the logic analyzing device 139 or other similar diagnostic equipment.
- the second probe tip resistors 179c are coupled to the transmission lines 223a-d at a point outside of the dense pad array 176 to reduce the effects of cross-talk between the pads 203 and the transmission lines 223a-d due to a capacitance between any one of the pads 203 and a transmission line 223a-d which is routed near the respective pad 203.
- FIGS. 5A-5F shown are a number of side views which illustrate the process by which the interposer socket assembly 126 is assembled.
- the interposer pins 159 are inserted into the holes 163 in the pin socket 156. This may be performed by manually inserting and pressing the interposer pins 159 into the holes 163 or by using, for example, a vibratory feeder.
- the holes 163 have a diameter that is slightly smaller than the diameter of the interposer pins 159 which allows the interposer pins 159 to be pressed into and retained by the pin socket 156 with the thin ends of the interposer pins 159 protruding from the pin socket 156.
- a number of resistors 179 are soldered to the pad array 176 on the interposer board 173 as discussed previously.
- the resistors 179 may mounted to the interposer board 173 by simply soldering the resistors 179 into place. This may be accomplished, for example, using double tipped soldering equipment (not shown) in a manual or automated process.
- the resistors 179 may be placed using any industry standard pick-and-place surface mount assembly equipment.
- the resistors 179 may also be mounted to the interposer board 173 using some sort of adhesive such as an epoxy which would prevent the occurrence of "tomb stoning" by the resistors 179, which is described in later text.
- the epoxy may be dispensed automatically using any industry standard dispensing machine.
- FIG. 5C The next step in the process is shown in FIG. 5C in which the interposer pins 159, now an integral part of the pin socket 156 are inserted into the grid of pads of the pad array 176. This may be performed manually or using automated positioning equipment.
- the interposer pins 159 thus extend through and protrude from the interposer board 173 and the corresponding pad array 176.
- the solder preforms 183 are placed over the narrow ends of the protruding interposer pins 159 and fall flat against the interposer board 173.
- This step may be accomplished by manually placing the solder preforms 183 over the interposer pins 159 or by placing the solder preforms 183 over the interposer pins 159 using a fixture that places multiple preforms over multiple pins at the same time. Thereafter, the assembled interposer board 173 and pin socket 156 are placed in a solder re-flow oven and heated until the solder preforms 183 flow. Note that in some cases, if the size of the resistors 179 is very small, then the additional flow of solder from the solder preforms 183 may cause the resistors 179 to stand up on end due to the attraction to the greater amount of liquid solder. This is known as the "tomb stoning" effect which refers to the fact that the resistors 179 stand up on end like a tombstone.
- the solder between the interposer pins 159 and the pads of the pad array 176 hardens, thereby fixing the interposer pins 159 to the pad array 176.
- the resulting assembly may be employed to probe dense pad arrays as part of the interposer 123.
- interposer pins 159 protruding from a pad array 176 are inserted into the grid of holes in the resistor shield 186 which is then attached to the interposer board 173 using suitable adhesive.
- the placement of the interposer pins 159 into the holes of the resistor shield 186 may be accomplished manually or using automated positioning equipment.
- the resistor shield 186 guards against electrostatic discharge and protects that resistors 179 from being disturbed. Also, the resistor shield 186 insulates the resistors from random conductors on the socket 109 into which the interposer 123 is inserted and prevents the interposer pins 159 from being crammed too far into the socket 109. In addition, the resistor shield 186 helps maintain the parallel nature of the interposer pins 159.
- FIG. 5F shows the assembled interposer socket assembly 126 with the resistor shield 186.
- the present process of assembling the interposer socket assembly 126 is advantageous due to the fact that it allows the resistors 179 to be mounted within the pad array 176 without disturbing, deforming, or depositing solder on the interposer pins 159.
- a ball grid array assembly 303 that is attached to a printed circuit board 306 via a number of solder balls 309. Encased within the ball grid array assembly 303 is a processor 313. The solder balls 309 are affixed to pads in a pad array 316 that includes several resistors 319.
- FIGS. 7A and 7B shown are steps in a process to construct the ball grid array assembly 303 with the pad array 316 and accompanying resistors 319.
- the process begins with FIG. 7A in which the resistors 319 are soldered to predetermined points in the pad array 316. Thereafter, as shown in FIG. 7B, the ball grid array assembly 303 is placed against the printed circuit board 306 in such a manner that the solder balls 309 come into contact with the pads in the pad array 316. The resulting assembly is then heated in a solder re-flow furnace and the solder balls 309 flow so as to electrically coupled to the pads of the pad array 316.
- FIGS. 7A and 7B shown are steps in a process to construct the ball grid array assembly 303 with the pad array 316 and accompanying resistors 319.
- FIG. 7A in which the resistors 319 are soldered to predetermined points in the pad array 316.
- the ball grid array assembly 303 is placed against the printed circuit board 306 in such
- resistors 319 allow the resistors 319 to be placed within the pad array 316 without disruption or interference with the solder balls 309 during the re-flow process.
- the resistors 319 may be affixed to the printed circuit board 306 with an adhesive such as epoxy to prevent an occurrence of the tomb stoning effect during the solder re-flow.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Electronic Circuits (AREA)
- Details Of Connecting Devices For Male And Female Coupling (AREA)
- Manufacturing Of Electrical Connectors (AREA)
Abstract
Description
Claims (12)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/288,343 US6144559A (en) | 1999-04-08 | 1999-04-08 | Process for assembling an interposer to probe dense pad arrays |
DE10002097A DE10002097A1 (en) | 1999-04-08 | 2000-01-19 | Method for installing interposition device, for testing dense connection area array; involves applying solder preform to ends of terminal pins protruding through interposition circuit board and soldering in soldering furnace |
JP2000107009A JP2000323629A (en) | 1999-04-08 | 2000-04-07 | Assembling method of interposer assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/288,343 US6144559A (en) | 1999-04-08 | 1999-04-08 | Process for assembling an interposer to probe dense pad arrays |
Publications (1)
Publication Number | Publication Date |
---|---|
US6144559A true US6144559A (en) | 2000-11-07 |
Family
ID=23106697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/288,343 Expired - Fee Related US6144559A (en) | 1999-04-08 | 1999-04-08 | Process for assembling an interposer to probe dense pad arrays |
Country Status (3)
Country | Link |
---|---|
US (1) | US6144559A (en) |
JP (1) | JP2000323629A (en) |
DE (1) | DE10002097A1 (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6226179B1 (en) * | 1998-10-17 | 2001-05-01 | Samsung Electronics Co., Ltd. | Mounting structure of a semiconductor device module for a computer system |
US6404649B1 (en) * | 2000-03-03 | 2002-06-11 | Advanced Micro Devices, Inc. | Printed circuit board assembly with improved bypass decoupling for BGA packages |
US6507499B1 (en) * | 2001-05-02 | 2003-01-14 | Advanced Micro Devices, Inc. | Microprocessor EMI shield |
US6638080B2 (en) * | 2001-01-18 | 2003-10-28 | Agilent Technologies, Inc. | Integrated ball grid array-pin grid array-flex laminate test assembly |
US20040222785A1 (en) * | 2000-12-29 | 2004-11-11 | Leslie Los | Signal sampling using flex circuits on direct inter-connects |
US20050194984A1 (en) * | 2004-03-05 | 2005-09-08 | Asustek Computer Inc. | Testing apparatus and testing method |
US20050243531A1 (en) * | 2004-04-29 | 2005-11-03 | Newisys, Inc., A Delaware Corporation | Interposer device |
US6971887B1 (en) * | 2004-06-24 | 2005-12-06 | Intel Corporation | Multi-portion socket and related apparatuses |
US20050286239A1 (en) * | 2004-06-24 | 2005-12-29 | Trobough Mark B | Circuit board and system with a multi-portion socket |
US20060033512A1 (en) * | 2004-08-12 | 2006-02-16 | Schott Donald E | Interposer probe and method for testing |
US20060181300A1 (en) * | 2005-02-16 | 2006-08-17 | Bjorn Flach | Method for testing a circuit unit and test apparatus |
US20060214284A1 (en) * | 2005-03-24 | 2006-09-28 | Stuart Haden | Apparatus and method for data capture |
US20120300392A1 (en) * | 2011-04-18 | 2012-11-29 | Morgan Johnson | Heat management in an above motherboard interposer with peripheral circuits |
US20130083492A1 (en) * | 2011-09-30 | 2013-04-04 | Samsung Electro-Mechanics Co., Ltd | Power module package and method of manufacturing the same |
US20130337664A1 (en) * | 2012-06-19 | 2013-12-19 | Hon Hai Precision Industry Co., Ltd. | Electrical connector assembly having independent loading mechanism facilitating interconnections for both cpu and cable |
US20140024229A1 (en) * | 2012-07-23 | 2014-01-23 | Hon Hai Precision Industry Co., Ltd. | Electrical connector assembly having cable connector rotatably assembled thereon |
US20140342583A1 (en) * | 2013-05-14 | 2014-11-20 | Hon Hai Precision Industry Co., Ltd. | Low profile electrical connector have a fpc |
EP2866037A1 (en) * | 2013-10-25 | 2015-04-29 | Tektronix, Inc. | Releaseable probe connection |
US20150118870A1 (en) * | 2013-10-28 | 2015-04-30 | Rajasekaran Swaminathan | Integrated circuit connectors |
US20150116931A1 (en) * | 2013-10-31 | 2015-04-30 | Sony Corporation | Mobile Computing Device with a Combined Housing and Connector Port |
US20160226190A1 (en) * | 2013-09-10 | 2016-08-04 | Plastic Omnium Advanced Innovation And Research | Interconnection apparatus and assembly comprising same |
US9553385B2 (en) * | 2015-06-18 | 2017-01-24 | Dxo Labs | Electronic device comprising an electronic connector and a flexible printed circuit |
US20170201035A1 (en) * | 2016-01-08 | 2017-07-13 | Foxconn Interconnect Technology Limited | Electrical connector assembly with floating support |
US9985367B2 (en) | 2013-02-27 | 2018-05-29 | Molex, Llc | High speed bypass cable for use with backplanes |
US10062984B2 (en) | 2013-09-04 | 2018-08-28 | Molex, Llc | Connector system with cable by-pass |
US10135211B2 (en) | 2015-01-11 | 2018-11-20 | Molex, Llc | Circuit board bypass assemblies and components therefor |
USRE47342E1 (en) | 2009-01-30 | 2019-04-09 | Molex, Llc | High speed bypass cable assembly |
US10367280B2 (en) | 2015-01-11 | 2019-07-30 | Molex, Llc | Wire to board connectors suitable for use in bypass routing assemblies |
US10424856B2 (en) | 2016-01-11 | 2019-09-24 | Molex, Llc | Routing assembly and system using same |
US10424878B2 (en) | 2016-01-11 | 2019-09-24 | Molex, Llc | Cable connector assembly |
US10720735B2 (en) | 2016-10-19 | 2020-07-21 | Amphenol Corporation | Compliant shield for very high speed, high density electrical interconnection |
US10739828B2 (en) | 2015-05-04 | 2020-08-11 | Molex, Llc | Computing device using bypass assembly |
US10840649B2 (en) | 2014-11-12 | 2020-11-17 | Amphenol Corporation | Organizer for a very high speed, high density electrical interconnection system |
US10931062B2 (en) | 2018-11-21 | 2021-02-23 | Amphenol Corporation | High-frequency electrical connector |
US11070006B2 (en) | 2017-08-03 | 2021-07-20 | Amphenol Corporation | Connector for low loss interconnection system |
US11101611B2 (en) | 2019-01-25 | 2021-08-24 | Fci Usa Llc | I/O connector configured for cabled connection to the midboard |
US11151300B2 (en) | 2016-01-19 | 2021-10-19 | Molex, Llc | Integrated routing assembly and system using same |
US11189943B2 (en) | 2019-01-25 | 2021-11-30 | Fci Usa Llc | I/O connector configured for cable connection to a midboard |
US11205877B2 (en) | 2018-04-02 | 2021-12-21 | Ardent Concepts, Inc. | Controlled-impedance compliant cable termination |
US11437762B2 (en) | 2019-02-22 | 2022-09-06 | Amphenol Corporation | High performance cable connector assembly |
US11444398B2 (en) | 2018-03-22 | 2022-09-13 | Amphenol Corporation | High density electrical connector |
US11469554B2 (en) | 2020-01-27 | 2022-10-11 | Fci Usa Llc | High speed, high density direct mate orthogonal connector |
US11522310B2 (en) | 2012-08-22 | 2022-12-06 | Amphenol Corporation | High-frequency electrical connector |
US11670879B2 (en) | 2020-01-28 | 2023-06-06 | Fci Usa Llc | High frequency midboard connector |
US11735852B2 (en) | 2019-09-19 | 2023-08-22 | Amphenol Corporation | High speed electronic system with midboard cable connector |
USD1002553S1 (en) | 2021-11-03 | 2023-10-24 | Amphenol Corporation | Gasket for connector |
US11799246B2 (en) | 2020-01-27 | 2023-10-24 | Fci Usa Llc | High speed connector |
US11831106B2 (en) | 2016-05-31 | 2023-11-28 | Amphenol Corporation | High performance cable termination |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4554505A (en) * | 1983-06-10 | 1985-11-19 | Rockwell International Corporation | Test socket for a leadless chip carrier |
US4835469A (en) * | 1987-07-24 | 1989-05-30 | John Fluke Mfg. Co., Inc. | Integrated circuit clip for circuit analyzer |
US4853626A (en) * | 1987-03-10 | 1989-08-01 | Xilinx, Inc. | Emulator probe assembly for programmable logic devices |
US5460531A (en) * | 1994-01-27 | 1995-10-24 | Dell Usa, L.P. | Adaptor card with pass-through and non pass-through vias |
US5515241A (en) * | 1992-12-30 | 1996-05-07 | Interconnect Systems, Inc. | Space-saving assemblies for connecting integrated circuits to circuit boards |
US5847572A (en) * | 1996-01-10 | 1998-12-08 | Mitsubishi Denki Kabushiki Kaisha | Partly replaceable device for testing a multi-contact integrated circuit chip package |
US5854534A (en) * | 1992-08-05 | 1998-12-29 | Fujitsu Limited | Controlled impedence interposer substrate |
US5859538A (en) * | 1996-01-31 | 1999-01-12 | Hewlett-Packard Company | Method and apparatus for connecting a ball grid array device to a test instrument to facilitate the monitoring of individual signals or the interruption of individual signals or both |
US5896037A (en) * | 1996-10-10 | 1999-04-20 | Methode Electronics, Inc. | Interface test adapter for actively testing an integrated circuit chip package |
US5926027A (en) * | 1995-09-28 | 1999-07-20 | Bumb, Jr.; Frank E. | Apparatus and method for testing a device |
US5939891A (en) * | 1996-12-26 | 1999-08-17 | Chichibu Fuji Co., Ltd. | Socket for IC package |
-
1999
- 1999-04-08 US US09/288,343 patent/US6144559A/en not_active Expired - Fee Related
-
2000
- 2000-01-19 DE DE10002097A patent/DE10002097A1/en not_active Withdrawn
- 2000-04-07 JP JP2000107009A patent/JP2000323629A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4554505A (en) * | 1983-06-10 | 1985-11-19 | Rockwell International Corporation | Test socket for a leadless chip carrier |
US4853626A (en) * | 1987-03-10 | 1989-08-01 | Xilinx, Inc. | Emulator probe assembly for programmable logic devices |
US4835469A (en) * | 1987-07-24 | 1989-05-30 | John Fluke Mfg. Co., Inc. | Integrated circuit clip for circuit analyzer |
US5854534A (en) * | 1992-08-05 | 1998-12-29 | Fujitsu Limited | Controlled impedence interposer substrate |
US5515241A (en) * | 1992-12-30 | 1996-05-07 | Interconnect Systems, Inc. | Space-saving assemblies for connecting integrated circuits to circuit boards |
US5460531A (en) * | 1994-01-27 | 1995-10-24 | Dell Usa, L.P. | Adaptor card with pass-through and non pass-through vias |
US5926027A (en) * | 1995-09-28 | 1999-07-20 | Bumb, Jr.; Frank E. | Apparatus and method for testing a device |
US5847572A (en) * | 1996-01-10 | 1998-12-08 | Mitsubishi Denki Kabushiki Kaisha | Partly replaceable device for testing a multi-contact integrated circuit chip package |
US5859538A (en) * | 1996-01-31 | 1999-01-12 | Hewlett-Packard Company | Method and apparatus for connecting a ball grid array device to a test instrument to facilitate the monitoring of individual signals or the interruption of individual signals or both |
US5896037A (en) * | 1996-10-10 | 1999-04-20 | Methode Electronics, Inc. | Interface test adapter for actively testing an integrated circuit chip package |
US5939891A (en) * | 1996-12-26 | 1999-08-17 | Chichibu Fuji Co., Ltd. | Socket for IC package |
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6226179B1 (en) * | 1998-10-17 | 2001-05-01 | Samsung Electronics Co., Ltd. | Mounting structure of a semiconductor device module for a computer system |
US6404649B1 (en) * | 2000-03-03 | 2002-06-11 | Advanced Micro Devices, Inc. | Printed circuit board assembly with improved bypass decoupling for BGA packages |
US20040222785A1 (en) * | 2000-12-29 | 2004-11-11 | Leslie Los | Signal sampling using flex circuits on direct inter-connects |
US6638080B2 (en) * | 2001-01-18 | 2003-10-28 | Agilent Technologies, Inc. | Integrated ball grid array-pin grid array-flex laminate test assembly |
US6507499B1 (en) * | 2001-05-02 | 2003-01-14 | Advanced Micro Devices, Inc. | Microprocessor EMI shield |
US20050194984A1 (en) * | 2004-03-05 | 2005-09-08 | Asustek Computer Inc. | Testing apparatus and testing method |
US20050243531A1 (en) * | 2004-04-29 | 2005-11-03 | Newisys, Inc., A Delaware Corporation | Interposer device |
US7106600B2 (en) * | 2004-04-29 | 2006-09-12 | Newisys, Inc. | Interposer device |
US6971887B1 (en) * | 2004-06-24 | 2005-12-06 | Intel Corporation | Multi-portion socket and related apparatuses |
US20050286239A1 (en) * | 2004-06-24 | 2005-12-29 | Trobough Mark B | Circuit board and system with a multi-portion socket |
US20050287837A1 (en) * | 2004-06-24 | 2005-12-29 | Trobough Mark B | Multi-portion socket and related apparatuses |
US7248481B2 (en) * | 2004-06-24 | 2007-07-24 | Intel Corporation | Circuit board and system with a multi-portion socket |
US20060033512A1 (en) * | 2004-08-12 | 2006-02-16 | Schott Donald E | Interposer probe and method for testing |
US7064567B2 (en) * | 2004-08-12 | 2006-06-20 | Agilent Technologies, Inc. | Interposer probe and method for testing |
US20060181300A1 (en) * | 2005-02-16 | 2006-08-17 | Bjorn Flach | Method for testing a circuit unit and test apparatus |
US20060214284A1 (en) * | 2005-03-24 | 2006-09-28 | Stuart Haden | Apparatus and method for data capture |
USRE48230E1 (en) | 2009-01-30 | 2020-09-29 | Molex, Llc | High speed bypass cable assembly |
USRE47342E1 (en) | 2009-01-30 | 2019-04-09 | Molex, Llc | High speed bypass cable assembly |
US20120300392A1 (en) * | 2011-04-18 | 2012-11-29 | Morgan Johnson | Heat management in an above motherboard interposer with peripheral circuits |
US20130083492A1 (en) * | 2011-09-30 | 2013-04-04 | Samsung Electro-Mechanics Co., Ltd | Power module package and method of manufacturing the same |
US20130337664A1 (en) * | 2012-06-19 | 2013-12-19 | Hon Hai Precision Industry Co., Ltd. | Electrical connector assembly having independent loading mechanism facilitating interconnections for both cpu and cable |
US8708729B2 (en) * | 2012-06-19 | 2014-04-29 | Hon Hai Precision Industry Co., Ltd. | Electrical connector assembly having independent loading mechanism facilitating interconnections for both CPU and cable |
US20140024229A1 (en) * | 2012-07-23 | 2014-01-23 | Hon Hai Precision Industry Co., Ltd. | Electrical connector assembly having cable connector rotatably assembled thereon |
US8758036B2 (en) * | 2012-07-23 | 2014-06-24 | Hon Hai Precision Industry Co., Ltd. | Electrical connector assembly having cable connector rotatably assembled thereon |
US11901663B2 (en) | 2012-08-22 | 2024-02-13 | Amphenol Corporation | High-frequency electrical connector |
US11522310B2 (en) | 2012-08-22 | 2022-12-06 | Amphenol Corporation | High-frequency electrical connector |
US10305204B2 (en) | 2013-02-27 | 2019-05-28 | Molex, Llc | High speed bypass cable for use with backplanes |
US9985367B2 (en) | 2013-02-27 | 2018-05-29 | Molex, Llc | High speed bypass cable for use with backplanes |
US10069225B2 (en) | 2013-02-27 | 2018-09-04 | Molex, Llc | High speed bypass cable for use with backplanes |
US10056706B2 (en) | 2013-02-27 | 2018-08-21 | Molex, Llc | High speed bypass cable for use with backplanes |
US20140342583A1 (en) * | 2013-05-14 | 2014-11-20 | Hon Hai Precision Industry Co., Ltd. | Low profile electrical connector have a fpc |
US9214747B2 (en) * | 2013-05-14 | 2015-12-15 | Hon Hai Precision Industry Co., Ltd. | Low profile electrical connector have a FPC |
US10062984B2 (en) | 2013-09-04 | 2018-08-28 | Molex, Llc | Connector system with cable by-pass |
US10181663B2 (en) | 2013-09-04 | 2019-01-15 | Molex, Llc | Connector system with cable by-pass |
US9608371B2 (en) * | 2013-09-10 | 2017-03-28 | Plastic Omnium Advanced Innovation And Research | Interconnection apparatus and assembly comprising same |
US20160226190A1 (en) * | 2013-09-10 | 2016-08-04 | Plastic Omnium Advanced Innovation And Research | Interconnection apparatus and assembly comprising same |
EP2866037A1 (en) * | 2013-10-25 | 2015-04-29 | Tektronix, Inc. | Releaseable probe connection |
US9265170B2 (en) * | 2013-10-28 | 2016-02-16 | Intel Corporation | Integrated circuit connectors |
US20150118870A1 (en) * | 2013-10-28 | 2015-04-30 | Rajasekaran Swaminathan | Integrated circuit connectors |
US9618968B2 (en) * | 2013-10-31 | 2017-04-11 | Sony Corporation | Mobile computing device with a combined housing and connector port |
US20150116931A1 (en) * | 2013-10-31 | 2015-04-30 | Sony Corporation | Mobile Computing Device with a Combined Housing and Connector Port |
US10840649B2 (en) | 2014-11-12 | 2020-11-17 | Amphenol Corporation | Organizer for a very high speed, high density electrical interconnection system |
US11764523B2 (en) | 2014-11-12 | 2023-09-19 | Amphenol Corporation | Very high speed, high density electrical interconnection system with impedance control in mating region |
US10855034B2 (en) | 2014-11-12 | 2020-12-01 | Amphenol Corporation | Very high speed, high density electrical interconnection system with impedance control in mating region |
US10367280B2 (en) | 2015-01-11 | 2019-07-30 | Molex, Llc | Wire to board connectors suitable for use in bypass routing assemblies |
US11114807B2 (en) | 2015-01-11 | 2021-09-07 | Molex, Llc | Circuit board bypass assemblies and components therefor |
US10637200B2 (en) * | 2015-01-11 | 2020-04-28 | Molex, Llc | Circuit board bypass assemblies and components therefor |
US10784603B2 (en) | 2015-01-11 | 2020-09-22 | Molex, Llc | Wire to board connectors suitable for use in bypass routing assemblies |
US20180366890A1 (en) * | 2015-01-11 | 2018-12-20 | Molex, Llc | Circuit board bypass assemblies and components therefor |
US10135211B2 (en) | 2015-01-11 | 2018-11-20 | Molex, Llc | Circuit board bypass assemblies and components therefor |
US11621530B2 (en) | 2015-01-11 | 2023-04-04 | Molex, Llc | Circuit board bypass assemblies and components therefor |
US11003225B2 (en) | 2015-05-04 | 2021-05-11 | Molex, Llc | Computing device using bypass assembly |
US10739828B2 (en) | 2015-05-04 | 2020-08-11 | Molex, Llc | Computing device using bypass assembly |
US9553385B2 (en) * | 2015-06-18 | 2017-01-24 | Dxo Labs | Electronic device comprising an electronic connector and a flexible printed circuit |
US9876299B2 (en) * | 2016-01-08 | 2018-01-23 | Foxconn Interconnect Technology Limited | Electrical connector assembly with floating support |
US20170201035A1 (en) * | 2016-01-08 | 2017-07-13 | Foxconn Interconnect Technology Limited | Electrical connector assembly with floating support |
US10797416B2 (en) | 2016-01-11 | 2020-10-06 | Molex, Llc | Routing assembly and system using same |
US10424878B2 (en) | 2016-01-11 | 2019-09-24 | Molex, Llc | Cable connector assembly |
US11108176B2 (en) | 2016-01-11 | 2021-08-31 | Molex, Llc | Routing assembly and system using same |
US10424856B2 (en) | 2016-01-11 | 2019-09-24 | Molex, Llc | Routing assembly and system using same |
US11688960B2 (en) | 2016-01-11 | 2023-06-27 | Molex, Llc | Routing assembly and system using same |
US11842138B2 (en) | 2016-01-19 | 2023-12-12 | Molex, Llc | Integrated routing assembly and system using same |
US11151300B2 (en) | 2016-01-19 | 2021-10-19 | Molex, Llc | Integrated routing assembly and system using same |
US11831106B2 (en) | 2016-05-31 | 2023-11-28 | Amphenol Corporation | High performance cable termination |
US10720735B2 (en) | 2016-10-19 | 2020-07-21 | Amphenol Corporation | Compliant shield for very high speed, high density electrical interconnection |
US11387609B2 (en) | 2016-10-19 | 2022-07-12 | Amphenol Corporation | Compliant shield for very high speed, high density electrical interconnection |
US11070006B2 (en) | 2017-08-03 | 2021-07-20 | Amphenol Corporation | Connector for low loss interconnection system |
US11824311B2 (en) | 2017-08-03 | 2023-11-21 | Amphenol Corporation | Connector for low loss interconnection system |
US11637401B2 (en) | 2017-08-03 | 2023-04-25 | Amphenol Corporation | Cable connector for high speed in interconnects |
US11444398B2 (en) | 2018-03-22 | 2022-09-13 | Amphenol Corporation | High density electrical connector |
US11677188B2 (en) | 2018-04-02 | 2023-06-13 | Ardent Concepts, Inc. | Controlled-impedance compliant cable termination |
US11205877B2 (en) | 2018-04-02 | 2021-12-21 | Ardent Concepts, Inc. | Controlled-impedance compliant cable termination |
US11742620B2 (en) | 2018-11-21 | 2023-08-29 | Amphenol Corporation | High-frequency electrical connector |
US12218462B2 (en) | 2018-11-21 | 2025-02-04 | Amphenol Corporation | High-frequency electrical connector |
US10931062B2 (en) | 2018-11-21 | 2021-02-23 | Amphenol Corporation | High-frequency electrical connector |
US11189943B2 (en) | 2019-01-25 | 2021-11-30 | Fci Usa Llc | I/O connector configured for cable connection to a midboard |
US11715922B2 (en) | 2019-01-25 | 2023-08-01 | Fci Usa Llc | I/O connector configured for cabled connection to the midboard |
US11637390B2 (en) | 2019-01-25 | 2023-04-25 | Fci Usa Llc | I/O connector configured for cable connection to a midboard |
US11101611B2 (en) | 2019-01-25 | 2021-08-24 | Fci Usa Llc | I/O connector configured for cabled connection to the midboard |
US11437762B2 (en) | 2019-02-22 | 2022-09-06 | Amphenol Corporation | High performance cable connector assembly |
US11735852B2 (en) | 2019-09-19 | 2023-08-22 | Amphenol Corporation | High speed electronic system with midboard cable connector |
US11469554B2 (en) | 2020-01-27 | 2022-10-11 | Fci Usa Llc | High speed, high density direct mate orthogonal connector |
US11817657B2 (en) | 2020-01-27 | 2023-11-14 | Fci Usa Llc | High speed, high density direct mate orthogonal connector |
US11799246B2 (en) | 2020-01-27 | 2023-10-24 | Fci Usa Llc | High speed connector |
US11469553B2 (en) | 2020-01-27 | 2022-10-11 | Fci Usa Llc | High speed connector |
US11670879B2 (en) | 2020-01-28 | 2023-06-06 | Fci Usa Llc | High frequency midboard connector |
USD1002553S1 (en) | 2021-11-03 | 2023-10-24 | Amphenol Corporation | Gasket for connector |
Also Published As
Publication number | Publication date |
---|---|
JP2000323629A (en) | 2000-11-24 |
DE10002097A1 (en) | 2000-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6144559A (en) | Process for assembling an interposer to probe dense pad arrays | |
US6225816B1 (en) | Split resistor probe and method | |
US7088118B2 (en) | Modularized probe card for high frequency probing | |
US6347946B1 (en) | Pin grid array socket | |
US4733172A (en) | Apparatus for testing I.C. chip | |
US5014002A (en) | ATE jumper programmable interface board | |
US6184576B1 (en) | Packaging and interconnection of contact structure | |
KR100500452B1 (en) | Ball Grid Array Package Test Apparatus and Method | |
US4862076A (en) | Test point adapter for chip carrier sockets | |
US6686732B2 (en) | Low-cost tester interface module | |
US7990168B2 (en) | Probe card including a sub-plate with a main supporter and a sub-supporter with the sub-supporter having probe needles | |
JP2004523908A (en) | Adapters for plastic leaded chip carriers (PLCC) and other surface mount technology (SMT) chip carriers | |
KR20030024668A (en) | Universal test interface between a device under test and a test head | |
US6208158B1 (en) | Zero static force assembly for wireless test fixtures | |
US5061892A (en) | Electrical test probe having integral strain relief and ground connection | |
US7180321B2 (en) | Tester interface module | |
US20020043983A1 (en) | Chip-testing socket using surface mount techinology | |
US7091731B1 (en) | Flexible ribbon probe for peripheral leads of an electronic part's package | |
JPH07335701A (en) | Probing device | |
US9622336B2 (en) | Releasable probe connection | |
US6498299B2 (en) | Connection structure of coaxial cable to electric circuit substrate | |
US6294920B1 (en) | Test mounting for surface mount device packages | |
US20050110504A1 (en) | Method and apparatus for implementing very high density probing (vhdp) of printed circuit board signals | |
US20060033514A1 (en) | Incorporation of isolation resistor(s) into probes using probe tip spring pins | |
US20060033513A1 (en) | Apparatus, method, and kit for probing a pattern of points on a printed circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HEWLETT-PACKARD COMPANY, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOHNSON, KENNETH W.;ZAMBORELLI, THOMAS J.;BARTOSCH, LARRY;REEL/FRAME:010142/0955;SIGNING DATES FROM 19990607 TO 19990611 |
|
AS | Assignment |
Owner name: HEWLETT-PACKARD COMPANY, COLORADO Free format text: MERGER;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:010759/0049 Effective date: 19980520 |
|
AS | Assignment |
Owner name: AGILENT TECHNOLOGIES INC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:010977/0540 Effective date: 19991101 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20081107 |